JP2017084360A - 太陽光発電システムの作動方法 - Google Patents

太陽光発電システムの作動方法 Download PDF

Info

Publication number
JP2017084360A
JP2017084360A JP2016206173A JP2016206173A JP2017084360A JP 2017084360 A JP2017084360 A JP 2017084360A JP 2016206173 A JP2016206173 A JP 2016206173A JP 2016206173 A JP2016206173 A JP 2016206173A JP 2017084360 A JP2017084360 A JP 2017084360A
Authority
JP
Japan
Prior art keywords
prediction
power generation
data set
test data
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016206173A
Other languages
English (en)
Other versions
JP6759966B2 (ja
Inventor
ホ・ダウエイ
Dawei He
アリモハマディ・シャルズ
Alimohammadi Shahrouz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2017084360A publication Critical patent/JP2017084360A/ja
Application granted granted Critical
Publication of JP6759966B2 publication Critical patent/JP6759966B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】太陽光発電予測を解析する方法等を提供する。【解決手段】方法は、太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、その位置での放射量の晴天モデルに基づきテストデータセットを正規化することを含んでよい。方法は、テストデータセットを、夫々が特性の組を含む複数の気象クラスにクラスタリングし、太陽光発電システムでの所与の将来の時点についての放射量の予測を得、予測を複数の気象クラスのうちの1つに分類し、複数の気象クラスのうちのその1つの特性の組に基づき予測の信頼区間を決定することを更に含んでよい。方法は、予測の信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は減少出力のうちの一方を実施することを更に含んでよい。【選択図】図3

