JP2017089492A - Turbo compressor and turbo refrigerator having the same - Google Patents

Turbo compressor and turbo refrigerator having the same Download PDF

Info

Publication number
JP2017089492A
JP2017089492A JP2015220339A JP2015220339A JP2017089492A JP 2017089492 A JP2017089492 A JP 2017089492A JP 2015220339 A JP2015220339 A JP 2015220339A JP 2015220339 A JP2015220339 A JP 2015220339A JP 2017089492 A JP2017089492 A JP 2017089492A
Authority
JP
Japan
Prior art keywords
shaft
turbine shaft
bearing
turbine
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015220339A
Other languages
Japanese (ja)
Inventor
紀行 松倉
Noriyuki Matsukura
紀行 松倉
善友 野田
Yoshitomo Noda
善友 野田
恵 鶴田
Megumi Tsuruta
恵 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015220339A priority Critical patent/JP2017089492A/en
Publication of JP2017089492A publication Critical patent/JP2017089492A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance compression efficiency by improving a support structure of a turbine shaft in a radial direction, and to prevent an increase of rotation resistance of the turbine shaft and damage of a bearing by restraining a clearance in a bearing of the turbine shaft from becoming excessively small during a period from an operation start of a turbo compressor till a start of its normal operation.SOLUTION: A turbo compressor comprises: a driven gear 12 which is arranged at an intermediate part of a turbine shaft 26, and engaged with a drive gear of a drive shaft; turbine blades 13A, 13B which are arranged at one end of the turbine shaft 26, and constitute a refrigerant compression part 13; a first pivotally supporting part 34 which pivotally supports a portion between the driven gear 12b at the turbine shaft 26 and the turbine blades 13A, 13B; and a second pivotally supporting part 35 which pivotally supports the other end of the turbine shaft 26. At least one cylindrical roller bearing 36 is arranged at the first pivotally supporting part 34 and the second pivotally supporting part 35, respectively, and a four-point contact ball bearing 37 is arranged at least at one of the first pivotally supporting part 34 and the second pivotally supporting part 35.SELECTED DRAWING: Figure 3

Description

本発明は、冷媒を圧縮するターボ圧縮機、これを備えたターボ冷凍装置に関するものである。   The present invention relates to a turbo compressor that compresses a refrigerant and a turbo refrigeration apparatus including the same.

地域冷暖房の熱源等に使用されているターボ冷凍装置に組み込まれているターボ圧縮機において、例えば、特許文献1,2に開示されているように、電動機の回転を増速ギアにより増速させてタービン軸を駆動するものがある。即ち、電動機の駆動軸に設けられた駆動ギア(大ギア)と、タービン軸に設けられた従動ギア(小ギア)とが噛み合わされ、駆動軸の回転が増速されてタービン軸に伝達されるものである。   In a turbo compressor incorporated in a turbo refrigeration system used as a heat source for district heating and cooling, for example, as disclosed in Patent Documents 1 and 2, the rotation of the motor is increased by a speed increasing gear. Some drive the turbine shaft. That is, the drive gear (large gear) provided on the drive shaft of the electric motor and the driven gear (small gear) provided on the turbine shaft are meshed, and the rotation of the drive shaft is increased and transmitted to the turbine shaft. Is.

この場合、タービン軸においては、従動ギアの両側の位置が転がり軸受によって軸支され、駆動ギアから付与されるラジアル荷重が支持される。また、駆動ギアと従動ギアは噛み合い騒音低減ためにヘリカルギア(はすば歯車)とされるため、その噛み合い時にタービン軸にアキシャル荷重(スラスト荷重)が加わる。   In this case, in the turbine shaft, the positions on both sides of the driven gear are pivotally supported by the rolling bearing, and the radial load applied from the drive gear is supported. Further, since the drive gear and the driven gear are helical gears (helical gears) for reducing meshing noise, an axial load (thrust load) is applied to the turbine shaft during the meshing.

特許文献1に記載のターボ圧縮機では、タービン軸のラジアル荷重を深溝玉軸受、円筒ころ軸受、円錐ころ軸受のいずれか、もしくはこれらを併用して支持しており、アキシャル荷重を上記の深溝玉軸受か円錐ころ軸受によって支持している。即ち、深溝玉軸受と円錐ころ軸受にラジアル荷重とアキシャル荷重の両方を支持させている。   In the turbo compressor described in Patent Document 1, the radial load of the turbine shaft is supported by a deep groove ball bearing, a cylindrical roller bearing, a tapered roller bearing, or a combination thereof, and the axial load is supported by the deep groove ball described above. It is supported by bearings or tapered roller bearings. That is, both the radial load and the axial load are supported by the deep groove ball bearing and the tapered roller bearing.

特許文献2に記載のターボ圧縮機では、タービン軸を複数のアンギュラ玉軸受によって支持しており、これらのアンギュラ玉軸受にタービン軸のラジアル荷重とアキシャル荷重の両方を支持させている。   In the turbo compressor described in Patent Document 2, the turbine shaft is supported by a plurality of angular ball bearings, and both the radial load and the axial load of the turbine shaft are supported by these angular ball bearings.

特開2006−207471号公報JP 2006-207471 A 特開2002−303298号公報JP 2002-303298 A

深溝玉軸受やアンギュラ玉軸受は、定常運転条件下、即ち増速ギアにおいて発生する摩擦熱の入熱によってタービン軸が温まり、軸受の内輪と外輪と玉の温度が均一に昇温した状態で、内外輪と玉との間の隙間、つまり軸受内部隙間がほぼゼロとなるように、予めの軸受内部隙間が設定されている。   Deep groove ball bearings and angular contact ball bearings are in steady operating conditions, that is, with the turbine shaft warmed by the heat input of frictional heat generated in the speed increasing gear, and the temperature of the inner ring, outer ring, and balls of the bearing are raised uniformly, The bearing internal clearance is set in advance so that the clearance between the inner and outer rings and the ball, that is, the bearing internal clearance is substantially zero.

このように、定常運転条件下での軸受内部隙間がゼロになるようにすれば、タービン軸のラジアル方向の支持剛性が高められる。これにより、タービン軸のラジアル方向への振れが小さくなるため、タービン軸に設けられたタービン翼と、ケーシングに形成された圧縮通路との間の隙間を最小限に設定し、圧縮冷媒の漏れを最小化して高効率化を図ることができる。   Thus, if the bearing internal clearance under steady operating conditions is made zero, the support rigidity in the radial direction of the turbine shaft can be increased. As a result, the radial vibration of the turbine shaft is reduced, so that the gap between the turbine blade provided on the turbine shaft and the compression passage formed in the casing is set to a minimum, and the leakage of the compressed refrigerant is prevented. High efficiency can be achieved by minimizing.

しかしながら、室温状態にあるターボ圧縮機を予熱なく始動させて定常運転まで昇速させる運転条件下においては、図8に示すように、運転開始から定常運転に到達するまでの間に、増速ギアからの入熱によって先ず軸受の内輪が昇温し、遅れて外輪が昇温する。   However, under the operating conditions in which the turbo compressor in the room temperature state is started without preheating and the speed is increased to the steady operation, as shown in FIG. First, the inner ring of the bearing rises in temperature due to heat input from, and the outer ring rises in temperature with a delay.

このため、一時的に内輪の温度が外輪の温度よりも高くなり、内輪のみが熱膨張することによって軸受内部隙間がゼロ未満となる。この時、玉が潰れる(変形する)ことで発熱し、熱膨張するため、さらに軸受内部隙間がきつくなり、回転抵抗が増大し、ひいては軸受の損傷を引き起こす虞がある。   For this reason, the temperature of the inner ring temporarily becomes higher than the temperature of the outer ring, and only the inner ring thermally expands, so that the bearing internal clearance becomes less than zero. At this time, when the balls are crushed (deformed), they generate heat and thermally expand, so that the inner clearance of the bearing becomes tighter, the rotational resistance increases, and eventually the bearing may be damaged.

本発明は、このような事情に鑑みてなされたものであり、タービン軸のラジアル方向の支持構成を高めて圧縮効率を高めるとともに、運転開始から定常運転に入るまでの間にタービン軸の軸受内部隙間が過小になることを抑制してタービン軸の回転抵抗増大や軸受の損傷を防止することができるターボ圧縮機、これを備えたターボ冷凍装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and enhances the radial support structure of the turbine shaft to increase the compression efficiency. It is an object of the present invention to provide a turbo compressor that can prevent an increase in rotational resistance of a turbine shaft and damage to a bearing by suppressing the gap from becoming too small, and a turbo refrigeration apparatus including the turbo compressor.

