JP2017088907A - Repair material for steel material and repair method of steel material - Google Patents

Repair material for steel material and repair method of steel material Download PDF

Info

Publication number
JP2017088907A
JP2017088907A JP2015215770A JP2015215770A JP2017088907A JP 2017088907 A JP2017088907 A JP 2017088907A JP 2015215770 A JP2015215770 A JP 2015215770A JP 2015215770 A JP2015215770 A JP 2015215770A JP 2017088907 A JP2017088907 A JP 2017088907A
Authority
JP
Japan
Prior art keywords
steel
repair
steel material
resin
repair material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215770A
Other languages
Japanese (ja)
Other versions
JP6523139B2 (en
Inventor
貴志 三輪
Takashi Miwa
貴志 三輪
幸俊 竹下
Yukitoshi Takeshita
幸俊 竹下
梓 石井
Azusa Ishii
梓 石井
孝 澤田
Takashi Sawada
孝 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015215770A priority Critical patent/JP6523139B2/en
Publication of JP2017088907A publication Critical patent/JP2017088907A/en
Application granted granted Critical
Publication of JP6523139B2 publication Critical patent/JP6523139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To make peeling of a coating material hard to occur without reducing effect of anticorrosion even when surface preparation of a steel material is insufficient in repairing the steel material.SOLUTION: Repair person removes a corrosion product from a steel material 103 of a repair target. Then the repair person disperses powder of a base metal 104 to the steel material 103 in a resin solidified from a liquid to a solid by a chemical reaction, laminates a repair material 101 impregnated into a cloth-like conductive carrier 102 constituted by a conductive fiber to the steel material 103 and cures the repair material 101.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の補修材および鋼材の補修方法に関する。   The present invention relates to a steel repair material and a steel repair method.

鋼材の耐食性を向上させるために、亜鉛めっき等により表面処理を行った鋼材が各種構造物に使用されている。このような表面処理により形成された皮膜は使用環境により経年的に減耗し部分的に消失することがあり、鋼材の錆を防止するために定期的な修復が必要となる。   In order to improve the corrosion resistance of steel materials, steel materials subjected to surface treatment by galvanization or the like are used in various structures. The film formed by such a surface treatment may be worn out with time and may partially disappear depending on the use environment, and periodic repair is necessary to prevent rusting of the steel material.

従来の鋼材の修復方法としては、亜鉛粉末を樹脂に分散させた塗料を鋼材に塗布する方法(非特許文献1参照)や、溶射により鋼材の表面に亜鉛皮膜を形成する方法(非特許文献2参照)がある。   As a conventional steel material restoration method, a method in which a paint in which zinc powder is dispersed in a resin is applied to the steel material (see Non-Patent Document 1), or a method of forming a zinc film on the surface of the steel material by thermal spraying (Non-Patent Document 2). See).

ローバルと一般塗料のさび止め原理の違い、ローバル株式会社、[平成27年10月16日検索]、インターネット<URL:http://www.roval.co.jp/>Difference in rust prevention principle between global and general paint, Roval Corporation, [October 16, 2015 search], Internet <URL: http://www.roval.co.jp/> 防食溶射の溶射法/防食溶射とは、防食溶射協同組合、[平成27年10月16日検索]、インターネット<URL:http://www.tscpc.jp/method/index.html>The spraying method of anticorrosion spraying / What is anticorrosion spraying? Corrosion prevention spraying cooperative, [October 16, 2015 search], Internet <URL: http://www.tscpc.jp/method/index.html>

このうち、溶射による皮膜形成は、鋼材の素地調整(錆の除去等)が不十分な場合には付着力が低く、皮膜が剥離しやすくなるという問題がある。また、溶射による皮膜形成は、専用の大型装置や周辺の養生が必要であり、現場での施行には向かない。   Among these, the film formation by thermal spraying has a problem that when the base material adjustment (removal of rust, etc.) of the steel material is insufficient, the adhesion is low and the film is easily peeled off. Also, film formation by thermal spraying requires a dedicated large device and surrounding curing, and is not suitable for on-site enforcement.

また、亜鉛含有塗料を塗布する方法は、現場で実施しやすいというメリットがあるが、亜鉛含有塗料の塗布前の鋼材の素地調整が不十分な場合には付着力が低く、塗料が剥離しやすくなるという問題がある。また、亜鉛含有塗料を塗布する方法は、塗料内部で亜鉛粉末が樹脂により覆われてしまうため塗料の電気的な導電性が低くなってしまう。その結果、本来、亜鉛含有塗料に期待される犠牲防食の効果が低くなるという問題がある。   In addition, the method of applying zinc-containing paint has the advantage that it is easy to implement on site, but if the base material of the steel material before application of zinc-containing paint is insufficient, the adhesion is low and the paint is easy to peel off There is a problem of becoming. In addition, the method of applying the zinc-containing coating material reduces the electrical conductivity of the coating material because the zinc powder is covered with the resin inside the coating material. As a result, there is a problem that the sacrificial anticorrosive effect originally expected for the zinc-containing paint is reduced.