Description

本願で論じられている1つ以上の実施形態は、太陽光発電システムを動作させることに関係がある。
温室効果ガス排出を減らすために世界中で多くの努力がなされている。そのような努力は、ハイブリッド車からエネルギ効率の良い電球にまで及んでいる。努力の1つの手段は、様々な発電に関連した電力の発生及び温室効果ガス排出に関連する。注目を集めている電力源の1つは、太陽光発電である。なぜなら、それは再生可能であり、化石燃料を燃やさない。しかし、太陽光発電の効率は、太陽光発電を生成する場所で経験される気象に大いに影響を及ぼされ得る。
本願で請求されている主題は、上記のような環境でのみ動作する実施形態、又は上記のような如何なる欠点も解消する実施形態に制限されない。むしろ、この背景技術は、本願で記載される本開示の実施形態が実施され得る一例となる技術分野を説明するために与えられている。
本開示の1つ以上の実施形態は、太陽光発電システムの作動方法であって、当該太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、該正規化されたデータセットが太陽天頂角から独立しているようにすることを含む方法を含んでよい。方法は、前記テストデータセットを、夫々が特性の組を含む複数の気象クラスにクラスタリングすることを更に含んでよい。方法は、当該太陽光発電システムでの所与の将来の時点についての放射量の予測を得、該予測を前記複数の気象クラスのうちの1つに分類することを更に含んでよい。方法は、前記複数の気象クラスのうちの前記1つの前記特性の組に基づき、前記予測の信頼区間を決定することを更に含んでよい。方法は、前記予測の前記信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は該エネルギの発生源の減少出力のうちの一方を実施することを更に含んでよい。
実施形態の目的及び利点は、特許請求の範囲において特に示されている要素、機能、及び組み合わせによって少なくとも実現及び達成される。
前述の概要及び以下の詳細な説明はいずれも例を提供し、例示であって限定ではない。
例となる実施形態は、添付の図面の使用を通じて、更なる特定及び詳細をもって記載及び説明される。
太陽光発電装置を含む仮想電力プラントを作動させるよう構成されたシステムの例を表す図である。
太陽光発電予測を評価することにおいて使用されるプロットの組の例である。
太陽光発電システムを作動させる方法の例のフロー図である。
太陽光発電装置を含む仮想電力プラントを作動させる方法の例のフロー図である。 図4Aのフロー図の続きを表す
太陽光発電は、光起電力電池がさらされる太陽光の量に依存する電力の発生源である。この理由により、仮想電力プラント(VPP;virtual power plants)のマネージャ及びオペレータのような発電会社は、太陽光発電装置が生成し得る電気の量を予測するために、放射量(例えば、単位面積あたりの放射エネルギ束)の予測を利用する。しかし、そのような予測は常に正確なわけではなく、予測の予期された変動を考慮しない。
本開示は、放射量の予測の正確さを示す情報を利用することによって太陽光発電システムを作動させることに関係があり得る。歴史的な放射量のテストデータセット、例えば、様々な季節及び様々な気象条件において長期間に所与の位置で経験された放射量、が取得されてよい。テストデータセットは、例えば、テストデータセットにおけるある時点での放射量をその時刻についての晴天放射量で割ることによって、放射量の晴天モデルに基づき正規化されてよい。正規化された後、テストデータセットは、関連する特性の組により気象クラス(例えば、晴天、一部曇り、曇天)にクラスタリングされてよい。そのような動作は、予測の正確さを解析するためのフレームワークを構築し得る。フレームワーク内で解析されるべき放射量の予測は、例えば、サードパーティの予測サービスから、取得されてよい。予測は、次いで、気象クラスのうちの1つに分類されてよい。その気象クラスの特性に基づき、予測についての信頼区間は決定されてよい。信頼区間は予測の信頼性を示してよい。太陽光発電システムの動作は、信頼区間に基づき変更されてよい。例えば、信頼区間が高い場合に、太陽光発電の他に代替のエネルギ源の出力は、電力の潜在的な不足を補償するよう増やされてよい。
本開示の実施形態は、添付の図面を参照して説明される。
図1は、太陽光発電装置112を含む仮想電力プラント(VPP)110を作動させるよう構成された、例となるシステム100を表す図である。システム100は、VPP110、気象情報源120、エネルギ市場130、及びネットワーク140を含んでよい。VPP110は、制御装置111と、電力を生成する1つ以上のソースとを含んでよい。例えば、図1に表されているように、VPP110は、太陽光発電装置112、風力発電装置113、化石燃料発電装置114、及び水力発電装置115を含んでよい。
制御装置111は、VPP110の動作を制御するよう構成された如何なる装置、システム、コンポーネント、又はコンポーネントの集合も含んでよい。例えば、制御装置111は、太陽光発電装置112での太陽光発電に関連した予測を生成又は解析してよい。他の例として、制御装置111は、電力を生成するソースの1つ以上によって生成される電力の量を調整又は変更してよい。制御装置111はまた、気象情報源120のから受け取られる気象情報のような気象情報に対応する解析を実施してよい。
気象情報源120は、気象情報を記憶し、生成し、予測し、又は別なふうに扱うよう構成された如何なる装置、システム、コンポーネント、又はコンポーネントの集合であってもよい。気象情報源120にある気象情報は、例えば、放射量、雲量、雲形成、雲クラス、スカイカバー(雲によって覆われた空のパーセンテージ)、日照時間、季節(例えば、冬、夏)、毎日の最高気温、毎日の最低気温、露点温度、温度、相対湿度、風速、風向、毎日の降水確率、太陽アジマス角、太陽天頂角、正規化された時角、などを含む如何なる気象情報も含んでよい。
気象情報源120にある気象情報は、暦、気象予測サービス、報道局、自然観測のデータベース、ウェブサービス、などのような如何なるソースからも利用可能であってよい。いくつかの実施形態において、気象情報は、時間(日、時、分、又は秒のうちのいずれかを含んでよい。)、場所、及び関連するデータのデータ・トライアドと見なされてよい。例えば、データ・トライアドは、カリフォルニア州サンフランシスコ2015年7月4日午前10時を含んでよく、日中気温85度、スカイカバー10パーセント、夏、及び降水確率10パーセントのような、対応する気象情報を有してよい。気象情報源120は、太陽光発電装置112の場所のような、様々な位置についての履歴データを含んでよい。気象情報源120は、気象に関する予報、予測、又は他の見通し情報を更に含んでよい。いくつかの実施形態において、気象情報の履歴データ又は予測のような気象情報は、気象情報源120から制御装置111へネットワーク140を介して送られてよい。いくつかの実施形態において、制御装置111は、気象情報の予測を生成してよい。
エネルギ市場130は、電力が購入又は売却され得る如何なるシステム又はシステムの集合であってもよい。例えば、制御装置111は、VPP110で生成された電力の一部をエネルギ市場130へ供給してよい。追加的に、又は代替的に、制御装置111は、VPP110から電力を受ける1人以上の加入者への分配のために、エネルギ市場130から追加のエネルギを取得又は購入してよい。いくつかの実施形態において、電力は、エネルギ市場130を介して予約され、又は別なふうに条件付きで購入されてよい。
ネットワーク140は、制御装置111、気象情報源120、及びエネルギ市場130の1つ以上の間のコミュニケーションを提供するよう構成された如何なる装置、システム、コンポーネント、又はそれらの組み合わせも含んでよい。コミュニケーションは、情報通信だけではなく、他のタイプのコミュニケーション、例えば、電力のやり取りも含んでよい。例として、ネットワーク140は、1つ以上のワイドエリアネットワーク(WAN;wide area network)、ローカルエリアネットワーク(LAN;local area network)、電気分配網、電力線網、などのような、制御装置111、気象情報源120、及び/又はエネルギ市場130がやり取りすることを可能にするものを含んでよい。いくつかの実施形態において、ネットワーク140は、複数のWAN及び/又はLANの間の論理的及び物理的接続によって形成された大域的なインターネットワークを含むインターネットを含んでよい。代替的に、又は追加的に、ネットワーク140は、1つ以上のセルラーRFネットワーク並びに/又は1つ以上の有線及び/若しくは無線ネットワーク、例えば、制限なしに、802.xxネットワーク、Bluetooth(登録商標)アクセスポイント、無線アクセスポイント、IPベースのネットワーク、又は同様のものを含んでよい。ネットワーク140は、1つのタイプのネットワークが他のタイプのネットワークとインターフェイス接続することを可能にするサーバ、サブステーション、又は他の接続装置も含んでよい。追加的に、又は代替的に、ネットワーク140は、組織内で又は別なふうに安全な様態において通信するイントラネット又は1つ以上のコンピュータ装置を含んでよい。
いくつかの実施形態において、太陽光発電装置112、風力発電装置113、化石燃料発電装置114、及び/又は水力発電装置115は、ネットワーク140を介して制御装置111とやり取りしてよい。追加的に、又は代替的に、太陽光発電装置112、風力発電装置113、化石燃料発電装置114、及び/又は水力発電装置115は、生成された電力を蓄積し、分配し、販売し、調整し、又は別なふうに扱い若しくは制御するためのシステムと電気的にやり取りしてよい。そのような及び他の実施形態において、制御装置111は、そのようなシステムの部分であってよく、且つ/あるいは、そのようなシステムを監督又は制御してよい。
動作において、制御装置111は、本開示で記載される動作のいずれかを実施してよい。例えば、制御装置111は、太陽光発電装置112の位置に関する気象履歴情報のテストデータセットを気象情報源120からネットワーク140を介して取得してよい。テストデータセットの気象情報は、放射履歴データを含んでよい。制御装置111は、放射履歴データを正規化するために、放射履歴データ及び放射量の晴天モデルを使用してよい。例えば、所与の時刻に対応するテストデータセットにおけるデータ点について、そのデータ点についての放射履歴データは、その時刻についての晴天放射量で割られてよい。正規化された後、テストデータセットは、時刻から独立し、すなわち、太陽天頂角と無関係であってよい。正規化された値は、晴天指数と呼ばれてよい。
正規化された放射データ(例えば、テストデータの晴天指標)に基づき、テストデータセットは気象クラスにクラスタリングされてよい。気象クラスのいくつかの例は、晴天、曇天、又は一部曇りを含んでよい。夫々のクラスは、対応する特性の組を有してよい。特性は、気象情報源120にあるものとして記載される気象情報のいずれを含んでもよい。例えば、晴天の気象クラスは、高い放射量及び高い日中温度及び低い日中降水確率を有してよい。特性の組は、放射量の予測不可能性の程度を更に含んでよい。例えば、曇天又は一部曇りの気象クラスは、放射量の予測不可能性の程度が晴天クラスよりも高くてよい。テストデータセットを気象クラスにクラスタリングする一例は、図2を参照して図示及び記載されてよい。いくつかの実施形態において、テストデータセットはまた、太陽天頂角に基づきクラスタリングされてよい(例えば、日の出から約2時間後まで及び日の入り前の約2時間については低い太陽天頂角、並びに日の出から約2時間後から日の入りの約2時間前までは高い太陽天頂角)。2時間は一例として使用されており、一方、この値は、高度、周囲の山々若しくは他の地形、又は太陽エネルギ発生の量を増大若しくは減少させ得る他の要因を含む様々な要因に応じても変化し得ることが認識されるであろう。例えば、近似時間は、30分、1時間、又は1時間半を更に含んでよい。そのような及び他の実施形態において、太陽天頂角に基づくクラスタリングは、気象クラス内のサブクラスであってよい。例えば、テストデータセットの朝の時間内のデータ点は、1つのサブクラスにおいてクラスタリングされてよく、テストデータセットの夕方の時間内のデータ点は、他のサブクラスにおいてクラスタリングされてよい。例えば、低い太陽天頂角の時間の間に、地上障害物(例えば、木々)は、高い太陽天頂角によるデータ点と比較したときに、バラツキの増大を生じさせ得る。地上障害物に加えて、地理的位置も、低い太陽天頂角でのサブクラスのバラツキを引き起こし得る。例えば、カリフォルニア州において、朝のマリンレイヤー雲は、空の大部分を覆うことがあり、一方、夕方には、マリン雲は、朝の時間よりも大幅に消散し得る。
