JP2017090453A - Surface roughness evaluation device and surface roughness evaluation method - Google Patents

Surface roughness evaluation device and surface roughness evaluation method Download PDF

Info

Publication number
JP2017090453A
JP2017090453A JP2016216081A JP2016216081A JP2017090453A JP 2017090453 A JP2017090453 A JP 2017090453A JP 2016216081 A JP2016216081 A JP 2016216081A JP 2016216081 A JP2016216081 A JP 2016216081A JP 2017090453 A JP2017090453 A JP 2017090453A
Authority
JP
Japan
Prior art keywords
peak
probability density
density function
measured
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016216081A
Other languages
Japanese (ja)
Other versions
JP6864311B2 (en
Inventor
靖夫 川口
Yasuo Kawaguchi
靖夫 川口
愛美 軍司
Manami Gunji
愛美 軍司
紘央 三重野
Hirohisa Mieno
紘央 三重野
英幹 川島
Hidemiki Kawashima
英幹 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Tokyo University of Science
National Institute of Maritime Port and Aviation Technology
Original Assignee
Chugoku Marine Paints Ltd
Tokyo University of Science
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Marine Paints Ltd, Tokyo University of Science, National Institute of Maritime Port and Aviation Technology filed Critical Chugoku Marine Paints Ltd
Publication of JP2017090453A publication Critical patent/JP2017090453A/en
Application granted granted Critical
Publication of JP6864311B2 publication Critical patent/JP6864311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface roughness evaluation device and a surface roughness evaluation method that can predict and evaluate the three-dimensional shape of a measurement target surface rapidly based on data obtained by two-dimensional measurement.SOLUTION: Based on roughness curve data obtained by a displacement meter capable of two-dimensional measurement, the peak height H of roughness curve data and the skirt width 2R are sequentially determined, and the average value of the ratio H/R is calculated from a plurality of peak heights H and the skirt widths 2R. Based on the two-dimensional probability density functionf(h) obtained by approximating the histogram of the obtained peak height and the average value of the H/R ratio, a three-dimensional probability density functionf(h) is derived.SELECTED DRAWING: Figure 1

Description

本発明は、不規則な粗さを有する物体表面の3次元形状を、より簡単な2次元計測により適切に把握・評価するために用いる表面粗さ評価装置及び表面粗さ評価方法に関する。   The present invention relates to a surface roughness evaluation apparatus and a surface roughness evaluation method used for appropriately grasping and evaluating a three-dimensional shape of an object surface having irregular roughness by simple two-dimensional measurement.

従来、線上で物体表面の粗さを計測(2次元計測)する装置は、接触式、非接触式など様々な原理によるものが知られている。市販されている表面粗さ計測装置には、例えば、取得した粗さ曲線を処理して、最大・最低高さ、10点平均粗さ、粗さの実効値などといった統計量を計算して出力するものもある。   2. Description of the Related Art Conventionally, apparatuses that measure the roughness of an object surface on a line (two-dimensional measurement) are known based on various principles such as a contact type and a non-contact type. Commercially available surface roughness measuring devices, for example, process acquired roughness curves and calculate and output statistics such as maximum / minimum height, 10-point average roughness, and effective roughness value. Some will do.

P.A. Langston, A. S. Burbidge, T.F.Jones, M.J.H. Simmons, "Particle and droplet size analysis from chord measurements using Bayes' theorem". Powder Technology 116 (1), pp.33-42, 2001.P.A.Langston, A.S.Burbidge, T.F.Jones, M.J.H.Simmons, "Particle and droplet size analysis from chord measurements using Bayes' theorem" .Powder Technology 116 (1), pp.33-42, 2001. C.A. Fernandes, F. Ramos, L. Moriconi and J.B.R. Loureiro, "Experimental validation of particle size distribution estimation from FBRM data", Proc. 8th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 2013C.A. Fernandes, F. Ramos, L. Moriconi and J.B.R.Loureiro, "Experimental validation of particle size distribution estimation from FBRM data", Proc. 8th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 2013

しかしながら、このような装置では、忠実に3次元的な曲面形状を計測しているわけではなく、曲面形状を1つの断面で切断し、曲線を取り出して評価を加えている。
このことから、2次元的な線上計測は、実際の物体表面において3次元的な凸部の頂点近くを切断することもあれば、凸部の裾近くを切断することもあり、3次元的曲面を正しく代表するものではない。
However, in such an apparatus, the three-dimensional curved surface shape is not measured faithfully, but the curved surface shape is cut by one cross section, and the curve is taken out for evaluation.
From this, the two-dimensional linear measurement may cut near the apex of the three-dimensional convex part on the actual object surface, or may cut near the skirt of the convex part. Is not a correct representation of

