JP2017083025A - Heat Pump Structure - Google Patents

Heat Pump Structure Download PDF

Info

Publication number
JP2017083025A
JP2017083025A JP2015208330A JP2015208330A JP2017083025A JP 2017083025 A JP2017083025 A JP 2017083025A JP 2015208330 A JP2015208330 A JP 2015208330A JP 2015208330 A JP2015208330 A JP 2015208330A JP 2017083025 A JP2017083025 A JP 2017083025A
Authority
JP
Japan
Prior art keywords
way valves
adsorption
pair
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015208330A
Other languages
Japanese (ja)
Other versions
JP6406208B2 (en
Inventor
坪内 正克
Masakatsu Tsubouchi
正克 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015208330A priority Critical patent/JP6406208B2/en
Publication of JP2017083025A publication Critical patent/JP2017083025A/en
Application granted granted Critical
Publication of JP6406208B2 publication Critical patent/JP6406208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

PROBLEM TO BE SOLVED: To contribute to the reduction of the weight and size of a constitution as a whole.SOLUTION: In a heat pump structure 1, a high-temperature heat medium and a low-temperature/cold-temperature heat medium are exchanged for adsorption-type heat pumps 2, 3 by using four-way valves 21 to 24. The adsorption-side four-way valves 21, 22 are arranged between adsorption parts 11, 12 while being aligned in a first opposing direction X being a direction in which the heat pumps 2, 3 are aligned, and also in a third opposing direction which is orthogonal to a second opposing direction Y being a direction in which the adsorption parts 11, 12 and evaporation condensation parts 13, 14 are aligned. Similarly, the evaporation-side four-way valves 23, 24 are arranged between the evaporation condensation parts 13, 14 while being aligned in the third opposing direction. The four-way valves 21 to 24 have connecting parts 71 to 74 at both sides of the first opposing direction X and at both sides of the second opposing direction Y. Then, the connecting parts 71, 72 at both the sides of the first opposing direction X in the four-way valves 21 to 24 oppose outlet parts or inlet parts of heat medium passages in the adsorption parts 11, 12 and the evaporation condensation parts 13, 14.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒の吸着及び脱離を行う吸着部と、冷媒の蒸発及び凝縮を行う蒸発凝縮部とが各々に設けられた一対の吸着式ヒートポンプに対し、4つの4方弁を用いて高温、低温及び冷温の熱媒体の入替えを行うヒートポンプ構造に関する。   The present invention relates to a pair of adsorption heat pumps each provided with an adsorption unit for adsorbing and desorbing refrigerant and an evaporating and condensing unit for evaporating and condensing the refrigerant, using four four-way valves. The present invention also relates to a heat pump structure that replaces a low-temperature and cold heat medium.

下記特許文献1に記載された吸着式冷凍機4は、一対の吸着器(吸着式ヒートポンプ)4a、4bを備えている。一対の吸着器4a、4bは、内部が略真空に保たれると共に冷媒が封入されている。これらの吸着器4a、4b内にはそれぞれ、吸着剤と熱媒体とを熱交換する吸着コア5a、5bと、熱媒体と冷媒とを熱交換する蒸発/凝縮コア6a、6bとが収納されている。   The adsorption refrigeration machine 4 described in Patent Literature 1 below includes a pair of adsorbers (adsorption heat pumps) 4a and 4b. The pair of adsorbers 4a and 4b is maintained in a substantially vacuum inside and is filled with a refrigerant. In these adsorbers 4a and 4b, there are accommodated adsorption cores 5a and 5b for exchanging heat between the adsorbent and the heat medium, and evaporation / condensation cores 6a and 6b for exchanging heat between the heat medium and the refrigerant, respectively. Yes.

吸着コア5a、5b及び蒸発/凝縮コア6a、6bは、各々が2本の配管を介してロータリ式バルブ(4方弁)9a〜9dと個別に接続されており、これら4つの4方弁9a〜9dには、合計8本の配管が接続されている。そして、当該8本の配管及び上記4つの4方弁9a〜9dを用いて、吸着コア5a、5b及び蒸発/凝縮コア6a、6bに対し、高温、低温及び冷温の熱媒体の入替えを行う構成になっている。   The adsorption cores 5a and 5b and the evaporation / condensation cores 6a and 6b are individually connected to rotary valves (four-way valves) 9a to 9d via two pipes, and these four four-way valves 9a. A total of eight pipes are connected to ˜9d. And the structure which replaces | exchanges a heat medium of high temperature, low temperature, and cold temperature with respect to adsorption | suction core 5a, 5b and evaporation / condensation core 6a, 6b using the said 8 piping and said four four-way valve 9a-9d. It has become.

