JP2017089898A - Gear type continuously variable transmission - Google Patents

Gear type continuously variable transmission Download PDF

Info

Publication number
JP2017089898A
JP2017089898A JP2017028552A JP2017028552A JP2017089898A JP 2017089898 A JP2017089898 A JP 2017089898A JP 2017028552 A JP2017028552 A JP 2017028552A JP 2017028552 A JP2017028552 A JP 2017028552A JP 2017089898 A JP2017089898 A JP 2017089898A
Authority
JP
Japan
Prior art keywords
gear
output shaft
shaft
shafts
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017028552A
Other languages
Japanese (ja)
Inventor
日浅英雄
Hideo Hiasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017028552A priority Critical patent/JP2017089898A/en
Publication of JP2017089898A publication Critical patent/JP2017089898A/en
Priority to JP2018026546A priority patent/JP2018136028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a gear type continuously variable transmission.SOLUTION: For two pairs of differential devices 5, 6 with a planetary gear mechanism, one of the differential devices has an input shaft 7, and the other one has an output shaft 12. When two shafts 9, 10 from among the residual base shafts of both differential devices are coupled, by coupling at least one basic shaft with a roll as a planetary gear mechanism changed, rotational energy having been transmitted to the input shaft 7 is transmitted to the output shaft 12 in a state of being capable of changing gear. For one or both of the coupling shafts 9, 10 at this time, control for deceleration or acceleration is performed individually to adjust change of a gear. By using regenerative braking as the control for deceleration, energy lost by control for change of a gear is recovered.SELECTED DRAWING: Figure 2

Description

本発明は変速機に関するものであり、産業機械や推進力を必要とする機械全般に関するが、主に車両での使用を想定している。 The present invention relates to a transmission, and relates to industrial machines and general machines that require a propulsive force, but is mainly intended for use in vehicles.

変速機として理想といえる無段階変速は、摩擦式が広く実用化されているが、摩擦式であるがために滑りの問題が大きく、大きな動力の伝達には向いていない。本来それを可能にする歯車式は、遊星歯車機構を持つ差動装置を用いたものが提案されているが、差動軸の片方を調整軸、片方を出力軸とする構造を持つことから、これが原因で制御には主原動機に匹敵するトルクを必要とすると思われ、その解決方法について提案されてないため、実用に至っていないと思われる。
なお、差動装置を用いたこのような仕組みは差動装置を複数組み込んだ現在主流のオートマチックトランスミッション(自動多段変速機)にも見られるが、こちらは調整軸を完全停止させることでエネルギ損失を防ぐと共に、差動装置と調整軸を多段化させることで、多段変速を実現しているものが多い。
結局、エネルギ損失の少ない歯車式の無段変速機は実現していない。
The continuously variable transmission, which is ideal as a transmission, is widely used in the friction type. However, since it is a friction type, there is a problem of slipping and it is not suitable for transmission of large power. Originally, the gear type that makes it possible to use a differential device with a planetary gear mechanism has been proposed, but because it has a structure with one of the differential shafts as the adjustment shaft and one as the output shaft, Because of this, it seems that the torque required for the control is comparable to that of the main prime mover, and no solution has been proposed.
Such a mechanism using a differential gear can also be seen in the current mainstream automatic transmission (automatic multi-stage transmission) that incorporates multiple differential gears, but here, energy is lost by completely stopping the adjusting shaft. In many cases, a multi-stage speed change is realized by making the differential and the adjusting shaft multi-stage.
After all, a gear type continuously variable transmission with little energy loss has not been realized.

特許第3248690号(P3248690)Patent No. 3248690 (P3248690) 特許第3689020号(P3689020)Patent No. 3689020 (P3689020)

変速に伴うエネルギ損失が少なく、大きな動力伝達をも可能とする歯車式の無段変速機を実現することである。 An object is to realize a gear-type continuously variable transmission that is capable of transmitting a large amount of power with little energy loss due to gear shifting.