上記課題を解決するために、本発明は、以下の手段を採用する。
本発明の第1態様に係るターボ圧縮機は、駆動ギアが設けられた駆動軸と、前記駆動軸に対し平行に軸支されたタービン軸と、前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、前記タービン軸における前記従動ギアと前記タービン翼との間を軸支する第1の軸支部と、前記タービン軸の他端を軸支する第2の軸支部と、を備え、前記第1の軸支部と前記第2の軸支部は、それぞれ少なくとも1つの円筒ころ軸受が設けられ、前記第1の軸支部と前記第2の軸支部の少なくも一方には4点接触玉軸受が設けられていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The turbo compressor according to the first aspect of the present invention includes a drive shaft provided with a drive gear, a turbine shaft supported in parallel with the drive shaft, and an intermediate portion of the turbine shaft provided with the drive. A driven gear that meshes with the gear, a turbine blade that is provided at one end of the turbine shaft and forms a refrigerant compression portion, and a first shaft support portion that pivotally supports between the driven gear and the turbine blade in the turbine shaft; A second shaft support portion that supports the other end of the turbine shaft, and each of the first shaft support portion and the second shaft support portion is provided with at least one cylindrical roller bearing, At least one of the shaft support portion and the second shaft support portion is provided with a four-point contact ball bearing.

上記構成のターボ圧縮機によれば、タービン軸の従動ギアを挟んで設けられる第1の軸支部と第2の軸支部とが、それぞれ少なくとも1つの円筒ころ軸受を備えているため、深溝玉軸受やアンギュラ玉軸受のような玉軸受のみを採用した場合に比べてタービン軸のラジアル方向への剛性を高めることができる。即ち、玉軸受は玉が内外輪に対して点接触するが、円筒ころ軸受は、ころが内外輪に対して線接触するため、ラジアル荷重が加わった際に、ころが内外輪に食い込む大きさが玉軸受に比べて格段に小さく、玉軸受に比べてタービン軸の支持剛性が高い。   According to the turbo compressor having the above configuration, the first shaft support portion and the second shaft support portion provided with the driven gear of the turbine shaft interposed therebetween each include at least one cylindrical roller bearing. The rigidity of the turbine shaft in the radial direction can be increased as compared with the case where only ball bearings such as angular contact ball bearings are employed. In other words, in ball bearings, the balls make point contact with the inner and outer rings, but in the case of cylindrical roller bearings, the rollers bite into the inner and outer rings when a radial load is applied because the rollers make line contact with the inner and outer rings. Is significantly smaller than ball bearings, and the turbine shaft has higher support rigidity than ball bearings.

このため、円筒ころ軸受は、内外輪が温まった定常運転時における軸受内部隙間を玉軸受よりも大きく設定することができる。これにより、室温状態にあるターボ圧縮機を予熱なく始動させて定常運転まで昇速させる運転条件下において、増速ギアからの入熱により円筒ころ軸受の内輪が外輪よりも先に昇温して熱膨張しても、円筒ころ軸受の軸受内部隙間がゼロ未満にならず、タービン軸の回転抵抗増大や軸受の損傷に繋がる懸念がない。   For this reason, the cylindrical roller bearing can set a bearing internal clearance larger than that of the ball bearing at the time of steady operation in which the inner and outer rings are warmed. As a result, the inner ring of the cylindrical roller bearing is heated before the outer ring by heat input from the speed increasing gear under the operating condition in which the turbo compressor at room temperature is started without preheating and the speed is increased to the steady operation. Even if thermal expansion occurs, the bearing internal clearance of the cylindrical roller bearing does not become less than zero, and there is no concern of increasing the rotational resistance of the turbine shaft or damaging the bearing.

また、タービン軸を円筒ころ軸受で支持することにより、タービン軸のラジアル方向の支持剛性が高められ、タービン軸のラジアル方向への振れが小さくなる。このため、タービン軸に設けられたタービン翼と、ケーシングに形成された圧縮通路との間の隙間を最小限に設定し、圧縮冷媒の漏れを最小化してターボ圧縮機の圧縮効率を高めることができる。   Further, by supporting the turbine shaft with the cylindrical roller bearing, the support rigidity in the radial direction of the turbine shaft is increased, and the vibration of the turbine shaft in the radial direction is reduced. For this reason, the clearance between the turbine blade provided on the turbine shaft and the compression passage formed in the casing is set to a minimum, and the leakage of the compressed refrigerant is minimized, thereby improving the compression efficiency of the turbo compressor. it can.

また、円筒ころ軸受と共に設けられた4点接触玉軸受は、主にタービン軸のアキシャル荷重を担うため、ラジアル方向への軸受内部隙間を大きくしておくことができる。このため、円筒ころ軸受と同様に、ターボ圧縮機が室温状態から昇速運転する際に、ラジアル方向の軸受内部隙間がゼロ未満にならないようにすることができ、タービン軸の回転抵抗の増大や軸受の損傷を回避することができる。   Further, since the four-point contact ball bearing provided together with the cylindrical roller bearing mainly bears the axial load of the turbine shaft, the bearing internal clearance in the radial direction can be increased. For this reason, as in the case of the cylindrical roller bearing, when the turbo compressor is accelerated from room temperature, the bearing internal clearance in the radial direction can be prevented from becoming less than zero, and the rotational resistance of the turbine shaft can be increased. Damage to the bearing can be avoided.

本発明の第2態様に係るターボ圧縮機は、駆動ギアが設けられた駆動軸と、前記駆動軸に対し平行に軸支されたタービン軸と、前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、前記タービン軸を軸支する軸受と、前記軸受の外輪を加熱する外輪加熱部と、を備えたことを特徴とする。   A turbo compressor according to a second aspect of the present invention includes a drive shaft provided with a drive gear, a turbine shaft supported in parallel with the drive shaft, and an intermediate portion of the turbine shaft provided with the drive. A driven gear that meshes with the gear, a turbine blade that is provided at one end of the turbine shaft and forms a refrigerant compression unit, a bearing that supports the turbine shaft, and an outer ring heating unit that heats the outer ring of the bearing. It is characterized by that.

上記構成のターボ圧縮機によれば、室温状態にあるターボ圧縮機を予熱なく始動させて定常運転まで昇速させる運転条件下においては、先に外輪加熱部によって軸受の外輪を加熱することにより、外輪を内輪と同時に、あるいは内輪よりも先に熱膨張させることができる。これにより、増速ギアからの入熱により軸受の内輪が外輪よりも先に昇温して熱膨張することを防止し、タービン軸の回転抵抗増大や軸受の損傷を回避することができる。   According to the turbo compressor having the above-described configuration, under the operating conditions in which the turbo compressor in the room temperature state is started without preheating and the speed is increased to the steady operation, the outer ring of the bearing is first heated by the outer ring heating unit, The outer ring can be thermally expanded simultaneously with the inner ring or before the inner ring. As a result, it is possible to prevent the inner ring of the bearing from being heated and thermally expanded earlier than the outer ring due to heat input from the speed increasing gear, thereby avoiding an increase in rotational resistance of the turbine shaft and damage to the bearing.

前記第2の態様において、前記外輪加熱部は電気ヒーターとすることができる。あるいは、前記外輪加熱部を、前記冷媒圧縮部において圧縮された圧縮冷媒の一部を前記外輪の近傍に供給する冷媒供給通路としてもよい。   In the second aspect, the outer ring heating section may be an electric heater. Alternatively, the outer ring heating unit may be a refrigerant supply passage that supplies a part of the compressed refrigerant compressed in the refrigerant compression unit to the vicinity of the outer ring.

外輪加熱部を上記構成とすることにより、簡素な構造によって軸受の外輪を加熱可能にし、昇速運転時に増速ギアからの入熱により軸受の内輪が外輪よりも先に昇温して熱膨張することを防止し、タービン軸の回転抵抗増大や軸受の損傷を回避することができる。   By configuring the outer ring heating section as described above, the outer ring of the bearing can be heated with a simple structure, and the inner ring of the bearing rises in temperature before the outer ring due to heat input from the speed increasing gear during speed-up operation, so that the thermal expansion This can prevent the increase in rotational resistance of the turbine shaft and damage to the bearing.

前記第2の態様において、前記外輪を保持する軸受保持部材は、前記外輪の材料よりも熱伝導性の良い材料で形成するのが好ましい。これにより、外輪加熱部のもたらす熱が軸受保持部材によって軸受の外輪に良好に伝達される。したがって、外輪を良好に熱膨張させてタービン軸の回転抵抗増大や軸受の損傷を回避することができる。   In the second aspect, it is preferable that the bearing holding member for holding the outer ring is made of a material having better thermal conductivity than the material of the outer ring. Thereby, the heat which an outer ring | wheel heating part brings is favorably transmitted to the outer ring | wheel of a bearing with a bearing holding member. Therefore, the outer ring can be thermally expanded well to avoid an increase in the rotational resistance of the turbine shaft and damage to the bearing.