2次元計測の切断面は、必ず3次元的な凸部の頂点を通る保証がないため、2次元計測で計測した凸部の最大値は、3次元的な凸部の最大値よりも小さくなってしまう。
一方で、十分な精度で3次元計測を行うためには、高価な装置を用いて莫大な表面形状データを取得する必要があり、測定時間も長くなってしまうため実用的ではない。
Since there is no guarantee that the cut surface of 2D measurement passes through the apex of the 3D projection, the maximum value of the projection measured by 2D measurement is smaller than the maximum value of the 3D projection. End up.
On the other hand, in order to perform three-dimensional measurement with sufficient accuracy, it is necessary to acquire enormous surface shape data by using an expensive apparatus, and the measurement time becomes long, which is not practical.

このため、より少ない表面形状データの計測から、妥当な確率・統計的処理を行って三次元的な曲面形状を算出する表面粗さ評価装置が求められている。
非特許文献1,2には、粒子又は液滴の直径の分布を、レーザーの光路上の弦(Chord)の確率密度関数から求めることが開示されている。しかしながら、非特許文献1,2に開示された方法は、粒子又は液滴を対象としたものであり、物体表面の粗度にそのまま適用することができるものではない。
For this reason, there is a need for a surface roughness evaluation apparatus that calculates a three-dimensional curved surface shape by performing reasonable probability / statistical processing from measurement of less surface shape data.
Non-Patent Documents 1 and 2 disclose that the diameter distribution of particles or droplets is obtained from a probability density function of a chord on the optical path of a laser. However, the methods disclosed in Non-Patent Documents 1 and 2 are intended for particles or droplets, and cannot be directly applied to the roughness of the object surface.

本発明では、このような現状に鑑み、2次元計測により得られたデータに基づき、迅速に被測定物体表面の3次元形状を予測・評価することが可能な表面粗さ評価装置及び表面粗さ評価方法を提供することを目的とする。   In the present invention, in view of such a current situation, a surface roughness evaluation apparatus and a surface roughness capable of quickly predicting and evaluating the three-dimensional shape of the surface of the object to be measured based on data obtained by two-dimensional measurement. The purpose is to provide an evaluation method.

本発明は、前述するような従来技術における課題を解決するために発明されたものであって、本発明の表面粗さ評価装置は、
被測定物体表面の粗さを評価する表面粗さ評価装置であって、
前記被測定物体表面を2次元的に測定可能な変位計と、
前記変位計により得られた前記被測定物体表面の粗さ曲線データに基づき被測定物体表面の3次元形状を算出する演算手段と、を備え、
前記演算手段は、
前記粗さ曲線データのピーク高さHと、その裾野幅2Rとを順次求め、
複数のピーク高さHと、その裾野幅2RとからH/R比の平均値を算出し、
得られたピーク高さのヒストグラムを近似して得られた2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、3次元確率密度関数3fh(3hpeak)を導出するように構成されていることを特徴とする。
The present invention was invented to solve the problems in the prior art as described above, and the surface roughness evaluation apparatus of the present invention is
A surface roughness evaluation apparatus for evaluating the roughness of the surface of an object to be measured,
A displacement meter capable of two-dimensionally measuring the surface of the object to be measured;
Calculating means for calculating a three-dimensional shape of the surface of the object to be measured based on roughness curve data of the surface of the object to be measured obtained by the displacement meter,
The computing means is
Obtain the peak height H of the roughness curve data and its base width 2R sequentially,
Calculate the average value of the H / R ratio from multiple peak heights H and its base width 2R,
Based on the two-dimensional probability density function 2 f h ( 2 h peak ) obtained by approximating the obtained peak height histogram and the average value of the H / R ratio, the three-dimensional probability density function 3 f h It is configured to derive ( 3 h peak ).

この場合、前記演算手段は、
前記被測定物体の表面粗さを、円錐形、半球形、回転楕円体のいずれかと仮定して、前記2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出するように構成することが好ましい。
In this case, the computing means is
Assuming that the surface roughness of the object to be measured is conical, hemispherical, or spheroid, the two-dimensional probability density function 2 f h ( 2 h peak ) and the average value of the H / R ratio The three-dimensional probability density function 3 f h ( 3 h peak ) is preferably derived based on the above.