そこで、本発明は、前記した問題を解決し、鋼材の修復において、鋼材の素地調整が不十分な場合であっても塗料が剥がれにくく、防食の効果を低下させない補修材を提供することを課題とする。   Then, this invention solves the above-mentioned problem, and it is a subject to provide the repair material which is hard to peel off even if it is a case where the foundation adjustment of steel materials is inadequate in restoration of steel materials, and does not reduce the effect of corrosion prevention. And

前記した課題を解決するため、本発明は、化学反応により液体から固体に固化する樹脂に、鋼材に対して卑な金属の粉末が分散して含まれる塗料が、導電性の繊維で構成される布状の担体に含浸されていることを特徴とする鋼材の補修材とした。   In order to solve the above-described problems, the present invention provides a resin in which a base metal powder is dispersed and contained in a resin that is solidified from a liquid to a solid by a chemical reaction, and is composed of conductive fibers. A steel repair material characterized by being impregnated in a cloth-like carrier.

本発明によれば、鋼材の修復において、鋼材の素地調整が不十分な場合であっても塗料が剥がれにくく、防食の効果を低下させない補修材を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the base preparation of steel materials is inadequate in restoration of steel materials, a repair material which does not peel off paint easily and does not reduce the anticorrosion effect can be provided.

図1は、本実施形態の補修材のイメージ図である。FIG. 1 is an image diagram of the repair material of the present embodiment. 図2は、補修材を用いた鋼材の補修手順を示すフローチャートである。FIG. 2 is a flowchart showing a repair procedure of a steel material using the repair material. 図3は、従来技術における塗料のイメージ図である。FIG. 3 is an image diagram of a paint in the prior art. 図4は、本実施形態の補修材の実験条件および実験結果をまとめた図である。FIG. 4 is a table summarizing experimental conditions and experimental results of the repair material of the present embodiment. 図5は、実験に用いた各鋼材のサイズ、傷の形状および位置を示す図である。FIG. 5 is a diagram showing the size, flaw shape, and position of each steel material used in the experiment. 図6は、図4の実験により塗装した鋼材に発生した錆の状態のイメージ図である。FIG. 6 is an image diagram of a state of rust generated in the steel material coated by the experiment of FIG.

以下、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。本発明は以下に説明する実施形態に限定されない。   Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below.

本実施形態の鋼材の補修材は、例えば、腐食した亜鉛めっき鋼材に用いられる補修材である。この補修材は、化学反応により液体から固体に固化する樹脂に、鋼材(鉄)に対して卑な金属(例えば、亜鉛、亜鉛合金等)の粉末が分散された塗料を、導電性の繊維(例えば、金属製不織布)で構成される布状の担体に含浸させたものである。   The steel repair material of this embodiment is, for example, a repair material used for a corroded galvanized steel material. This repair material is made of a resin in which a base metal (eg, zinc, zinc alloy, etc.) is dispersed in a resin that solidifies from a liquid to a solid by a chemical reaction. For example, it is impregnated with a cloth-like carrier composed of a metal nonwoven fabric.

本実施形態の補修材101のイメージ図を、図1に示す。なお、図1において鋼材103は、腐食生成物が既に除去された状態であるものとする。例えば、補修材101は、樹脂に亜鉛(Zn)等の金属の粉末104が分散され、導電性の繊維(例えば、金属製不織布)で構成される布状の担体(導電性担体)102に含浸させた塗料である。ここで、金属の粉末104および導電性担体102の含有量はできるだけ多い方が望ましい。例えば、金属の粉末104および導電性担体102の含有量は合計で補修材101の重さの80wt%以上、さらに望ましくは90wt%以上とすることが望ましい。   An image diagram of the repair material 101 of the present embodiment is shown in FIG. In FIG. 1, it is assumed that the steel material 103 is in a state where the corrosion products have already been removed. For example, the repair material 101 is obtained by impregnating a cloth-like carrier (conductive carrier) 102 made of conductive fibers (for example, metal nonwoven fabric) in which a metal powder 104 such as zinc (Zn) is dispersed in a resin. Paint. Here, it is desirable that the contents of the metal powder 104 and the conductive carrier 102 be as large as possible. For example, the total content of the metal powder 104 and the conductive support 102 is preferably 80 wt% or more, more preferably 90 wt% or more of the weight of the repair material 101.

このような補修材101を用いた鋼材の補修手順の例を、図2を用いて説明する。まず、鋼材の補修者は、鋼材から腐食生成物を除去する(S1)。そして、補修者は、補修材101を鋼材に貼り付け(S2)、その後、補修材101を硬化させる(S3)。   An example of a steel material repair procedure using such a repair material 101 will be described with reference to FIG. First, a steel material repairer removes corrosion products from the steel material (S1). Then, the repair person attaches the repair material 101 to the steel material (S2), and then hardens the repair material 101 (S3).

