JP2017088542A - Metal organic structure, adsorbent using the same and manufacturing method therefor - Google Patents

Metal organic structure, adsorbent using the same and manufacturing method therefor Download PDF

Info

Publication number
JP2017088542A
JP2017088542A JP2015220536A JP2015220536A JP2017088542A JP 2017088542 A JP2017088542 A JP 2017088542A JP 2015220536 A JP2015220536 A JP 2015220536A JP 2015220536 A JP2015220536 A JP 2015220536A JP 2017088542 A JP2017088542 A JP 2017088542A
Authority
JP
Japan
Prior art keywords
metal organic
ligand
organic structure
dicarboxylic acid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015220536A
Other languages
Japanese (ja)
Inventor
啓史 茂木
Hirofumi Mogi
啓史 茂木
瀬戸山 徳彦
Norihiko Setoyama
徳彦 瀬戸山
矢野 一久
Kazuhisa Yano
一久 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015220536A priority Critical patent/JP2017088542A/en
Publication of JP2017088542A publication Critical patent/JP2017088542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal organic structure and an adsorbing material having an UiO-66 structure as a base skeleton and having both of high steam maximum absorption amount and high steam absorption amount in low pressure side.SOLUTION: There is provided a metal organic structure having a structure represented by the following formula (1):MeO(OH)(L)(1), where Me is at least one kind of metal atom selected from a group consisting of Zr and Ti, and L is a ligand coordinated to the metal atom Me, as a base skeleton, wherein the ligand L is a ligand derived from nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) and a ligand derived from aromatic dicarboxylic acid (C), and a molar ratio between the ligand derived from nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) and the ligand derived from aromatic dicarboxylic acid (C) is (N):(C)=10:90 to 60:40.SELECTED DRAWING: None

Description

本発明は、Zr又はTiを含有する金属有機構造体、このような金属有機構造体からなる吸着材料、及びこれらの製造方法に関する。   The present invention relates to a metal organic structure containing Zr or Ti, an adsorbing material comprising such a metal organic structure, and a method for producing them.

金属有機構造体(MOF:Metal Organic Frameworks)は均一な細孔と非常に大きな比表面積を有する多孔質の構造体であり、近年、炭化水素(HC)等を吸蔵するガス吸蔵材や、二酸化炭素(CO)及びHCの混合ガスからCOを選択的に吸着除去するガス分離材、加湿雰囲気からから水分を選択的に吸着除去する水分離材としての応用が期待されている。 Metal organic structures (MOF: Metal Organic Frameworks) are porous structures having uniform pores and a very large specific surface area. In recent years, gas storage materials that store hydrocarbons (HC) and the like, carbon dioxide Applications are expected as a gas separation material that selectively adsorbs and removes CO 2 from a mixed gas of (CO 2 ) and HC, and a water separation material that selectively adsorbs and removes moisture from a humidified atmosphere.

このような金属有機構造体としては、例えば、Zrにテレフタル酸由来の配位子が配位している金属有機構造体UiO−66〔Zr(OH)(テレフタル酸)〕、Zrに2−アミノテレフタル酸由来の配位子が配位している金属有機構造体UiO−66−NH〔Zr(OH)(2−アミノテレフタル酸)〕、Zrに2−ニトロテレフタル酸由来の配位子が配位している金属有機構造体UiO−66−NO〔Zr(OH)(2−ニトロテレフタル酸)〕等のZr系金属有機構造体が知られている(Langmuir、2012年、第28巻、第44号、15606〜15613頁(非特許文献1))。 As such a metal organic structure, for example, a metal organic structure UiO-66 [Zr 6 O 4 (OH) 4 (terephthalic acid) 6 ] in which a ligand derived from terephthalic acid is coordinated to Zr, Metal organic structure UiO-66-NH 2 [Zr 6 O 4 (OH) 4 (2-aminoterephthalic acid) 6 ] in which a ligand derived from 2-aminoterephthalic acid is coordinated to Zr, 2 in Zr -Metal organic structure UiO-66-NO 2 [Zr 6 O 4 (OH) 4 (2-nitroterephthalic acid) 6 ] coordinated with a ligand derived from nitroterephthalic acid, etc. The body is known (Langmuir, 2012, 28, 44, 15606-15613 (Non-patent Document 1)).

G.E.Gmarikら、Langmuir、2012年、第28巻、第44号、15606〜15613頁G. E. Gmarik et al., Langmuir, 2012, 28, 44, 15606-15613.

しかしながら、金属有機構造体UiO−66は低圧側での水蒸気吸着量が必ずしも十分なものではなく、また、金属有機構造体UiO−66−NHは水蒸気最大吸着量が必ずしも十分なものではなかった。さらに、配位子の種類を変更することによって、金属有機構造体の機能を改善したり、新たな機能を付与することが可能であるが、金属有機構造体の基本骨格を変化させずに、機能を改善したり、新たに付与したりすることは容易ではなかった。 However, the metal organic structure UiO-66 does not necessarily have a sufficient water vapor adsorption amount on the low pressure side, and the metal organic structure UiO-66-NH 2 does not necessarily have a sufficient water vapor maximum adsorption amount. . Furthermore, by changing the type of the ligand, it is possible to improve the function of the metal organic structure or add a new function, but without changing the basic skeleton of the metal organic structure, It was not easy to improve the function or add a new function.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体及び吸着材料、並びに、これらの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has a UiO-66 structure as a basic skeleton, and has a metal organic structure having both a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side. It is an object of the present invention to provide a body, an adsorbing material, and a production method thereof.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、UiO−66構造を基本骨格として有する金属有機構造体において、配位子として含窒素芳香族複素環ジカルボン酸由来の配位子(N)と芳香族ジカルボン酸由来の配位子(C)とを特定の割合で併用して金属原子に配位させることによって、基本骨格としてUiO−66構造を維持しながら、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備える金属有機構造体が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have coordinated a nitrogen-containing aromatic heterocyclic dicarboxylic acid as a ligand in a metal organic structure having a UiO-66 structure as a basic skeleton. The water vapor maximum is maintained while maintaining the UiO-66 structure as the basic skeleton by coordinating the child (N) and the ligand (C) derived from the aromatic dicarboxylic acid in a specific ratio and coordinating to the metal atom The inventors have found that a metal organic structure having both an adsorption amount and a high water vapor adsorption amount on the low pressure side can be obtained, and the present invention has been completed.

すなわち、本発明の金属有機構造体は、下記式(1):
Me(OH)(L) (1)
(前記式中、MeはZr及びTiからなる群から選択される少なくとも1種の金属原子を表し、Lは前記金属原子Meに配位している配位子を表す。)
で表される構造を基本骨格として有し、
前記配位子Lが、下記式(2):
That is, the metal organic structure of the present invention has the following formula (1):
Me 6 O 4 (OH) 4 (L) 6 (1)
(In the formula, Me represents at least one metal atom selected from the group consisting of Zr and Ti, and L represents a ligand coordinated to the metal atom Me.)
Having a structure represented by
The ligand L is represented by the following formula (2):

(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸由来の配位子(N)及び下記式(3):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid-derived ligand (N) represented by the following formula (3):

(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸由来の配位子(C)であり、
前記含窒素芳香族複素環ジカルボン酸由来の配位子(N)と前記芳香族ジカルボン酸由来の配位子(C)とのモル比が(N):(C)=10:90〜60:40である、ことを特徴とするものである。また、本発明の吸着材料は、このような本発明の金属有機構造体からなることを特徴とするものである。
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
A ligand derived from an aromatic dicarboxylic acid represented by (C),
The molar ratio of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid and the ligand (C) derived from the aromatic dicarboxylic acid is (N) :( C) = 10: 90 to 60: 40. Further, the adsorbing material of the present invention is characterized by comprising such a metal organic structure of the present invention.

このような本発明の金属有機構造体及び吸着材料において、前記含窒素芳香族複素環ジカルボン酸としては2,5−ピリジンジカルボン酸が好ましく、前記芳香族ジカルボン酸としてはテレフタル酸が好ましい。   In such a metal organic structure and adsorbing material of the present invention, the nitrogen-containing aromatic heterocyclic dicarboxylic acid is preferably 2,5-pyridinedicarboxylic acid, and the aromatic dicarboxylic acid is preferably terephthalic acid.

また、本発明の金属有機構造体の製造方法は、Zr及びTiからなる群から選択される少なくとも1種の金属原子を含有する金属化合物に、下記式(2):   In addition, in the method for producing a metal organic structure of the present invention, a metal compound containing at least one metal atom selected from the group consisting of Zr and Ti is represented by the following formula (2):

(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸及び下記式(3):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid represented by the following formula (3):

(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸を、前記含窒素芳香族複素環ジカルボン酸10〜60mol%及び前記芳香族ジカルボン酸90〜40mol%の割合(これらの合計を100mol%とする。)で混合し、得られた混合物に加熱処理を施すことを特徴とするものである。
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
Are mixed at a ratio of 10 to 60 mol% of the nitrogen-containing aromatic heterocyclic dicarboxylic acid and 90 to 40 mol% of the aromatic dicarboxylic acid (the total is 100 mol%). The obtained mixture is heat-treated.