また、前記演算手段は、
前記2次元確率密度関数2fh(2hpeak)と、対数正規分布関数又は正規分布関数とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出するように構成することが好ましい。
Further, the calculation means includes:
The three-dimensional probability density function 3 f h ( 3 h peak ) is derived based on the two-dimensional probability density function 2 f h ( 2 h peak ) and a lognormal distribution function or a normal distribution function. Is preferred.

また、本発明の表面粗さ評価装置では、前記演算手段により、
前記3次元確率密度関数3fh(3hpeak)に基づき、前記被測定物体表面の高さ、ピークの個数、断面積のうち少なくともいずれかを算出することができる。
Moreover, in the surface roughness evaluation apparatus of the present invention, by the calculation means,
Based on the three-dimensional probability density function 3 f h ( 3 h peak ), at least one of the height, the number of peaks, and the cross-sectional area of the surface of the object to be measured can be calculated.

また、本発明の表面粗さ評価方法は、
被測定物体表面の粗さを評価する表面粗さ評価方法であって、
前記被測定物体表面を2次元的に測定し、前記被測定物体表面の粗さ曲線データを取得する工程と、
前記粗さ曲線データのピーク高さHと、その裾野幅2Rとを順次求める工程と、
複数のピーク高さHと、その裾野幅2RとからH/R比の平均値を算出する工程と、
得られたピーク高さのヒストグラムを近似して得られた2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、3次元確率密度関数3fh(3hpeak)を導出する工程と、を備えることを特徴とする。
The surface roughness evaluation method of the present invention is
A surface roughness evaluation method for evaluating the roughness of an object surface to be measured,
Measuring the surface of the object to be measured two-dimensionally and obtaining roughness curve data of the surface of the object to be measured;
A step of sequentially obtaining the peak height H of the roughness curve data and its base width 2R,
A step of calculating an average value of the H / R ratio from a plurality of peak heights H and the base width 2R,
Based on the two-dimensional probability density function 2 f h ( 2 h peak ) obtained by approximating the obtained peak height histogram and the average value of the H / R ratio, the three-dimensional probability density function 3 f h Deriving ( 3 h peak ).

この場合、前記被測定物体の表面粗さを、円錐形、半球形、回転楕円体のいずれかと仮定して、前記2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出することが好ましい。 In this case, assuming that the surface roughness of the object to be measured is conical, hemispherical, or spheroid, the two-dimensional probability density function 2 f h ( 2 h peak ) and the H / R ratio It is preferable to derive the three-dimensional probability density function 3 f h ( 3 h peak ) based on the average value.

また、前記2次元確率密度関数2fh(2hpeak)と、対数正規分布関数又は正規分布関数とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出することが好ましい。
また、前記3次元確率密度関数3fh(3hpeak)に基づき、前記被測定物体表面の高さ、ピークの個数、断面積のうち少なくともいずれかを算出することができる。
The three-dimensional probability density function 3 f h ( 3 h peak ) is preferably derived based on the two-dimensional probability density function 2 f h ( 2 h peak ) and a lognormal distribution function or a normal distribution function. .
Further, based on the three-dimensional probability density function 3 f h ( 3 h peak ), at least one of the height of the surface of the object to be measured, the number of peaks, and the cross-sectional area can be calculated.

本発明によれば、3次元計測に比べて計測データの少ない2次元計測により得られた粗さ曲線データに基づき、被測定物体表面の3次元形状を表す3次元確率密度関数3fh(3hpeak)を導出するため、被測定物体表面の粗さを低コストかつ迅速に予測・評価することができる。 According to the present invention, the three-dimensional probability density function 3 f h ( 3 representing the three-dimensional shape of the surface of the object to be measured is based on roughness curve data obtained by two-dimensional measurement with less measurement data than three-dimensional measurement. Since h peak ) is derived, the roughness of the surface of the object to be measured can be predicted and evaluated quickly at low cost.