なお、一般に、亜鉛などの鋼よりも卑な金属粉末を高濃度含有する塗料は、犠牲防食の効果を発揮することが期待されている。この犠牲防食は塗膜に傷がついて、鋼材が一部露出した場合でも、塗料に含まれる亜鉛が鋼よりも卑な金属であるために、亜鉛が優先的に腐食し、その結果流れる電流により、鋼は腐食しないという効果を得る機能である。鋼材の塗料に犠牲防食の効果を発揮させるためには、鋼材と、塗料に含まれる金属(例えば、亜鉛(Zn))とが電気的に導通し、かつ、鋼材と亜鉛が連続した水に接触している必要がある。したがって、例えば、図3に示すように、従来技術においては、樹脂に亜鉛(Zn)を添加した塗料では、鋼材と亜鉛の粉末、および、亜鉛の粉末同士の導通は限定的である。つまり、図3において符号201に示す亜鉛(Zn)粒子以外は犠牲防食の効果を発揮しない。また、符号201に示す亜鉛(Zn)粒子が腐食の進行とともに失われてしまえば、犠牲防食性は完全に失われることになる。   In general, a paint containing a higher concentration of metal powder that is more base than steel such as zinc is expected to exhibit the effect of sacrificial corrosion protection. In this sacrificial protection, even when the coating film is scratched and the steel material is partially exposed, the zinc contained in the paint is a base metal rather than steel, so that the zinc preferentially corrodes and the resulting current flows This is a function to obtain the effect that steel does not corrode. In order to exert the effect of sacrificial protection in steel paints, the steel and the metal contained in the paint (for example, zinc (Zn)) are electrically connected, and the steel and zinc are in contact with continuous water. Need to be. Therefore, for example, as shown in FIG. 3, in the prior art, in a paint in which zinc (Zn) is added to a resin, conduction between a steel material and zinc powder and between zinc powders is limited. That is, other than the zinc (Zn) particles denoted by reference numeral 201 in FIG. Moreover, if the zinc (Zn) particle | grains shown with the code | symbol 201 are lost with progress of corrosion, sacrificial anticorrosion property will be lost completely.

一方、本実施形態の補修材101においては、導電性担体102により金属の粉末104同士、および、金属の粉末104と鋼材103との間の電気的な導通が確保されるので犠牲防食の効果が充分に発揮される。なお、従来技術においては、補修材における亜鉛(Zn)の粉末の含有量を全体(補修材)の90wt%以上としても十分な電気的な導通が確保できないことが多いが、亜鉛の粉末の含有量を電気的な導通ができるまでに高めると、鋼材との接着に寄与する樹脂の量が減るため、十分な付着力が得られない(剥がれやすくなる)ことが確認されている。一方、本実施形態の補修材101は、樹脂内に導電性担体102を含むので、金属の粉末104同士、および、金属の粉末104と鋼材103との間の電気的な導通が十分に確保され、かつ、補修材101の一部の付着力が低下したとしても他の部分が支えるので剥がれにくいという効果を持つ。   On the other hand, in the repair material 101 of the present embodiment, the conductive carrier 102 secures electrical continuity between the metal powders 104 and between the metal powder 104 and the steel material 103, so that the sacrificial anticorrosive effect is obtained. It is fully demonstrated. In addition, in the prior art, even if the content of zinc (Zn) powder in the repair material is 90 wt% or more of the entire (repair material), sufficient electrical continuity is often not secured, but the zinc powder content It has been confirmed that if the amount is increased to allow electrical continuity, the amount of resin contributing to adhesion to the steel material is reduced, so that sufficient adhesion cannot be obtained (easy to peel off). On the other hand, since the repair material 101 of the present embodiment includes the conductive carrier 102 in the resin, sufficient electrical continuity between the metal powders 104 and between the metal powder 104 and the steel material 103 is ensured. In addition, even if the adhesive force of a part of the repair material 101 is reduced, the other part is supported and thus has an effect of being difficult to peel off.

なお、以下の説明において、補修材101に用いる金属の粉末104は、亜鉛の粉末である場合を例に説明するが、これに限定されない。例えば、金属の粉末104は、鋼材(Fe)103に対して卑で、犠牲防食の効果を発揮する金属の粉末であれば、亜鉛アルミ合金や亜鉛アルミマグネシウム合金等の亜鉛合金や、アルミニウム、アルミニウム合金等の粉末であってもよい。また、金属の粉末104の平均粒径は1〜10μm等、できるだけ細かな粒子であることが望ましい。   In the following description, a case where the metal powder 104 used for the repair material 101 is zinc powder will be described as an example, but the present invention is not limited thereto. For example, as long as the metal powder 104 is a metal powder that exhibits a sacrificial anticorrosive effect with respect to the steel material (Fe) 103, a zinc alloy such as a zinc aluminum alloy or a zinc aluminum magnesium alloy, aluminum, or aluminum It may be a powder such as an alloy. The average particle diameter of the metal powder 104 is preferably as fine as possible, such as 1 to 10 μm.