本発明の第3態様に係るターボ圧縮機は、駆動ギアが設けられた駆動軸と、前記駆動軸に対し平行に軸支されたタービン軸と、前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、前記タービン軸を軸支する軸受と、前記軸受の内輪を冷却する内輪冷却部と、を備えたことを特徴とする。   A turbo compressor according to a third aspect of the present invention includes a drive shaft provided with a drive gear, a turbine shaft supported in parallel with the drive shaft, and an intermediate portion of the turbine shaft provided with the drive. A driven gear that meshes with the gear, a turbine blade that is provided at one end of the turbine shaft and forms a refrigerant compression unit, a bearing that supports the turbine shaft, and an inner ring cooling unit that cools the inner ring of the bearing. It is characterized by that.

上記構成のターボ圧縮機によれば、室温状態にあるターボ圧縮機を予熱なく始動させて定常運転まで昇速させる運転条件下においては、内輪冷却部によって軸受の内輪を冷却することにより、内輪の熱膨張を外輪よりも遅らせることができる。これにより、増速ギアからの入熱により軸受の内輪が外輪よりも先に昇温して熱膨張することを防止し、タービン軸の回転抵抗増大や軸受の損傷を回避することができる。   According to the turbo compressor having the above-described configuration, under the operating conditions in which the turbo compressor in the room temperature state is started without preheating and the speed is increased to the steady operation, the inner ring of the bearing is cooled by the inner ring cooling unit. Thermal expansion can be delayed more than the outer ring. As a result, it is possible to prevent the inner ring of the bearing from being heated and thermally expanded earlier than the outer ring due to heat input from the speed increasing gear, thereby avoiding an increase in rotational resistance of the turbine shaft and damage to the bearing.

前記第3の態様において、前記内輪冷却部は、前記タービン軸の内部に形成された冷却液供給通路と、前記冷却液供給通路に冷却液を送給する冷却液送給部と、を備えた構成としてもよい。   In the third aspect, the inner ring cooling section includes a cooling liquid supply passage formed inside the turbine shaft, and a cooling liquid supply section that supplies the cooling liquid to the cooling liquid supply passage. It is good also as a structure.

内輪冷却部を上記構成とすることにより、簡素な構造によって軸受の内輪を冷却可能にし、昇速運転時に増速ギアからの入熱により軸受の内輪が外輪よりも先に昇温して熱膨張することを防止し、タービン軸の回転抵抗増大や軸受の損傷を回避することができる。   By configuring the inner ring cooling section as described above, the inner ring of the bearing can be cooled with a simple structure, and the inner ring of the bearing is heated before the outer ring due to heat input from the speed increasing gear during the speed-up operation, so that the thermal expansion This can prevent the increase in rotational resistance of the turbine shaft and damage to the bearing.

本発明の第3態様に係るターボ冷凍装置は、前記のいずれかのターボ圧縮機と、前記ターボ圧縮機によって圧縮された前記冷媒を凝縮させる凝縮器と、膨張した前記冷媒を蒸発させる蒸発器と、を具備してなることを特徴とする。   A turbo refrigeration apparatus according to a third aspect of the present invention includes any one of the above turbo compressors, a condenser that condenses the refrigerant compressed by the turbo compressor, and an evaporator that evaporates the expanded refrigerant. It is characterized by comprising.

上記構成によれば、ターボ圧縮機におけるタービン軸のラジアル方向の支持構成が高められて圧縮効率が高くなり、且つ運転開始から定常運転に入るまでの間にタービン軸の軸受内部隙間が過小になることを抑制してタービン軸の回転抵抗増大や軸受の損傷を防止することができるため、高性能で信頼性の高いターボ冷凍装置とすることができる。   According to the above configuration, the radial support structure of the turbine shaft in the turbo compressor is enhanced to increase the compression efficiency, and the bearing internal clearance of the turbine shaft becomes too small from the start of operation to the start of steady operation. This can be suppressed to prevent an increase in rotational resistance of the turbine shaft and damage to the bearing, so that a turbo refrigeration apparatus with high performance and high reliability can be obtained.

以上のように、本発明に係るターボ圧縮機、これを備えたターボ冷凍装置によれば、タービン軸のラジアル方向の支持構成を高めて圧縮効率を高めるとともに、運転開始から定常運転に入るまでの間にタービン軸の軸受内部隙間が過小になることを抑制してタービン軸の回転抵抗増大や軸受の損傷を防止することができる。   As described above, according to the turbo compressor according to the present invention and the turbo refrigeration apparatus provided with the turbo compressor, the support structure in the radial direction of the turbine shaft is increased to increase the compression efficiency, and from the start of operation to the start of steady operation. It is possible to prevent the turbine shaft bearing internal clearance from becoming too small in the meantime and to prevent the turbine shaft rotation resistance from increasing and the bearing from being damaged.

本発明の実施形態に係るターボ冷凍装置の概略構成図である。1 is a schematic configuration diagram of a turbo refrigeration apparatus according to an embodiment of the present invention. ターボ圧縮機の一構造例を示す横断面図である。It is a cross-sectional view showing one structural example of a turbo compressor. 図2のIII部を拡大して本発明の第1実施形態を示すタービン軸付近の拡大図である。FIG. 3 is an enlarged view of the vicinity of a turbine shaft showing a first embodiment of the present invention by enlarging a part III in FIG. 2. 図2のIV部を拡大して本発明の第2実施形態を示す第1の軸支部付近の拡大図である。FIG. 4 is an enlarged view of the vicinity of a first shaft support portion showing a second embodiment of the present invention by enlarging the IV portion of FIG. 2. 本発明の第3実施形態を示す第1の軸支部付近の拡大図である。It is an enlarged view near the 1st axial support part which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示すタービン軸付近の拡大図である。It is an enlarged view of the turbine shaft vicinity which shows 4th Embodiment of this invention. (A),(B)は、図6のVII−VII線に沿うタービン軸の縦断面図である。(A), (B) is a longitudinal cross-sectional view of the turbine shaft which follows the VII-VII line of FIG. 従来の問題点を示すターボ圧縮機の運転時間と運転速度と内外輪の温度との相関関係を示す線図である。It is a diagram which shows the correlation with the operating time of the turbo compressor which shows the conventional problem, an operating speed, and the temperature of an inner and outer ring | wheel.

以下に、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明の実施形態に係るターボ冷凍装置の概略構成図である。このターボ冷凍装置1は、冷媒を圧縮するターボ圧縮機2と、油ミスト分離タンク3と、凝縮器4と、エコノマイザ5と、蒸発器6と、潤滑油タンク7と、主膨張弁8と、副膨張弁9等を備えて構成されている。ターボ圧縮機2は、図2にも示すように、電動機11と、増速部12と、遠心タービン型の冷媒圧縮部13と、後述する複数の軸受とが1つのユニットにまとめられたものである。潤滑油タンク7は内部にポンプ7aを有し、ターボ圧縮機2の増速部12や軸受等に供給する潤滑油を貯留するタンクである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a turbo refrigeration apparatus according to an embodiment of the present invention. The turbo refrigeration apparatus 1 includes a turbo compressor 2 that compresses refrigerant, an oil mist separation tank 3, a condenser 4, an economizer 5, an evaporator 6, a lubricating oil tank 7, a main expansion valve 8, The auxiliary expansion valve 9 is provided. As shown in FIG. 2, the turbo compressor 2 is a unit in which an electric motor 11, a speed increasing unit 12, a centrifugal turbine type refrigerant compressing unit 13, and a plurality of bearings described later are combined into one unit. is there. The lubricating oil tank 7 has a pump 7 a inside and stores the lubricating oil supplied to the speed increasing portion 12 and the bearing of the turbo compressor 2.