図1は、本実施例における表面粗さ評価装置を説明するための概略構成図である。FIG. 1 is a schematic configuration diagram for explaining a surface roughness evaluation apparatus in the present embodiment. 図2は、図1の表面粗さ評価装置の変位計によって得られた粗さ曲線データの一部を示すグラフである。FIG. 2 is a graph showing a part of roughness curve data obtained by the displacement meter of the surface roughness evaluation apparatus of FIG. 図3は、図2に示す粗さ曲線データにおいてピークを特定した例を示すグラフである。FIG. 3 is a graph showing an example in which a peak is specified in the roughness curve data shown in FIG. 図4は、2次元ピーク高さ2hpeakの確率密度分布2fh(2hpeak)の例を示すグラフである。Figure 4 is a graph showing an example of a two-dimensional peak height 2 h peak of the probability density distributions 2 f h (2 h peak) . 図5は、2次元確率密度関数2fh(2hpeak)と、H/R比の平均値とに基づき導出された3次元確率密度関数3fh(3hpeak)の例を示すグラフである。FIG. 5 is a graph showing an example of the three-dimensional probability density function 3 f h ( 3 h peak ) derived based on the two-dimensional probability density function 2 f h ( 2 h peak ) and the average value of the H / R ratio. It is. 図6は、面測定が可能なレーザー変位計を用いて取得した被測定物体表面の面的な粗さ形状データの一部を示すグラフである。FIG. 6 is a graph showing a part of the surface roughness shape data of the surface of the measured object acquired using a laser displacement meter capable of surface measurement. 図7は、3次元計測により得られたピーク高さのヒストグラムと、本発明の表面粗さ評価装置によって導出された3次元確率密度関数3fh(3hpeak)との比較を示すグラフである。FIG. 7 is a graph showing a comparison between the peak height histogram obtained by the three-dimensional measurement and the three-dimensional probability density function 3 f h ( 3 h peak ) derived by the surface roughness evaluation apparatus of the present invention. is there.

以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
図1は、本実施例における表面粗さ評価装置を説明するための概略構成図、図2は、図1の表面粗さ評価装置の変位計によって得られた粗さ曲線データの一部を示すグラフである。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram for explaining a surface roughness evaluation apparatus in the present embodiment, and FIG. 2 shows a part of roughness curve data obtained by a displacement meter of the surface roughness evaluation apparatus in FIG. It is a graph.

図1に示すように、本実施例の表面粗さ評価装置10は、被測定物体表面16を2次元的に点測定可能な変位計12と、変位計12により得られた粗さ曲線データに基づき被測定物体表面の3次元形状を算出する演算手段14とを備えている。   As shown in FIG. 1, the surface roughness evaluation apparatus 10 according to the present embodiment uses a displacement meter 12 capable of two-dimensionally measuring a measured object surface 16 and roughness curve data obtained by the displacement meter 12. And a calculation means 14 for calculating a three-dimensional shape of the surface of the object to be measured based on the calculation object 14.

なお、変位計12は、被測定物体表面16を点測定可能であれば特に限定されるものではなく、接触式変位計であっても、非接触式変位計であっても構わない。被測定物体表面16を安定的に精度良く評価するためには、非接触式変位計が好ましく、特に、レーザー式変位計(例えば、キーエンス社製超高速インラインプロファイル測定器(LJ-V7200)など)が好ましい。   The displacement meter 12 is not particularly limited as long as it can measure the surface 16 of the object to be measured, and may be a contact displacement meter or a non-contact displacement meter. In order to stably and accurately evaluate the object surface 16 to be measured, a non-contact displacement meter is preferable, and in particular, a laser displacement meter (for example, an ultra-high speed inline profile measuring instrument (LJ-V7200) manufactured by Keyence Corporation). Is preferred.

演算手段14は、変位計12によって得られた粗さ曲線データに基づき、後述するような演算が可能であれば特に限定されるものではなく、例えば、パーソナルコンピュータなどを用いることができる。   The calculation means 14 is not particularly limited as long as calculation as described later is possible based on the roughness curve data obtained by the displacement meter 12, and for example, a personal computer or the like can be used.

以下、本実施例の表面粗さ評価装置10を用いて、被測定物体表面16の3次元形状を算出する流れを説明する。
まず、変位計12によって、被測定物体表面16を直線上に走査し、2次元的な線上計測を行う。これによって、図2に示すように、粗さ曲線データが得られる。なお、図2に示す粗さ曲線データは、塗料を塗布して人為的に粗さを生成した被測定物体表面16を変位計12によって走査して得られたものである。
Hereinafter, the flow of calculating the three-dimensional shape of the surface 16 to be measured using the surface roughness evaluation apparatus 10 of the present embodiment will be described.
First, the object surface 16 to be measured is scanned on a straight line by the displacement meter 12 to perform two-dimensional linear measurement. As a result, roughness curve data is obtained as shown in FIG. Note that the roughness curve data shown in FIG. 2 is obtained by scanning the object surface 16 to be measured, which has been artificially generated by applying a paint, with the displacement meter 12.