このような本発明の金属有機構造体の製造方法においては、前記加熱処理を、有機溶媒中、酸の存在下で行うことが好ましい。   In such a method for producing a metal organic structure of the present invention, the heat treatment is preferably performed in an organic solvent in the presence of an acid.

さらに、本発明の吸着材料の製造方法においては、前記本発明の製造方法により金属有機構造体を調製し、得られた金属有機構造体に、該金属有機構造体に対する貧溶媒中で加熱処理を施すことが好ましい。   Further, in the method for producing an adsorbing material of the present invention, a metal organic structure is prepared by the production method of the present invention, and the obtained metal organic structure is subjected to heat treatment in a poor solvent for the metal organic structure. It is preferable to apply.

なお、本発明の金属有機構造体において、低圧側における水蒸気吸着量が増大する(水蒸気吸着等温線が低圧側にシフトする)理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の金属有機構造体は、配位子として、含窒素芳香族複素環ジカルボン酸由来の配位子(N)と芳香族ジカルボン酸由来の配位子(C)の両者を含有するものである。含窒素芳香族複素環ジカルボン酸は電気陰性度が高い物質であり、このような物質の分子内では分極が起こり、分極している分子は親水性が高くなる。特に、C−N結合は、窒素原子への分極が大きく、C−N結合を有する化合物は高い親水性を示す。本発明の金属有機構造体は、配位子として、C−N結合を有する化合物、すなわち、高い親水性を示す含窒素芳香族複素環ジカルボン酸由来の配位子(N)を含有しているため、細孔内に水蒸気(気体状水分子)が取り込まれやすくなり、低圧側における水蒸気吸着量が増大すると推察される。また、含窒素芳香族複素環ジカルボン酸由来の配位子(N)の割合が多くなるほど、金属有機構造体の親水性が高くなり、更に細孔内に水蒸気(気体状水分子)が取り込まれやすくなるため、より低温側において水蒸気吸着量が増大する(水蒸気吸着等温線がより低圧側にシフトする)と推察される。   In the metal organic structure of the present invention, the reason why the amount of water vapor adsorption on the low pressure side increases (the water vapor adsorption isotherm shifts to the low pressure side) is not necessarily clear, but the present inventors speculate as follows. To do. That is, the metal organic structure of the present invention contains both a ligand (N) derived from a nitrogen-containing aromatic heterocyclic dicarboxylic acid and a ligand (C) derived from an aromatic dicarboxylic acid as ligands. Is. Nitrogen-containing aromatic heterocyclic dicarboxylic acid is a substance having a high electronegativity, and polarization occurs in the molecule of such a substance, and the polarized molecule becomes highly hydrophilic. In particular, the C—N bond has a large polarization to a nitrogen atom, and a compound having a C—N bond exhibits high hydrophilicity. The metal organic structure of the present invention contains a compound having a C—N bond as a ligand, that is, a ligand (N) derived from a nitrogen-containing aromatic heterocyclic dicarboxylic acid having high hydrophilicity. Therefore, it is presumed that water vapor (gaseous water molecules) is easily taken into the pores, and the amount of water vapor adsorption on the low pressure side increases. In addition, as the proportion of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid increases, the hydrophilicity of the metal organic structure increases, and water vapor (gaseous water molecules) is taken into the pores. Therefore, it is assumed that the amount of water vapor adsorption increases on the lower temperature side (the water vapor adsorption isotherm shifts to the lower pressure side).

本発明によれば、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体及び吸着材料を得ることが可能となる。   According to the present invention, it is possible to obtain a metal organic structure and an adsorbing material having a UiO-66 structure as a basic skeleton and having a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side.

実施例1〜2及び比較例1〜3で得られた水熱処理後の金属有機構造体(吸着材料)の粉末X線回折パターンを示すグラフである。It is a graph which shows the powder X-ray-diffraction pattern of the metal organic structure (adsorption material) after the hydrothermal treatment obtained in Examples 1-2 and Comparative Examples 1-3. 実施例1〜2及び比較例1〜3で得られた水熱処理後の金属有機構造体(吸着材料)の熱重量変化を示すグラフである。It is a graph which shows the thermogravimetric change of the metal organic structure (adsorption material) after the hydrothermal treatment obtained in Examples 1-2 and Comparative Examples 1-3. 実施例1〜2及び比較例1〜3で得られた水熱処理後の金属有機構造体(吸着材料)の水蒸気吸着等温線を示すグラフである。It is a graph which shows the water vapor | steam adsorption isotherm of the metal organic structure (adsorption material) after the hydrothermal treatment obtained in Examples 1-2 and Comparative Examples 1-3. 実施例2及び比較例4で得られた水熱処理後の金属有機構造体(吸着材料)の水蒸気吸着等温線を示すグラフである。It is a graph which shows the water vapor adsorption isotherm of the metal organic structure (adsorption material) after the hydrothermal treatment obtained in Example 2 and Comparative Example 4.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

<金属有機構造体>
先ず、本発明の金属有機構造体について説明する。本発明の金属有機構造体は、下記式(1):
Me(OH)(L) (1)
(前記式中、MeはZr及びTiからなる群から選択される少なくとも1種の金属原子を表し、Lは前記金属原子Meに配位している配位子を表す。)
で表される構造を基本骨格として有し、
前記配位子Lが、下記式(2):
<Metal organic structure>
First, the metal organic structure of the present invention will be described. The metal organic structure of the present invention has the following formula (1):
Me 6 O 4 (OH) 4 (L) 6 (1)
(In the formula, Me represents at least one metal atom selected from the group consisting of Zr and Ti, and L represents a ligand coordinated to the metal atom Me.)
Having a structure represented by
The ligand L is represented by the following formula (2):

(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸由来の配位子(N)及び下記式(3):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid-derived ligand (N) represented by the following formula (3):

(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸由来の配位子(C)であり、
前記含窒素芳香族複素環ジカルボン酸由来の配位子(N)と前記芳香族ジカルボン酸由来の配位子(C)とのモル比が(N):(C)=10:90〜60:40である、
ことを特徴とするものである。
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
A ligand derived from an aromatic dicarboxylic acid represented by (C),
The molar ratio of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid and the ligand (C) derived from the aromatic dicarboxylic acid is (N) :( C) = 10: 90 to 60: 40,
It is characterized by this.

(金属原子Me)
本発明の金属有機構造体において、前記金属原子Meは、Zr及びTiからなる群から選択される少なくとも1種である。このような金属原子Meは、基本骨格中に6個含まれており、八面体構造を形成している。また、本発明の金属有機構造体においては、このような金属原子Meに後述する配位子Lが配位することによって前記式(1)で表される構造(UiO−66構造)が形成され、このUiO−66構造が基本骨格を形成している。
(Metal atom Me)
In the metal organic structure of the present invention, the metal atom Me is at least one selected from the group consisting of Zr and Ti. Six such metal atoms Me are included in the basic skeleton and form an octahedral structure. Moreover, in the metal organic structure of the present invention, a structure (UiO-66 structure) represented by the formula (1) is formed by coordination of a ligand L described later to such a metal atom Me. This UiO-66 structure forms the basic skeleton.

(配位子L)
本発明の金属有機構造体において、前記配位子Lは、前記式(2)で表される含窒素芳香族複素環ジカルボン酸由来の配位子(N)及び前記式(3)で表される芳香族ジカルボン酸由来の配位子(C)である。本発明の金属有機構造体においては、このような配位子L中の2個のCOO基のうちの一方のCOO基中の2個の酸素原子が1個の八面体構造中の隣接する2個の金属原子Meにそれぞれ配位しており、他方のCOO基中の2個の酸素原子が異なる八面体構造中の隣接する2個の金属原子Meにそれぞれ配位している。これにより、本発明の金属有機構造体においては、複数の八面体構造が前記配位子Lによって結合(架橋)された3次元構造が形成されている。
(Ligand L)
In the metal organic structure of the present invention, the ligand L is represented by the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid represented by the formula (2) and the formula (3). This is a ligand (C) derived from an aromatic dicarboxylic acid. In metal organic structure of the present invention, two COO such in the ligand L - one COO of the groups - adjacent the two oxygen atoms in one octahedral structure in group Are coordinated to two metal atoms Me, and the two oxygen atoms in the other COO group are coordinated to two adjacent metal atoms Me in different octahedral structures. Thereby, in the metal organic structure of the present invention, a three-dimensional structure in which a plurality of octahedral structures are bonded (crosslinked) by the ligand L is formed.