このターボ冷凍装置1において、ターボ圧縮機2の電動機11によって冷媒圧縮部13が増速駆動されると、蒸発器6から気化冷媒が冷媒圧縮部13に吸入されて圧縮され、この圧縮冷媒が油ミスト分離タンク3にて油分を分離されてから凝縮器4に送給される。
凝縮器4の内部では、ターボ圧縮機2で圧縮された高温の圧縮冷媒が冷却水と熱交換することにより凝縮熱を冷却されて凝縮液化される。凝縮器4で液相状になった凝縮冷媒は、エコノマイザ5と主膨張弁8と経て蒸発器6に給送される。
凝縮冷媒の一部は副膨張弁9を通過して減圧されることにより断熱膨張(気化)してエコノマイザ5に流れ、その気化熱によりエコノマイザ5内部を流れる凝縮冷媒を冷却した後、ターボ圧縮機2の冷媒圧縮部13中段に還流される。
In the turbo refrigeration apparatus 1, when the refrigerant compression unit 13 is driven at an increased speed by the electric motor 11 of the turbo compressor 2, the vaporized refrigerant is sucked into the refrigerant compression unit 13 from the evaporator 6 and compressed, and the compressed refrigerant is converted into oil. The oil component is separated in the mist separation tank 3 and then fed to the condenser 4.
Inside the condenser 4, the hot compressed refrigerant compressed by the turbo compressor 2 exchanges heat with the cooling water, thereby cooling the condensation heat and condensing it into a liquid. The condensed refrigerant that has become a liquid phase in the condenser 4 is fed to the evaporator 6 through the economizer 5 and the main expansion valve 8.
A part of the condensed refrigerant passes through the sub-expansion valve 9 and is decompressed to adiabatically expand (vaporize) and flow to the economizer 5. The refrigerant is returned to the middle stage of the second refrigerant compression section 13.

凝縮冷媒は主膨張弁8を通過して減圧されることにより断熱膨張し、低温の気液二相状となって蒸発器6に流れる。蒸発器6の内部では、低温の冷媒と熱源水とが熱交換し、熱源水が冷却される。冷却された熱源水は空調用の冷熱媒や工業用冷却水等として利用される。熱源水との熱交換により気化した冷媒は、再びターボ圧縮機2の冷媒圧縮部13に吸入されて圧縮され、以下、このサイクルが繰り返される。   The condensed refrigerant passes through the main expansion valve 8 and is adiabatically expanded by being depressurized, and flows into the evaporator 6 in a low-temperature gas-liquid two-phase state. Inside the evaporator 6, the low-temperature refrigerant and the heat source water exchange heat, and the heat source water is cooled. The cooled heat source water is used as a cooling medium for air conditioning, industrial cooling water, or the like. The refrigerant vaporized by heat exchange with the heat source water is again sucked into the refrigerant compressor 13 of the turbo compressor 2 and compressed, and this cycle is repeated thereafter.

図2は、ターボ圧縮機2の一構造例を示す横断面図である。
ターボ圧縮機2は、その外殻を形成するケーシング21の内部に、電動機11と、増速部12と、冷媒圧縮部13と、駆動軸25と、タービン軸26とが封入されている。駆動軸25は電動機11の主軸でもあり、この駆動軸25に対してタービン軸26が平行に軸支されている。
FIG. 2 is a cross-sectional view showing one structural example of the turbo compressor 2.
In the turbo compressor 2, an electric motor 11, a speed increasing unit 12, a refrigerant compressing unit 13, a drive shaft 25, and a turbine shaft 26 are enclosed in a casing 21 that forms an outer shell thereof. The drive shaft 25 is also a main shaft of the electric motor 11, and a turbine shaft 26 is supported in parallel with the drive shaft 25.

増速部12は、駆動軸25の先端部に設けられた駆動ギア12aと、タービン軸26の中間部に設けられて駆動ギア12aに噛み合う従動ギア12bとを具備して構成されている。駆動ギア12aは従動ギア12bよりも歯数が多く、このため駆動軸25の回転が数倍に増速されてタービン軸26に伝達される。その際には摩擦熱が発生し、タービン軸26が加熱される。これらのギア12a,12bはヘリカルギア(はすば歯車)とされて噛み合い騒音の低減が図られている。   The speed increasing portion 12 includes a drive gear 12a provided at a tip portion of the drive shaft 25 and a driven gear 12b provided at an intermediate portion of the turbine shaft 26 and meshing with the drive gear 12a. The drive gear 12a has more teeth than the driven gear 12b, so that the rotation of the drive shaft 25 is increased several times and transmitted to the turbine shaft 26. At that time, frictional heat is generated and the turbine shaft 26 is heated. These gears 12a and 12b are helical gears (helical gears) to reduce the meshing noise.

冷媒圧縮部13は、例えばタービン軸26の電動機11から遠い方の端部に固定された2段のタービン翼13A,13Bと、ケーシング21の内部に形成された圧縮通路13Cとを備えてなる公知の2段圧縮機であるが、遠心タービン型であればこの態様にされない。   The refrigerant compressor 13 includes, for example, two stages of turbine blades 13A and 13B fixed to the end of the turbine shaft 26 far from the motor 11 and a compression passage 13C formed in the casing 21. However, if it is a centrifugal turbine type, it is not made into this aspect.

駆動軸25は、電動機11の両側に設けられた軸受31,32により軸支されている。これらに軸受31,32としては、例えば深溝玉軸受が採用されている。一方、タービン軸26は、従動ギア12bとタービン翼13A,13Bとの間を軸支する第1の軸支部34と、タービン軸26の他端、即ち電動機11側の端部を軸支する第2の軸支部35とによって軸支されている。   The drive shaft 25 is pivotally supported by bearings 31 and 32 provided on both sides of the electric motor 11. As these bearings 31 and 32, for example, deep groove ball bearings are employed. On the other hand, the turbine shaft 26 supports the first shaft support portion 34 that supports between the driven gear 12b and the turbine blades 13A and 13B, and the other end of the turbine shaft 26, that is, the end portion on the motor 11 side. The two shaft support portions 35 are pivotally supported.

[第1実施形態]
図3は、図2のIII部を拡大して本発明の第1実施形態を示すタービン軸付近の拡大図である。
タービン軸26における従動ギア12bとタービン翼13A,13Bとの間を軸支する第1の軸支部34は、例えば1つの円筒ころ軸受36と1つの4点接触玉軸受37とを備えており、その間に環状のスペーサ38が介装されている。ここでは円筒ころ軸受36がタービン翼13A,13B側に配置されているが、円筒ころ軸受36と4点接触玉軸受37との位置関係を逆にしてもよい。
[First Embodiment]
FIG. 3 is an enlarged view of the vicinity of the turbine shaft showing the first embodiment of the present invention by enlarging the III part of FIG. 2.
The first shaft support portion 34 that supports between the driven gear 12b and the turbine blades 13A and 13B in the turbine shaft 26 includes, for example, one cylindrical roller bearing 36 and one four-point contact ball bearing 37. An annular spacer 38 is interposed between them. Here, the cylindrical roller bearing 36 is disposed on the turbine blades 13A and 13B side, but the positional relationship between the cylindrical roller bearing 36 and the four-point contact ball bearing 37 may be reversed.

一方、タービン軸26の他端(電動機11側の端部)を軸支する第2の軸支部35は、例えば2つの円筒ころ軸受36が軸方向に隣接して設けられている。これら2つの円筒ころ軸受36は単一で幅広の円筒ころ軸受としてもよい。各円筒ころ軸受36は、内輪36aと、外輪36bと、ころ36cとを備えている。また、4点接触玉軸受37とは、内輪37aと、外輪37bと、玉37cとを備えている。内輪37aは軸方向に二分割されており、玉37cは内輪37aと外輪37bとにそれぞれ2点で接触する。   On the other hand, the second shaft support portion 35 that supports the other end of the turbine shaft 26 (the end portion on the electric motor 11 side) is provided with, for example, two cylindrical roller bearings 36 adjacent in the axial direction. These two cylindrical roller bearings 36 may be single and wide cylindrical roller bearings. Each cylindrical roller bearing 36 includes an inner ring 36a, an outer ring 36b, and a roller 36c. The four-point contact ball bearing 37 includes an inner ring 37a, an outer ring 37b, and a ball 37c. The inner ring 37a is divided into two in the axial direction, and the ball 37c contacts the inner ring 37a and the outer ring 37b at two points.

本実施形態では、第1の軸支部34に4点接触玉軸受37を設けているが、4点接触玉軸受37を第2の軸支部35に設けたり、第1の軸支部34と第2の軸支部35の両方に設けてもよい。要するに、第1の軸支部34と第2の軸支部35の両方に、それぞれ1つ以上の円筒ころ軸受36が設けられ、第1の軸支部34と第2の軸支部35の少なくも一方に4点接触玉軸受37が設けられていればよい。   In the present embodiment, the four-point contact ball bearing 37 is provided on the first shaft support portion 34, but the four-point contact ball bearing 37 is provided on the second shaft support portion 35, or the first shaft support portion 34 and the second shaft support portion 34. You may provide in both of the axial support parts 35 of this. In short, one or more cylindrical roller bearings 36 are provided on both the first shaft support portion 34 and the second shaft support portion 35, respectively, and at least one of the first shaft support portion 34 and the second shaft support portion 35 is provided. A four-point contact ball bearing 37 may be provided.