図2は、太陽光発電予測を評価することにおいて使用される、例となるプロットの組200である。例えば、例となるプロットの組200は、正規化されたテストデータセットを気象クラスにクラスタリングするために使用されてよい。プロット210は、正規化されたテストデータセットのヒストグラムを含んでよい。ヒストグラムは、所与の晴天指数の確率密度を表してよい。例えば、所与の晴天指数について、その晴天指数に対応する正規化されたテストデータセットにおける夫々のデータ点は、所与の晴天指数に対応する全てのデータ点のパーセンテージがプロット210上でヒストグラムにおいてプロットされ得るように、合計されてよい。そのような及び他の実施形態において、低い太陽天頂角によるデータ点は、別のヒストグラムにより1つ以上のサブクラスにおいて分類されてよい。
例となるプロットの組200は、ヒストグラムに適合された曲線225を表すプロット220を更に含んでよい。曲線225は曲線の結合を表してよく、その結合における曲線の夫々は、別々の相異なる気象クラスを表してよい。例えば、曲線のそのような結合は、混合ガウスモデル(Gaussian mixture model)に相当してよい。いくつかの実施形態において、曲線の夫々は、結合曲線225から別個の曲線に分けられてよい。例えば、プロット230は、第1の曲線232、第2の曲線234、及び第3の曲線236のような、別個の曲線を表してよい。第1の曲線232は、曇天の気象クラスを表してよい。プロット230で表されているように、第1の曲線232は、確率分布がより散開されるように、予測不可能性の範囲が第3の曲線236よりも広い。同様に、第2の曲線234は、一部曇りの気象クラスを表してよく、予測不可能性の範囲が第3の曲線236よりも広い。プロット230で表されているように、第1の曲線232は、第2の曲線234よりも全体的に低い晴天指数を有してよい。第3の曲線236は、晴天の気象クラスを表してよい。晴天の気象クラスは、他の気象クラスに対して最も高い晴天指数を有してよく、他の2つの気象クラスと比較したときに、より狭い分布曲線、すなわち、より低い程度の予測不可能性を有してよい。いくつかの実施形態において、プロット220の曲線225は、夫々のクラスがガウス分布モデルによってモデリングされ得るように、混合ガウスモデルに相当してよい。そのような及び他の実施形態において、第1、第2、及び第3の曲線232、234、及び236は、夫々がガウス分布を表してよい。
いくつかの実施形態において、正規化されたテストデータセットにおける夫々のデータ点は、データ点が最も近く一致するクラス特有曲線はどれかを判定することによって、特定の気象クラスによりクラスタリングされてよい。そうすることによって、フレームワークは確立されてよく、それに対して新しい予測が解析され得る。
変更、追加、及び削除は、本開示の本質から外れることなしに、図2の例となるプロットの組200に対してなされてよい。例えば、使用される気象クラスはいくつであってもよく、プロット230における気象クラスの夫々について対応する曲線が存在し得る。加えて、例となるプロット200は、例示を目的として与えられており、本開示の実施形態は、例となるプロットの組200を生成することなしに実施されてよい。
図1に戻ると、予測を解析するためのフレームワークが確立され得た後に、新しい予測、例えば、放射量の予測、が取得されてよい。そのような予測は、制御装置111で気象情報源120から受け取られてよく、あるいは、制御装置111によって生成されてよい。制御装置111は、新しい予測の正確さ、すなわち、新しい予測の予測不可能性の程度を決定するよう、新しい予測を解析してよい。
いくつかの実施形態において、新しい予測の最近傍がテストデータセットにおいて見つけられてよい。例えば、新しい予測とテストデータセットとの間の類似度が解析されてよい。いくつかの実施形態において、予測された値に対する最近値が最近傍であってよい。いくつかの実施形態において、予測は、気象情報の複数の成分を含んでよく、成分の一部又は全ての間の類似度が考慮されてよく、いくつかの成分は他よりも重く重み付けされてよい。そのような及び他の実施形態において、新しい予測は、最近傍に基づき気象クラスにおいて分類されてよい。例えば、新しい予測は、最近傍と同じクラスに置かれてよい。そのような及び他の実施形態において、新しい予測の太陽天頂角も、新しい予測が高い太陽天頂角を有するかどうかを判定するために解析されてよい。そのような及び他の実施形態において、新しい予測が低い太陽天頂角を有する場合には、新しい予測は推定(projecting)と見なされてよい。
新しい予測が気象クラスにおいて分類された後、新しい予測は、新しい予測の正確さ、又は新しい予測の予測不可能性の程度を決定するよう解析されてよい。例えば、新しい予測についての信頼区間は、新しい予測が属する気象クラスの特性に基づき、又は新しい予測の最近傍の特性に基づき、決定されてよい。例えば、制御装置111は、新しい予測についての予測不可能性の程度及び/又は信頼区間を決定してよい。
いくつかの実施形態において、制御装置111が新しい予測を解析した後、制御装置111は、新しい予測の正確さに基づきVPP110の動作を変更してよい。例えば、制御装置111は、発電の出力を増大又は低減するように太陽光発電装置112、風力発電装置113、化石燃料発電装置114、及び/又は水力発電装置115へメッセージを送ってよい。例えば、制御装置111は、出力を増大するように太陽光発電装置112に指示してよく、出力を低減するように非太陽光発電装置(例えば、風力発電装置113、化石燃料発電装置114、及び/又は水力発電装置115)のいずれかに指示してよい。そのような及び他の実施形態において、変更は、新しい予測の信頼区間のような解析の出力に比例してよい。追加的に、又は代替的に、制御装置111は、新しい予測の解析に基づき、追加の電力を購入又は取得し、あるいは、エネルギ市場130から条件付きで追加の電力を購入又は取得してよい。追加的に、又は代替的に、制御装置111は、新しい予測の解析に基づき、VPP110がエネルギ市場130において電力を提供している価格を設定、修正、変更、値下げ及び/又は値上げしてよい。例えば、新しい予測の正確さを用いると、VPP110は、最低限の太陽エネルギ生産を承知することができる。最低限のエネルギ生産を知ることは、最悪の場合のシナリオにおいてどれくらい追加のエネルギが(対象エネルギの他に)必要とされるかを制御装置111に知らせることができる。制御装置111は、購入又は代替の電力生成を通じて如何なる追加のエネルギも取得してよく、あるいは、そのような取得のため準備をしてよい。
制御装置111は、1つ以上のプロセッサ116(プロセッサ116と呼ばれる。)と、メモリ117と、1つ以上の記憶装置118(記憶装置118と呼ばれる。)と、1つ以上の通信装置119(通信装置119と呼ばれる。)とを含んでよい。
プロセッサ116は、様々なコンピュータハードウェア又はソフトウェアモジュールを含む如何なる適切な特別目的又は汎用のコンピュータ、コンピューティングエンティティ、又はプロセッシングデバイスも含んでよく、メモリ117及び/又は記憶装置118のような如何なる適用可能なコンピュータ可読記憶媒体でも記憶されている命令を実行するよう構成されてよい。例えば、プロセッサ116は、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP;digital signal processor)、特定用途向け集積回路(ASIC;application-specific integrated circuit)、フィールドプログラマブルゲートアレイ(FPGA;Field-Programmable Gate Array)、あるいは、プログラム命令を解釈するよう及び/若しくは実行するよう並びに/又はデータを処理するよう構成された何らかの他のデジタル又はアナログ回路構成を含んでよい。図1では単一のプロセッサとして表されているが、プロセッサ116は、本開示で記載されている動作をいくつでも個々に又は集合的に実施するよう構成されたプロセッサをいくつでも含んでよい。加えて、プロセッサの1つ以上は、一緒に結合されているか又は遠隔で通信する異なる装置のような、1つ以上の異なる電子機器において存在してよい。
いくつかの実施形態において、プロセッサ116は、メモリ117に記憶されているプログラム命令を解釈及び/若しくは実行し及び/又はデータを処理してよい。いくつかの実施形態において、プロセッサ116は、記憶装置118からプログラム命令をフェッチし、プログラム命令をメモリ117にロードしてよい。プログラム命令がメモリ117にロードされた後、プロセッサ116はプログラム命令を実行してよい。いくつかの実施形態において、プロセッサ116による命令の実行は、VPP110及び/又は制御装置111の動作を監督及び/又は制御してよい。例えば、プロセッサ116は、電気出力を増大又は低減するように制御装置111からのメッセージを発電装置の1つ以上へ送ってよい。
メモリ117及び記憶装置118は、コンピュータ実行可能命令又はデータ構造を搬送する又は記憶しているコンピュータ可読記憶媒体を含んでよい。そのようなコンピュータ可読記憶媒体は、プロセッサ116のような汎用又は特別目的のコンピュータによってアクセスされ得る如何なる利用可能な媒体も含んでよい。例として、制限なしに、そのようなコンピュータ可読記憶媒体は、RAM、ROM、EEPROM、CD−ROM若しくは他の光ディスクストレージ、磁気ディスクストレージ若しくは他の磁気記憶デバイス、フラッシュメモリデバイス(例えば、ソリッドステートメモリデバイス)、ハードディスク(HDD)、ソリッドステートドライブ(SSD)、あるいは、コンピュータ実行可能命令又はデータの形で所望のプログラムコードを搬送又は記憶するために使用されてよく且つ汎用又は特別目的のコンピュータによってアクセスされ得る何らかの他の記憶媒体を含む、有形な又は非一時的なコンピュータ可読記憶媒体を含んでよい。コンピュータ可読記憶媒体は、スタンドアローンの媒体として、又は何らかのシステム、コンポーネント、若しくは装置の部分として、構成されてよい。コンピュータ可読記憶媒体は、物理媒体として、又は仮想化媒体として、構成されてよい。それらの組み合わせも、コンピュータ可読記憶媒体の適用範囲内に含まれてよい。コンピュータ実行可能命令は、例えば、プロセッサ116に特定の動作又は動作群を実施させるよう構成された命令及びデータを含んでよい。
通信装置119は、情報を送信又は受信するよう構成された如何なるコンポーネント、装置、システム、又はそれらの組み合わせも含んでよい。通信装置119は、他の場所若しくは同じ場所にある他の装置と、又は同じシステム内にある他のコンポーネントとさえ通信してよい。通信装置119は、制限なしに、モデム、ネットワークカード(無線又は有線)、赤外線通信装置、無線通信装置(例えば、アンテナ)、及び/又はチップセット(例えば、Bluetooth(登録商標)デバイス、802.6デバイス(例えば、メトロポリタンエリアネットワーク(MAN;Metropolitan Area Network))、Wi−Fi(登録商標)装置、WiMAX(登録商標)装置、セルラー通信設備、など)、及び/又は同様のものを含んでよい。通信装置119は、ネットワーク140及び/又は本開示で記載されているいずれかの他の装置(発電装置のいずれかを含む。)とデータが交換されるようにしてよい。
変更、追加、又は削除は、本開示の適用範囲から逸脱することなしにシステム100に対してなされてよい。例えば、いくつかの実施形態において、システム100は、原子力発電装置のような、明示的に図示又は記載されていない他のコンポーネントをいくつでも含んでよい。他の例として、制御装置111は、単一の装置として表されているが、通信上結合されているいくつの装置又はシステムであってもよい。例えば、制御装置111によって実施されるタスクのいくつかは、サーバ、クラウドベースのサービス、又は何らかの他の遠隔装置によって実施されてよく、ウェブブラウザ、携帯機器、などを用いてクライアントによって呼び出されてよい。