前記式(2)において、aはC原子、N原子のうちのいずれかを表し、電子陰性度の観点から、N原子であることが好ましい。XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、電子陰性度の観点から、NO基であることが好ましい。mは0〜3の整数であり、構造の安定性の観点から、0又は1であることが好ましい。 In the formula (2), a represents either a C atom or an N atom, and is preferably an N atom from the viewpoint of electronegativity. X 1 represents any one of NH 2 group, NO 2 group and halogen atom, and from the viewpoint of electronegativity, it is preferably NO 2 group. m is an integer of 0 to 3, and is preferably 0 or 1 from the viewpoint of structural stability.

前記式(2)で表される含窒素芳香族複素環ジカルボン酸としては、電子陰性度の観点から、2,5−ピリジンジカルボン酸、2,5−ピラジンジカルボン酸が好ましい。このような含窒素芳香族複素環ジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。   As the nitrogen-containing aromatic heterocyclic dicarboxylic acid represented by the formula (2), 2,5-pyridinedicarboxylic acid and 2,5-pyrazinedicarboxylic acid are preferable from the viewpoint of electronegativity. Such nitrogen-containing aromatic heterocyclic dicarboxylic acids may be used alone or in combination of two or more.

前記式(3)において、Xはハロゲン原子を表す。nは0〜4の整数であり、構造の安定性の観点から、0又は1であることが好ましく、0であることが特に好ましい。 In the formula (3), X 2 represents a halogen atom. n is an integer of 0 to 4, and is preferably 0 or 1 and particularly preferably 0 from the viewpoint of structural stability.

前記式(3)で表される芳香族ジカルボン酸としては、構造の安定性の観点から、1,4−ベンゼンジカルボン酸が好ましい。このような芳香族ジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。   The aromatic dicarboxylic acid represented by the formula (3) is preferably 1,4-benzenedicarboxylic acid from the viewpoint of structural stability. Such aromatic dicarboxylic acids may be used alone or in combination of two or more.

本発明の金属有機構造体において、前記配位子(N)と前記配位子(C)とのモル比は、(N):(C)=10:90〜60:40である。前記配位子(N)と前記配位子(C)とのモル比が前記下限未満になると、低圧側における水蒸気吸着量が低くなり、他方、前記上限を超えると、水蒸気最大吸着量が低くなる。また、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体が形成されやすいという観点から、前記配位子(N)と前記配位子(C)とのモル比としては、(N):(C)=20:80〜60:40が好ましく、(N):(C)=30:70〜60:40がより好ましい。   In the metal organic structure of the present invention, the molar ratio of the ligand (N) to the ligand (C) is (N) :( C) = 10: 90 to 60:40. When the molar ratio of the ligand (N) and the ligand (C) is less than the lower limit, the water vapor adsorption amount on the low pressure side is low, and on the other hand, when the upper limit is exceeded, the water vapor maximum adsorption amount is low. Become. From the viewpoint of easily forming a metal organic structure having a UiO-66 structure as a basic skeleton and having both a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side, the ligand (N) and The molar ratio with the ligand (C) is preferably (N) :( C) = 20: 80-60: 40, more preferably (N) :( C) = 30: 70-60: 40. .

(基本骨格)
本発明の金属有機構造体の基本骨格は、前記式(1)で表される構造(UiO−66構造)からなるものであり、八面体構造を形成している6個の金属原子Meと、これらの金属原子Meに配位している前記配位子Lとを備えている。
(Basic skeleton)
The basic skeleton of the metal organic structure of the present invention consists of the structure represented by the above formula (1) (UiO-66 structure), and six metal atoms Me forming an octahedral structure; And the ligand L coordinated to these metal atoms Me.

前記配位子Lが、前記配位子(N)と前記配位子(C)とからなるものである場合、前記基本骨格は、下記式(1a):
Me(OH)(LN)(LC)(6−x) (1a)
で表される構造からなるものであることが好ましい。前記式(1a)において、Meは前記式(1)中の金属原子Meと同義であり、好ましい金属原子Meも同様である。また、LNは前記配位子(N)を表し、LCは前記配位子(C)を表し、x及び(6−x)はそれぞれ前記配位子(N)及び前記配位子(C)の配位数を表し、xは0.6〜3.6である。xが前記下限未満になると、低圧側における水蒸気吸着量が低くなり、他方、前記上限を超えると、水蒸気最大吸着量が低くなる。また。UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体が形成されやすいという観点から、xとしては1.2〜3が好ましく、1.8〜3がより好ましい。
When the ligand L is composed of the ligand (N) and the ligand (C), the basic skeleton has the following formula (1a):
Me 6 O 4 (OH) 4 (LN) x (LC) (6-x) (1a)
It is preferable that it consists of a structure represented by these. In the formula (1a), Me has the same meaning as the metal atom Me in the formula (1), and the preferred metal atom Me is also the same. LN represents the ligand (N), LC represents the ligand (C), and x and (6-x) represent the ligand (N) and the ligand (C), respectively. Represents the coordination number of x, and x is 0.6 to 3.6. When x is less than the lower limit, the amount of water vapor adsorption on the low pressure side is low, while when the upper limit is exceeded, the maximum water vapor adsorption amount is low. Also. From the viewpoint of easily forming a metal organic structure having a UiO-66 structure as a basic skeleton and having a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side, x is preferably 1.2 to 3. 1.8 to 3 are more preferable.

また、本発明の金属有機構造体において、前記UiO−66構造中の配位子Lの配位数は理論的には6であるが、一般に、UiO−66構造には配位子の欠陥(欠損)が存在していることが知られている。すなわち、本発明の金属有機構造体は、前記式(1)で表される構造を基本骨格として有するものであるが、その平均組成式は、下記式(4):
Me(OH)(L) (4)
で表されることが好ましい。前記式(4)において、Me及びLは前記式(1)中の金属原子Me及び配位子Lと同義であり、好ましい金属原子Me及び配位子Lも同様である。yは配位子Lの配位数を表し、4〜6であり、5.5〜6であることが好ましい。
In the metal-organic structure of the present invention, the coordination number of the ligand L in the UiO-66 structure is theoretically 6, but generally, the UiO-66 structure has a ligand defect ( Deficiency) is known to exist. That is, the metal organic structure of the present invention has a structure represented by the formula (1) as a basic skeleton, and an average composition formula thereof is the following formula (4):
Me 6 O 4 (OH) 4 (L) y (4)
It is preferable to be represented by In said Formula (4), Me and L are synonymous with the metal atom Me and the ligand L in the said Formula (1), and the preferable metal atom Me and the ligand L are the same. y represents the coordination number of the ligand L, is 4-6, and is preferably 5.5-6.

また、前記配位子Lが、前記配位子(N)と前記配位子(C)とからなるものである場合、本発明の金属有機構造体の平均組成式は、下記式(4a):
Me(OH)(LN)(LC)(y−z) (4a)
で表されることが好ましい。前記式(4a)において、Me、LN及びLCは前記式(1a)中の金属原子Me、配位子LN及び配位子LCと同義であり、好ましい金属原子Me、配位子LN及び配位子LCも同様である。また、yは前記式(4)中の配位数yと同義であり、好ましい配位数yも同様である。z及び(y−z)はそれぞれ前記配位子LN及び前記配位子LCの配位数を表し、zは0.1y〜0.6yである。zが前記下限未満になると、低圧側における水蒸気吸着量が低くなり、他方、前記上限を超えると、水蒸気最大吸着量が低くなる。また、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体が形成されやすいという観点から、zは0.2y〜0.5yが好ましく、0.3y〜0.5yがより好ましい。
Moreover, when the said ligand L consists of the said ligand (N) and the said ligand (C), the average composition formula of the metal organic structure of this invention is following formula (4a). :
Me 6 O 4 (OH) 4 (LN) z (LC) (yz) (4a)
It is preferable to be represented by In the formula (4a), Me, LN and LC have the same meanings as the metal atom Me, the ligand LN and the ligand LC in the formula (1a), and the preferred metal atom Me, the ligand LN and the coordination. The same applies to the child LC. Moreover, y is synonymous with the coordination number y in the said Formula (4), and the preferable coordination number y is also the same. z and (yz) represent the coordination numbers of the ligand LN and the ligand LC, respectively, and z is 0.1y to 0.6y. When z is less than the lower limit, the amount of water vapor adsorption on the low pressure side is low, while when the upper limit is exceeded, the maximum water vapor adsorption amount is low. From the viewpoint that a metal organic structure having a UiO-66 structure as a basic skeleton and having both a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side is likely to be formed, z is 0.2y-0. 5y is preferable, and 0.3y to 0.5y is more preferable.