上記構成において、第1の軸支部34と第2の軸支部35の円筒ころ軸受36によりタービン軸26のラジアル荷重が支持され、第1の軸支部34の4点接触玉軸受37によりタービン軸26のアキシャル荷重(スラスト荷重)が支持される。   In the above configuration, the radial load of the turbine shaft 26 is supported by the cylindrical roller bearings 36 of the first shaft support portion 34 and the second shaft support portion 35, and the turbine shaft 26 is supported by the four-point contact ball bearing 37 of the first shaft support portion 34. Axial load (thrust load) is supported.

このように、タービン軸26の従動ギア12bを挟んで設けられる第1の軸支部34と第2の軸支部35に、それぞれ少なくとも1つの円筒ころ軸受36を設けたため、深溝玉軸受やアンギュラ玉軸受のような玉軸受のみによってタービン軸26を支持した場合に比べてタービン軸26のラジアル方向への剛性を高めることができる。   As described above, since at least one cylindrical roller bearing 36 is provided on each of the first shaft support portion 34 and the second shaft support portion 35 that are provided across the driven gear 12b of the turbine shaft 26, a deep groove ball bearing or an angular ball bearing is provided. The rigidity of the turbine shaft 26 in the radial direction can be increased as compared with the case where the turbine shaft 26 is supported only by such ball bearings.

即ち、玉軸受は玉が内外輪に対して点接触するが、円筒ころ軸受36は、ころ36aが内輪36aおよび外輪36bに対して線接触するため、ラジアル荷重が加わった際に、ころ36aが内外輪36a,36bに食い込む大きさが玉軸受に比べて格段に小さく、玉軸受に比べてタービン軸26の支持剛性が高い。   That is, in the ball bearing, the balls are in point contact with the inner and outer rings, but in the cylindrical roller bearing 36, the roller 36a is in line contact with the inner ring 36a and the outer ring 36b, so that when the radial load is applied, the roller 36a The size of the inner and outer rings 36a, 36b is much smaller than that of the ball bearing, and the support rigidity of the turbine shaft 26 is higher than that of the ball bearing.

このため、円筒ころ軸受36は、内外輪36a,36bが温まった定常運転時における軸受内部隙間を玉軸受よりも大きく設定することができる。したがって、室温状態にあるターボ圧縮機2を予熱なく始動させて定常運転まで昇速させる運転条件下において、増速ギア12(従動ギア12b)からの入熱により円筒ころ軸受36の内輪36aが外輪36bよりも先に昇温して熱膨張しても、円筒ころ軸受36の軸受内部隙間がゼロ未満にならず、タービン軸26の回転抵抗の増大や軸受の損傷に繋がる懸念がない。   For this reason, the cylindrical roller bearing 36 can set a bearing internal clearance larger than that of the ball bearing during the steady operation in which the inner and outer rings 36a and 36b are warmed. Accordingly, the inner ring 36a of the cylindrical roller bearing 36 is moved by the heat input from the speed increasing gear 12 (driven gear 12b) under the operating condition in which the turbo compressor 2 in the room temperature state is started without preheating and the speed is increased to the steady operation. Even if the temperature is increased before 36 b and the thermal expansion is performed, the bearing internal clearance of the cylindrical roller bearing 36 does not become less than zero, and there is no concern that the rotational resistance of the turbine shaft 26 increases or the bearing is damaged.

また、円筒ころ軸受36と共に設けられた4点接触玉軸受37は、主にタービン軸26のアキシャル荷重を担うため、ラジアル方向への軸受内部隙間を予め大きくしておくことができる。このため、円筒ころ軸受36と同様に、ターボ圧縮機2が室温状態から昇速運転する際に、ラジアル方向の軸受内部隙間がゼロ未満にならないようにすることができ、タービン軸26の回転抵抗の増大や軸受の損傷を回避することができる。   Further, since the four-point contact ball bearing 37 provided together with the cylindrical roller bearing 36 mainly bears the axial load of the turbine shaft 26, the bearing internal clearance in the radial direction can be increased in advance. For this reason, as in the cylindrical roller bearing 36, when the turbo compressor 2 is operated at an ascending speed from the room temperature, the bearing internal clearance in the radial direction can be prevented from becoming less than zero, and the rotational resistance of the turbine shaft 26 can be reduced. Increase and bearing damage can be avoided.

そして、タービン軸26を円筒ころ軸受36で支持することにより、タービン軸26のラジアル方向の支持剛性が高められ、タービン軸26のラジアル方向への振れが小さくなるため、タービン軸26に設けられたタービン翼13A,13Bと、ケーシング21に形成された圧縮通路13Cとの間の隙間を最小限に設定し、圧縮冷媒の漏れを最小化してターボ圧縮機2の圧縮効率を高めることができる。   Since the turbine shaft 26 is supported by the cylindrical roller bearing 36, the support rigidity in the radial direction of the turbine shaft 26 is increased, and the vibration of the turbine shaft 26 in the radial direction is reduced. The clearance between the turbine blades 13A and 13B and the compression passage 13C formed in the casing 21 can be set to a minimum, and the compression efficiency of the turbo compressor 2 can be increased by minimizing the leakage of the compressed refrigerant.

[第2実施形態]
図4は、図2のIV部を拡大して本発明の第2実施形態を示す第1の軸支部35付近の拡大図である。ここに示すケーシング21、タービン軸26、冷媒圧縮部13を構成するタービン翼13A,13B、圧縮通路13C、第1の軸支部35を構成する円筒ころ軸受36、4点接触玉軸受37、スペーサ38等の形状や位置関係等は第1実施形態の構成と同様である。なお、円筒ころ軸受36と4点接触玉軸受37の軸受形式は、他の形式、例えば深溝玉軸受やアンギュラ玉軸受等に置き換えてもよい。
[Second Embodiment]
FIG. 4 is an enlarged view of the vicinity of the first shaft support portion 35 showing the second embodiment of the present invention by enlarging the IV portion of FIG. 2. The casing 21, the turbine shaft 26, the turbine blades 13 </ b> A and 13 </ b> B constituting the refrigerant compressor 13, the compression passage 13 </ b> C, the cylindrical roller bearing 36 constituting the first shaft support 35, the four-point contact ball bearing 37, and the spacer 38 shown here. The shape, positional relationship, etc. are the same as in the configuration of the first embodiment. The bearing types of the cylindrical roller bearing 36 and the four-point contact ball bearing 37 may be replaced with other types, for example, a deep groove ball bearing or an angular ball bearing.

第1の軸支部35を構成する円筒ころ軸受36と4点接触玉軸受37とスペーサ38は、円筒状の軸受保持部材41に軽圧入されており、この軸受保持部材41がケーシング21に密に嵌め込まれている。軸受保持部材41を形成する金属材料は、円筒ころ軸受36の外輪36bおよび4点接触玉軸受37の外輪37bを形成する金属材料(鋼材)よりも熱伝導性の良い材料で形成されている。例えば、軸受保持部材41の金属材料としては、アルミニウム、真鍮(黄銅)、銅等が挙げられる。軸受保持部材41をケーシング21と一体化し、ケーシング21全体を熱伝導性の良い材料で形成してもよい。   The cylindrical roller bearing 36, the four-point contact ball bearing 37, and the spacer 38 constituting the first shaft support portion 35 are lightly press-fitted into a cylindrical bearing holding member 41, and the bearing holding member 41 is tightly fitted to the casing 21. It is inserted. The metal material forming the bearing holding member 41 is formed of a material having better thermal conductivity than the metal material (steel material) forming the outer ring 36 b of the cylindrical roller bearing 36 and the outer ring 37 b of the four-point contact ball bearing 37. For example, the metal material of the bearing holding member 41 includes aluminum, brass (brass), copper, and the like. The bearing holding member 41 may be integrated with the casing 21 and the entire casing 21 may be formed of a material having good thermal conductivity.