特開2004−239593号公報JP 2004-239593 A

上記構成の吸着式冷凍機4では、第2発熱体3(冷熱源供給先)への冷熱源配管が、蒸発/凝縮コア6a、6b側の4方弁9c、9dに対して吸着コア5a、5b側から接続されているため、吸着コア5a、5b側の4方弁9a、9bの横を通る経路で配管を配策しなければならない。また、室外熱交換器7への配管が、各4方弁9a〜9dと接続されているため、吸着コア5a、5b側の4方弁9a、9bと接続される配管は、蒸発/凝縮コア6a、6b側の4方弁9c、9dの横を通る経路で配策しなければならない。   In the adsorption refrigerator 4 having the above-described configuration, the cold source pipe to the second heating element 3 (cold source supply destination) is provided with the adsorption core 5a, the four-way valves 9c, 9d on the evaporation / condensation cores 6a, 6b side, Since it is connected from the 5b side, it is necessary to route the piping along a path passing next to the four-way valves 9a, 9b on the suction cores 5a, 5b side. Moreover, since the pipes to the outdoor heat exchanger 7 are connected to the four-way valves 9a to 9d, the pipes connected to the four-way valves 9a and 9b on the adsorption cores 5a and 5b side are the evaporation / condensation cores. The route must pass along the side of the four-way valves 9c, 9d on the 6a, 6b side.

このため、吸着コア5a、5b側及び蒸発/凝縮コア6a、6b側の何れの側においても、4方弁9a〜9dの横を通る経路で配管が配策されており、その分だけ少なくとも吸着器4a、4b間の距離が長くなっている。これによって、吸着式冷凍機4の体格や質量が大きくなってしまう。   For this reason, on either side of the adsorption cores 5a and 5b and the evaporation / condensation cores 6a and 6b, the piping is routed along the path passing through the four-way valves 9a to 9d. The distance between the containers 4a and 4b is long. As a result, the physique and mass of the adsorption refrigeration machine 4 are increased.

特に、4方弁9bと吸着コア5bとの間の配管長が、4方弁9bと吸着コア5aとの間の配管長よりも大幅に長くなっている。このように配管が長くなると、それに付随して冷媒量も多くなり、吸着システム全体の体格や質量が大きくなるという問題も生じる。   In particular, the pipe length between the four-way valve 9b and the adsorption core 5b is significantly longer than the pipe length between the four-way valve 9b and the adsorption core 5a. When the piping becomes longer in this way, the amount of refrigerant increases accordingly, which causes a problem that the overall size and mass of the adsorption system increase.

本発明は上記事実を考慮し、全体構成の小型軽量化に寄与するヒートポンプ構造を得ることを目的とする。   In view of the above facts, an object of the present invention is to obtain a heat pump structure that contributes to a reduction in size and weight of the overall configuration.