<金属有機構造体の製造方法>
次に、本発明の金属有機構造体の製造方法について説明する。本発明の金属有機構造体の製造方法は、Zr及びTiからなる群から選択される少なくとも1種の金属原子を含有する金属化合物に、下記式(2):
<Method for producing metal organic structure>
Next, the manufacturing method of the metal organic structure of this invention is demonstrated. In the method for producing a metal organic structure of the present invention, a metal compound containing at least one metal atom selected from the group consisting of Zr and Ti is represented by the following formula (2):

(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸及び下記式(3):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid represented by the following formula (3):

(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸を、前記含窒素芳香族複素環ジカルボン酸10〜60mol%及び前記芳香族ジカルボン酸90〜40mol%の割合(これらの合計を100mol%とする。)で混合し、得られた混合物に加熱処理を施すことを特徴とする方法である。
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
Are mixed at a ratio of 10 to 60 mol% of the nitrogen-containing aromatic heterocyclic dicarboxylic acid and 90 to 40 mol% of the aromatic dicarboxylic acid (the total is 100 mol%). It is a method characterized by heat-treating the obtained mixture.

(金属化合物)
本発明に用いられる金属化合物は、Zr及びTiからなる群から選択される少なくとも1種の金属原子を含有するものである。このような金属化合物としては、特に制限はなく、例えば、塩化酸化ジルコニウム八水和物、塩化ジルコニウム、オキシ硝酸ジルコニウム等の金属塩;チタンイソプロポキシド等の金属アルコキシドが挙げられる。
(Metal compound)
The metal compound used in the present invention contains at least one metal atom selected from the group consisting of Zr and Ti. There is no restriction | limiting in particular as such a metal compound, For example, metal alkoxides, such as metal salts, such as chlorination zirconium oxide octahydrate, a zirconium chloride, a zirconium oxynitrate, and titanium isopropoxide.

(含窒素芳香族複素環ジカルボン酸及び芳香族ジカルボン酸)
本発明に用いられる含窒素芳香族複素環ジカルボン酸は、前述のとおり、前記式(2)で表されるものである。また、本発明に用いられる芳香族ジカルボン酸は、前述のとおり、前記式(3)で表されるものである。
(Nitrogen-containing aromatic heterocyclic dicarboxylic acid and aromatic dicarboxylic acid)
The nitrogen-containing aromatic heterocyclic dicarboxylic acid used in the present invention is represented by the formula (2) as described above. Moreover, the aromatic dicarboxylic acid used for this invention is represented by the said Formula (3) as above-mentioned.

(金属有機構造体の製造方法)
本発明の金属有機構造体の製造方法においては、先ず、前記金属化合物に、前記含窒素芳香族複素環ジカルボン酸(N)及び前記芳香族ジカルボン酸(C)を混合する。このとき、前記含窒素芳香族複素環ジカルボン酸(N)及び前記芳香族ジカルボン酸(C)の割合は、これらの合計100mol%に対して、それぞれ10〜60mol%及び90〜40mol%とする。前記含窒素芳香族複素環ジカルボン酸(N)の割合が前記下限未満になると、低圧側における水蒸気吸着量が低い金属有機構造体が得られ、他方、前記上限を超えると、水蒸気最大吸着量が低い金属有機構造体が得られる。また、前記配位子(N)と前記配位子(C)とのモル比が所定の範囲内にあり、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体が得られやすいという観点から、前記含窒素芳香族複素環ジカルボン酸(N)及び前記芳香族ジカルボン酸(C)の割合としては、それぞれ20〜60mol%及び80〜40mol%が好ましく、30〜60mol%及び70〜40mol%がより好ましい。
(Method for producing metal organic structure)
In the method for producing a metal organic structure of the present invention, first, the nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) and the aromatic dicarboxylic acid (C) are mixed with the metal compound. At this time, the ratio of the nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) and the aromatic dicarboxylic acid (C) is 10 to 60 mol% and 90 to 40 mol%, respectively, with respect to 100 mol% in total. When the ratio of the nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) is less than the lower limit, a metal organic structure having a low water vapor adsorption amount on the low pressure side is obtained. On the other hand, when the upper limit is exceeded, the water vapor maximum adsorption amount is A low metal organic structure is obtained. Further, the molar ratio of the ligand (N) to the ligand (C) is within a predetermined range, has a UiO-66 structure as a basic skeleton, has a high water vapor maximum adsorption amount, and a high pressure on the low pressure side. From the viewpoint of easily obtaining a metal organic structure having both water vapor adsorption amount, the ratio of the nitrogen-containing aromatic heterocyclic dicarboxylic acid (N) and the aromatic dicarboxylic acid (C) is 20 to 60 mol%, respectively. And 80 to 40 mol% are preferable, and 30 to 60 mol% and 70 to 40 mol% are more preferable.

次に、このようにして得られた混合物に加熱処理を施し、必要に応じて、洗浄処理及び乾燥処理を施すことによって、前記本発明の金属有機構造体を得ることができる。前記加熱処理における加熱温度としては120〜160℃が好ましく、また、加熱時間としては2〜10時間が好ましい。さらに、このような加熱処理は、窒素ガスやアルゴンガス等の不活性ガスの雰囲気下で行うことが好ましい。   Next, the metal organic structure of the present invention can be obtained by subjecting the mixture thus obtained to heat treatment and, if necessary, subjecting it to washing treatment and drying treatment. The heating temperature in the heat treatment is preferably 120 to 160 ° C., and the heating time is preferably 2 to 10 hours. Further, such heat treatment is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas.

また、本発明の金属有機構造体の製造方法において、前記加熱処理は、有機溶媒中、酸の存在下で行なってもよい。前記有機溶媒としては特に制限はなく、例えば、N,N’−ジメチルホルムアミド(DMF)、N,N’−ジエチルホルムアミド(DEF)等が挙げられる。前記酸としては特に制限はなく、例えば、ギ酸、塩酸、酢酸等が挙げられる。   Moreover, in the manufacturing method of the metal organic structure of this invention, you may perform the said heat processing in presence of an acid in an organic solvent. There is no restriction | limiting in particular as said organic solvent, For example, N, N'- dimethylformamide (DMF), N, N'-diethylformamide (DEF) etc. are mentioned. There is no restriction | limiting in particular as said acid, For example, formic acid, hydrochloric acid, an acetic acid etc. are mentioned.

<吸着材料及びその製造方法>
本発明の吸着材料は前記本発明の金属有機構造体からなるものである。本発明の金属有機構造体はそのまま吸着材料として使用することも可能であるが、前記金属有機構造体には、製造時に使用した有機溶媒や未反応の含窒素芳香族複素環ジカルボン酸(N)及び芳香族ジカルボン酸(C)が残存し、結晶構造の欠陥が生じている場合がある。このため、前記本発明の金属有機構造体には、この金属有機構造体に対する貧溶媒中で加熱処理を施すことが好ましい。これにより、金属有機構造体中の結晶構造の欠陥が減少し、吸着特性に優れた吸着材料を得ることができる。
<Adsorbent material and production method thereof>
The adsorbing material of the present invention comprises the metal organic structure of the present invention. The metal organic structure of the present invention can be used as an adsorbing material as it is. However, the metal organic structure includes an organic solvent used during production and an unreacted nitrogen-containing aromatic heterocyclic dicarboxylic acid (N). And aromatic dicarboxylic acid (C) may remain, resulting in defects in the crystal structure. For this reason, it is preferable to heat-treat the metal organic structure of the present invention in a poor solvent for the metal organic structure. Thereby, the defect of the crystal structure in a metal organic structure reduces, and the adsorption material excellent in adsorption | suction characteristics can be obtained.

前記加熱処理時の加熱温度としては、30〜80℃が好ましく、50〜80℃がより好ましい。加熱温度が前記下限未満になると、結晶構造の欠陥が減少せず、吸着材料の吸着特性が向上しにくい傾向にある。他方、加熱温度が前記上限を超えると、加水分解の可能性があり、結晶が崩壊する傾向にある。   As heating temperature at the time of the said heat processing, 30-80 degreeC is preferable and 50-80 degreeC is more preferable. When the heating temperature is less than the lower limit, defects in the crystal structure do not decrease and the adsorption characteristics of the adsorbing material tend to be difficult to improve. On the other hand, when the heating temperature exceeds the upper limit, there is a possibility of hydrolysis, and the crystals tend to collapse.