遊星歯車機構を持つ差動装置の基本軸の1つを入力軸とし、エンジン等の主原動機の回転エネルギを与えると、その力は差動装置の他の基本軸に振り分けられるが、振り分けられたうちの2軸を別の遊星歯車機構を持つ差動装置の任意の基本軸2つにそれぞれ連結させ、残りの基本軸の1つを出力軸として取り出した回転エネルギは、主原動機から入力された回転エネルギを変速したものと言える。 When one of the basic shafts of a differential device having a planetary gear mechanism is used as an input shaft and the rotational energy of a main prime mover such as an engine is applied, the force is distributed to the other basic shafts of the differential device. Two of these shafts were connected to two arbitrary basic shafts of a differential unit having another planetary gear mechanism, and the rotational energy extracted from one of the remaining basic shafts as an output shaft was input from the main prime mover. It can be said that the rotational energy is changed.

この2つの差動装置間で回転エネルギを受け渡す2軸について、そのうち少なくとも1軸を、遊星歯車機構としての基本軸の役割を変えた場合、つまり、太陽歯車、遊星キャリア、遊星歯車、内歯車同士とならないように連結したとき、出力軸の回転速度及びトルクが可変可能な状態、つまりは無段階に変速可能な状態となる。 When the role of the basic shaft as the planetary gear mechanism is changed in at least one of the two shafts that transfer rotational energy between the two differential devices, that is, the sun gear, the planet carrier, the planetary gear, and the internal gear. When they are connected so as not to be connected to each other, the rotation speed and torque of the output shaft can be varied, that is, the gear can be shifted continuously.

この変速は差動装置の各基本軸の回転速度が出力軸の回転速度に比例することを利用したもので、入力軸と出力軸を除いた何れかの基本軸に対して減速または加速の制御を加えることで出力軸は変速される。 This speed change utilizes the fact that the rotational speed of each basic shaft of the differential gear is proportional to the rotational speed of the output shaft, and controls deceleration or acceleration with respect to any basic shaft except the input shaft and output shaft. As a result, the output shaft is shifted.

このとき出力軸に対する回転速度の比例係数がマイナスの軸に対しては減速の制御、プラスの軸に対しては加速の制御を行うことで出力軸は正方向に加速し、減速や加速の制御を反対にすることで出力軸は逆転方向に加速する。 At this time, the output shaft is accelerated in the positive direction by controlling the deceleration with respect to the axis with a negative proportional coefficient of the rotational speed with respect to the output shaft, and the acceleration with respect to the positive axis. The output shaft is accelerated in the reverse direction by reversing.

なお、減速の制御ではその抵抗の力だけ出力軸のトルクを減少させるが、加速の制御では、出力軸のトルクを幾分増加させる。 In the deceleration control, the torque of the output shaft is decreased by the resistance force, whereas in the acceleration control, the output shaft torque is slightly increased.

また、この基本軸に対して減速の制御を加える際に回生制動を利用した場合、そこで得られた電力は任意な目的で利用可能であるため、例えばこの基本軸に対する加速の制御や、出力軸もしくはそれ以降に対して電動機を取り付け、そこで回転エネルギ付与に利用する等、幅広い活用が可能であり、すなわち、減速の制御によって発生したエネルギ損失を抑えることができる。 In addition, when regenerative braking is used when deceleration control is applied to this basic axis, the electric power obtained there can be used for any purpose. For example, acceleration control for this basic axis or output axis Alternatively, it can be used in a wide range, for example, by attaching an electric motor to it and using it for imparting rotational energy, that is, energy loss caused by deceleration control can be suppressed.

大きな動力伝達を可能とする歯車式の無段変速機を実現することできた。
変速で発生するエネルギ損失を抑えることが可能であり、また既存の変速機にみられる逆転装置と、変速時の外部クラッチ機構を不要とした。
A gear-type continuously variable transmission capable of large power transmission could be realized.
It is possible to suppress the energy loss caused by the shift, and eliminate the need for the reverse rotation device found in the existing transmission and the external clutch mechanism during the shift.

遊星歯車機構を持つ差動装置の一例を示す断面図である。It is sectional drawing which shows an example of the differential gear having a planetary gear mechanism. 本発明の変速機の形態の例を示す断面図である。It is sectional drawing which shows the example of the form of the transmission of this invention. 形態の例における変速機内の軸のうち、入力軸、出力軸、及び2つの差動装置を連結する2軸の回転速度比を示すグラフである。It is a graph which shows the rotational speed ratio of the 2 axis | shaft which connects an input shaft, an output shaft, and two differential devices among the shafts in the transmission in the example of a form.