請求項1に記載の発明に係るヒートポンプ構造は、冷媒の吸着及び脱離を行う吸着部と、冷媒の蒸発及び凝縮を行う蒸発凝縮部とが各々に設けられた一対の吸着式ヒートポンプに対し、4つの4方弁を用いて高温、低温及び冷温の熱媒体の入替えを行うヒートポンプ構造であって、前記一対の吸着式ヒートポンプは、第一対向方向に並んで配置されると共に、各々の前記吸着部と前記蒸発凝縮部とが前記第一対向方向と直交する第二対向方向に並んで配置され、各前記吸着部に設けられた第一熱媒体通路の出口部同士及び入口部同士が互いに向い合うと共に、各前記蒸発凝縮部に設けられた第二熱媒体通路の出口部同士及び入口部同士が互いに向い合っており、前記4つの4方弁は、前記第一対向方向及び前記第二対向方向と直交する第三対向方向に並んで前記各吸着部間に配置された一対の吸着側4方弁と、前記第三対向方向に並んで前記各蒸発凝縮部間に配置された一対の蒸発側4方弁と、からなり、前記一対の吸着側4方弁及び前記一対の蒸発側4方弁は、前記第一対向方向の両側及び前記第二対向方向の両側に、それぞれ接続部を有しており、前記一対の吸着側4方弁の一方は、前記第一対向方向両側の接続部が各前記第一熱媒体通路の前記出口部と向い合っており、前記一対の吸着側4方弁の他方は、前記第一対向方向両側の接続部が各前記第一熱媒体通路の前記入口部と向い合っており、前記一対の蒸発側4方弁の一方は、前記第一対向方向両側の接続部が各前記第二熱媒体通路の前記出口部と向い合っており、前記一対の蒸発側4方弁の他方は、前記第一対向方向両側の接続部が各前記第二熱媒体通路の前記入口部と向い合っている。   The heat pump structure according to the first aspect of the present invention is directed to a pair of adsorption heat pumps each provided with an adsorption unit that performs adsorption and desorption of a refrigerant and an evaporation condensation unit that performs evaporation and condensation of the refrigerant. A heat pump structure that uses four four-way valves to exchange heat mediums of high temperature, low temperature, and cold temperature, wherein the pair of adsorption heat pumps are arranged side by side in a first opposing direction, and each of the adsorption And the evaporative condensing part are arranged side by side in a second opposing direction orthogonal to the first opposing direction, and the outlet parts and the inlet parts of the first heat medium passage provided in each adsorption part face each other. And the outlet portions and the inlet portions of the second heat medium passage provided in each of the evaporative condensing portions face each other, and the four four-way valves are arranged in the first opposing direction and the second opposing direction. Third pair orthogonal to direction A pair of adsorption side four-way valves arranged between the adsorbing parts arranged in the direction, and a pair of evaporation side four-way valves arranged between the evaporation condensing parts arranged in the third opposing direction. The pair of adsorption side four-way valves and the pair of evaporation side four-way valves have connection portions on both sides in the first opposing direction and both sides in the second opposing direction, respectively, One of the adsorption side four-way valves has the connecting portions on both sides in the first facing direction facing the outlet portions of the first heat medium passages, and the other of the pair of adsorption side four-way valves is the first Connection portions on both sides in one opposite direction face the inlet portions of the first heat medium passages, and one of the pair of evaporation side four-way valves has a connection portion on both sides in the first opposite direction. Facing the outlet of the two heat medium passages, and the other of the pair of evaporation side four-way valves is both in the first opposite direction. The connection portions are face to face with the inlet portion of each of said second heat medium passage.

請求項1に記載の発明では、上記のように構成されているため、上記各4方弁における第二対向方向両側の接続部に接続される配管の配索スペースを、上記各4方弁と一対の吸着式ヒートポンプとの間に設ける必要がない。これにより、上記各4方弁における第二対向方向両側の接続部に接続される配管の配索スペースを、上記各4方弁と一対の吸着式ヒートポンプとの間に設ける場合と比較して、上記各4方弁と一対の吸着式ヒートポンプ(上記各熱媒体通路)とを近接して配置させることができる。その結果、上記各4方弁における第一対向方向両側の接続部と上記各熱媒体通路とを繋ぐ配管を短縮又は省略することが可能になるので、全体構成の小型軽量化に寄与する。   In the invention according to claim 1, since it is configured as described above, the piping space connected to the connecting portions on both sides in the second facing direction of each of the four-way valves is defined as each four-way valve. It is not necessary to provide between a pair of adsorption heat pumps. Thereby, compared with the case where the arrangement space of piping connected to the connection part on the both sides in the second facing direction in each four-way valve is provided between the four-way valve and a pair of adsorption heat pumps, The four-way valves and a pair of adsorption heat pumps (the heat medium passages) can be arranged close to each other. As a result, it becomes possible to shorten or omit the pipes connecting the connecting portions on both sides in the first facing direction of the four-way valves and the heat medium passages, which contributes to the reduction in size and weight of the overall configuration.

請求項2に記載の発明に係るヒートポンプ構造は、請求項1において、前記一対の吸着式ヒートポンプの間で且つ前記一対の吸着側4方弁と前記一対の蒸発側4方弁との間には、前記第三対向方向の両側が開放された空間が形成されている。   A heat pump structure according to a second aspect of the present invention is the heat pump structure according to the first aspect, between the pair of adsorption heat pumps and between the pair of adsorption side four-way valves and the pair of evaporation side four-way valves. A space in which both sides in the third opposing direction are open is formed.