また、導電性担体102は、導電性の高い金属材料が好適に用いられる。また、導電性担体102は、鋼材103よりも卑な金属材料であれば、鋼材103に対して犠牲防食の効果を発揮するので、より好適に用いられる。加えて、導電性担体102は、金属の粉末14よりは貴な金属材料を用いることが望ましい。これは以下の理由による。すなわち、仮に導電性担体102に金属の粉末104よりも卑な金属材料を用いると、犠牲防食の効果の発揮時に、金属の粉末104よりも先に導電性担体102が消費され、その結果、導電性を確保しているパスが切断され、金属の粉末104が残っていても犠牲防食の効果が発揮できなくなるおそれがある。しかし、上記のように、導電性担体102に鋼材103よりも卑で、金属の粉末104よりは貴な金属材料を用いれば、まず金属の粉末104が腐食し、金属の粉末104による犠牲防食の効果がなくなってから導電性担体102の犠牲防食の効果が発揮されるからである。   The conductive carrier 102 is preferably made of a highly conductive metal material. Moreover, since the electroconductive support | carrier 102 will exhibit the effect of sacrificial corrosion protection with respect to the steel material 103, if it is a base metal material rather than the steel material 103, it is used more suitably. In addition, it is desirable to use a noble metal material for the conductive carrier 102 rather than the metal powder 14. This is due to the following reason. That is, if a base metal material is used for the conductive carrier 102 rather than the metal powder 104, the conductive carrier 102 is consumed prior to the metal powder 104 when the sacrificial anticorrosive effect is exerted. There is a possibility that the sacrificial anti-corrosion effect cannot be exhibited even if the pass securing the property is cut and the metal powder 104 remains. However, as described above, if a metal material that is lower than the steel material 103 and more precious than the metal powder 104 is used for the conductive carrier 102, the metal powder 104 is first corroded, and sacrificial corrosion protection by the metal powder 104 is performed. This is because the sacrificial anticorrosive effect of the conductive carrier 102 is exhibited after the effect is lost.

例えば、導電性担体102は、アルミニウムやアルミニウム合金等、鋼材103よりも卑な金属であり、かつ、繊維状に加工しやすい金属が好適に用いられる。また、導電性担体102に用いられる金属繊維の直径は10〜50μm等、できるだけ直径が小さいものであることが望ましい。これは、できるだけ細い金属繊維を用いた方が、導電性担体102の単位体積あたりの表面積(比表面積)を大きくすることができるからである。   For example, the conductive carrier 102 is preferably a metal that is baser than the steel material 103, such as aluminum or an aluminum alloy, and that is easily processed into a fiber shape. The diameter of the metal fiber used for the conductive carrier 102 is desirably as small as possible, such as 10 to 50 μm. This is because the surface area (specific surface area) per unit volume of the conductive carrier 102 can be increased by using metal fibers that are as thin as possible.

また、補修材101に用いる樹脂は、例えば、ポリウレタン系、アクリルスチレン系、エポキシ系、アルキルシリケート系、アルキド系の樹脂等、硬化後、水や空気を通しにくく接着性の高い樹脂が好適に用いられる。   Further, as the resin used for the repair material 101, for example, a polyurethane-based resin, an acrylic styrene-based resin, an epoxy-based resin, an alkyl silicate-based resin, an alkyd-based resin, or the like is preferably used. It is done.

また、これらの樹脂においては空気中の酸素や水分と反応して硬化したり、または溶剤の乾燥により硬化したりする1液硬化型の樹脂(例えば、1液硬化型エポキシ樹脂、1液硬化型ポリウレタン樹脂等)が好適に用いられる。補修材101にこのような1液硬化型の樹脂材料を用いることで、主剤と硬化剤の2液を混合して硬化させるタイプ(2液硬化型)の樹脂を用いるよりも、補修者が樹脂に導電性担体102に浸み込ませるときの手間を軽減することができ、また、施工品質も安定させることができる。   In these resins, a one-part curable resin that cures by reacting with oxygen or moisture in the air or is cured by drying a solvent (for example, one-part curable epoxy resin, one-part curable type). A polyurethane resin or the like is preferably used. By using such a one-part curable resin material for the repair material 101, the repairer can use a resin (a two-part curable type) that cures by mixing two liquids of the main agent and the curing agent. Therefore, it is possible to reduce the time and labor required when the carrier is immersed in the conductive carrier 102 and to stabilize the construction quality.