次いで、図3に示すように、図2に示す粗さ曲線データに現れるピークを特定し、その高さ2hpeakを求め、このピーク高さを整理してヒストグラムを計算する。ここで、図3中のdhはヒストグラムの1区分の幅であり、ヒストグラムの計算とは、この区分に納まるピークの数を計数することを言う。本実施例では、ヒストグラムの横軸となる区分数は50とした。 Next, as shown in FIG. 3, a peak appearing in the roughness curve data shown in FIG. 2 is specified, its height 2 h peak is obtained, and the histogram is calculated by organizing this peak height. Here, dh in FIG. 3 is the width of one section of the histogram, and the calculation of the histogram means counting the number of peaks that fall within this section. In the present embodiment, the number of sections on the horizontal axis of the histogram is 50.

そして、ヒストグラムの形を連続関数で近似し、下記式(1)を満たすように縦軸を調整して、図4に示すように、2次元確率密度関数2fh(2hpeak)を導出する。
別途、図2に示す粗さ曲線データに現れるピーク高さHと、その裾野幅2Rとを順次求め、複数のデータに基づいて、H/R比の平均値を算出する。
Then, the shape of the histogram is approximated by a continuous function, the vertical axis is adjusted to satisfy the following formula (1), and a two-dimensional probability density function 2 f h ( 2 h peak ) is derived as shown in FIG. To do.
Separately, the peak height H appearing in the roughness curve data shown in FIG. 2 and its base width 2R are sequentially obtained, and the average value of the H / R ratio is calculated based on a plurality of data.

確率・統計理論に基づき、被測定物体の表面粗さを円錐形状であるとの仮定のもとに、2次元対数正規分布の連続関数である2次元確率密度関数2fh(2hpeak)と、H/R比の平均値とに基づき、下記式(2)により、図5に示すような3次元確率密度関数3fh(3hpeak)を導出する。 Two-dimensional probability density function 2 f h ( 2 h peak ), which is a continuous function of a two-dimensional lognormal distribution, on the assumption that the surface roughness of the measured object is conical based on probability / statistical theory Based on the average value of the H / R ratio, a three-dimensional probability density function 3 f h ( 3 h peak ) as shown in FIG.

なお、本実施例では、3次元確率密度関数3fh(3hpeak)は対数正規分布に従うものと仮定しているが、3次元確率密度関数3fh(3hpeak)が正規分布に従うものと仮定して導出することもできる。
すなわち、2次元確率密度関数2fh(2hpeak)と、対数正規分布関数又は正規分布関数とに基づき、3次元確率密度関数3fh(3hpeak)を導出することができる。
ただし、対数正規分布を規定するパラメータである(a,μ,σ)が、2fh(2hpeak)から推算されることになる。また、区分数は図4に示す2次元ヒストグラムと対応するように、横軸3hpeak上では50で計算を行っている。
In this embodiment, it is assumed that the three-dimensional probability density function 3 f h ( 3 h peak ) follows a lognormal distribution, but the three-dimensional probability density function 3 f h ( 3 h peak ) follows a normal distribution. It can also be derived assuming that.
That is, the three-dimensional probability density function 3 f h ( 3 h peak ) can be derived based on the two-dimensional probability density function 2 f h ( 2 h peak ) and the lognormal distribution function or the normal distribution function.
However, parameters (a, μ, σ) that define a lognormal distribution are estimated from 2 f h ( 2 h peak ). Further, the number of sections is calculated at 50 on the horizontal axis 3 h peak so as to correspond to the two-dimensional histogram shown in FIG.

また、本実施例では、被測定物体の表面粗さを、円錐形状と仮定しているが、これに限定されるものではなく、半球形や回転楕円体と仮定して、2次元確率密度関数2fh(2hpeak)と、H/R比の平均値とに基づき、3次元確率密度関数3fh(3hpeak)を導出するようにしてもよい。 In this embodiment, the surface roughness of the object to be measured is assumed to be a conical shape. However, the present invention is not limited to this, and a two-dimensional probability density function is assumed assuming a hemispherical shape or a spheroid. A three-dimensional probability density function 3 f h ( 3 h peak ) may be derived based on 2 f h ( 2 h peak ) and the average value of the H / R ratio.

このようにして得られた3次元確率密度関数3fh(3hpeak)の中で、確率密度が0でない値を持つ範囲を区切る横軸の上限値3hpeakが、3次元曲面の凸部の最大高さ3hpeak_maxに相当する。 In the 3D probability density function 3 f h ( 3 h peak ) obtained in this way, the upper limit 3 h peak on the horizontal axis that delimits the range where the probability density is non-zero is the convexity of the 3D surface. This corresponds to a maximum height of 3 h peak _ max .