前記貧溶媒としては、前記本発明の金属有機構造体が溶解しにくい溶媒(難溶性溶媒)、好ましくは溶解しない溶媒(不溶性溶媒)であれば特に制限はないが、例えば、水、アセトニトリル、ヘキサン、エタノールが挙げられる。これらの貧溶媒は1種を単独で使用しても2種以上を併用してもよい。また、これらの貧溶媒のうち、安全性と作業性の観点から、水が好ましい。   The poor solvent is not particularly limited as long as it is a solvent that hardly dissolves the metal organic structure of the present invention (less soluble solvent), and preferably a solvent that does not dissolve (insoluble solvent). For example, water, acetonitrile, hexane And ethanol. These poor solvents may be used alone or in combination of two or more. Of these poor solvents, water is preferable from the viewpoints of safety and workability.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
塩化酸化ジルコニウム八水和物1.6g(5.0mmol)と2,5−ピリジンジカルボン酸0.16g(0.96mmol)とテレフタル酸(1,4−ベンゼンジカルボン酸)0.64g(3.9mmol)とを、N,N’−ジメチルホルムアミド(DMF)30.0mlとギ酸15.0mlとの混合溶媒に溶解し、窒素雰囲気下、140℃で6時間加熱した。得られた白色の結晶性粉末を吸引ろ過により回収し、DMFで洗浄し、さらにアセトンで洗浄した後、室温で3時間の減圧乾燥を行い、白色結晶性粉末の金属有機構造体(TSM−66−P2B8)2.1gを得た。なお、「P2B8」は「2,5−ピリジンジカルボン酸由来の配位子(PDC):テレフタル酸由来の配位子(BDC)=20:80(モル比)」を意味する(以下、同様)。
Example 1
1.6 g (5.0 mmol) of chlorinated zirconium oxide octahydrate, 0.16 g (0.96 mmol) of 2,5-pyridinedicarboxylic acid and 0.64 g (3.9 mmol) of terephthalic acid (1,4-benzenedicarboxylic acid) Was dissolved in a mixed solvent of 30.0 ml of N, N′-dimethylformamide (DMF) and 15.0 ml of formic acid and heated at 140 ° C. for 6 hours under a nitrogen atmosphere. The obtained white crystalline powder was recovered by suction filtration, washed with DMF, further washed with acetone, and then dried under reduced pressure at room temperature for 3 hours to obtain a metal organic structure (TSM-66) of white crystalline powder. -P2B8) 2.1 g was obtained. “P2B8” means “2,5-pyridinedicarboxylic acid-derived ligand (PDC): terephthalic acid-derived ligand (BDC) = 20: 80 (molar ratio)” (the same applies hereinafter). .

(実施例2)
テレフタル酸の量を0.40g(2.4mmol)に、2,5−ピリジンジカルボン酸の量を0.40g(2.4mmol)に変更した以外は実施例1と同様にして、白色結晶性粉末の金属有機構造体(TSM−66−P5B5)1.6gを得た。
(Example 2)
A white crystalline powder was obtained in the same manner as in Example 1 except that the amount of terephthalic acid was changed to 0.40 g (2.4 mmol) and the amount of 2,5-pyridinedicarboxylic acid was changed to 0.40 g (2.4 mmol). 1.6 g of a metal organic structure (TSM-66-P5B5) was obtained.

(比較例1)
2,5−ピリジンジカルボン酸を用いず、テレフタル酸の量を0.8g(4.8mmol)に変更し、加熱時間を3時間に変更した以外は実施例1と同様にして、Zr(OH)(BDC)で表される構造を基本骨格として有する白色結晶性粉末の金属有機構造体(UiO−66(P0B10))1.6gを得た。
(Comparative Example 1)
Zr 6 O 4 was used in the same manner as in Example 1 except that 2,5-pyridinedicarboxylic acid was not used, the amount of terephthalic acid was changed to 0.8 g (4.8 mmol), and the heating time was changed to 3 hours. 1.6 g of a metal organic structure (UiO-66 (P0B10)) of white crystalline powder having a structure represented by (OH) 4 (BDC) 6 as a basic skeleton was obtained.

(比較例2)
テレフタル酸の量を0.24g(1.4mmol)に、2,5−ピリジンジカルボン酸の量を0.56g(3.4mmol)に変更し、加熱時間を3時間に変更した以外は実施例1と同様にして、白色結晶性粉末の金属有機構造体(TSM−66−P7B3)1.6gを得た。
(Comparative Example 2)
Example 1 except that the amount of terephthalic acid was changed to 0.24 g (1.4 mmol), the amount of 2,5-pyridinedicarboxylic acid was changed to 0.56 g (3.4 mmol), and the heating time was changed to 3 hours. In the same manner as above, 1.6 g of a metal organic structure (TSM-66-P7B3) of white crystalline powder was obtained.

(比較例3)
テレフタル酸を用いず、2,5−ピリジンジカルボン酸の量を0.80g(4.8mmol)に変更し、加熱時間を3時間に変更した以外は実施例1と同様にして、白色結晶性粉末の金属有機構造体(TSM−66−P10B0)1.6gを得た。
(Comparative Example 3)
A white crystalline powder was used in the same manner as in Example 1 except that terephthalic acid was not used, the amount of 2,5-pyridinedicarboxylic acid was changed to 0.80 g (4.8 mmol), and the heating time was changed to 3 hours. 1.6 g of a metal organic structure (TSM-66-P10B0) was obtained.

(比較例4)
塩化ジルコニウム1.12g(4.8mmol)と2−アミノテレフタル酸(2−アミノ−1,4−ベンゼンジカルボン酸)0.90g(5.0mmol)とを、超脱水N,N’−ジメチルホルムアミド(DMF)60.0mlに溶解した後、濃塩酸1.0mlを添加し、窒素雰囲気下、120℃で6時間加熱した。得られた黄色の結晶性粉末を吸引ろ過により回収し、DMFで洗浄し、さらにアセトンで洗浄した後、室温で3時間の減圧乾燥を行い、Zr(OH)(ABDC)で表される構造(前記式中、ABDCは2−アミノテレフタル酸由来の配位子を表す。)を基本骨格として有する黄色結晶性粉末の金属有機構造体(UiO−66−NH)1.97gを得た。
(Comparative Example 4)
Zirconium chloride 1.12 g (4.8 mmol) and 2-aminoterephthalic acid (2-amino-1,4-benzenedicarboxylic acid) 0.90 g (5.0 mmol) were mixed with ultra-dehydrated N, N′-dimethylformamide ( After dissolving in 60.0 ml of DMF), 1.0 ml of concentrated hydrochloric acid was added and heated at 120 ° C. for 6 hours under a nitrogen atmosphere. The obtained yellow crystalline powder was collected by suction filtration, washed with DMF, further washed with acetone, then dried under reduced pressure at room temperature for 3 hours, and Zr 6 O 4 (OH) 4 (ABDC) 6 1.97 g of a metal organic structure (UiO-66-NH 2 ) of a yellow crystalline powder having a structure represented (ABDC represents a ligand derived from 2-aminoterephthalic acid) as a basic skeleton. Got.

<水熱処理>
実施例及び比較例で得られた各金属有機構造体粉末0.5gをそれぞれフラスコに入れ、水50mlを加えて、オイルバス中で100℃に加熱しながら6時間還流処理を行なった。その後、金属有機構造体粉末を大気中で吸引ろ過により回収し、室温で3時間減圧乾燥して吸着材料を得た。
<Hydrothermal treatment>
0.5 g of each metal organic structure powder obtained in Examples and Comparative Examples was put into a flask, 50 ml of water was added, and refluxing was performed for 6 hours while heating to 100 ° C. in an oil bath. Thereafter, the metal organic structure powder was collected by suction filtration in the air and dried under reduced pressure at room temperature for 3 hours to obtain an adsorbent material.

<粉末X線回折測定>
水熱処理後の各金属有機構造体粉末(吸着材料)の粉末X線回折(PXRD)パターンを、粉末X線回折装置(リガク(株)製「RINT−TTR」)を用い、CuKα線をX線源として測定した。その結果を図1に示す。図1に示した結果から明らかなように、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)は、金属有機構造体UiO−66とほぼ同じX線回折パターンを有しており、UiO−66構造(Zr(OH)(L))を基本骨格として有するものであることが確認された。
<Powder X-ray diffraction measurement>
The powder X-ray diffraction (PXRD) pattern of each metal organic structure powder (adsorbent material) after hydrothermal treatment was X-rayed using a powder X-ray diffractometer (“RINT-TTR” manufactured by Rigaku Corporation). Measured as a source. The result is shown in FIG. As is clear from the results shown in FIG. 1, the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the present invention are the same as the metal organic structures UiO-66. It was confirmed that they had almost the same X-ray diffraction pattern and had a UiO-66 structure (Zr 6 O 4 (OH) 4 (L) 6 ) as a basic skeleton.