請求項2に記載の発明では、上記各4方弁における第二対向方向両側の接続部のうち、上記空間側の接続部に接続される配管(接続管)を、別部材に遮られることなく、空間の外側へ配索することができる。しかも、これらの配管を上記空間から第三対向方向の何れの側にも配策することができる。したがって、配管の配策自由度が向上する。   In the invention according to claim 2, pipes (connection pipes) connected to the connection parts on the space side among the connection parts on both sides in the second facing direction in the respective four-way valves are not obstructed by another member. Can be routed outside the space. In addition, these pipes can be arranged on either side of the third facing direction from the space. Therefore, the degree of freedom of piping arrangement is improved.

請求項3に記載の発明に係るヒートポンプ構造は、請求項1又は請求項2において、前記空間には、低温の熱媒体が流れる4本の低温接続管が配置されており、前記4本の低温接続管は、前記一対の吸着側4方弁及び前記一対の蒸発側4方弁における前記第二対向方向両側の接続部のうち前記空間側の接続部にそれぞれ接続されている。   A heat pump structure according to a third aspect of the present invention is the heat pump structure according to the first or second aspect, wherein in the space, four low-temperature connection pipes through which a low-temperature heat medium flows are arranged, and the four low-temperature connection pipes are arranged. The connecting pipes are respectively connected to the space-side connecting portions of the connecting portions on both sides in the second facing direction of the pair of adsorption side four-way valves and the pair of evaporation side four-way valves.

請求項3に記載の発明では、一対の吸着式ヒートポンプの間で且つ一対の吸着側4方弁と一対の蒸発側4方弁との間の空間に、低温の熱媒体が流れる4本の低温接続管が配置されている。これにより、例えば上記空間に、高温の熱媒体が流れる高温接続管と、冷温の熱媒体が流れる冷温接続管とが配置される構成と比較して、各接続管間での熱の伝達を少なくするための必要空間の分だけ配管スペースを縮小できる。   In the invention according to claim 3, the four low temperature heat medium flows in the space between the pair of adsorption heat pumps and between the pair of adsorption side four-way valves and the pair of evaporation side four-way valves. A connecting pipe is arranged. Thereby, for example, compared with a configuration in which a high temperature connection pipe through which a high temperature heat medium flows and a cold temperature connection pipe through which a cold heat medium flows are arranged in the space, heat transfer between the connection pipes is reduced. The piping space can be reduced by the amount of space required for the operation.

請求項4に記載の発明に係るヒートポンプ構造は、請求項3において、前記空間には、第一低温分岐配管及び第二低温分岐配管が配置されており、前記第一低温分岐配管は、前記空間の外側へ配索された1本の第一低温集合管を、前記4本の低温接続管のうちの2本に分岐させており、前記第二低温分岐配管は、前記空間の外側へ配索された1本の第二低温集合管を、前記4本の低温接続管のうちの残りの2本に分岐させている。   A heat pump structure according to an invention of a fourth aspect is the heat pump structure according to the third aspect, wherein a first low-temperature branch pipe and a second low-temperature branch pipe are arranged in the space, and the first low-temperature branch pipe is the space. One first low-temperature collecting pipe routed outside is branched into two of the four low-temperature connecting pipes, and the second low-temperature branch pipe is routed outside the space. The one second low-temperature collecting pipe thus branched is branched into the remaining two of the four low-temperature connecting pipes.

請求項4に記載の発明では、4本の低温接続管(4本の配管)がそのまま上記空間の外側へ配策されず、第一低温集合管及び第二低温集合管(2本の配管)に集合されて上記空間の外側へ配索されている。これにより、上記空間の外側における配管の配策スペースを縮小できる。   In the invention according to claim 4, the four low-temperature connecting pipes (four pipes) are not arranged outside the space as they are, and the first low-temperature collecting pipe and the second low-temperature collecting pipe (two pipes). And are routed outside the space. Thereby, the arrangement space of piping outside the space can be reduced.

請求項5に記載の発明に係るヒートポンプ構造は、請求項1〜請求項4の何れか1項において、前記一対の吸着側4方弁及び前記一対の蒸発側4方弁は、前記第一対向方向両側の接続部の端面における前記第一対向方向の位置を揃えて配置されている。   A heat pump structure according to a fifth aspect of the present invention is the heat pump structure according to any one of the first to fourth aspects, wherein the pair of adsorption side four-way valves and the pair of evaporation side four-way valves are the first opposed ones. The positions in the first facing direction on the end faces of the connecting portions on both sides in the direction are arranged to be aligned.