また、3次元的ピーク高さのある区分3hpeakにおける確率密度3fh(3hpeak)は、その高さの凸部が、被測定物体表面16の面内に何個存在しているかを表している。例えば、A(m2)の面積におけるそのピークの個数はA×3fh(3hpeak)であり、ピーク同士の平均的間隔はA/3fh(3hpeak)の平方根で与えられる。 The probability density 3 f h ( 3 h peak ) in the section 3 h peak with a three-dimensional peak height indicates how many convex portions of that height exist in the plane of the object surface 16 to be measured. Represents. For example, the number of peaks in the area of A (m 2 ) is A × 3 f h ( 3 h peak ), and the average interval between peaks is given by the square root of A / 3 f h ( 3 h peak ) .

このように、3次元曲面の特性は、3次元ピークの確率密度分布と、H/R比とによって代表されるため、3次元確率密度関数3fh(3hpeak)に基づき、被測定物体表面16の高さ、ピークの個数、断面積などといった特性値を必要に応じて算出することもできる。 Thus, since the characteristics of the three-dimensional curved surface are represented by the probability density distribution of the three-dimensional peak and the H / R ratio, the measured object is based on the three-dimensional probability density function 3 f h ( 3 h peak ). Characteristic values such as the height of the surface 16, the number of peaks, and the cross-sectional area can be calculated as necessary.

以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されることはなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made without departing from the object of the present invention.

なお、本発明の信頼性を検証するために、以下のような確認実験を行った。
被測定物体表面16の3次元曲面の形状を正確に測るために、面測定が可能なレーザー変位計(キーエンス社製超高速インラインプロファイル測定器(LJ-V7200))を用いて、被測定物体表面16を走査して面測定を行い、図6に示すように、面的な粗さ形状データを取得した。
In order to verify the reliability of the present invention, the following confirmation experiment was conducted.
In order to accurately measure the shape of the three-dimensional curved surface of the object surface 16 to be measured, the surface of the object to be measured is measured using a laser displacement meter that can measure the surface (Ultra High Speed Inline Profile Measuring Machine (LJ-V7200) manufactured by Keyence). Surface measurement was performed by scanning 16 to obtain surface roughness shape data as shown in FIG.

この粗さ形状データからピークを探索し、それぞれのピーク高さを集積して、図7に示すようにヒストグラムを作成した。
このように実測した3次元計測により得られたピーク高さのヒストグラムは、図5に示す2次元の粗さ曲線データから導出された3次元確率密度関数とよく一致していることから、本発明の表面粗さ評価装置及び表面粗さ評価方法により、被測定物体表面16の3次元形状を精度良く予測・評価することが可能であると言える。
Peaks were searched from this roughness shape data, and the respective peak heights were accumulated to create a histogram as shown in FIG.
The histogram of the peak height obtained by the three-dimensional measurement actually measured as described above is in good agreement with the three-dimensional probability density function derived from the two-dimensional roughness curve data shown in FIG. It can be said that the three-dimensional shape of the surface 16 of the object to be measured can be accurately predicted and evaluated by the surface roughness evaluation apparatus and the surface roughness evaluation method.

10 表面粗さ評価装置
12 変位計
14 演算手段
16 被測定物体表面
DESCRIPTION OF SYMBOLS 10 Surface roughness evaluation apparatus 12 Displacement meter 14 Calculation means 16 Object surface to be measured

Claims (8)