軸受保持部材41の外周部には、例えば筒状の電気ヒーター43(外輪加熱部)が設けられている。本実施形態では電気ヒーター43が軸受保持部材41の外周に接するケーシング21側に装着されているが、電気ヒーター43を軸受保持部材41側に装着してもよい。電気ヒーター43は、熱伝導性の良い軸受保持部材41を介して円筒ころ軸受36の外輪36bと4点接触玉軸受37の外輪37bを均一に加熱することができる。   For example, a cylindrical electric heater 43 (outer ring heating portion) is provided on the outer peripheral portion of the bearing holding member 41. In the present embodiment, the electric heater 43 is mounted on the casing 21 side in contact with the outer periphery of the bearing holding member 41, but the electric heater 43 may be mounted on the bearing holding member 41 side. The electric heater 43 can uniformly heat the outer ring 36b of the cylindrical roller bearing 36 and the outer ring 37b of the four-point contact ball bearing 37 via the bearing holding member 41 having good thermal conductivity.

このような電気ヒーター43を設けることにより、室温状態にあるターボ圧縮機2を予熱なく始動させて定常運転まで昇速させる運転条件下においては、先に電気ヒーター43を起動させ、その熱Hによって軸受36,37の外輪36b,37bを加熱することにより、外輪36b,37bを内輪36a,37aと同時に、あるいは内輪36a,37aよりも先に熱膨張させることができる。これにより、従動ギア12bからの入熱により軸受36,37の内輪36a,37aが外輪36b,37bよりも先に昇温して熱膨張することを簡素な構造によって防止し、タービン軸26の回転抵抗増大や軸受の損傷を回避することができる。   By providing such an electric heater 43, under the operating conditions in which the turbo compressor 2 in a room temperature state is started without preheating and the speed is increased to a steady operation, the electric heater 43 is started first, and the heat H By heating the outer rings 36b and 37b of the bearings 36 and 37, the outer rings 36b and 37b can be thermally expanded simultaneously with the inner rings 36a and 37a or before the inner rings 36a and 37a. This prevents the inner rings 36a and 37a of the bearings 36 and 37 from being heated and thermally expanded earlier than the outer rings 36b and 37b due to heat input from the driven gear 12b, and prevents the rotation of the turbine shaft 26. Increase in resistance and damage to the bearing can be avoided.

また、軸受36,37を保持する軸受保持部材41を、軸受36,37の外輪36b,37bの材料よりも熱伝導性の良い材料で形成することにより、外輪加熱部である電気ヒーター43の熱を軸受保持部材41によって外輪36b,37bに良好に、且つ均等に伝達することができる。したがって、外輪36b,37bを良好に熱膨張させてタービン軸26の回転抵抗増大や軸受の損傷を回避することができる。電気ヒーター43は軸受36,37の膨張が完了した時点で停止させる。   In addition, the bearing holding member 41 that holds the bearings 36 and 37 is formed of a material having better thermal conductivity than the material of the outer rings 36b and 37b of the bearings 36 and 37, so that the heat of the electric heater 43 that is the outer ring heating unit is obtained. Can be transmitted to the outer rings 36b and 37b in a good and even manner by the bearing holding member 41. Therefore, the outer rings 36b and 37b can be thermally expanded well to avoid an increase in rotational resistance of the turbine shaft 26 and damage to the bearings. The electric heater 43 is stopped when the expansion of the bearings 36 and 37 is completed.

[第3実施形態]
図5は、本発明の第3実施形態を示す第1の軸支部付近の拡大図である。本実施形態は、外輪加熱部として第2実施形態の電気ヒーター43に代えて冷媒供給通路46が設けられている点以外は第2実施形態の構成と同様であるため、同一構成部には同一符号を付して説明を省略する。
[Third Embodiment]
FIG. 5 is an enlarged view of the vicinity of the first shaft support portion showing the third embodiment of the present invention. This embodiment is the same as the configuration of the second embodiment except that a refrigerant supply passage 46 is provided as an outer ring heating unit in place of the electric heater 43 of the second embodiment, and therefore the same components are the same. The reference numerals are attached and the description is omitted.

本実施形態においても、第2実施形態と同様に、第1の軸支部35を構成する円筒ころ軸受36と4点接触玉軸受37を他の形式の軸受に変更しても構わない。これらの軸受36,37を保持する軸受保持部材41の金属材料は、第2実施形態と同様に、軸受36,37の外輪36b,37bを形成する金属材料よりも熱伝導性の良い材料で形成する。   Also in the present embodiment, as in the second embodiment, the cylindrical roller bearing 36 and the four-point contact ball bearing 37 constituting the first shaft support portion 35 may be changed to other types of bearings. The metal material of the bearing holding member 41 that holds these bearings 36 and 37 is formed of a material having better thermal conductivity than the metal material that forms the outer rings 36b and 37b of the bearings 36 and 37, as in the second embodiment. To do.

本実施形態では、軸受36,37の外輪36b,37bを加熱する外輪加熱部として、冷媒圧縮部13において圧縮された圧縮冷媒Rの一部を抽出して外輪36b,37bの近傍に供給する冷媒供給通路46が設けられている。この冷媒供給通路46は、冷媒抽出通路46aと、冷媒入口通路46bと、冷媒出口通路46cとを含んで構成されている。   In the present embodiment, as the outer ring heating section that heats the outer rings 36b and 37b of the bearings 36 and 37, a refrigerant that extracts a part of the compressed refrigerant R compressed in the refrigerant compression section 13 and supplies it to the vicinity of the outer rings 36b and 37b. A supply passage 46 is provided. The refrigerant supply passage 46 includes a refrigerant extraction passage 46a, a refrigerant inlet passage 46b, and a refrigerant outlet passage 46c.

冷媒抽出通路46aは、例えばタービン軸26の軸方向に沿って軸受保持部材41の内部にトーラス状(円筒状)通路、もしくは複数の平行な直線孔状通路として形成されている。また、冷媒入口通路46bは、タービン翼13bとケーシング21との間に設けられたラビリンスシール48の近傍から冷媒抽出通路46aの一端に通じる斜孔状通路であり、冷媒出口通路46cは、冷媒抽出通路46aの他端から軸受保持部材41の後端部に抜ける斜孔状の通路である。   The refrigerant extraction passage 46a is formed as a torus-like (cylindrical) passage or a plurality of parallel straight hole passages in the bearing holding member 41 along the axial direction of the turbine shaft 26, for example. In addition, the refrigerant inlet passage 46b is a slanted hole-like passage that extends from the vicinity of the labyrinth seal 48 provided between the turbine blade 13b and the casing 21 to one end of the refrigerant extraction passage 46a, and the refrigerant outlet passage 46c is a refrigerant extraction passage. This is a slanted hole-shaped passage extending from the other end of the passage 46 a to the rear end portion of the bearing holding member 41.

このような冷媒供給通路46を設けることにより、室温状態にあるターボ圧縮機2を予熱なく始動させて定常運転まで昇速させる運転条件下においては、軸受36,37が過熱しないような低速運転を暫く行うことにより、圧縮された温かい冷媒Rの一部を抽出して冷媒供給通路46に通し、軸受36,37の外輪36b,37bを熱膨張させることができる。   By providing such a refrigerant supply passage 46, low-speed operation is performed so that the bearings 36 and 37 do not overheat under the operating conditions in which the turbo compressor 2 in the room temperature state is started without preheating and the speed is increased to steady operation. By performing for a while, a part of the compressed warm refrigerant R can be extracted and passed through the refrigerant supply passage 46 to thermally expand the outer rings 36b and 37b of the bearings 36 and 37.

即ち、ラビリンスシール48から漏洩する少量の圧縮冷媒Rが、冷媒入口通路46bから冷媒抽出通路46aに流入し、軸受保持部材41を温めながら後方に流れて冷媒出口通路46cから流出する。軸受保持部材41は熱伝導性の良い材料で形成されているため、冷媒抽出通路46aを流れる圧縮冷媒Rの熱が軸受36,37の外輪36b,37bに良好に伝達され、外輪36b,37bが温められて熱膨張する。   That is, a small amount of the compressed refrigerant R leaking from the labyrinth seal 48 flows from the refrigerant inlet passage 46b into the refrigerant extraction passage 46a, flows backward while warming the bearing holding member 41, and flows out from the refrigerant outlet passage 46c. Since the bearing holding member 41 is formed of a material having good thermal conductivity, the heat of the compressed refrigerant R flowing through the refrigerant extraction passage 46a is well transmitted to the outer rings 36b and 37b of the bearings 36 and 37, and the outer rings 36b and 37b are When heated, it expands.