なお、補修材101の樹脂に1液硬化型の樹脂を用いる場合の補修者の作業手順は以下のようになる。例えば、補修者は、樹脂に亜鉛等の金属の粉末104を高濃度で含有させた後、窒素雰囲気下等の樹脂の硬化反応が生じにくい環境下で、樹脂に導電性担体102に浸み込ませる。そして、補修者は、樹脂に導電性担体102に浸み込ませた補修材101の樹脂が硬化しないよう、補修材101に酸素や水分が入らない状態で包装する。その後、補修者は、現場で補修材101の包装を開けて補修材101を補修対象の鋼材103に貼り付け(または巻きつけ)、補修材101を硬化させる。このようにすることで、補修者が鋼材103の補修の作業を行うときには、作業現場で包装を開けて補修材101を鋼材103に貼り付ければ(巻きつければ)よいため、補修の作業効率を向上させることができる。   The work procedure of the repair person when using a one-component curable resin as the resin of the repair material 101 is as follows. For example, the repairer immerses the conductive carrier 102 in the resin in an environment in which the resin does not undergo a curing reaction, such as in a nitrogen atmosphere, after the resin 104 contains zinc or other metal powder 104 at a high concentration. I will. Then, the repairer packages the repair material 101 without oxygen or moisture so that the resin of the repair material 101 soaked in the conductive carrier 102 is not cured. After that, the repair person opens the packaging of the repair material 101 on the site, attaches the repair material 101 to the steel material 103 to be repaired (or winds), and hardens the repair material 101. By doing in this way, when the repairer performs the repair work of the steel material 103, it is only necessary to open the package at the work site and attach the repair material 101 to the steel material 103 (wrapping), so the work efficiency of the repair is improved. Can be improved.

なお、従来技術である、補修対象の鋼材に、亜鉛(Zn)の粉末を含有した塗料を塗布する方法の場合、鋼材の素地調整(腐食生成物の除去)としてはブラスト処理でISO8501-1のSa2 1/2以上の処理を行うことが推奨されている。このブラスト処理は大型の装置や周辺の養生が必要となるため、現場での施工が困難な場合も多く、その場合は電動工具によりISO8501-1のSt3以上のグレードで処理する必要がある。しかし、電動工具でISO8501-1のSt3レベルの素地調整を行うのは非常に時間とコストがかかり、それ以下のグレードの素地調整では充分な付着力が得られず、付着力が低下した部分では塗料が剥離してしまう。   In the case of the conventional method of applying a paint containing zinc (Zn) powder to the steel material to be repaired, the base material of the steel material (removal of corrosion products) is blasted by ISO8501-1. It is recommended to process more than Sa2 1/2. This blasting process requires a large device and surrounding curing, so it is often difficult to perform on-site construction. In that case, it is necessary to use a power tool with a grade of St3 or higher of ISO8501-1. However, it is very time-consuming and costly to adjust the St3 level substrate of ISO8501-1 with a power tool. The paint will peel off.

一方、本実施形態の補修材101では、導電性担体102に樹脂および金属の粉末104が含浸されているため、一部付着力が低下した部分があっても周辺部に付着力が残存していれば補修対象の鋼材103から剥がれないので防食の効果を長期間維持できる。つまり、補修材101によれば、補修対象の鋼材103の素地調整(腐食生成物の除去)のグレードが低かった場合でも、防食の効果を長期間維持できる。また、補修者が、補修材101を、補修対象の鋼材103に1周以上巻きつけて補修すれば、付着力を失っても剥がれにくいので防食の効果をさらに長期間維持できる。つまり、本実施形態の補修材101によれば、従来技術と比較して補修材の防食の効果を高め、かつ、防食の効果を長時間維持できる。   On the other hand, in the repair material 101 of the present embodiment, since the conductive carrier 102 is impregnated with the resin and metal powder 104, the adhesive strength remains in the peripheral portion even if there is a portion where the adhesive strength is partially reduced. If so, the anticorrosion effect can be maintained for a long time because the steel material 103 is not peeled off. That is, according to the repair material 101, even when the base adjustment (removal of corrosion products) grade of the steel material 103 to be repaired is low, the anticorrosion effect can be maintained for a long time. Further, if the repairer wraps the repair material 101 around the steel material 103 to be repaired one or more times and repairs, the anticorrosion effect can be maintained for a longer period because it is difficult to peel off even if the adhesion is lost. That is, according to the repair material 101 of the present embodiment, the anticorrosion effect of the repair material can be enhanced and the anticorrosion effect can be maintained for a long time as compared with the conventional technology.

(実験結果)
本実施形態の補修材101の犠牲防食の効果を検証するため、以下の実験を行った。本実験では、補修材101に用いる金属の粉末104として、平均5μmφの亜鉛(Zn)の粉末を用いた。また、導電性担体102として平均20μmφのアルミ製繊維の不織布を用いた。さらに、補修材101に用いる樹脂として1液硬化型エポキシ樹脂を用いた。そして、上記の補修材101を鋼材に塗装し、犠牲防食の効果および付着力について従来技術(ジンクリッチペイント)で塗装した鋼材と比較した。実験条件および実験結果をまとめたものを図4に示す。また、本実験により、塗装した鋼材に発生した錆の状態のイメージ図を図6に示す。
(Experimental result)
In order to verify the effect of sacrificial protection of the repair material 101 of the present embodiment, the following experiment was performed. In this experiment, zinc (Zn) powder having an average of 5 μmφ was used as the metal powder 104 used for the repair material 101. Further, an aluminum fiber nonwoven fabric having an average of 20 μmφ was used as the conductive carrier 102. Further, a one-component curable epoxy resin was used as the resin used for the repair material 101. Then, the repair material 101 described above was coated on a steel material, and the effect and adhesion of sacrificial anticorrosion were compared with a steel material coated with a conventional technique (zinc rich paint). A summary of the experimental conditions and experimental results is shown in FIG. Moreover, the image figure of the state of the rust which generate | occur | produced in the steel material coated by this experiment is shown in FIG.