図3は、本開示の少なくとも一実施形態に従って、太陽光発電システムを作動させる方法300のフロー図の例である。方法300は、如何なる適切なシステム、機器、又は装置によっても実施されてよい。例えば、図1のシステム100、VPP110、又は制御装置111は、方法300に関連した動作の1つ以上を実施してよい。別個のブロックにより表されているが、方法300のブロックの1つ以上に関連したステップ及び動作は、所望の実施に応じて、更なるブロックに分けられても、より少ないブロックへとまとめられても、あるいは、削除されてもよい。
ブロック305で、太陽光発電システムは、電力を生成するために使用されてよい。そのような発電システムは、VPP(例えば、図1のVPP110)を含んでよく、あるいは、太陽光発電装置を備えた如何なる他のシステムであってもよい。
ブロック310で、太陽光に代わるエネルギの発生源は、電力を生成するために使用されてよい。そのようなエネルギ源は、VPPの部分であってよく、あるいは、何らかの他の発電装置であってよい。そのようなエネルギ源の例は、風力、原子力、化石燃料(例えば、石炭、天然ガス)、又は水力発電装置を含んでよい。
ブロック315で、太陽光発電システムの位置での放射履歴データのテストデータは、取得される。例えば、気象情報源(例えば、図1の気象情報源120)は、履歴データを太陽光発電システムへ送信してよい。他の例として、太陽光発電システムが放射履歴データを生成、収集、又は記録してよい。例えば、制御装置(例えば、図1の制御装置111)は、センサを用いて太陽光発電システムでの局所的な気象を計測することで放射履歴データを生成してよい。いくつかの実施形態において、テストデータセットは、放射量データに加えて追加の気象情報を含んでよい。
ブロック320で、テストデータセットは、太陽光発電システムの位置での放射量の晴天モデルに基づき正規化されてよい。例えば、所与の時刻でのテストデータセットにおける夫々の履歴データは、その時刻での晴天の間の典型的な放射量で割られた放射量を有してよい。そのような正規化されたテストデータセットは、考えられている時刻から独立しており、すなわち、太陽天頂角と無関係であることができる。制御装置がそのような正規化を実施してよい。
ブロック325で、テストデータセットは、気象クラスにクラスタリングされてよい。夫々の気象クラスは、対応する特性の組を有する。例えば、正規化されたテストデータセットのヒストグラムは、所与の晴天指数がテストデータにおいて現れる確率に基づき生成されてよい。ヒストグラムは、データに適合された曲線を有してよく、その場合に、夫々の気象クラスについての曲線は、ヒストグラムに適合された曲線から導出されてよい。テストデータセットにおける夫々のデータ点は、所与のデータ点が特定の気象クラスに関連した曲線にどの程度適合するのかに基づき、気象クラスにクラスタリングされてよい。他の例として、複数の特性が考えられてよく、夫々のデータ点は、所与の気象クラスの特性の組の中の複数の特性によるデータ点の類似度の解析に基づき分類されてよい。追加的に、又は代替的に、特性は、テストデータセットにおける所与のデータ点が所与の気象クラスにクラスタリングされるかどうかへの支配的な影響を1つ以上の特性が有し得るように、非一様に重み付けされてよい。制御装置はそのようなクラスタリングを実施してよい。
ブロック330で、放射量の予測は取得されてよい。例えば、予測は、気象情報源から太陽光発電システムへ送信されてよい。追加的に、又は代替的に、太陽光発電システムが放射量の予測を生成してよい。いくつかの実施形態において、予測は、放射量に加えて、気象情報の他のコンポーネントも含んでよい。
ブロック335で、予測は、気象クラスのうちの1つに分類されてよい。例えば、予測の最近傍が特定され、その最近傍に基づき、予測は気象クラスのうちの1つに分類されてよい。いくつかの実施形態において、そのような分類は、最近傍の特性及び/又は気象クラス予測により1つ以上の特性を比較及び/又は解析することを含んでよい。
ブロック340で、予測の信頼区間は決定されてよい。そのような決定は、予測が分類される気象クラスに基づいてよく、気象クラスの予測不可能性の程度、気象クラスの確率分布、及び/又は気象クラスの何らかの他の特性のような、気象クラスの特性のうちの1つ以上に基づいてよい。信頼区間の決定は、予測の最近傍の1つ以上の特性及び/又は気象クラスにも基づいてよい。制御装置がそのような決定を実施してよい。
ブロック345で、信頼区間が閾値よりも大きいかどうかが決定されてよい。そのような決定は、制御装置によって行われてよい。ブロック350で、信頼区間が閾値よりも大きいとの決定の後、太陽光発電システムの動作は変更されてよい。例えば、太陽光に代わるエネルギの発生源の出力は増やされてよく、あるいは、太陽光発電システムによって請求される太陽エネルギの価格は上げられてよく、あるいは、その両方があってよい。追加的に、又は代替的に、太陽光発電装置の出力は低減されてよい。そのような変更は、例えば、制御装置が、太陽光に代わるエネルギの発生源へメッセージを送ること、太陽光発電システムへメッセージを送ること、又はエネルギ市場(例えば、図1のエネルギ市場130)へメッセージを送ることによって、起こってよい。
ブロック355で、信頼区間が閾値よりも大きくないとの決定の後、太陽光発電システムの動作は変更されてよい。例えば、太陽光に代わるエネルギの発生源の出力は低減されてよく、あるいは、太陽光発電システムによって請求される太陽エネルギの価格は下げられてよく、あるいは、その両方があってよい。追加的に、又は代替的に、太陽光発電装置の出力は増やされてよい。そのような変更は、例えば、制御装置が、太陽光に代わるエネルギの発生源へメッセージを送ること、太陽光発電システムへメッセージを送ること、又はエネルギ市場へメッセージを送ることによって、起こってよい。
従って、方法300は、太陽光発電システムを作動さするために使用されてよい。変更、追加、又は削除は、本開示の適用範囲から逸脱することなしに方法300に対してなされてよい。例えば、ブロック305又は310のいずれかは削除されてよい。他の例として、方法300の動作は、異なる順序で実施されてよい。追加的に、又は代替的に、2つ以上の動作が同時に実施されてよい。更には、説明されている動作及び操作は、例としてのみ与えられており、動作及び操作のいくつは、本開示の本質から外れることなしに、任意であっても、より少ない動作及び操作へとまとめられても、あるいは、更なる動作及び操作へと展開されてもよい。
図4A及び4Bは、本開示の少なくとも1つの実施形態に従って、太陽光発電装置を含む仮想電力プラントを作動させる方法400のフロー図の例である。方法400は、如何なる適切なシステム、機器、又は装置によっても実施されてよい。例えば、図1のシステム100、VPP110、又は制御装置111は、方法400に関連した動作の1つ以上を実施してよい。別個のブロックにより表されているが、方法400のブロックの1つ以上に関連したステップ及び動作は、所望の実施に応じて、更なるブロックに分けられても、より少ないブロックへとまとめられても、あるいは、削除されてもよい。
ブロック405で、太陽光発電装置(例えば、図1の太陽光発電装置112)及び少なくとも1つの非太陽光発電装置(例えば、図1の風力発電装置113、化石燃料発電装置114、又は水力発電装置115のいずれか)を備えたVPP(例えば、図1のVPP110)は、電力を生成するために使用されてよい。
ブロック410で、太陽光発電装置の位置での放射履歴データのテストデータセットは、取得されてよい。ブロック410は、図3のブロック315と同様であってよい。
ブロック415で、テストデータセットは、太陽光発電装置の位置での放射量の晴天モデルに基づき正規化されてよい。そのような正規化は、テストデータセットにおける夫々の履歴データについて、所与の時刻でのデータ点の放射量をその所与の時刻での晴天の間の典型的な放射量で割ることを含んでよい。そのような正規化は、制御装置(例えば、図1の制御装置111)によって実施されてよい。
ブロック420で、テストデータセットのヒストグラムはプロットされてよい。例えば、図2の例となるプロットの組200の中のプロット210のようなプロットが、正規化されたテストデータセットに基づき生成されてよい。そのようなプロットは、制御装置によって実施されてよい。
ブロック430で、ヒストグラム曲線は、ヒストグラムに当てはめられてよい。そのような曲線の例は、図1のプロット220の曲線225を含む。ヒストグラム曲線は、クラス特有曲線の結合を含む結合曲線を含んでよい。例えば、テストデータセットがクラスタリングされ得る複数の気象クラスの夫々に対応する曲線が存在してよい。そのようなクラスの例は、曇天、一部曇り、又は晴天を含んでよい。そのような曲線の例は、図2の第1、第2、及び第3の曲線232、234、及び236を含んでよい。そのような当てはめ(fitting)は、制御装置によって実施されてよい。
ブロック435で、テストデータセットにおけるデータ点は、クラスのうちの1つにクラスタリングされてよい。いくつかの実施形態において、クラスの夫々は、特定の対応する組を含んでよい。そのような及び他の実施形態において、テストデータセットにおける夫々のデータ点は、所与のデータ点が特定の気象クラスに関連した曲線にどの程度適合するのかに基づき、気象クラスにクラスタリングされてよい。他の例として、複数の特性が考えられてよく、夫々のデータ点は、所与の気象クラスの特性の組の中の複数の特性によるデータ点の類似度の解析に基づき分類されてよい。追加的に、又は代替的に、特性は、テストデータセットにおける所与のデータ点が所与の気象クラスにクラスタリングされるかどうかへの支配的な影響を1つ以上の特性が有し得るように、非一様に重み付けされてよい。制御装置がそのようなクラスタリングを実施してよい。
ブロック440で、放射量の予測は取得されてよい。ブロック440は、図3のブロック330と同様であってよい。
ブロック445(図4Bを参照)で、テストデータセットにおける予測の最近傍は見つけられてよい。例えば、制御装置は、予測に最も類似しているテストデータセット内のデータ点を見つけてよい。そのような検索は、予測の複数の特性及びテストデータセットにおけるデータ点の考慮を含んでよい。いくつかの実施形態において、特性の1つ以上は、予測の最近傍を見つけることにおいて、他の特性よりも重く又は軽く重み付けされてよい。
ブロック450で、予測は、最近傍に基づき気象クラスのうちの1つに分類されてよい。例えば、予測は、最近傍と同じ気象クラスに置かれてよい。追加的に、又は代替的に、気象クラスのサブセットは、最近傍に基づき選択されてよく、気象クラスのサブセットの夫々の特性は、予測の特性と比較されてよい。分類は、制御装置によって実施されてよい。
ブロック455で、予測の信頼区間は決定されてよい。ブロック455は、図3のブロック340と同様であってよい。ブロック460で、信頼区間が閾値よりも大きいかどうかが決定されてよい。ブロック460は、図3のブロック345と同様であってよい。
ブロック465で、信頼区間が閾値よりも大きいとの決定の後、VPPの動作は変更されてよい。例えば、太陽光発電装置の出力は低減されてよく、非太陽光発電装置の出力は増やされてよい。いくつかの実施形態において、そのような増大及び/又は低減は、信頼区間に比例してよい。
ブロック470で、信頼区間が閾値よりも大きくないとの決定の後、VPPの動作は変更されてよい。例えば、太陽光発電装置の出力は増やされてよく、非太陽光発電装置の出力は低減されてよい。いくつかの実施形態において、そのような増大及び/又は低減は、信頼区間に比例してよい。
従って、方法400は、太陽光発電装置を含むVPPを作動させるために使用されてよい。変更、追加、又は削除は、本開示の適用範囲から逸脱することなしに方法400に対してなされてよい。例えば、ブロック405は削除されてよい。他の例として、方法400の動作は、異なる順序で実施されてよい。追加的に、又は代替的に、2つ以上の動作が同時に実施されてよい。更には、説明されている動作及び操作は、例としてのみ与えられており、動作及び操作のいくつは、本開示の本質から外れることなしに、任意であっても、より少ない動作及び操作へとまとめられても、あるいは、更なる動作及び操作へと展開されてもよい。
例として、本開示の少なくとも1つの実施形態の特定の態様は、式及び/又は数学演算を参照して記載されてよい。例えば、履歴データから太陽光の将来の確率分布を示すための解析は、