一方、比較例2の金属有機構造体TSM−66−P7B3は、X線回折パターンにピリジン環由来のピーク(図1中のP)が観察され、UiO−66構造及びTSM−66−P10B0の基本骨格と同じ構造の2種類の構造を基本骨格として有するものであることがわかった。   On the other hand, in the metal organic structure TSM-66-P7B3 of Comparative Example 2, a peak derived from a pyridine ring (P in FIG. 1) was observed in the X-ray diffraction pattern, and the basic structure of the UiO-66 structure and TSM-66-P10B0 was observed. It was found to have two types of structures having the same structure as the skeleton as the basic skeleton.

<元素分析>
水熱処理後の金属有機構造体粉末(吸着材料)TSM−66−P2B8及びTSM−66−P5B5のCHN元素分析を、元素分析装置(パーキンエルマー社製「PE2400II」)を用いて行なったところ、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)には、窒素が含まれていることが確認された。この結果から、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)はPDCを含有するものであることがわかった。なお、2,5−ピリジンジカルボン酸とテレフタル酸とのモル比を考慮すると、金属有機構造体TSM−66−P2B8及びTSM−66−P5B5は、それぞれZr(OH)(PDC)1.2(BDC)4.8で表される構造及びZr(OH)(PDC)(BDC)で表される構造を基本骨格として有するものであると考えられる。
<Elemental analysis>
When the CHN elemental analysis of the metal organic structure powder (adsorbent material) TSM-66-P2B8 and TSM-66-P5B5 after hydrothermal treatment was performed using an elemental analyzer ("PE2400II" manufactured by PerkinElmer), It was confirmed that the metal organic structure TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the invention contained nitrogen. From this result, it was found that the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the present invention contain PDC. In consideration of the molar ratio of 2,5-pyridinedicarboxylic acid to terephthalic acid, the metal organic structures TSM-66-P2B8 and TSM-66-P5B5 are each Zr 6 O 4 (OH) 4 (PDC) 1 .2 (BDC) 4.8 and a structure represented by Zr 6 O 4 (OH) 4 (PDC) 3 (BDC) 3 are considered to have a basic skeleton.

<熱重量測定>
水熱処理後の各金属有機構造体粉末(吸着材料)の熱重量変化を、熱重量測定装置(リガク(株)「thermoplus TG8210」)を用い、大気中、昇温速度:10℃/分、温度範囲:25〜800℃で測定した。図2に示した結果から明らかなように、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)は、これらの基本骨格であるUiO−66(P0B10)とほぼ同等の耐熱性を有していることがわかった。
<Thermogravimetry>
The thermogravimetric change of each metal organic structure powder (adsorbing material) after hydrothermal treatment was measured using a thermogravimetric measuring device (Rigaku Corporation “thermoplus TG8210”) in the atmosphere at a rate of temperature increase of 10 ° C./min, temperature. Range: measured at 25-800 ° C. As is clear from the results shown in FIG. 2, the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the present invention are the basic skeletons of UiO— 66 (P0B10) was found to have almost the same heat resistance.

また、UiO−66構造〔Zr(OH)(L)〕における配位子の配位数yは理論的には6であるが、この配位数には欠陥があることが知られている。そこで、図2に示した熱重量変化に基づいて、各金属有機構造体〔Zr(OH)(L)〕における配位数y(理論値はy=6)を求めた。すなわち、S.Oienら(Cryst.Growth Des.,2014,14(11),pp5370−5372)、M.J.Cliffeら(Nature Communications,2014,5,4176:doi:10.1038/ncomms5176)、G.C.Shearerら(Topics in Catalysis,2013,56,9−10,pp770−782)、L.Valenzanoら(Chem.Mater.,2011,23(7),pp1700−1718)によると、金属有機構造体〔Zr(OH)(L)〕を大気中で昇温しながら加熱すると、250〜300℃で下記式:
Zr(OH)(L)+熱→Zr(L)+2HO↑
のように脱水反応が起こり、Zr(L)が生成し、さらに800℃で下記式:
Zr(L)+3O→6ZrO+yL↑
のように配位子Lの脱離が起こり、ZrOが生成する。なお、前記式中の↑は昇華を意味する。したがって、金属有機構造体粉末の熱重量測定における300℃での重量はZr(L)の重量であり、800℃での重量はZrOの重量である。
The coordination number y of the ligand in the UiO-66 structure [Zr 6 O 4 (OH) 4 (L) y ] is theoretically 6, but this coordination number may be defective. Are known. Therefore, the coordination number y (theoretical value is y = 6) in each metal organic structure [Zr 6 O 4 (OH) 4 (L) y ] was determined based on the thermogravimetric change shown in FIG. That is, S.M. Oien et al. (Cryst. Growth Des., 2014, 14 (11), pp 5370-5372), M. et al. J. et al. Cliffe et al. (Nature Communications, 2014, 5, 4176: doi: 10.1038 / ncomms5176), G. et al. C. Shearer et al. (Topics in Catalysis, 2013, 56, 9-10, pp 770-782), L. According to Valenzano et al. (Chem. Mater., 2011, 23 (7), pp 1700-1718), when a metal organic structure [Zr 6 O 4 (OH) 4 (L) y ] is heated in the atmosphere while being heated, The following formula at 250-300 ° C:
Zr 6 O 4 (OH) 4 (L) y + heat → Zr 6 O 6 (L) y + 2H 2 O ↑
Thus, dehydration reaction occurs to produce Zr 6 O 6 (L) y , and at 800 ° C., the following formula:
Zr 6 O 6 (L) y + 3O 2 → 6ZrO 2 + yL ↑
Thus, elimination of the ligand L occurs and ZrO 2 is generated. In the above formula, ↑ means sublimation. Therefore, the weight at 300 ° C. in thermogravimetric measurement of the metal organic structure powder is the weight of Zr 6 O 6 (L) y , and the weight at 800 ° C. is the weight of ZrO 2 .

そこで、図2に示した結果から、300℃におけるZrOに対するZr(L)の重量比の実験値を求め、また、Zr(L)とZr(L)の分子量から前記重量比の理論値を求めて、下記式:
[Zr(L)の分子量]=[Zr(L)の分子量]×[前記重量比の実験値]/[前記重量比の理論値]
により、Zr(L)の分子量を算出し、さらに下記式:
y=([Zr(L)の分子量]−[Zrの原子量]×6−[酸素の原子量]×6)/[配位子Lの分子量]
により、配位数yを求めた。その結果を表1に示す。また、配位数の欠陥を考慮した組成式も表1に併せて示す。
Therefore, from the result shown in FIG. 2, the experimental value of the weight ratio of Zr 6 O 6 (L) y to ZrO 2 at 300 ° C. is obtained, and Zr 6 O 6 (L) 6 and Zr 6 O 6 (L ) The theoretical value of the weight ratio is determined from the molecular weight of 6 , and the following formula:
[Molecular weight of Zr 6 O 6 (L) y ] = [Molecular weight of Zr 6 O 6 (L) 6 ] × [Experimental value of the weight ratio] / [Theoretical value of the weight ratio]
The molecular weight of Zr 6 O 6 (L) y is calculated by the following formula:
y = ([Zr 6 O 6 (L) molecular weight of y ] − [atomic weight of Zr] × 6- [atomic weight of oxygen] × 6) / [molecular weight of ligand L]
Thus, the coordination number y was obtained. The results are shown in Table 1. In addition, Table 1 also shows a composition formula in consideration of defects in coordination number.

表1に示した結果から明らかなように、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)は、基本骨格であるUiO−66構造1個(Zr原子6個)当たり、平均4.7個の配位子が配位しており、平均1.3個の配位子が欠損していることがわかった。   As is clear from the results shown in Table 1, the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the present invention have a UiO-66 structure as a basic skeleton. It was found that an average of 4.7 ligands were coordinated per one (6 Zr atoms), and an average of 1.3 ligands were missing.

<水蒸気吸着量測定>
水熱処理後の各金属有機構造体粉末(吸着材料)の水蒸気吸着等温線を、蒸気吸着量測定装置(日本ベル(株)製「BELSORP−18」)を用い、25℃で測定した。その結果を図3及び図4に示す。
<Measurement of water vapor adsorption amount>
The water vapor adsorption isotherm of each metal organic structure powder (adsorbent material) after hydrothermal treatment was measured at 25 ° C. using a vapor adsorption amount measuring device (“BELSORP-18” manufactured by Nippon Bell Co., Ltd.). The results are shown in FIGS.