こうして、軸受36,37の外輪36b,37bを内輪36a,37aと同時に、あるいは内輪36a,37aよりも先に熱膨張させることができる。このため、簡素な構造によって従動ギア12bからの入熱により軸受36,37の内輪36a,37aが外輪36b,37bよりも先に昇温して熱膨張することを防止し、タービン軸26の回転抵抗増大や軸受の損傷を回避することができる。   Thus, the outer rings 36b, 37b of the bearings 36, 37 can be thermally expanded simultaneously with the inner rings 36a, 37a or before the inner rings 36a, 37a. For this reason, the inner ring 36a, 37a of the bearings 36, 37 is prevented from being heated and thermally expanded earlier than the outer rings 36b, 37b due to heat input from the driven gear 12b with a simple structure, and the rotation of the turbine shaft 26 is prevented. Increase in resistance and damage to the bearing can be avoided.

なお、上記のように冷媒供給通路46(46a,46b,46c)を軸受保持部材41の内部に形成する代わりに、ケーシング21と軸受保持部材41との間に溝状の冷媒供給通路(非図示)を形成し、ラビリンスシール48から漏洩する圧縮冷媒Rを軸受保持部材41の外周側に流すようにしてもよい。   Instead of forming the refrigerant supply passage 46 (46a, 46b, 46c) inside the bearing holding member 41 as described above, a groove-like refrigerant supply passage (not shown) is formed between the casing 21 and the bearing holding member 41. ), And the compressed refrigerant R leaking from the labyrinth seal 48 may flow to the outer peripheral side of the bearing holding member 41.

[第4実施形態]
図6は、本発明の第4実施形態を示すタービン軸付近の拡大図であり、図7(A),(B)は、図6のVII−VII線に沿うタービン軸の縦断面図である。本実施形態は、軸受36,37の内輪36a,37aを冷却する内輪冷却部52が設けられている点以外は、図3に示す第1実施形態の構成と同様であるため、各部に同一符号を付して説明を省略する。なお、円筒ころ軸受36と4点接触玉軸受37の軸受形式は、他の形式、例えば深溝玉軸受やアンギュラ玉軸受等に置き換えてもよい。
[Fourth Embodiment]
6 is an enlarged view of the vicinity of a turbine shaft showing a fourth embodiment of the present invention, and FIGS. 7A and 7B are longitudinal sectional views of the turbine shaft taken along line VII-VII in FIG. . This embodiment is the same as the configuration of the first embodiment shown in FIG. 3 except that an inner ring cooling section 52 that cools the inner rings 36a and 37a of the bearings 36 and 37 is provided. The description is omitted. The bearing types of the cylindrical roller bearing 36 and the four-point contact ball bearing 37 may be replaced with other types, for example, a deep groove ball bearing or an angular ball bearing.

内輪冷却部52は、タービン軸26の内部に形成された冷却液供給通路53と、この冷却液供給通路53に冷却液を送給する冷却液送給部54とを備えている。冷却液供給通路53は、例えばタービン軸26の軸心部に形成された冷却液往路53aと、この冷却液往路53aの周囲を囲むように形成された冷却液復路53bと、タービン軸26の内部で両通路53a,53bの先端同士を連通させる連通路53cとを備えて構成されている。冷却液復路53bの断面形状は、図7(A)に示すように冷却液往路53aの周りを同心円状に囲む断面としたり、図7(B)に示すように冷却液往路53aの周りを囲む複数の直線通路状としたりすることができる。   The inner ring cooling unit 52 includes a cooling liquid supply passage 53 formed in the turbine shaft 26 and a cooling liquid supply unit 54 that supplies the cooling liquid to the cooling liquid supply passage 53. The coolant supply passage 53 includes, for example, a coolant forward path 53a formed at the axial center of the turbine shaft 26, a coolant return path 53b formed so as to surround the periphery of the coolant forward path 53a, and the interior of the turbine shaft 26. And a communication passage 53c that allows the tips of both passages 53a and 53b to communicate with each other. The cross-sectional shape of the coolant return path 53b is a cross section that concentrically surrounds the periphery of the coolant forward path 53a as shown in FIG. 7A, or surrounds the periphery of the coolant forward path 53a as shown in FIG. 7B. A plurality of linear passages can be formed.

冷却液送給部54は、冷却液供給通路53の冷却液往路53aに冷却液を送給可能なパイプ状に形成されている。この冷却液送給部54の他端は、図示しない冷却液供給ポンプに繋がっている。冷却液としては、図1に示す蒸発器6において低温の冷媒と熱交換して冷却された熱源水の一部を抽出して使用することが考えられる。あるいは、蒸発器6に供給される低圧な液冷媒の部を抽出して使用することも考えられる。   The coolant supply section 54 is formed in a pipe shape capable of supplying the coolant to the coolant forward path 53 a of the coolant supply passage 53. The other end of the coolant supply unit 54 is connected to a coolant supply pump (not shown). As the coolant, it is conceivable to extract and use a part of the heat source water cooled by exchanging heat with a low-temperature refrigerant in the evaporator 6 shown in FIG. Alternatively, it is conceivable to extract and use the low-pressure liquid refrigerant portion supplied to the evaporator 6.

このように構成された内輪冷却部52を設けることにより、室温状態にあるターボ圧縮機2を予熱なく始動させて定常運転まで昇速させる運転条件下においては、内輪冷却部52によって軸受36,37の内輪36a,37aを予め冷却し、内輪36a,37aの熱膨張を外輪36b,37bよりも遅らせることができる。即ち、冷却液送給部54から冷却液往路53aに送給された冷媒液が、連通路53cを経て冷却液復路53bに流れ、これによってタービン軸26が冷却されるため、その冷熱が軸受36,37の内輪36a,37aに伝わり、内輪36a,37aが冷却されて熱膨張が遅延される。   By providing the inner ring cooling section 52 configured as described above, the bearings 36 and 37 are supported by the inner ring cooling section 52 under the operating conditions in which the turbo compressor 2 in a room temperature state is started without preheating and is accelerated to a steady operation. The inner rings 36a and 37a can be cooled in advance, and the thermal expansion of the inner rings 36a and 37a can be delayed more than that of the outer rings 36b and 37b. That is, the refrigerant liquid fed from the coolant feeding section 54 to the coolant forward path 53a flows through the communication path 53c to the coolant return path 53b, and thereby the turbine shaft 26 is cooled. , 37 are transmitted to the inner rings 36a, 37a, and the inner rings 36a, 37a are cooled to delay thermal expansion.

これにより、増速ギア12(従動ギア12b)からの入熱により軸受36,37の内輪36a,37aが外輪36b,37bよりも先に昇温して熱膨張することを簡素な構造によって防止し、タービン軸26の回転抵抗増大や軸受36,37の損傷を回避することができる。冷却液の送給は軸受36,37の膨張が完了した時点で停止させる。   This prevents the inner rings 36a and 37a of the bearings 36 and 37 from being heated and thermally expanded earlier than the outer rings 36b and 37b due to heat input from the speed increasing gear 12 (driven gear 12b) with a simple structure. Further, an increase in the rotational resistance of the turbine shaft 26 and damage to the bearings 36 and 37 can be avoided. The supply of the cooling liquid is stopped when the expansion of the bearings 36 and 37 is completed.

以上に説明したように、本実施形態に係るターボ圧縮機2、およびこれを備えたターボ冷凍装置1によれば、タービン軸26のラジアル方向の支持構成を高めてターボ圧縮機2の圧縮効率を高めるとともに、運転開始から定常運転に入るまでの間にタービン軸26の軸受内部隙間が過小になることを抑制してタービン軸26の回転抵抗増大や軸受の損傷を防止することができる。   As described above, according to the turbo compressor 2 according to the present embodiment and the turbo refrigeration apparatus 1 including the turbo compressor 2, the radial shaft direction support structure of the turbine shaft 26 is enhanced to increase the compression efficiency of the turbo compressor 2. It is possible to increase the rotational resistance of the turbine shaft 26 and to prevent the bearing from being damaged by suppressing the bearing internal clearance of the turbine shaft 26 from becoming too small during the period from the start of operation to the start of steady operation.

なお、本発明は上記実施形態の構成のみにされるものではなく、適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。例えば、第2〜第4実施形態における軸受36,37の種類は他の物に変更してもよい。また、第1〜第4実施形態の構成を適宜組み合わせることもできる。   It should be noted that the present invention is not limited to the configuration of the embodiment described above, and can be modified or improved as appropriate, and such modified and improved embodiments are also included in the scope of the right of the present invention. To do. For example, the types of the bearings 36 and 37 in the second to fourth embodiments may be changed to other things. In addition, the configurations of the first to fourth embodiments can be appropriately combined.