P(yt+h−y^t+h|x

と記載されてよい。ここで、h={1,・・・,H}として、yt+hは、t+hでの実際の予測値を表してよく、y^t+hは、t+hでの予測を表してよく、x=(Y,Zt+h)である。Y={y,・・・,y}は、時間t以前のアナログ観測のベクトルであってよく、Xt+h={z,・・・,z,zt+h}は、時間t+h以前のアナログ外生変数のベクトルであってよい。n個の気象情報変数について、i=1,・・・,t+hとして、z∈Rである。
いくつかの実施形態において、テストデータセットの正規化は、例となる数学演算によって表されてよい。例えば、晴天指数(kt)について、晴天指数は、

=kt(t)=I(t)/I(t) clr

によって正規化されてよい。ここで、I(t)は太陽放射量(例えば、地球規模の放射量又は標準的な放射量のいずれか1つ)であってよく、I(t) clrは、所与の時点についての晴天放射量モデルであってよい。演算は、テストデータの履歴データについて夫々の時点ごとに実施されてよい。
いくつかの実施形態において、ヒストグラムをプロットし及び/又はテストデータを複数のクラスに分類する様々な態様は、数学演算によって表されてよい。例えば、晴天指数に基づきスカイカバーを決定するよう、関数f

kt(f)=f(sky cover,・・・,sky cover

が導入されてよく、関数gは、晴天指数値の確率密度関数をプロットするために利用されてよい。

sky cover(t)=f−1(kt(t))=g(kt(t)
他の例として、夫々のクラスは、

=α+・・・+α

によって記載されるガウス分布モデルによってモデリングされてよい。ここで、gは結合曲線(図2のプロット220の曲線225)を表してよく、α+・・・+αは、結合に寄与する様々なガウス分布モデルを表してよく、αは、所与の気象クラスの確率を示し、Nは、結合曲線における所与の気象クラスのガウス分布曲線の1つを表し、pは、クラスの数を表す。いくつかの実施形態において、低い太陽天頂角を有するデータ点は除外されてよい。いくつかの実施形態において、期待値最大化は、例えば、式

P(Q|y)=(P(y|Q)P|Q)/P(y)

を用いて、テストデータセットにおける夫々のデータ点について正確なクラスを見つけるために使用されてよい。ここで、Qは、i番目の気象クラス(例えば、ヒストグラムから導出されるi番目のクラス)を表す。例えば、曇天、一部曇り、及び晴天のクラスを用いる場合に、iは、クラスの夫々を反復的に繰り返してよい。様々なアルファ値の決定を助けるよう、P(Q)=α及びα+・・・+α=1とし、P(Q)は、次の式によって導出されてよい:
Figure 2017084360
このように、そのような数学演算を用いると、気象クラスの夫々についての夫々の曲線は、結合曲線から取り出されてよい。
いくつかの実施形態において、最近傍を見つけることは、最近傍を見つけるためにk近傍(k−NN;k-nearest neighbor)アルゴリズムを利用してよく、且つ、最近傍までの加重距離のために一般的なパターン探索モデルを利用してよい。例えば、新しい予測を解析するためのテストデータセットは、式