図3に示した結果から明らかなように、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)の水蒸気吸着等温線は、金属有機構造体UiO−66(P0B10))に比べて、低圧側にシフトした。この結果から、UiO−66構造を基本骨格として有する金属有機構造体においては、含窒素芳香族複素環ジカルボン酸由来の配位子(N)を金属原子に配位させることによって、水蒸気吸着等温線が低圧側にシフトすることがわかった。また、含窒素芳香族複素環ジカルボン酸由来の配位子(N)の導入量が増加するにつれて、水蒸気吸着等温線はより低圧側にシフトすることもわかった。なお、水蒸気吸着等温線の低圧側へのシフトは、含窒素芳香族複素環の親水性効果によって、水との親和性が向上したことによるものと考えられる。   As is clear from the results shown in FIG. 3, the water vapor adsorption isotherms of the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66-P5B5 (Example 2) of the present invention are metal organic structures. Compared with the body UiO-66 (P0B10)), it shifted to the low pressure side. From this result, in the metal organic structure having the UiO-66 structure as a basic skeleton, the water vapor adsorption isotherm is obtained by coordinating the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid to the metal atom. Was found to shift to the low pressure side. It was also found that the water vapor adsorption isotherm shifts to a lower pressure side as the amount of introduction of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid increases. The shift of the water vapor adsorption isotherm to the low pressure side is considered to be due to the improved affinity with water due to the hydrophilic effect of the nitrogen-containing aromatic heterocycle.

一方、金属有機構造体TSM−66−P7B3(比較例2)及びTSM−66−P10B0(比較例3)は、本発明の金属有機構造体TSM−66−P2B8(実施例1)及びTSM−66−P5B5(実施例2)に比べて、水蒸気最大吸着量が低下することがわかった。すなわち、含窒素芳香族複素環ジカルボン酸由来の配位子(N)の導入量が多くなりすぎると、水蒸気吸着性能が低下することがわかった。   On the other hand, the metal organic structures TSM-66-P7B3 (Comparative Example 2) and TSM-66-P10B0 (Comparative Example 3) are the metal organic structures TSM-66-P2B8 (Example 1) and TSM-66 of the present invention. It was found that the maximum water vapor adsorption amount was reduced as compared with -P5B5 (Example 2). That is, it was found that when the amount of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid is excessively increased, the water vapor adsorption performance is lowered.

以上の結果から、UiO−66構造を基本骨格として有する金属有機構造体において、含窒素芳香族複素環ジカルボン酸由来の配位子(N)と芳香族ジカルボン酸由来の配位子(C)とのモル比が(N):(C)=10:90〜60:40となる範囲内で、含窒素芳香族複素環ジカルボン酸由来の配位子(N)の導入量を調整することによって、高い水蒸気吸着性能を保持しながら、水蒸気吸着性能の圧力域を制御できることが確認された。   From the above results, in a metal organic structure having a UiO-66 structure as a basic skeleton, a ligand (N) derived from a nitrogen-containing aromatic heterocyclic dicarboxylic acid and a ligand (C) derived from an aromatic dicarboxylic acid By adjusting the introduction amount of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid within a range where the molar ratio of (N) :( C) = 10: 90 to 60:40, It was confirmed that the pressure range of water vapor adsorption performance can be controlled while maintaining high water vapor adsorption performance.

図4に示した結果から明らかなように、2−アミノテレフタル酸由来の配位子が配位している金属有機構造体(UiO−66−NH)は、本発明の金属有機構造体TSM−66−P5B5(実施例2)と同じ圧力域で水蒸気吸着量の増加が観測されたが、水蒸気最大吸着量は低下した。すなわち、含窒素芳香族複素環ジカルボン酸由来の配位子(N)が配位している金属有機構造体は、アミノ基含有芳香族ジカルボン酸由来の配位子が配位している金属有機構造体に比べて、水蒸気吸着性能に優れていることが確認された。 As is clear from the results shown in FIG. 4, the metal organic structure (UiO-66-NH 2 ) coordinated with the ligand derived from 2-aminoterephthalic acid is the metal organic structure TSM of the present invention. Although an increase in water vapor adsorption amount was observed in the same pressure region as −66-P5B5 (Example 2), the water vapor maximum adsorption amount was reduced. That is, the metal organic structure in which the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid is coordinated is the metal organic structure in which the ligand derived from the amino group-containing aromatic dicarboxylic acid is coordinated. It was confirmed that the water vapor adsorption performance was superior to that of the structure.

以上説明したように、本発明によれば、UiO−66構造を基本骨格として有し、高い水蒸気最大吸着量と低圧側における高い水蒸気吸着量とを兼ね備えた金属有機構造体及び吸着材料を得ることが可能となる。   As described above, according to the present invention, it is possible to obtain a metal organic structure and an adsorbing material having a UiO-66 structure as a basic skeleton and having a high water vapor maximum adsorption amount and a high water vapor adsorption amount on the low pressure side. Is possible.

したがって、本発明の金属有機構造体及び吸着材料は、水蒸気吸着特性に優れているため、吸着式ヒートポンプ等に用いられる吸着材として有用である。   Therefore, since the metal organic structure and the adsorbing material of the present invention are excellent in water vapor adsorption characteristics, they are useful as adsorbents used in adsorption heat pumps and the like.

Claims (6)

下記式(1):
Me(OH)(L) (1)
(前記式中、MeはZr及びTiからなる群から選択される少なくとも1種の金属原子を表し、Lは前記金属原子Meに配位している配位子を表す。)
で表される構造を基本骨格として有し、
前記配位子Lが、下記式(2):
(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸由来の配位子(N)及び下記式(3):
(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸由来の配位子(C)であり、
前記含窒素芳香族複素環ジカルボン酸由来の配位子(N)と前記芳香族ジカルボン酸由来の配位子(C)とのモル比が(N):(C)=10:90〜60:40である、
ことを特徴とする金属有機構造体。
Following formula (1):
Me 6 O 4 (OH) 4 (L) 6 (1)
(In the formula, Me represents at least one metal atom selected from the group consisting of Zr and Ti, and L represents a ligand coordinated to the metal atom Me.)
Having a structure represented by
The ligand L is represented by the following formula (2):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid-derived ligand (N) represented by the following formula (3):
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
A ligand derived from an aromatic dicarboxylic acid represented by (C),
The molar ratio of the ligand (N) derived from the nitrogen-containing aromatic heterocyclic dicarboxylic acid and the ligand (C) derived from the aromatic dicarboxylic acid is (N) :( C) = 10: 90 to 60: 40,
Metal organic structure characterized by the above.
前記含窒素芳香族複素環ジカルボン酸が2,5−ピリジンジカルボン酸であり、前記芳香族ジカルボン酸がテレフタル酸であることを特徴とする請求項1に記載の金属有機構造体。   The metal organic structure according to claim 1, wherein the nitrogen-containing aromatic heterocyclic dicarboxylic acid is 2,5-pyridinedicarboxylic acid, and the aromatic dicarboxylic acid is terephthalic acid. 請求項1又は2に記載の金属有機構造体からなることを特徴とする吸着材料。   An adsorptive material comprising the metal organic structure according to claim 1. Zr及びTiからなる群から選択される少なくとも1種の金属原子を含有する金属化合物に、下記式(2):
(前記式中、aはC原子、N原子のうちのいずれかを表し、XはNH基、NO基、ハロゲン原子のうちのいずれかを表し、mは0〜3の整数である。)
で表される含窒素芳香族複素環ジカルボン酸及び下記式(3):
(前記式中、Xはハロゲン原子を表し、nは0〜4の整数である。)
で表される芳香族ジカルボン酸を、前記含窒素芳香族複素環ジカルボン酸10〜60mol%及び前記芳香族ジカルボン酸90〜40mol%の割合(これらの合計を100mol%とする。)で混合し、得られた混合物に加熱処理を施すことを特徴とする金属有機構造体の製造方法。
In the metal compound containing at least one metal atom selected from the group consisting of Zr and Ti, the following formula (2):
(In the above formula, a represents either a C atom or an N atom, X 1 represents an NH 2 group, an NO 2 group, or a halogen atom, and m represents an integer of 0 to 3. .)
A nitrogen-containing aromatic heterocyclic dicarboxylic acid represented by the following formula (3):
(In the formula, X 2 represents a halogen atom, and n is an integer of 0 to 4.)
Are mixed at a ratio of 10 to 60 mol% of the nitrogen-containing aromatic heterocyclic dicarboxylic acid and 90 to 40 mol% of the aromatic dicarboxylic acid (the total is 100 mol%). The manufacturing method of the metal organic structure characterized by performing heat processing to the obtained mixture.
前記加熱処理を、有機溶媒中、酸の存在下で行うことを特徴とする請求項4に記載の金属有機構造体の製造方法。   The method for producing a metal organic structure according to claim 4, wherein the heat treatment is performed in an organic solvent in the presence of an acid. 請求項4又は5に記載の製造方法により金属有機構造体を調製し、得られた金属有機構造体に、該金属有機構造体に対する貧溶媒中で加熱処理を施すことを特徴とする吸着材料の製造方法。   A metal organic structure is prepared by the production method according to claim 4 or 5, and the obtained metal organic structure is subjected to a heat treatment in a poor solvent for the metal organic structure. Production method.
JP2015220536A 2015-11-10 2015-11-10 Metal organic structure, adsorbent using the same and manufacturing method therefor Pending JP2017088542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220536A JP2017088542A (en) 2015-11-10 2015-11-10 Metal organic structure, adsorbent using the same and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220536A JP2017088542A (en) 2015-11-10 2015-11-10 Metal organic structure, adsorbent using the same and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017088542A true JP2017088542A (en) 2017-05-25