図4に示すように、本実験では、補修材101の亜鉛粉末の割合(wt%)を60%〜70%、アルミ製繊維の不織布(アルミ製不織布)の割合(wt%)を10%〜30%、亜鉛粉末+アルミ製不織布の割合(wt%)を80%〜90%、1液硬化型エポキシ樹脂(エポキシ樹脂)の割合(wt%)を10%〜20%として、A〜Dに示す4つのパターンの補修材101について、従来技術の塗料と、犠牲防食の効果および付着力を比較した。従来技術の塗料における亜鉛(Zn)の粉末の割合(wt%)は90%とし、アルミ製繊維の不織布は用いなかった。また、従来技術の塗料の1液硬化型エポキシ樹脂の割合(wt%)は10%とした。   As shown in FIG. 4, in this experiment, the proportion (wt%) of the zinc powder of the repair material 101 is 60% to 70%, and the proportion (wt%) of the aluminum fiber nonwoven fabric (aluminum nonwoven fabric) is 10% to 30%, the ratio of zinc powder + aluminum nonwoven fabric (wt%) is 80% to 90%, and the ratio (wt%) of one-component curable epoxy resin (epoxy resin) is 10% to 20%. For the four patterns of the repair material 101 shown, the effect and adhesion of sacrificial anticorrosion were compared with those of the conventional paint. The proportion (wt%) of zinc (Zn) powder in the prior art paint was 90%, and an aluminum fiber nonwoven fabric was not used. In addition, the ratio (wt%) of the one-component curable epoxy resin in the conventional paint was 10%.

犠牲防食の効果の検証では、従来技術(ジンクリッチペイント)で塗装した鋼材、上記A〜Dに示す補修材101で塗装した鋼材それぞれにカッター等で人工的な傷を入れて犠牲防食性能を検証した。塗料の厚さは80〜100μmである。なお、各鋼材のサイズは、図5に示すように、70×150mm、厚さ3.2mmである。各塗装鋼材の傷の形状および位置は、図5に示す位置である。この傷(クロスカット)は、塗装した鋼材を常温で2週間乾燥させた後、9mmのカッターにより入れた。このような傷を入れた後、塗装鋼材それぞれに対しJIS K 5600-7-1の塗装試験片塩水噴霧試験(塩水を噴霧し、試料の防食性を評価する試験)を2000時間実施して、塗装鋼材それぞれの傷部分の錆の発生具合を評価した。   In the verification of the sacrificial protection effect, the sacrificial anti-corrosion performance was verified by putting artificial flaws on the steel material coated with the conventional technology (zinc rich paint) and the steel material coated with the repair material 101 shown in the above A to D with a cutter or the like. did. The thickness of the paint is 80-100 μm. In addition, as shown in FIG. 5, the size of each steel material is 70 * 150 mm and thickness 3.2 mm. The shape and position of the scratches on each coated steel material are the positions shown in FIG. These scratches (cross cuts) were made with a 9 mm cutter after the coated steel material was dried at room temperature for 2 weeks. After putting such scratches, JIS K 5600-7-1 coating test piece salt water spray test (test to evaluate the anticorrosive property of the sample by spraying salt water) on each coated steel material for 2000 hours, The degree of rust generation at the scratches on each painted steel was evaluated.

また、塗料の付着力については塗装鋼材それぞれを温度-30℃〜70℃、湿度90%の間を100往復する冷熱繰り返し試験に供し、試験後に塗料がはがれているか否かを評価した。   Moreover, about the adhesive force of a coating material, each coating steel material was used for the cold-heating repeated test which carries out 100 reciprocations between temperature-30 degreeC-70 degreeC and humidity 90%, and evaluated whether the coating material was peeled off after the test.

実験の結果、図4および図6に示すように、従来技術においては、犠牲防食性に関しては、塗装鋼材の傷部に鉄の赤い流れ錆が発生し、犠牲防食性が不十分であることが分かった。また、付着力についても冷熱の繰り返し試験で塗料の剥がれが有る(×)ことが分かった。   As a result of the experiment, as shown in FIG. 4 and FIG. 6, in the conventional technique, regarding the sacrificial corrosion resistance, red flow rust of iron occurs in the scratched portion of the coated steel material, and the sacrificial corrosion resistance is insufficient. I understood. In addition, regarding the adhesive force, it was found that the paint was peeled off (×) in a repeated test of cold heat.