当発明では、車両用のオートマチッィクトランスミッションやディファレンシャル等に幅広く使用されているような、遊星歯車機構を持つ差動装置を利用する。
扱う差動装置の基本形状は、遊星歯車機構のもつ基本的な特徴を備えるものであればよく、つまり差動装置には、かさ車形状のもの、2段歯車形状のものなど多様であり、遊星歯車の数も様々であるが、これらの形状は限定されない。
図1の断面図は、内歯車1、遊星歯車2、遊星キャリア3、太陽歯車4から構成される差動装置の一般的な形状の1例を示しており、以降の説明における差動装置については便宜上この形を用いる。
差動装置内の歯数比を限定しないが、以降の説明においては、便宜上、各差動装置の太陽歯車、遊星歯車、内歯車の歯数比を1:1:3とし、特徴を抜き出して説明するため、各歯車や必要に応じて各箇所に備えられる軸受けの摩擦抵抗、潤滑油抵抗等、作りによって異なる抵抗を無視する。
なお、遊星キャリアがどのように遊星歯車を支えるかについては限定しないが、以降の説明においては、分かり易くするため、遊星歯車を遊星キャリア一体型の軸が支えるものとする。
In the present invention, a differential device having a planetary gear mechanism, which is widely used for automatic transmissions and differentials for vehicles, is used.
The basic shape of the differential device to be handled only needs to have the basic characteristics of the planetary gear mechanism, that is, the differential device has a variety of types such as a bevel-shaped one and a two-stage gear-shaped one. The number of planetary gears varies, but their shape is not limited.
The cross-sectional view of FIG. 1 shows an example of a general shape of a differential device composed of an internal gear 1, a planetary gear 2, a planet carrier 3, and a sun gear 4. About the differential device in the following description Uses this form for convenience.
Although the gear ratio in the differential gear is not limited, in the following description, for convenience, the gear gear ratio of the sun gear, planetary gear, and internal gear of each differential gear is 1: 1: 3, and the features are extracted. For the sake of explanation, resistances that differ depending on the production, such as the frictional resistance and lubricating oil resistance of the bearings provided in each gear and where necessary, are ignored.
In addition, although it does not limit how the planet carrier supports the planetary gear, in the following description, the planetary gear is assumed to be supported by the planetary carrier integrated shaft for easy understanding.

2つの差動装置5、6を用意する。
差動装置5の基本軸のうち任意の1つをエンジン等の主原動機の出力軸に接続された入力軸7とし、差動装置6の基本軸のうち任意の1つを出力軸12とし、双方の差動装置の残りの基本軸のうち、双方共に任意の2つを、差動装置5、6の共有する基本軸として連結させ、その際に連結する軸のうち少なくとも1つの軸は、例えば太陽歯車と遊星キャリアを連結させるなど、基本軸の役割を変えたものを考える。
このような条件を満たす連結時の軸の組み合わせ方は幾つかあり、その組み合わせ方は限定されないが、以降は便宜上、図2の変速機の断面図が示す差動装置5、6の連結形状を例にして説明する。
Two differential devices 5 and 6 are prepared.
Arbitrary one of the basic shafts of the differential device 5 is an input shaft 7 connected to the output shaft of a main prime mover such as an engine, and any one of the basic shafts of the differential device 6 is an output shaft 12. Of the remaining basic axes of both differential units, any two of them are connected as basic axes shared by the differential units 5 and 6, and at least one of the connected axes is For example, let us consider what changed the role of the basic shaft, such as connecting the sun gear and planetary carrier.
There are several ways of combining the shafts at the time of connection satisfying such conditions, and the way of combining them is not limited. However, for the sake of convenience, the connecting shapes of the differential devices 5 and 6 shown in the cross-sectional view of the transmission of FIG. An example will be described.