被測定物体表面の粗さを評価する表面粗さ評価装置であって、
前記被測定物体表面を2次元的に測定可能な変位計と、
前記変位計により得られた前記被測定物体表面の粗さ曲線データに基づき被測定物体表面の3次元形状を算出する演算手段と、を備え、
前記演算手段は、
前記粗さ曲線データのピーク高さHと、その裾野幅2Rとを順次求め、
複数のピーク高さHと、その裾野幅2RとからH/R比の平均値を算出し、
得られたピーク高さのヒストグラムを近似して得られた2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、3次元確率密度関数3fh(3hpeak)を導出するように構成されていることを特徴とする表面粗さ評価装置。
A surface roughness evaluation apparatus for evaluating the roughness of the surface of an object to be measured,
A displacement meter capable of two-dimensionally measuring the surface of the object to be measured;
Calculating means for calculating a three-dimensional shape of the surface of the object to be measured based on roughness curve data of the surface of the object to be measured obtained by the displacement meter,
The computing means is
Obtain the peak height H of the roughness curve data and its base width 2R sequentially,
Calculate the average value of the H / R ratio from multiple peak heights H and its base width 2R,
Based on the two-dimensional probability density function 2 f h ( 2 h peak ) obtained by approximating the obtained peak height histogram and the average value of the H / R ratio, the three-dimensional probability density function 3 f h A surface roughness evaluation apparatus configured to derive ( 3 h peak ).
前記演算手段は、
前記被測定物体の表面粗さを、円錐形、半球形、回転楕円体のいずれかと仮定して、前記2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出するように構成されていることを特徴とする請求項1に記載の表面粗さ評価装置。
The computing means is
Assuming that the surface roughness of the object to be measured is conical, hemispherical, or spheroid, the two-dimensional probability density function 2 f h ( 2 h peak ) and the average value of the H / R ratio The surface roughness evaluation apparatus according to claim 1, wherein the three-dimensional probability density function 3 f h ( 3 h peak ) is derived based on
前記演算手段は、
前記2次元確率密度関数2fh(2hpeak)と、対数正規分布関数又は正規分布関数とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出するように構成されていることを特徴とする請求項1又は2に記載の表面粗さ評価装置。
The computing means is
Based on the two-dimensional probability density function 2 f h ( 2 h peak ) and a lognormal distribution function or a normal distribution function, the three-dimensional probability density function 3 f h ( 3 h peak ) is derived. The surface roughness evaluation apparatus according to claim 1, wherein the apparatus is a surface roughness evaluation apparatus.
前記演算手段は、
前記3次元確率密度関数3fh(3hpeak)に基づき、前記被測定物体表面の高さ、ピークの個数、断面積のうち少なくともいずれかを算出するように構成されていることを特徴とする請求項1から3のいずれかに記載の表面粗さ評価装置。
The computing means is
Based on the three-dimensional probability density function 3 f h ( 3 h peak ), at least one of the height, the number of peaks, and the cross-sectional area of the surface of the object to be measured is calculated. The surface roughness evaluation apparatus according to any one of claims 1 to 3.
被測定物体表面の粗さを評価する表面粗さ評価方法であって、
前記被測定物体表面を2次元的に測定し、前記被測定物体表面の粗さ曲線データを取得する工程と、
前記粗さ曲線データのピーク高さHと、その裾野幅2Rとを順次求める工程と、
複数のピーク高さHと、その裾野幅2RとからH/R比の平均値を算出する工程と、
得られたピーク高さのヒストグラムを近似して得られた2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、3次元確率密度関数3fh(3hpeak)を導出する工程と、を備えることを特徴とする表面粗さ評価方法。
A surface roughness evaluation method for evaluating the roughness of an object surface to be measured,
Measuring the surface of the object to be measured two-dimensionally and obtaining roughness curve data of the surface of the object to be measured;
A step of sequentially obtaining the peak height H of the roughness curve data and its base width 2R,
A step of calculating an average value of the H / R ratio from a plurality of peak heights H and the base width 2R,
Based on the two-dimensional probability density function 2 f h ( 2 h peak ) obtained by approximating the obtained peak height histogram and the average value of the H / R ratio, the three-dimensional probability density function 3 f h And ( 3 h peak ) deriving steps.
前記被測定物体の表面粗さを、円錐形、半球形、回転楕円体のいずれかと仮定して、前記2次元確率密度関数2fh(2hpeak)と、前記H/R比の平均値とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出することを特徴とする請求項5に記載の表面粗さ評価方法。 Assuming that the surface roughness of the object to be measured is conical, hemispherical, or spheroid, the two-dimensional probability density function 2 f h ( 2 h peak ) and the average value of the H / R ratio The surface roughness evaluation method according to claim 5, wherein the three-dimensional probability density function 3 f h ( 3 h peak ) is derived based on: 前記2次元確率密度関数2fh(2hpeak)と、対数正規分布関数又は正規分布関数とに基づき、前記3次元確率密度関数3fh(3hpeak)を導出することを特徴とする請求項5又は6に記載の表面粗さ評価方法。 The three-dimensional probability density function 3 f h ( 3 h peak ) is derived based on the two-dimensional probability density function 2 f h ( 2 h peak ) and a lognormal distribution function or a normal distribution function. The surface roughness evaluation method according to claim 5 or 6. 前記3次元確率密度関数3fh(3hpeak)に基づき、前記被測定物体表面の高さ、ピークの個数、断面積のうち少なくともいずれかを算出することを特徴とする請求項5から7のいずれかに記載の表面粗さ評価方法。 8. At least one of the height, the number of peaks, and the cross-sectional area of the surface of the object to be measured is calculated based on the three-dimensional probability density function 3 f h ( 3 h peak ). The surface roughness evaluation method according to any one of the above.
JP2016216081A 2015-11-04 2016-11-04 Surface roughness evaluation device and surface roughness evaluation method Active JP6864311B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216467 2015-11-04
JP2015216467 2015-11-04