S=(z,s)∈Rmn×{1,・・・,p}

によって表されてよい。Sは、テストデータセットの空間を表してよく、sは、データセットにおける新しい予測点zのラベルを表し、mは、テストデータセットにおける点の数を表してよい。テストデータセットを用いると、予測が所与の気象クラスに属する確率が次の式を用いて予想されてよい:
Figure 2017084360
ここで、Γ(S,z)は、空間Sにおけるそのk個の最近傍を用いてzに対して成される予想を表してよく、N(z、S)は、空間Sにおけるzに対するk個の最近点のインデックスであり、1(e)は、eが真である場合に1であり、eが偽である場合に0である指標関数である。そのような及び他の実施形態において、最近傍のための相似基準は、一般的なパターン探索アルゴリズムを用いて計算された加重距離関数に基づいてよい。関数は、次の式に従う関数であってよい:
Figure 2017084360
ここで、wは重み関数であり、次が成り立つ:
Figure 2017084360
いくつかの実施形態において、予測が所与のクラスに分類された後、Krigingモデルが、予測の信頼区間又は誤差分布を決定するために使用されてよい。そのような解析は、数学式及び/又は演算と見なされてよい。例えば、誤差et+hは、次の式によって特徴付けられてよい:
Figure 2017084360
ここで、ΔYt,spは、クラスsでの予測誤差履歴を表してよく、Rsp(Zt,sp(i),Zt,sp(j))は、ΔYt,sp(i)とΔYt,sp(j)との間の相関モデルを表してよく、rsp(zt+h、ztp)は、et+hとΔYt,sp(i)との間の相関のベクトルであってよく、そして:
Figure 2017084360
Figure 2017084360
いくつかの実施形態において、修正コレスキー(Cholesky)分解は、qが1に設定された状態で、相関行列Rsp(θ)=Csp(θ)Csp (θ)のために使用されてよい。θの値について、最適値は、例えば、次の式を用いて、パターン探索アルゴリズムによって対数尤度を用いて最大化されてよい:
Figure 2017084360
あるいは、それは、次の式を用いて最小化されてよい:
Figure 2017084360
このとき:
Figure 2017084360
それらの値を用いると、誤差予測
[外1]
Figure 2017084360
及びMSEについての予想は、次のように計算されてよい:
Figure 2017084360
ここで、予測誤差の確率分布は、次のように計算されてよい:
Figure 2017084360
ここで、et+hは、誤差の実数値を表してよく、
[外2]
Figure 2017084360
は、本開示に従って計算された誤差分布を表してよい。それらの計算を用いると、予測についての期待値及び誤差の分散は、例えば、次の式によって決定されてよい:
Figure 2017084360
ここで、μは、誤差の平均値を表してよく、σは、誤差に関連した分散を表してよく、そして、誤差
[外3]
Figure 2017084360
の分布が求められ得る。
本開示で使用されるように、語「モジュール」又は「コンポーネント」は、モジュール又はコンポーネントの動作を実施するよう構成された具体的なハードウェア実施、且つ/あるいは、コンピュータシステムの汎用のハードウェア(例えば、コンピュータ可読媒体、プロセッシングデバイス、など)に記憶され及び/又はそれによって実行されるソフトウェアオブジェクト又はソフトウェアルーチンに言及してよい。いくつかの実施形態において、本開示で記載される種々のコンポーネント、モジュール、エンジン、及びサービスは、コンピュータシステムにおいて(例えば、別個のスレッドとして)実行するオブジェクト又はプロセスとして実装されてよい。本開示で記載されるシステム及び方法のいくつかは、ソフトウェア(汎用のハードウェアに記憶され及び/又はそれによって実行される。)において実装されるものとして一般に記載されるが、具体的なハードウェア実施又はソフトウェアと具体的なハードウェア実施との組み合わせも可能であり、考えられている。本明細書において、「コンピューティングエンティティ」は、本開示において以前に定義された如何なるコンピュータシステム、又はコンピュータシステムで実行される如何なるモジュール若しくはモジュールの組み合わせであってもよい。
本開示で、特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本文)で使用される語は、一般的に、“非限定的な(open)”用語として意図されている(例えば、語「含んでいる(including)」は、“〜を含んでいるが、〜に制限されない”との意に解釈されるべきであり、語「備えている(having)」は、「少なくとも〜を備えている」との意に解釈されるべきであり、語「含む(includes)」は、“〜を含むが、〜に制限されない”との意に解釈されるべきであり、語「包含している(containing)」は、“〜を包含しているが、〜に制限されない”との意に解釈されるべきである、など。)。
加えて、導入されたクレーム記載(introduced claim recitation)において特定の数が意図される場合、そのような意図は当該クレーム中に明確に記載され、そのような記載がない場合は、そのような意図も存在しない。例えば、理解を促すために、後続の添付された特許請求の範囲では、「少なくとも1つの(at least one)」及び「1つ以上の(one or more)」といった導入句を使用し、クレーム記載を導入することがある。しかし、このような句を使用するからといって、「a」又は「an」といった不定冠詞によりクレーム記載を導入した場合に、たとえ同一のクレーム内に、「1つ以上の」又は「少なくとも1つの」といった導入句と「a」又は「an」といった不定冠詞との両方が含まれるとしても、当該導入されたクレーム記載を含む特定のクレームが、当該記載事項を1しか含まない例に限定されるということが示唆されると解釈されるべきではない(例えば、「a」及び/又は「an」は、「少なくとも1つの」又は「1つ以上の」を意味すると解釈されるべきである。)。定冠詞を使用してクレーム記載を導入する場合にも同様のことが当てはまる。
更には、導入されたクレーム記載において特定の数が明示されている場合であっても、そのような記載は、通常、少なくとも記載された数を意味するように解釈されるべきであることは、当業者には理解されるであろう(例えば、他に修飾語のない、単なる「2つの記載事項」という記載がある場合、この記載は、少なくとも2つの記載事項、又は2つ以上の記載事項を意味する。)。更に、「A、B及びCなどのうち少なくとも1つ」又は「A、B及びCなどのうちの1つ以上」に類する表記が使用される場合、一般的に、そのような構造は、Aのみ、Bのみ、Cのみ、AとBの両方、AとCの両方、BとCの両方、及び/又はAとBとCの全て、などを含むよう意図される。
更に、2つ以上の選択可能な用語を表す如何なる離接語及び/又は離接句も、明細書、特許請求の範囲、又は図面のいずれであろうと、それら用語のうちの1つ、それらの用語のうちのいずれか、あるいは、それらの用語の両方を含む可能性を意図すると理解されるべきである。例えば、「A又はB」という句は、「A又はB」、あるいは、「A及びB」の可能性を含むことが理解されるべきである。
ここで挙げられている全ての例及び条件付き言語は、当該技術の促進に本発明者によって寄与される概念及び本発明を読者が理解するのを助ける教育上の目的を意図され、そのような具体的に挙げられている例及び条件に制限されないと解釈されるべきである。本発明の実施形態が詳細に記載されてきたが、様々な変更、置換、及び代替が、本発明の主旨及び適用範囲から逸脱することなしに行われてよい。
上記の実施形態に加えて、以下の付記を開示する。
(付記1)
太陽エネルギ予測を評価する方法であって、
少なくとも1つの太陽光発電装置を含む仮想電力プラントで発電し、
前記太陽光発電装置の位置での歴史的な放射量のテストデータセットを得、
所与の時点での前記テストデータセットを前記所与の時点での晴天放射量で割ることによって、前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、
晴天指数の確率密度に関わる前記テストデータセットのヒストグラムをプロットし、
複数のクラスの夫々についてのクラス特有曲線の結合を含むヒストグラム曲線を前記ヒストグラムに適合させ、
前記クラスの夫々についての前記クラス特有曲線を取り出し、
各点が前記クラス特有曲線にどの程度適合するのかに基づき、前記クラスのうちの1つにより前記テストデータセットにおける各点をクラスタリングし、
前記太陽光発電装置でのある時点についての放射量の予測を得、
前記放射量の予測と前記テストデータセットとの間の類似度に基づき、前記テストデータセットにおいて、前記予測に対して類似した気象条件を持った前記テストデータセットにおける点を含む前記予測の最近傍を見つけ、
前記予測の前記最近傍に基づき、該最近傍が属する前記複数のクラスのうちの1つに前記予測を分類し、
前記複数のクラスのうちの前記1つの放射量の予測不可能性の程度に基づき、前記予測の信頼区間を決定し、
前記信頼区間に基づき、該信頼区間に基づき前記太陽光発電装置の増加出力又は減少出力のうちの一方を実施することによって、前記仮想電力プラントでの発電を変更する
ことを含む方法。
(付記2)
前記信頼区間は、Krigingモデルを用いて決定される、
付記1に記載の方法。
(付記3)
前記仮想電力プラントは、少なくとも1つの非太陽光発電装置を更に含み、
前記仮想電力プラントでの発電を変更することは、
前記信頼区間に比例した、前記太陽光発電装置の増加出力及び前記非太陽光発電装置の減少出力、並びに
前記信頼区間に比例した、前記太陽光発電装置の減少出力及び前記非太陽光発電装置の増加出力
のうちの1つを実施することを含む、
付記1に記載の方法。
(付記4)
前記最近傍を見つけることは、近傍までの加重距離に基づきk近傍法を使用することを含み、前記近傍までの加重距離は、一般的なパターン探索アルゴリズムを用いて決定される、
付記1に記載の方法。
(付記5)
前記非太陽光発電装置は、風力発電装置、水力発電装置、石炭発電装置、原子力発電装置、又は天然ガス発電装置のうちの1つ以上を含む、
付記3に記載の方法。
(付記6)
太陽光発電予測を解析する方法であって、
太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、
前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、該正規化されたデータセットは太陽天頂角から独立しており、
前記テストデータセットを複数の気象クラスにクラスタリングし、夫々の気象クラスは特性の組を含み、
前記太陽光発電システムでの所与の将来の時点についての放射量の予測を得、
前記予測を前記複数の気象クラスのうちの1つに分類し、
前記複数の気象クラスのうちの前記1つの前記特性の組に基づき、前記予測の信頼区間を決定し、
前記予測の前記信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は該エネルギの発生源の減少出力のうちの一方を実施する
ことを含む方法。
(付記7)
前記特性の組は、晴天、曇天、及び一部曇り空のうちの少なくとも1つを含む雲量を含む、
付記6に記載の方法。
(付記8)
前記特性の組は、放射量の予測不可能性の程度を含み、
前記複数の気象クラスの夫々は、放射量の予測不可能性の程度が異なっている、
付記6に記載の方法。
(付記9)
前記特性の組は、季節、場所、雲形成、雲クラス、又はスカイカバーのうちの1つ以上を含む、
付記6に記載の方法。
(付記10)
前記放射量の予測は、サードパーティによって生成される、
付記6に記載の方法。
(付記11)
前記太陽光発電システムを用いて電力を生成し、
前記エネルギの発生源を用いて電力を生成する
ことを更に含む付記6に記載の方法。
(付記12)
前記エネルギの発生源は、風力発電、水力発電、石炭発電、原子力発電、又は天然ガス発電のうちの1つ以上を含む、
付記6に記載の方法。
(付記13)
前記テストデータセットを正規化することは、所与の時点での前記テストデータセットを前記所与の時点での晴天放射量で割ることを含む、
付記6に記載の方法。
(付記14)
前記テストデータセットを複数の気象クラスにクラスタリングすることは、
晴天指数の確率密度に関わる前記テストデータセットのヒストグラムをプロットし、
夫々のクラスについてのクラス特有曲線の結合を含むヒストグラム曲線を前記ヒストグラムに適合させ、
前記クラスの夫々についての前記クラス特有曲線を取り出し、
各点が前記クラス特有曲線にどの程度適合するのかに基づき、前記テストデータセットにおける各点を前記クラスのうちの1つと関連付ける
ことを含む、付記66に記載の方法。
(付記15)
前記予測を前記複数の気象クラスのうちの1つに分類することは、前記予測に対して類似した気象条件を持った前記テストデータセットにおける点を表す前記予測の最近傍を見つけることを含み、
前記予測の信頼区間を決定することは、前記最近傍が属するクラスの放射量の予測不可能性の程度に更に基づく、
付記6に記載の方法。
(付記16)
前記最近傍は、前記予測とは異なる時刻を含む、
付記15に記載の方法。
(付記17)
前記太陽光発電システムは、仮想電力プラントとして統合された、少なくとも1つの太陽光発電装置を含む複数の個別的な発電装置を有する、
付記6に記載の方法。
(付記18)
前記信頼区間に基づき前記太陽エネルギの価格を変更すること
を更に含む付記6に記載の方法。
(付記19)
太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、
前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、該正規化されたデータセットは太陽天頂角から独立しており、
前記テストデータセットを複数の気象クラスにクラスタリングし、夫々の気象クラスは特性の組を含み、
前記太陽光発電システムでの所与の将来の時点についての放射量の予測を得、
前記予測を前記複数の気象クラスのうちの1つに分類し、
前記複数の気象クラスのうちの前記1つの前記特性の組に基づき、前記予測の信頼区間を決定し、
前記予測の前記信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は該エネルギの発生源の減少出力のうちの一方を実施する
ことを含む動作を実行するか又はその実行を制御するよう1つ以上のプロセッサによって実行可能なコンピュータ可読命令を記憶している非一時的なコンピュータ可読媒体。
(付記20)
前記特性の組は、放射量の予測不可能性の程度を含み、
前記複数の気象クラスの夫々は、放射量の予測不可能性の程度が異なっている、
付記19に記載のコンピュータ可読媒体。
100 システム
110 仮想電力プラント(VPP)
111 制御装置
112 太陽光発電装置
113 風力発電装置
114 化石燃料発電装置
115 水力発電装置