この例では、差動装置5は、主原動機に繋がる入力軸7を遊星キャリアとし、遊星歯車8、内歯車10、そして太陽歯車9aで構成され、差動装置6は、内歯車10、遊星キャリア9、遊星歯車11、そして出力軸12の一部である太陽歯車12aで構成され、差動装置5、6は、内歯車10で連結され、さらに太陽歯車9aと遊星キャリア9でも連結される。
また、内歯車10には調整機13、遊星キャリア9には調整機14が接続されており、これら調整機は、電動機と発電機とが可逆で動作を電子制御される電動発電機とする。
入力軸7と出力軸12の回転速度を別々のセンサーで読み取る。差動装置内の各基本軸は、出力軸の回転速度に比例するため回転速度は計算でき、これらは調整機の電子制御において利用される。
In this example, the differential device 5 includes an input shaft 7 connected to the main prime mover as a planetary carrier and includes a planetary gear 8, an internal gear 10, and a sun gear 9a. The differential device 6 includes the internal gear 10 and the planetary carrier. 9, a planetary gear 11, and a sun gear 12 a that is a part of the output shaft 12. The differential devices 5 and 6 are connected by an internal gear 10, and are also connected by the sun gear 9 a and the planet carrier 9.
Further, an adjuster 13 is connected to the internal gear 10, and an adjuster 14 is connected to the planet carrier 9, and these adjusters are motor generators in which the motor and the generator are reversible and the operation is electronically controlled.
The rotational speeds of the input shaft 7 and the output shaft 12 are read by separate sensors. Since each basic shaft in the differential is proportional to the rotational speed of the output shaft, the rotational speed can be calculated, and these are used in the electronic control of the regulator.

調整機13、14は筐体15とそれぞれが対応する軸で支えられている。
調整機は対応する軸に対して回転力を増減させるものであり、電動発電機とした理由は、発電によって抵抗を発生させるだけでなく、既存の技術において、発電量、すなわち抵抗力の調整が容易であり、かつ、電力の取り出しや、電力を使って回転エネルギを生み出すことにも利用可能であるなど、幅広い用途が生まれることから、選択するものである。
しかし、本発明のうち効率を無視して単に変速を可能とする要素だけに限定すれば、調整機が電動発電機のようなエネルギを取り出す仕組みを兼ねるものであることに拘らない。
ここでの例では、調整機13が発生させた電力は調整機14の駆動力に用い、調整機14が発生させた電力は調整機13の駆動力に用いる。
The adjusters 13 and 14 are supported by a housing 15 and a corresponding shaft.
The adjusting machine increases or decreases the rotational force with respect to the corresponding shaft. The reason why it is a motor generator is not only to generate resistance by power generation but also to adjust the power generation amount, that is, the resistance force in the existing technology. It is easy to use, and it can be used for taking out electric power and generating rotational energy using electric power.
However, in the present invention, if the efficiency is neglected and only the elements capable of shifting are limited, the adjuster also serves as a mechanism for extracting energy like a motor generator.
In this example, the electric power generated by the adjusting machine 13 is used for the driving force of the adjusting machine 14, and the electric power generated by the adjusting machine 14 is used for the driving power of the adjusting machine 13.

主原動機より入力軸7に一定の回転エネルギが与えられ、入力軸7が一定のトルクと回転速度の状態では、差動装置5、6内のそれぞれの基本軸は図3の回転速度比を示す。
この比率は差動装置5、6の連結方法や選択した歯車比による固有のものであり、装置の作りを変更した場合は比率も傾きも変化するが、どの場合も入力軸を除く各軸の回転速度は出力軸の回転速度に比例していることが特徴となる。
入力軸7と出力軸12の間は差動装置5、6を介しており、回転エネルギ及び抵抗を持つ軸が基準となって全体の回転速度比が決まる。
例えばエンジンが回っていながらもブレーキがかかり停止している車両のように、出力軸12側が回転しておらず、高い制動下にあり、さらに調整機13、14が無負荷状態であった場合、入力軸7にかかる回転エネルギの大小及びその変化に関わらず出力軸12の回転速度は0から変わらない。
When a constant rotational energy is given to the input shaft 7 from the main prime mover, and the input shaft 7 is in a constant torque and rotational speed state, the basic shafts in the differential units 5 and 6 show the rotational speed ratio of FIG. .
This ratio is specific to the connection method of the differential devices 5 and 6 and the gear ratio selected, and the ratio and inclination change when the device is changed, but in each case the axis of each axis except the input shaft is changed. The feature is that the rotational speed is proportional to the rotational speed of the output shaft.
Between the input shaft 7 and the output shaft 12, differential devices 5 and 6 are provided, and the entire rotational speed ratio is determined based on a shaft having rotational energy and resistance.
For example, when the output shaft 12 side is not rotating and is under high braking as in a vehicle that is braked and stopped while the engine is running, and the adjusters 13 and 14 are in an unloaded state, Regardless of the rotational energy applied to the input shaft 7 and its change, the rotational speed of the output shaft 12 does not change from zero.