Publications (2)

Publication Number Publication Date
JP2017090453A true JP2017090453A (en) 2017-05-25
JP6864311B2 JP6864311B2 (en) 2021-04-28

Family

ID=58771507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216081A Active JP6864311B2 (en) 2015-11-04 2016-11-04 Surface roughness evaluation device and surface roughness evaluation method

Country Status (1)

Country Link
JP (1) JP6864311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063328A (en) * 2018-08-01 2018-12-21 福州大学 A kind of acquisition methods of rough surface bearing area rate curve
JP7442009B1 (en) 2023-08-31 2024-03-01 Tdk株式会社 Surface roughness evaluation method and device, surface roughness evaluation program, and storage medium storing the surface roughness evaluation program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571953A (en) * 1991-09-11 1993-03-23 Kawasaki Steel Corp Evaluation of metal plate transferring property of roller
JP2000193450A (en) * 1998-12-28 2000-07-14 Kawasaki Steel Corp Evaluating method for press forming characteristics of steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571953A (en) * 1991-09-11 1993-03-23 Kawasaki Steel Corp Evaluation of metal plate transferring property of roller
JP2000193450A (en) * 1998-12-28 2000-07-14 Kawasaki Steel Corp Evaluating method for press forming characteristics of steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新田勇,如沢健: "表面あらさの解析 P.R.Nayakの理論の検討", 日本機械学会第70期全国大会講演論文集(VOL.E), JPN6020040741, 25 September 1992 (1992-09-25), pages 291 - 293, ISSN: 0004376153 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063328A (en) * 2018-08-01 2018-12-21 福州大学 A kind of acquisition methods of rough surface bearing area rate curve
CN109063328B (en) * 2018-08-01 2023-02-28 福州大学 Method for acquiring rough surface bearing area rate curve
JP7442009B1 (en) 2023-08-31 2024-03-01 Tdk株式会社 Surface roughness evaluation method and device, surface roughness evaluation program, and storage medium storing the surface roughness evaluation program

Also Published As

Publication number Publication date
JP6864311B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
Stanislas et al. Vortical structures in the turbulent boundary layer: a possible route to a universal representation
Timmins et al. A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements
Ishikawa et al. A novel algorithm for particle tracking velocimetry using the velocity gradient tensor
Grediac et al. 50th anniversary article: effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method
Derakhti et al. Predicting the breaking strength of gravity water waves in deep and intermediate depth
CN103759676A (en) Non-contact type workpiece surface roughness detecting method
Milici et al. Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis
JP2006038779A5 (en)
Schobesberger et al. Three-dimensional coherent flow structures during incipient particle motion
JP6864311B2 (en) Surface roughness evaluation device and surface roughness evaluation method
Craciunescu et al. Wave breaking energy dissipation in long-crested focused wave groups based on JONSWAP spectra
Paz et al. Effect of heating surface morphology on the size of bubbles during the subcooled flow boiling of water at low pressure
Yeo et al. On the near-wall characteristics of acceleration in turbulence
CN109408909A (en) A kind of three-dimensional rough surface micro-bulge approximating method
Sathe et al. Investigation of flow structures and transport phenomena in bubble columns using particle image velocimetry and miniature pressure sensors
Heckel et al. Can we obtain the coefficient of restitution from the sound of a bouncing ball?
Khalili et al. Improving the accuracy of crack length measurement using machine vision
JP2012132754A (en) Texture evaluation device, texture evaluation method
JP5891311B2 (en) Pattern measurement apparatus, evaluation method for polymer compound used in self-organized lithography, and computer program
Yücesan et al. Large Eddy Simulation of a sediment particle under entrainment conditions
Kozul et al. A scanning particle tracking velocimetry technique for high-Reynolds number turbulent flows
CN113607546A (en) Crack measuring method
Negri et al. Self-synchronized phase averaging of PIV measurements in the base region of a rectangular cylinder
JP6218449B2 (en) Particle size distribution measuring device
Altmeppen et al. Transient simulation of particle transport and deposition in the laser powder bed fusion process: A new approach to model particle and heat ejection from the melt pool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6864311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250