Claims (20)

  1. 太陽エネルギ予測を評価する方法であって、
    少なくとも1つの太陽光発電装置を含む仮想電力プラントで発電し、
    前記太陽光発電装置の位置での歴史的な放射量のテストデータセットを得、
    所与の時点での前記テストデータセットを前記所与の時点での晴天放射量で割ることによって、前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、
    晴天指数の確率密度に関わる前記テストデータセットのヒストグラムをプロットし、
    複数のクラスの夫々についてのクラス特有曲線の結合を含むヒストグラム曲線を前記ヒストグラムに適合させ、
    前記クラスの夫々についての前記クラス特有曲線を取り出し、
    各点が前記クラス特有曲線にどの程度適合するのかに基づき、前記クラスのうちの1つにより前記テストデータセットにおける各点をクラスタリングし、
    前記太陽光発電装置でのある時点についての放射量の予測を得、
    前記放射量の予測と前記テストデータセットとの間の類似度に基づき、前記テストデータセットにおいて、前記予測に対して類似した気象条件を持った前記テストデータセットにおける点を含む前記予測の最近傍を見つけ、
    前記予測の前記最近傍に基づき、該最近傍が属する前記複数のクラスのうちの1つに前記予測を分類し、
    前記複数のクラスのうちの前記1つの放射量の予測不可能性の程度に基づき、前記予測の信頼区間を決定し、
    前記信頼区間に基づき、該信頼区間に基づき前記太陽光発電装置の増加出力又は減少出力のうちの一方を実施することによって、前記仮想電力プラントでの発電を変更する
    ことを含む方法。
  2. 前記信頼区間は、Krigingモデルを用いて決定される、
    請求項1に記載の方法。
  3. 前記仮想電力プラントは、少なくとも1つの非太陽光発電装置を更に含み、
    前記仮想電力プラントでの発電を変更することは、
    前記信頼区間に比例した、前記太陽光発電装置の増加出力及び前記非太陽光発電装置の減少出力、並びに
    前記信頼区間に比例した、前記太陽光発電装置の減少出力及び前記非太陽光発電装置の増加出力
    のうちの1つを実施することを含む、
    請求項1に記載の方法。
  4. 前記最近傍を見つけることは、近傍までの加重距離に基づきk近傍法を使用することを含み、前記近傍までの加重距離は、一般的なパターン探索アルゴリズムを用いて決定される、
    請求項1に記載の方法。
  5. 前記非太陽光発電装置は、風力発電装置、水力発電装置、石炭発電装置、原子力発電装置、又は天然ガス発電装置のうちの1つ以上を含む、
    請求項3に記載の方法。
  6. 太陽光発電予測を解析する方法であって、
    太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、
    前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、該正規化されたデータセットは太陽天頂角から独立しており、
    前記テストデータセットを複数の気象クラスにクラスタリングし、夫々の気象クラスは特性の組を含み、
    前記太陽光発電システムでの所与の将来の時点についての放射量の予測を得、
    前記予測を前記複数の気象クラスのうちの1つに分類し、
    前記複数の気象クラスのうちの前記1つの前記特性の組に基づき、前記予測の信頼区間を決定し、
    前記予測の前記信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は該エネルギの発生源の減少出力のうちの一方を実施する
    ことを含む方法。
  7. 前記特性の組は、晴天、曇天、及び一部曇り空のうちの少なくとも1つを含む雲量を含む、
    請求項6に記載の方法。
  8. 前記特性の組は、放射量の予測不可能性の程度を含み、
    前記複数の気象クラスの夫々は、放射量の予測不可能性の程度が異なっている、
    請求項6に記載の方法。
  9. 前記特性の組は、季節、場所、雲形成、雲クラス、又はスカイカバーのうちの1つ以上を含む、
    請求項6に記載の方法。
  10. 前記放射量の予測は、サードパーティによって生成される、
    請求項6に記載の方法。
  11. 前記太陽光発電システムを用いて電力を生成し、
    前記エネルギの発生源を用いて電力を生成する
    ことを更に含む請求項6に記載の方法。
  12. 前記エネルギの発生源は、風力発電、水力発電、石炭発電、原子力発電、又は天然ガス発電のうちの1つ以上を含む、
    請求項6に記載の方法。
  13. 前記テストデータセットを正規化することは、所与の時点での前記テストデータセットを前記所与の時点での晴天放射量で割ることを含む、
    請求項6に記載の方法。
  14. 前記テストデータセットを複数の気象クラスにクラスタリングすることは、
    晴天指数の確率密度に関わる前記テストデータセットのヒストグラムをプロットし、
    夫々のクラスについてのクラス特有曲線の結合を含むヒストグラム曲線を前記ヒストグラムに適合させ、
    前記クラスの夫々についての前記クラス特有曲線を取り出し、
    各点が前記クラス特有曲線にどの程度適合するのかに基づき、前記テストデータセットにおける各点を前記クラスのうちの1つと関連付ける
    ことを含む、請求項6に記載の方法。
  15. 前記予測を前記複数の気象クラスのうちの1つに分類することは、前記予測に対して類似した気象条件を持った前記テストデータセットにおける点を表す前記予測の最近傍を見つけることを含み、
    前記予測の信頼区間を決定することは、前記最近傍が属するクラスの放射量の予測不可能性の程度に更に基づく、
    請求項6に記載の方法。
  16. 前記最近傍は、前記予測とは異なる時刻を含む、
    請求項15に記載の方法。
  17. 前記太陽光発電システムは、仮想電力プラントとして統合された、少なくとも1つの太陽光発電装置を含む複数の個別的な発電装置を有する、
    請求項6に記載の方法。
  18. 前記信頼区間に基づき前記太陽エネルギの価格を変更すること
    を更に含む請求項6に記載の方法。
  19. 太陽光発電システムの位置での歴史的な放射量のテストデータセットを得、
    前記位置での放射量の晴天モデルに基づき前記テストデータセットを正規化し、該正規化されたデータセットは太陽天頂角から独立しており、
    前記テストデータセットを複数の気象クラスにクラスタリングし、夫々の気象クラスは特性の組を含み、
    前記太陽光発電システムでの所与の将来の時点についての放射量の予測を得、
    前記予測を前記複数の気象クラスのうちの1つに分類し、
    前記複数の気象クラスのうちの前記1つの前記特性の組に基づき、前記予測の信頼区間を決定し、
    前記予測の前記信頼区間に基づき、太陽エネルギに代わるエネルギの発生源の増加出力又は該エネルギの発生源の減少出力のうちの一方を実施する
    ことを含む動作を実行するか又はその実行を制御するよう1つ以上のプロセッサによって実行可能なコンピュータ可読命令を記憶している非一時的なコンピュータ可読媒体。
  20. 前記特性の組は、放射量の予測不可能性の程度を含み、
    前記複数の気象クラスの夫々は、放射量の予測不可能性の程度が異なっている、
    請求項19に記載のコンピュータ可読媒体。
JP2016206173A 2015-10-23 2016-10-20 太陽光発電システムの作動方法 Active JP6759966B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/921,988 US10103548B2 (en) 2015-10-23 2015-10-23 Operating a solar power generating system
US14/921,988 2015-10-23

Publications (2)

Publication Number Publication Date
JP2017084360A true JP2017084360A (ja) 2017-05-18
JP6759966B2 JP6759966B2 (ja) 2020-09-23

Family

ID=58490533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206173A Active JP6759966B2 (ja) 2015-10-23 2016-10-20 太陽光発電システムの作動方法

Country Status (3)