主原動機より入力軸7に一定の回転エネルギが与えられ、また出力軸12が一定の抵抗力を持って停止している状態のとき、調整機13が発電を行って、内歯車10に対して抵抗力を発生して減速方向に力をかけることで、出力軸12の回転速度は図3で示した回転速度比に応じて正方向に上昇していき、これが変速となる。
また、同時に調整機14が回転力を発生させ、遊星キャリア9が加速されても同様の傾向で変速が補佐される。
When a constant rotational energy is given to the input shaft 7 from the main prime mover and the output shaft 12 is stopped with a constant resistance force, the adjuster 13 generates electric power to the internal gear 10. By generating a resistance force and applying a force in the deceleration direction, the rotational speed of the output shaft 12 increases in the positive direction according to the rotational speed ratio shown in FIG. 3, and this is a shift.
At the same time, even if the adjuster 14 generates a rotational force and the planetary carrier 9 is accelerated, the shift is assisted with the same tendency.

調整機13が発生させた抵抗の大きさだけ、最終的に出力軸12に与えられる回転エネルギは減少するが、調整機13が発生させた電力は出力軸12に与えられる回転エネルギを増加させるために使うことも可能であり、この例のように調整機14の駆動力として用いることができる他、出力軸12以降に対し、図示していない別の電動機を取り付けて直接的に回転力を付与する仕組みも考えられる。 The rotational energy finally given to the output shaft 12 is reduced by the magnitude of the resistance generated by the regulator 13, but the electric power generated by the regulator 13 increases the rotational energy given to the output shaft 12. In addition to being used as a driving force for the adjuster 14 as in this example, another rotating motor (not shown) is attached to the output shaft 12 and subsequent portions to directly apply a rotational force. A mechanism to do this is also conceivable.

調整機13がかける抵抗が大きくなるに従って変速の速度も早くなるが、出力軸12から減少する回転エネルギも大きくなり、また、加速抵抗が存在することと、一般的に回転速度の増加に応じて出力軸12の抵抗も大きくなることから、やがて変速の速度は遅くなり、変速しなくなり、減速に至る。
そのため、早い変速を求める場合、調整機13がかける抵抗を徐々に上げていきつつ、回転速度を読み取りながら、変動する最適なポイントを計算して維持することが望ましく、つまりは電子制御に頼ることが望ましい。
As the resistance applied by the adjuster 13 increases, the speed of the shift increases, but the rotational energy that decreases from the output shaft 12 also increases. In addition, the acceleration resistance exists and generally according to the increase in the rotational speed. Since the resistance of the output shaft 12 also increases, the speed of the speed change eventually decreases, the speed does not change, and the speed is reduced.
Therefore, when seeking a fast shift, it is desirable to calculate and maintain the optimal point of fluctuation while reading the rotational speed while gradually increasing the resistance applied by the adjuster 13, that is, relying on electronic control. Is desirable.

内歯車10と、遊星キャリア9は、図3が示す通り、回転速度比の比例係数の正負の符号が逆であることから、調整機14が遊星キャリア9に対して調整機13が発生させた電力を用いて正方向の回転力を加えることで変速の速度を早めることができる。
またこれは、同時に出力軸12に対して回転エネルギを付与することにもなる。
このとき必要な電力は外部から供給することも考えられるが、何れにしても、可能な限り調整機13、14の両方を用いて変速を制御することが調整精度を高める意味で望ましい。
As the internal gear 10 and the planetary carrier 9 are shown in FIG. 3, since the sign of the proportionality coefficient of the rotation speed ratio is opposite, the adjuster 14 is generated by the adjuster 13 with respect to the planetary carrier 9. The speed of shifting can be increased by applying a positive rotational force using electric power.
This also gives rotational energy to the output shaft 12 at the same time.
In this case, it is possible to supply the necessary power from the outside, but in any case, it is desirable to control the shift using both the adjusters 13 and 14 as much as possible in order to increase the adjustment accuracy.