一方、パターンAおよびパターンBに示す補修材101の場合、図4および図6に示すように、犠牲防食の効果に関しては、塗装鋼材の傷部に亜鉛の白い錆が発生し、鉄の赤い錆は発生しなかった。つまり、犠牲防食の効果を十分に持つことが分かった。また、付着力についても冷熱の繰り返し試験で塗料の剥がれは無い(○)ことが分かった。   On the other hand, in the case of the repair material 101 shown in the pattern A and the pattern B, as shown in FIG. 4 and FIG. Did not occur. In other words, it was found that the sacrificial anticorrosive effect was sufficient. In addition, regarding the adhesive force, it was found that the paint did not peel off (◯) in the repeated test of cold and hot.

また、パターンCおよびパターンDに示す補修材101の場合、図4および図6に示すように、犠牲防食の効果に関しては、塗装鋼材の傷部に鉄の赤点錆が発生した。つまり、犠牲防食の効果はやや不十分であるが従来技術よりは良いことが分かった。また、付着力については冷熱の繰り返し試験で塗料の剥がれは無い(○)ことが分かった。   Moreover, in the case of the repair material 101 shown in the pattern C and the pattern D, as shown in FIG. 4 and FIG. 6, the red spot rust of iron generate | occur | produced in the flaw part of the coating steel material regarding the effect of sacrificial corrosion prevention. In other words, it was found that the effect of sacrificial corrosion protection is slightly insufficient, but better than the prior art. In addition, regarding the adhesive force, it was found that there was no peeling of the paint (◯) in a repeated test of cold and hot.

つまり、補修材101について亜鉛粉末+アルミ製不織布の割合(wt%)を80%以上とすることで、従来技術よりも高い犠牲防食の効果および付着力を発揮し、特に90%程度とすることでより高い犠牲防食の効果を発揮することが分かった。   In other words, by making the ratio (wt%) of zinc powder + aluminum nonwoven fabric 80% or more for the repair material 101, the sacrificial anti-corrosion effect and adhesion strength higher than those of the prior art can be exhibited, especially about 90%. It was found that the effect of higher sacrificial corrosion protection was exhibited.

以上説明した本実施形態の補修材101は、導電性繊維よりなる布状担体(導電性担体102)を用いることで、犠牲防食性を向上させ、また、塗料の剥がれにくさを実現させた。つまり、導電性担体102に金属の粉末104および樹脂を担持させることで、導電性担体102を通じて金属の粉末104同士、および、金属の粉末104と鋼材103間の導通が確保される。その結果、金属の粉末104と導電性担体102が合計で全体の80wt%あれば従来技術より高い犠牲防食の効果を得ることができ、また、金属の粉末104と導電性担体102が合計で全体の90wt%以上あれば十分に高い犠牲防食性を得ることができる。また、経年劣化や素地調整不足で補修材101の一部に付着力の低下が生じたとしても、樹脂と金属の粉末104が導電性担体102に保持されているので、周辺部がサポートすることにより、剥がれが生じにくいというメリットもある。   The repair material 101 of the present embodiment described above uses a cloth-like carrier (conductive carrier 102) made of conductive fibers, thereby improving sacrificial corrosion resistance and realizing difficulty in peeling off the paint. That is, by supporting the metal powder 104 and the resin on the conductive carrier 102, conduction between the metal powders 104 and between the metal powder 104 and the steel material 103 is ensured through the conductive carrier 102. As a result, if the total amount of the metal powder 104 and the conductive carrier 102 is 80 wt%, it is possible to obtain a sacrificial anticorrosive effect higher than that of the prior art, and the total amount of the metal powder 104 and the conductive carrier 102 is the total. If it is 90 wt% or more, sufficiently high sacrificial corrosion resistance can be obtained. In addition, even if the adhesive force is reduced in a part of the repair material 101 due to aging deterioration or insufficient base adjustment, the peripheral portion supports the resin and metal powder 104 held by the conductive carrier 102. Therefore, there is also an advantage that peeling does not easily occur.

101 補修材
102 導電性担体
103 鋼材
104 金属の粉末
101 Repair material 102 Conductive carrier 103 Steel material 104 Metal powder

Claims (6)