Country Link
US (1) US10103548B2 (ja)
JP (1) JP6759966B2 (ja)
DE (1) DE102016220705A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256690A (zh) * 2018-02-07 2018-07-06 国网辽宁省电力有限公司电力科学研究院 基于形状参数置信区间的光伏发电预测方法
CN108667077A (zh) * 2018-04-10 2018-10-16 燕山大学 一种风蓄联合系统优化调度方法
CN109242218A (zh) * 2018-11-05 2019-01-18 南方电网科学研究院有限责任公司 一种基于svm的高原山区的风电功率预测方法和装置
WO2020148940A1 (ja) * 2019-01-18 2020-07-23 株式会社ヒデ・ハウジング 日射量出現確率分布解析法、日射量出現確率分布解析システム、日射量出現確率分布解析プログラム、日射量正規化統計解析システム、日射量正規化統計解析法および日射量正規化統計解析プログラム
JP2020115101A (ja) * 2019-01-18 2020-07-30 株式会社ヒデ・ハウジング 日射量正規化統計解析システム、日射量正規化統計解析法および日射量正規化統計解析プログラム
JP2020115100A (ja) * 2019-01-18 2020-07-30 株式会社ヒデ・ハウジング 日射量出現確率分布解析法、日射量出現確率分布解析システムおよび日射量出現確率分布解析プログラム
US10998725B2 (en) 2019-01-18 2021-05-04 Hide Housing Corporation Electric power generation prediction method based on expected value calculation, electric power generation prediction system based on expected value calculation, and electric power generation prediction program product based on expected value calculation
KR20220085187A (ko) * 2020-12-15 2022-06-22 부강이엔에스 주식회사 전기 에너지 제어 모드를 구비하는 건물일체형 태양광·태양열 시스템
CN116154768A (zh) * 2023-04-14 2023-05-23 南方电网数字电网研究院有限公司 采用点预测误差经验分布逆变换的功率区间预测方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663500B2 (en) * 2011-07-25 2020-05-26 Clean Power Research, L.L.C. System and method for estimating photovoltaic energy generation through linearly interpolated irradiance observations with the aid of a digital computer
US11921478B2 (en) 2015-02-25 2024-03-05 Clean Power Research, L.L.C. System and method for estimating periodic fuel consumption for cooling of a building with the aid of a digital computer
RU2630193C1 (ru) * 2016-04-18 2017-09-05 Общество С Ограниченной Ответственностью "Яндекс" Способ и система для создания прогноза погоды
US11300707B2 (en) * 2016-08-02 2022-04-12 International Business Machines Corporation Solar forecasting using machine learned cloudiness classification
CN107276077A (zh) * 2017-06-26 2017-10-20 国网山东省电力公司菏泽供电公司 基于三点式平均值评估法的含风电电网风险评估方法
CN107832869A (zh) * 2017-10-18 2018-03-23 国网上海市电力公司 一种风力发电与光伏发电的发电功率预测方法
CN108288861B (zh) * 2018-02-01 2021-04-27 福州大学 风电场群风储系统选址定容联合优化的方法
US10886739B2 (en) 2018-05-31 2021-01-05 Trane International Inc. Systems and methods for grid appliances
CN109494792B (zh) * 2018-11-21 2022-05-13 国网青海省电力公司 光伏电站弃光电量的确定方法及装置
CN110048420B (zh) * 2019-05-15 2021-08-13 广东电网有限责任公司 一种配电网随机优化调度的方法、装置和介质
CN111008739B (zh) * 2019-12-04 2021-03-30 华北电力大学 一种热电联产虚拟电厂优化调控及收益分配方法及系统
CN111525553B (zh) * 2020-04-22 2021-09-07 东南大学 一种预测功率优化分段下新能源出力误差可信区间估计法
DE102022118176A1 (de) * 2022-07-20 2024-01-25 Rolls-Royce Solutions GmbH Verfahren zum Betreiben eines Leistungsbereitstellungsnetzwerks, Steuervorrichtung zur Durchführung eines solchen Verfahrens und Leistungsbereitstellungsnetzwerk mit einer solchen Steuervorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142790A (ja) * 2010-01-08 2011-07-21 Fuji Electric Co Ltd 太陽光発電量予測システムおよび太陽光発電量予測方法
US20130054662A1 (en) * 2010-04-13 2013-02-28 The Regents Of The University Of California Methods of using generalized order differentiation and integration of input variables to forecast trends
JP2015167439A (ja) * 2014-03-03 2015-09-24 国立大学法人岐阜大学 太陽光発電装置の発電量予測システム及び発電量予測方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300141B2 (en) * 2010-11-18 2016-03-29 John J. Marhoefer Virtual power plant system and method incorporating renewal energy, storage and scalable value-based optimization
US20140278107A1 (en) * 2013-03-12 2014-09-18 Locus Energy, Llc Methods and systems for real-time solar forecasting incorporating a ground network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142790A (ja) * 2010-01-08 2011-07-21 Fuji Electric Co Ltd 太陽光発電量予測システムおよび太陽光発電量予測方法
US20130054662A1 (en) * 2010-04-13 2013-02-28 The Regents Of The University Of California Methods of using generalized order differentiation and integration of input variables to forecast trends
JP2015167439A (ja) * 2014-03-03 2015-09-24 国立大学法人岐阜大学 太陽光発電装置の発電量予測システム及び発電量予測方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256690B (zh) * 2018-02-07 2021-10-08 国网辽宁省电力有限公司电力科学研究院 基于形状参数置信区间的光伏发电预测方法
CN108256690A (zh) * 2018-02-07 2018-07-06 国网辽宁省电力有限公司电力科学研究院 基于形状参数置信区间的光伏发电预测方法
CN108667077A (zh) * 2018-04-10 2018-10-16 燕山大学 一种风蓄联合系统优化调度方法
CN109242218A (zh) * 2018-11-05 2019-01-18 南方电网科学研究院有限责任公司 一种基于svm的高原山区的风电功率预测方法和装置
WO2020148940A1 (ja) * 2019-01-18 2020-07-23 株式会社ヒデ・ハウジング 日射量出現確率分布解析法、日射量出現確率分布解析システム、日射量出現確率分布解析プログラム、日射量正規化統計解析システム、日射量正規化統計解析法および日射量正規化統計解析プログラム
JP2020115100A (ja) * 2019-01-18 2020-07-30 株式会社ヒデ・ハウジング 日射量出現確率分布解析法、日射量出現確率分布解析システムおよび日射量出現確率分布解析プログラム
US20200394255A1 (en) 2019-01-18 2020-12-17 Hide Housing Corporation Insolation probability distribution analysis method, insolation probability distribution analysis system, insolation probability distribution analysis program product,insolation normalization statistical analysis method, insolation normalization statistical analysis system, and insolation normalization statistical analysis program product
US10977341B2 (en) 2019-01-18 2021-04-13 Hide Housing Corporation Insolation probability distribution analysis method, insolation probability distribution analysis system, insolation probability distribution analysis program product, insolation normalization statistical analysis method, insolation normalization statistical analysis system, and insolation normalization statistical analysis program product
US10998725B2 (en) 2019-01-18 2021-05-04 Hide Housing Corporation Electric power generation prediction method based on expected value calculation, electric power generation prediction system based on expected value calculation, and electric power generation prediction program product based on expected value calculation
JP2020115101A (ja) * 2019-01-18 2020-07-30 株式会社ヒデ・ハウジング 日射量正規化統計解析システム、日射量正規化統計解析法および日射量正規化統計解析プログラム
KR20220085187A (ko) * 2020-12-15 2022-06-22 부강이엔에스 주식회사 전기 에너지 제어 모드를 구비하는 건물일체형 태양광·태양열 시스템
KR102534042B1 (ko) * 2020-12-15 2023-05-18 부강이엔에스 주식회사 전기 에너지 제어 모드를 구비하는 건물일체형 태양광·태양열 시스템
CN116154768A (zh) * 2023-04-14 2023-05-23 南方电网数字电网研究院有限公司 采用点预测误差经验分布逆变换的功率区间预测方法
CN116154768B (zh) * 2023-04-14 2023-06-27 南方电网数字电网研究院有限公司 采用点预测误差经验分布逆变换的功率区间预测方法

Also Published As

Publication number Publication date
US10103548B2 (en) 2018-10-16
DE102016220705A1 (de) 2017-04-27
US20170117711A1 (en) 2017-04-27
JP6759966B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6759966B2 (ja) 太陽光発電システムの作動方法
JP6693330B2 (ja) 太陽光発電システムの動作
Zhou et al. Deep Learning Enhanced Solar Energy Forecasting with AI‐Driven IoT
Jawaid et al. Predicting daily mean solar power using machine learning regression techniques
US20170286838A1 (en) Predicting solar power generation using semi-supervised learning
Saeed et al. An optimal approach of wind power assessment using Chebyshev metric for determining the Weibull distribution parameters
Gupta et al. Solar energy prediction using decision tree regressor
Alomari et al. A predictive model for solar photovoltaic power using the Levenberg-Marquardt and Bayesian regularization algorithms and real-time weather data
Vanderstar et al. Solar forecasting using remote solar monitoring stations and artificial neural networks
Hofierka et al. The spatial distribution of photovoltaic power plants in relation to solar resource potential: the case of the Czech Republic and Slovakia
Tosun et al. Solar power generation analysis and forecasting real-world data using LSTM and autoregressive CNN
CN117374956A (zh) 一种针对综合能源站光伏发电的短期预测方法
Elhammoudy et al. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification
Das et al. Optimized support vector regression-based model for solar power generation forecasting on the basis of online weather reports
Liu et al. Optimizing the tilt angle of solar collector under clear sky by particle swarm optimization method
Mellit Sizing of photovoltaic systems: a review
Deng et al. A survey of the researches on grid-connected solar power generation systems and power forecasting methods based on ground-based cloud atlas
Simankov et al. Review of models for estimating and predicting the amount of energy produced by solar energy systems
Oh et al. Two-Stage Neural Network Optimization for Robust Solar Photovoltaic Forecasting
Aupke et al. Impact of clustering methods on machine learning-based solar power prediction models
Baruque et al. Small-wind turbine power generation prediction from atmospheric variables based on intelligent techniques
Fu et al. Photovoltaic Power Prediction Based on Gray-scale Satellite Cloud Image and Optimized LSTM
Yang et al. Short-Term Photovoltaic Power Interval Prediction Based on the Improved Generalized Error Mixture Distribution and Wavelet Packet-LSSVM
Ibrahim Modelling of intraday Photovoltaic power production
Barua et al. A Statistical Estimation of Solar Power for Energy Mix in Bangladesh

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150