調整機13、14が発生させる減速力及び回転力の向きを逆にすることで、出力軸12の逆転が可能となる。
つまり、調整機14が遊星キャリア9に対して抵抗を発生させ、または調整機13が内歯車10に対して正方向に回転エネルギを加え、あるいはその両方による連携された制御により、出力軸12は逆転に至り、加速される。
The output shaft 12 can be reversed by reversing the direction of the deceleration force and the rotational force generated by the adjusters 13 and 14.
That is, the output shaft 12 is controlled by the adjuster 14 generating resistance against the planetary carrier 9 or the adjuster 13 applying rotational energy to the internal gear 10 in the positive direction, or by coordinated control of both. It will be reversed and accelerated.

また、出力軸の減速時には調整機を用いて発電を行って回生エネルギを取り出すことも考えられ、バッテリ等が接続されれば蓄電することも可能である。 Further, when the output shaft is decelerated, it is conceivable to use a regulator to generate power and take out regenerative energy. If a battery or the like is connected, it is possible to store electricity.

なお、差動装置5、6の連結方法により、各歯車の回転速度比の比例係数と正負の符号は決定されるが、図2の例以外のパターンにおいては、連結軸の基本軸2本について、必ずしも回転速度比の比例係数の正負の符号が逆になるわけではないことに注意する。
差動装置5、6の形状及び連結方法については、任意ではあるが目的にかなう形を選ぶ必要がある。
In addition, although the proportionality coefficient and the positive / negative sign of the rotational speed ratio of each gear are determined by the connection method of the differential devices 5 and 6, in the patterns other than the example of FIG. Note that the sign of the proportional coefficient of the rotation speed ratio is not necessarily reversed.
As for the shapes of the differential devices 5 and 6 and the connection method, it is necessary to select a shape that meets the purpose although it is arbitrary.

1 内歯車
2 遊星歯車
3 遊星キャリア
4 太陽歯車
5 第1差動装置
6 第2差動装置
7 第1差動装置の遊星キャリア及び入力軸
8 第1差動装置の遊星歯車
9a 第1差動装置の太陽歯車(第1連結軸)
9 第2差動装置の遊星キャリア(第1連結軸)
10 第1及び第2差動装置で共有する内歯車(第2連結軸)
11 第2差動装置の遊星歯車
12 出力軸
12a 第2差動装置の太陽歯車及び出力軸
13 第1調整機
14 第2調整機
15 変速機筐体
16 入力軸の回転速度検出センサ
17 出力軸の回転速度検出センサ
DESCRIPTION OF SYMBOLS 1 Internal gear 2 Planetary gear 3 Planetary carrier 4 Sun gear 5 First differential device 6 Second differential device 7 Planet carrier and input shaft 8 of the first differential device Planet gear 9a of the first differential device First differential Device sun gear (first connecting shaft)
9 Planetary carrier of the second differential (first connecting shaft)
10 Internal gear shared by the first and second differentials (second connecting shaft)
11 Planetary gear 12 of second differential device Output shaft 12a Sun gear and output shaft 13 of second differential device 13 First adjuster 14 Second adjuster 15 Transmission housing 16 Rotational speed detection sensor 17 of input shaft Output shaft Rotational speed detection sensor

Claims (2)

遊星歯車機構を持つ差動装置2組について、基本軸の1つを入力軸としたものと、基本軸の1つを出力軸としたものを、それぞれ入力軸又は出力軸を除いた2つの基本軸で、このうち少なくとも1つは、太陽歯車、遊星キャリア、遊星歯車、内歯車同士とならないように連結し、入力軸と出力軸以外の基本軸のうち、任意の軸に減速又は加速の制御を加えることで、入力軸に与えられた回転エネルギが変速されて出力軸に伝わることを特徴とする歯車式無段変速機。 Two sets of differential gears with planetary gear mechanisms, one with one of the basic shafts as the input shaft and one with the basic shaft as the output shaft, except for the input shaft or the output shaft, respectively. At least one of the shafts is connected so as not to be a sun gear, planet carrier, planet gear, or internal gear, and control of deceleration or acceleration is performed on any of the basic shafts other than the input shaft and the output shaft. , The rotational energy applied to the input shaft is shifted and transmitted to the output shaft. 請求項1の歯車式無段変速機において、基本軸の減速による変速制御に回生制動を用い、発生させた電力を任意の目的に利用可能とすることで、変速制御によって発生したエネルギ損失を抑える歯車式無段変速機。 2. The gear type continuously variable transmission according to claim 1, wherein regenerative braking is used for speed change control by decelerating the basic shaft, and the generated electric power can be used for any purpose, thereby suppressing energy loss caused by speed change control. Gear type continuously variable transmission.
JP2017028552A 2017-02-18 2017-02-18 Gear type continuously variable transmission Pending JP2017089898A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017028552A JP2017089898A (en) 2017-02-18 2017-02-18 Gear type continuously variable transmission
JP2018026546A JP2018136028A (en) 2017-02-18 2018-02-17 Gear type non-stage transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028552A JP2017089898A (en) 2017-02-18 2017-02-18 Gear type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2017089898A true JP2017089898A (en) 2017-05-25