1 ターボ冷凍装置
2 ターボ圧縮機
4 凝縮器
6 蒸発器
8 主膨張弁
12 増速部
12a 駆動ギア
12b 従動ギア
13 冷媒圧縮部
13A,13B タービン翼
25 駆動軸
26 タービン軸
34 第1の軸支部
35 第2の軸支部
36 円筒ころ軸受
36a 内輪
36b 外輪
36c ころ
37 4点接触玉軸受
37a 内輪
37b 外輪
37c 玉
41 軸受保持部材
43 電気ヒーター(外輪加熱部)
46 冷媒供給通路(外輪加熱部)
52 内輪冷却部
53 冷却液供給通路
54 冷却液送給部
H 熱
R 圧縮冷媒
DESCRIPTION OF SYMBOLS 1 Turbo refrigeration apparatus 2 Turbo compressor 4 Condenser 6 Evaporator 8 Main expansion valve 12 Speed increasing part 12a Drive gear 12b Driven gear 13 Refrigerant compression part 13A, 13B Turbine blade 25 Drive shaft 26 Turbine shaft 34 First shaft support part 35 Second shaft support 36 Cylindrical roller bearing 36a Inner ring 36b Outer ring 36c Roller 37 Four-point contact ball bearing 37a Inner ring 37b Outer ring 37c Ball 41 Bearing holding member 43 Electric heater (outer ring heating part)
46 Refrigerant supply passage (outer ring heating section)
52 Inner ring cooling section 53 Coolant supply passage 54 Coolant supply section H Heat R Compressed refrigerant

Claims (8)

駆動ギアが設けられた駆動軸と、
前記駆動軸に対し平行に軸支されたタービン軸と、
前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、
前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、
前記タービン軸における前記従動ギアと前記タービン翼との間を軸支する第1の軸支部と、
前記タービン軸の他端を軸支する第2の軸支部と、を備え、
前記第1の軸支部と前記第2の軸支部は、それぞれ少なくとも1つの円筒ころ軸受が設けられ、
前記第1の軸支部と前記第2の軸支部の少なくも一方には4点接触玉軸受が設けられていることを特徴とするターボ圧縮機。
A drive shaft provided with a drive gear;
A turbine shaft supported in parallel to the drive shaft;
A driven gear provided at an intermediate portion of the turbine shaft and meshing with the drive gear;
A turbine blade provided at one end of the turbine shaft and constituting a refrigerant compression section;
A first shaft supporting portion that pivotally supports between the driven gear and the turbine blade in the turbine shaft;
A second shaft support portion that supports the other end of the turbine shaft,
Each of the first shaft support portion and the second shaft support portion is provided with at least one cylindrical roller bearing,
A turbo compressor, wherein at least one of the first shaft support portion and the second shaft support portion is provided with a four-point contact ball bearing.
駆動ギアが設けられた駆動軸と、
前記駆動軸に対し平行に軸支されたタービン軸と、
前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、
前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、
前記タービン軸を軸支する軸受と、
前記軸受の外輪を加熱する外輪加熱部と、
を備えたことを特徴とするターボ圧縮機。
A drive shaft provided with a drive gear;
A turbine shaft supported in parallel to the drive shaft;
A driven gear provided at an intermediate portion of the turbine shaft and meshing with the drive gear;
A turbine blade provided at one end of the turbine shaft and constituting a refrigerant compression section;
A bearing for supporting the turbine shaft;
An outer ring heating section for heating the outer ring of the bearing;
A turbo compressor characterized by comprising:
前記外輪加熱部は電気ヒーターである請求項2に記載のターボ圧縮機。   The turbo compressor according to claim 2, wherein the outer ring heating unit is an electric heater. 前記外輪加熱部は、前記冷媒圧縮部において圧縮された圧縮冷媒の一部を前記外輪の近傍に供給する冷媒供給通路である請求項2に記載のターボ圧縮機。   The turbo compressor according to claim 2, wherein the outer ring heating unit is a refrigerant supply passage that supplies a part of the compressed refrigerant compressed in the refrigerant compression unit to the vicinity of the outer ring. 前記外輪を保持する軸受保持部材は、前記外輪の材料よりも熱伝導性の良い材料で形成されている請求項2から4のいずれかに記載のターボ圧縮機。   The turbo compressor according to any one of claims 2 to 4, wherein the bearing holding member that holds the outer ring is formed of a material having better thermal conductivity than the material of the outer ring. 駆動ギアが設けられた駆動軸と、
前記駆動軸に対し平行に軸支されたタービン軸と、
前記タービン軸の中間部に設けられて前記駆動ギアに噛み合う従動ギアと、
前記タービン軸の一端に設けられて冷媒圧縮部を構成するタービン翼と、
前記タービン軸を軸支する軸受と、
前記軸受の内輪を冷却する内輪冷却部と、
を備えたことを特徴とするターボ圧縮機。
A drive shaft provided with a drive gear;
A turbine shaft supported in parallel to the drive shaft;
A driven gear provided at an intermediate portion of the turbine shaft and meshing with the drive gear;
A turbine blade provided at one end of the turbine shaft and constituting a refrigerant compression section;
A bearing for supporting the turbine shaft;
An inner ring cooling section for cooling the inner ring of the bearing;
A turbo compressor characterized by comprising:
前記内輪冷却部は、
前記タービン軸の内部に形成された冷却液供給通路と、
前記冷却液供給通路に冷却液を送給する冷却液送給部と、
を備えて構成されている請求項6に記載のターボ圧縮機。
The inner ring cooling section is
A coolant supply passage formed inside the turbine shaft;
A coolant supply section for supplying the coolant to the coolant supply passage;
The turbo compressor according to claim 6, comprising:
冷媒を圧縮する請求項1から7のいずれかに記載のターボ圧縮機と、
前記ターボ圧縮機によって圧縮された前記冷媒を凝縮させる凝縮器と、
膨張した前記冷媒を蒸発させる蒸発器と、
を具備してなることを特徴とするターボ冷凍装置。
The turbo compressor according to any one of claims 1 to 7, which compresses the refrigerant;
A condenser for condensing the refrigerant compressed by the turbo compressor;
An evaporator for evaporating the expanded refrigerant;
A turbo refrigeration apparatus comprising:
JP2015220339A 2015-11-10 2015-11-10 Turbo compressor and turbo refrigerator having the same Pending JP2017089492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220339A JP2017089492A (en) 2015-11-10 2015-11-10 Turbo compressor and turbo refrigerator having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220339A JP2017089492A (en) 2015-11-10 2015-11-10 Turbo compressor and turbo refrigerator having the same

Publications (1)

Publication Number Publication Date
JP2017089492A true JP2017089492A (en) 2017-05-25

Family

ID=58769958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220339A Pending JP2017089492A (en) 2015-11-10 2015-11-10 Turbo compressor and turbo refrigerator having the same

Country Status (1)

Country Link
JP (1) JP2017089492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823523A (en) * 2018-07-12 2018-11-16 中国航发哈尔滨轴承有限公司 A method of it is modified to taper roller surface using taper roller thermo-chemical treatment special tooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823523A (en) * 2018-07-12 2018-11-16 中国航发哈尔滨轴承有限公司 A method of it is modified to taper roller surface using taper roller thermo-chemical treatment special tooling

Similar Documents

Publication Publication Date Title
US9234522B2 (en) Hybrid bearing turbomachine
US8177534B2 (en) Scroll-type fluid displacement apparatus with improved cooling system
US9331552B2 (en) Rotor assembly with heat pipe cooling system
JP6093856B2 (en) Equipment that generates electrical energy using the circulation flow of the organic Rankine cycle
AU2014260530B2 (en) A thermodynamic machine
JP4981557B2 (en) Turbo compressor and turbo refrigerator
JP7271254B2 (en) turbo chiller
JP4625474B2 (en) Rankine cycle power recovery system
US6067804A (en) Thermosiphonic oil cooler for refrigeration chiller
KR20130091445A (en) Gas foil journal bearing and chiller system including the same
KR200481205Y1 (en) Heat pump compressor
JP6125375B2 (en) Screw compressor
WO2017122719A1 (en) Turbo compressor and turbo refrigeration device equipped with same
JP2017089492A (en) Turbo compressor and turbo refrigerator having the same
JP2015190662A (en) turbo refrigerator
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
US20150107249A1 (en) Extracting Heat From A Compressor System
JP2018066308A (en) Turbomachine
KR102113036B1 (en) A turbo compressor and a turbo chiller including the same
JP2020159294A (en) Turbo compressor and refrigeration cycle device
WO2014196454A1 (en) Turbo refrigerator
WO2012029516A1 (en) Rankine cycle device
JP2002303298A (en) Turbo compressor
JP7177835B2 (en) Electric turbopump assemblies, especially for Rankine cycle type closed circuits, including integrated cooling
JP2018068021A (en) Turbomachine and refrigeration cycle device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180704

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707