化学反応により液体から固体に固化する樹脂に、鋼材に対して卑な金属の粉末が分散して含まれる塗料が、導電性の繊維で構成される布状の担体に含浸されていることを特徴とする鋼材の補修材。   A resin that solidifies from a liquid to a solid by a chemical reaction and a paint containing base metal powder dispersed in steel is impregnated in a cloth-like carrier made of conductive fibers. Steel repair material. 前記鋼材に対して卑な金属は、亜鉛または亜鉛合金であることを特徴とする請求項1に記載の鋼材の補修材。   The steel repair material according to claim 1, wherein the base metal with respect to the steel material is zinc or a zinc alloy. 前記樹脂は、ポリウレタン系、アクリルスチレン系、エポキシ系、アルキルシリケート系またはアルキド系の樹脂材料であることを特徴とする請求項1に記載の鋼材の補修材。   2. The steel repair material according to claim 1, wherein the resin is a polyurethane, acrylic styrene, epoxy, alkyl silicate, or alkyd resin material. 前記導電性の繊維は、アルミニウムまたはアルミニウム合金であることを特徴とする請求項1に記載の鋼材の補修材。   2. The steel repair material according to claim 1, wherein the conductive fiber is aluminum or an aluminum alloy. 前記樹脂は、空気中の酸素または水分と反応、あるいは、前記樹脂の溶剤の乾燥により硬化する1液反応硬化型の樹脂であることを特徴とする請求項1または請求項2に記載の鋼材の補修材。   3. The steel material according to claim 1, wherein the resin is a one-component reaction-curing resin that is cured by reacting with oxygen or moisture in the air or drying the solvent of the resin. Repair material. 鋼材から腐食生成物を除去するステップと、
化学反応により液体から固体に固化する樹脂に、前記鋼材に対して卑な金属の粉末が分散して含まれる塗料が、導電性の繊維で構成される布状の担体に含浸されている補修材を前記鋼材に貼り付けるステップと、
前記補修材を硬化させるステップと
を含んだことを特徴とする鋼材の補修方法。
Removing corrosion products from the steel material;
A repair material in which a base material powder composed of conductive fibers is impregnated with a paint containing a base metal powder dispersed in a resin that solidifies from a liquid to a solid by a chemical reaction. A step of affixing to the steel material;
A method of repairing a steel material, comprising: curing the repair material.
JP2015215770A 2015-11-02 2015-11-02 Repair material for steel and repair method for steel Active JP6523139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215770A JP6523139B2 (en) 2015-11-02 2015-11-02 Repair material for steel and repair method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215770A JP6523139B2 (en) 2015-11-02 2015-11-02 Repair material for steel and repair method for steel

Publications (2)

Publication Number Publication Date
JP2017088907A true JP2017088907A (en) 2017-05-25
JP6523139B2 JP6523139B2 (en) 2019-05-29

Family

ID=58767794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215770A Active JP6523139B2 (en) 2015-11-02 2015-11-02 Repair material for steel and repair method for steel

Country Status (1)

Country Link
JP (1) JP6523139B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924299A (en) * 1972-06-30 1974-03-04
JPS5876465A (en) * 1981-10-31 1983-05-09 Nippon Steel Corp Corrosion proof covering material
JP2005054074A (en) * 2003-08-05 2005-03-03 Nippon Paint Co Ltd Anticorrosive zinc-containing coating composition for stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924299A (en) * 1972-06-30 1974-03-04
JPS5876465A (en) * 1981-10-31 1983-05-09 Nippon Steel Corp Corrosion proof covering material
JP2005054074A (en) * 2003-08-05 2005-03-03 Nippon Paint Co Ltd Anticorrosive zinc-containing coating composition for stainless steel

Also Published As

Publication number Publication date
JP6523139B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
TW502086B (en) Marine coating
JP5905097B2 (en) Primary rust preventive coating composition and use thereof
KR101986487B1 (en) Coating and coated steel
JP2010229484A (en) Surface treatment method of cast iron pipe
ATE377054T1 (en) CURED EPOXY POWDER PAINT CONTAINING ALKANOLAMIN
CN106086988B (en) A kind of method of laser melting coating closing aluminium alloy anode oxide film
JP2016040350A (en) Substrate coating composition for repair
Lawrence et al. Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser
JP2017088907A (en) Repair material for steel material and repair method of steel material
Xu et al. A novel corrosion self-protective copper/liquid microcapsule composite coating
CN103981479B (en) Hot-spraying technique anticorrosion application in the power-generating member of wind-driven generator
Prenger et al. Thermal Spraying of Zinc and Zinc-Aluminium Alloys for Corrosion Protection
JP2016187939A (en) Decorative structure having thin silver film covered with coating film
JP5653084B2 (en) Iron-based member subjected to surface treatment and surface treatment method of iron-based member
JP6814488B2 (en) Steel structure repair method and steel structure repair kit
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
Lv et al. Corrosion behavior of Al2O3-WER and WC-Co-WER coatings on TC18 in neutral salt spray environment
JP6338059B2 (en) Sacrificial anode panel
CN103934593A (en) Clean-free scaling powder for welding stainless steel
CN206553616U (en) The composite anti-corrosive structure of electric arc spraying zinc-copper titanium
JP2013166806A (en) Coating material
Li et al. Study of corrosion behavior of sprayed zinc-aluminum (ZAZA) coatings in a marine environment
JP2007056327A (en) Arc type metal thermal spraying method
JP2005144446A (en) Method of forming conductive rough surface and forming material for conductive rough surface
JP2002212508A (en) Method for producing powdered coating, powdered coating and anticorrosion-treated steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6523139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150