Family

ID=58767799

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017028552A Pending JP2017089898A (en) 2017-02-18 2017-02-18 Gear type continuously variable transmission
JP2018026546A Pending JP2018136028A (en) 2017-02-18 2018-02-17 Gear type non-stage transmission

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018026546A Pending JP2018136028A (en) 2017-02-18 2018-02-17 Gear type non-stage transmission

Country Status (1)

Country Link
JP (2) JP2017089898A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308094A (en) * 2004-04-21 2005-11-04 Toyota Motor Corp Support structure of rotating member and power mechanism
JP2012081886A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Vehicle drive control device
JP2016175632A (en) * 2015-03-20 2016-10-06 アイシン・エィ・ダブリュ株式会社 Vehicle driving device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421770A (en) * 2005-01-04 2006-07-05 Roger James Turvey Stepless infinitely variable ratio gearbox
JP2008144904A (en) * 2006-12-12 2008-06-26 Nissan Motor Co Ltd Continuously variable transmission of power split type
JP2010000935A (en) * 2008-06-20 2010-01-07 Toyota Motor Corp Vehicular driving device
WO2011084030A2 (en) * 2010-01-11 2011-07-14 이남수 Transmission system
JP5946484B2 (en) * 2014-02-13 2016-07-06 ジヤトコ株式会社 Continuously variable transmission
JP6251602B2 (en) * 2014-02-28 2017-12-20 ダイハツ工業株式会社 Vehicle transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308094A (en) * 2004-04-21 2005-11-04 Toyota Motor Corp Support structure of rotating member and power mechanism
JP2012081886A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Vehicle drive control device
JP2016175632A (en) * 2015-03-20 2016-10-06 アイシン・エィ・ダブリュ株式会社 Vehicle driving device

Also Published As

Publication number Publication date
JP2018136028A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
KR101310403B1 (en) Planetary gear system using two input characteristic and gear module thereof and method for controlling the same
CN202914648U (en) Stepless speed change device for motor speed regulation
WO2011092643A1 (en) A traction system for hybrid vehicles and a method of actuating a traction system for hybrid vehicles
US10197134B2 (en) Hybrid transmission having electro-magnetically actuated pawl clutch
US6662890B2 (en) Vehicle transmission with a fuel cell power source and a multi-range transmission
US20210095744A1 (en) Traction device
US3823620A (en) Automatically and continuously variable transmission
CN103335075A (en) Electronic control speed regulating stepless speed changing system and control method
GB2238090A (en) Power transmission system comprising two sets of epicyclic gears
US20060111215A1 (en) Transmission
US20080248910A1 (en) Infinitely Variable Ratio Gearbox
JP2017089898A (en) Gear type continuously variable transmission
CN203254956U (en) Continuously variable electronic hybrid power system
US20190345991A1 (en) Hybrid Transmission Having Electro-Magnetically Actuated Pawl Clutch
JP5310050B2 (en) Vehicle drive device
US10486523B2 (en) Hybrid transmission with variator
CN205745168U (en) A kind of dual planetary gear mechanical differential
CN103912653A (en) Speed reducing device of torsion sensing differential planet gear system
CN104048003A (en) Combined type planetary gear set gearbox
CN111765222A (en) Continuously variable transmission, continuously variable transmission method and application
WO2002075180A1 (en) Variable ratio transmission
RU2457379C1 (en) Differential variator
CN203254955U (en) Planet gear stepless speed change hybrid power system
KR102554941B1 (en) Transmission for electric vehicle
CN105570401A (en) Planet type continuously variable transmission

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170222

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104