Family

ID=58769762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220536A Pending JP2017088542A (en) 2015-11-10 2015-11-10 Metal organic structure, adsorbent using the same and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017088542A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349961A (en) * 2017-06-27 2017-11-17 哈尔滨理工大学 A kind of NH2The preparation of the composites of 66@TpPa of UIO 1 and photolysis water hydrogen
CN107722285A (en) * 2017-09-15 2018-02-23 广西大学 A kind of hydrophobicity zirconium metal-organic framework materials and preparation method thereof
CN108031303A (en) * 2017-11-24 2018-05-15 大连理工大学 A kind of preparation method of infiltration evaporation metal organic framework UiO-66 series gasoline desulfurizing films
JP2018080146A (en) * 2016-11-18 2018-05-24 株式会社豊田中央研究所 Aluminum organic structure, adsorption material using the same, and production method of them
WO2019046404A1 (en) * 2017-08-31 2019-03-07 The Regents Of The University Of California Zirconium terephthalate-based metal organic framework with open metal sites
JP2019116463A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Metal organic structure and manufacturing method thereof
JP2019182754A (en) * 2018-04-03 2019-10-24 株式会社豊田中央研究所 Aluminum organic structure, adsorbing material using the same, and manufacturing method therefor
WO2019228356A1 (en) * 2018-06-01 2019-12-05 云南中烟工业有限责任公司 Tobacco humectant, and preparation method therefor and use thereof
CN110743503A (en) * 2019-10-25 2020-02-04 哈尔滨工程大学 PCN metal organic framework and graphene oxide composite adsorption material and preparation method thereof
JP2020037524A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Production method of metal organic structure
EP3730496A1 (en) 2019-04-22 2020-10-28 Toyota Jidosha Kabushiki Kaisha Organometallic framework
CN112480421A (en) * 2020-11-09 2021-03-12 武汉理工大学 Synthesis method of solvent-induced sea urchin-shaped MOFs
WO2021153626A1 (en) * 2020-01-31 2021-08-05 東洋紡株式会社 Adsorbent sheet, adsorbent element, and adsorption treatment device using same
CN114196032A (en) * 2021-10-22 2022-03-18 广东工业大学 Tetrathiol functionalized UiO-66 type metal organic framework material and preparation method and application thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080146A (en) * 2016-11-18 2018-05-24 株式会社豊田中央研究所 Aluminum organic structure, adsorption material using the same, and production method of them
CN107349961A (en) * 2017-06-27 2017-11-17 哈尔滨理工大学 A kind of NH2The preparation of the composites of 66@TpPa of UIO 1 and photolysis water hydrogen
CN107349961B (en) * 2017-06-27 2020-01-10 哈尔滨理工大学 NH (hydrogen sulfide)2Preparation of-UIO-66 @ TpPa-1 composite material and hydrogen production by photolysis of water
JP2020532499A (en) * 2017-08-31 2020-11-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Zirconium terephthalate-based metal-organic framework with open metal parts
WO2019046404A1 (en) * 2017-08-31 2019-03-07 The Regents Of The University Of California Zirconium terephthalate-based metal organic framework with open metal sites
US11813587B2 (en) 2017-08-31 2023-11-14 The Regents Of The University Of California Zirconium terephthalate-based metal organic framework with open metal sites
JP7328630B2 (en) 2017-08-31 2023-08-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Zirconium terephthalate-based metal-organic framework with open metal sites
CN107722285B (en) * 2017-09-15 2020-06-16 广西大学 Hydrophobic zirconium metal organic framework material and preparation method thereof
CN107722285A (en) * 2017-09-15 2018-02-23 广西大学 A kind of hydrophobicity zirconium metal-organic framework materials and preparation method thereof
CN108031303A (en) * 2017-11-24 2018-05-15 大连理工大学 A kind of preparation method of infiltration evaporation metal organic framework UiO-66 series gasoline desulfurizing films
JP2019116463A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Metal organic structure and manufacturing method thereof
JP7172364B2 (en) 2017-12-27 2022-11-16 トヨタ自動車株式会社 METAL ORGANIC STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
JP2019182754A (en) * 2018-04-03 2019-10-24 株式会社豊田中央研究所 Aluminum organic structure, adsorbing material using the same, and manufacturing method therefor
JP7015452B2 (en) 2018-04-03 2022-02-03 株式会社豊田中央研究所 Aluminum organic structures, adsorption materials using them, and methods for manufacturing them.
WO2019228356A1 (en) * 2018-06-01 2019-12-05 云南中烟工业有限责任公司 Tobacco humectant, and preparation method therefor and use thereof
US10966452B2 (en) 2018-06-01 2021-04-06 China Tobacco Yunnan Industrial Co., Ltd Tobacco humectant, preparation method and use thereof
JP2020037524A (en) * 2018-09-04 2020-03-12 トヨタ自動車株式会社 Production method of metal organic structure
EP3730496A1 (en) 2019-04-22 2020-10-28 Toyota Jidosha Kabushiki Kaisha Organometallic framework
US11376563B2 (en) 2019-04-22 2022-07-05 Toyota Jidosha Kabushiki Kaisha Organometallic framework
RU2741968C1 (en) * 2019-04-22 2021-02-01 Тойота Дзидося Кабусики Кайся Organometallic framework
KR20200123742A (en) 2019-04-22 2020-10-30 도요타지도샤가부시키가이샤 Organometallic framework
CN110743503A (en) * 2019-10-25 2020-02-04 哈尔滨工程大学 PCN metal organic framework and graphene oxide composite adsorption material and preparation method thereof
WO2021153626A1 (en) * 2020-01-31 2021-08-05 東洋紡株式会社 Adsorbent sheet, adsorbent element, and adsorption treatment device using same
CN112480421A (en) * 2020-11-09 2021-03-12 武汉理工大学 Synthesis method of solvent-induced sea urchin-shaped MOFs
CN112480421B (en) * 2020-11-09 2023-12-05 武汉理工大学 Synthesis method of solvent-induced sea urchin-like MOFs
CN114196032A (en) * 2021-10-22 2022-03-18 广东工业大学 Tetrathiol functionalized UiO-66 type metal organic framework material and preparation method and application thereof
CN114196032B (en) * 2021-10-22 2023-09-15 广东工业大学 Tetrathiol functionalized UiO-66 type metal organic framework material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2017088542A (en) Metal organic structure, adsorbent using the same and manufacturing method therefor
JP6808172B2 (en) Manufacturing method of adsorbent material
Sánchez-Sánchez et al. Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources
Reinsch et al. Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics
EP4023656A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
JP2011520592A (en) Gas adsorbent
Liao et al. Characterization, adsorption properties, metal ion-exchange and crystal-to-crystal transformation of Cd 3 [(Cd 4 Cl) 3 (BTT) 8 (H 2 O) 12] 2 framework, where BTT 3−= 1, 3, 5-benzenetristetrazolate
KR102675947B1 (en) Synthesis of zinc metal-organic framework (Zn MOF) material
KR20210144823A (en) Metal-organic framework material comprising diimine scaffold and method for preparing same
Kim et al. Sonochemical synthesis of Cu 3 (BTC) 2 in a deep eutectic mixture of choline chloride/dimethylurea
KR101807266B1 (en) Metal-organic framework and process of preparing the same
JP2015196677A (en) Metal complex and method for producing the same
KR101606556B1 (en) Organic-inorganic nanopore materials having surface-modified with polysilsesquioxane and preparation thereof
KR101331539B1 (en) The preparation method of porous metal organic framework
KR101339846B1 (en) The improved preparation method of porous metal organic framework
JP2022524220A (en) Manufacture and use of metal-organic frameworks
KR101927205B1 (en) Crystallized porous polymeric metal-organic polyhedra and preparing method thereof
JP6477086B2 (en) Method for producing porous material
WO2019182137A1 (en) Metal-organic framework production method
JP7049595B2 (en) Aluminum organic structures, adsorption materials using them, and methods for manufacturing them.
KR102218847B1 (en) Fabrication method of organic-inorganic nanoporous material adsorbent and organic-inorganic nanoporous material adsorbent using it
JP2009208028A (en) Carbon dioxide adsorbent
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
US20230159575A1 (en) Appending amines to metal organic frameworks
JP6256812B2 (en) Fused aromatic ring-containing polycarboxylic acid, crystalline network complex using the same, and gas storage material