請求項5に記載の発明では、一対の吸着側4方弁及び一対の蒸発側4方弁が上記のように配置されるので、上記各4方弁が第一対向方向にずれて配置された構成と比較して、上記各4方弁と一対の吸着式ヒートポンプとを近接して配置させることが可能になる。これにより、全体構成の小型軽量化に一層寄与する。   In the invention according to claim 5, since the pair of adsorption side four-way valves and the pair of evaporation side four-way valves are arranged as described above, the four-way valves are arranged to be shifted in the first facing direction. Compared to the configuration, each of the four-way valves and the pair of adsorption heat pumps can be arranged close to each other. This further contributes to the reduction in size and weight of the overall configuration.

以上説明したように、本発明に係るヒートポンプ構造では、全体構成の小型軽量化に寄与する。   As described above, the heat pump structure according to the present invention contributes to the reduction in size and weight of the overall configuration.

本発明の第1実施形態に係るヒートポンプ構造を示す正面図である。It is a front view which shows the heat pump structure which concerns on 1st Embodiment of this invention. 同ヒートポンプ構造を図1の矢印Y1方向から見た部分断面図である。It is the fragmentary sectional view which looked at the same heat pump structure from the arrow Y1 direction of FIG. 同ヒートポンプ構造を図1の矢印Y2方向から見た部分断面図である。It is the fragmentary sectional view which looked at the same heat pump structure from the arrow Y2 direction of FIG. 同ヒートポンプ構造の構成部材である4方弁の正面図である。It is a front view of the 4-way valve which is a structural member of the heat pump structure. 同ヒートポンプ構造が適用されて構成された吸着式エアコンの模式図である。It is a mimetic diagram of an adsorption type air-conditioner constituted by applying the heat pump structure. 本発明の第2実施形態に係るヒートポンプ構造を示す図1に対応した正面図である。It is a front view corresponding to Drawing 1 showing the heat pump structure concerning a 2nd embodiment of the present invention.

<第1の実施形態>
以下、図1〜図5を用いて、本発明の第1実施形態に係るヒートポンプ構造1について説明する。図1及び図2に示されるように、本実施形態に係るヒートポンプ構造1は、一対の吸着式ヒートポンプ2、3と、4つの4方弁21〜24とを含んで構成されている。このヒートポンプ構造1は、図4に示される吸着式エアコン10の本体部を構成している。
<First Embodiment>
Hereinafter, the heat pump structure 1 according to the first embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the heat pump structure 1 according to this embodiment includes a pair of adsorption heat pumps 2 and 3 and four four-way valves 21 to 24. The heat pump structure 1 constitutes the main body of the adsorption air conditioner 10 shown in FIG.

この吸着式エアコン10は、ここでは車両用空調装置とされており、液冷式内燃機関であるエンジン4と、エンジン4の冷却液を冷却する低温ラジエータ5と、車室内に配設されたクーラ熱交換器7及びヒータ熱交換器8と、ウォータポンプ61〜63とを含んで構成されている。エンジン4とヒータ熱交換器8とは、高温接続管81、82によって接続されており、エンジン4により駆動されるウォータポンプ61によって、エンジン4とヒータ熱交換器8との間でエンジン4の冷却液を循環させる構成になっている。   The adsorption air conditioner 10 is here a vehicle air conditioner, and is an engine 4 that is a liquid-cooled internal combustion engine, a low-temperature radiator 5 that cools the coolant of the engine 4, and a cooler that is disposed in the passenger compartment. The heat exchanger 7 and the heater heat exchanger 8 and water pumps 61 to 63 are included. The engine 4 and the heater heat exchanger 8 are connected by high-temperature connection pipes 81 and 82, and the engine 4 is cooled between the engine 4 and the heater heat exchanger 8 by a water pump 61 driven by the engine 4. It is configured to circulate the liquid.

なお、図4では、本実施形態に係るヒートポンプ構造1が、エンジン4と低温ラジエータ5との間に配置された例を実線で示しているが、これに限るものではない。すなわち、図4に二点鎖線で示されるヒートポンプ構造1’のように、エンジン4に対して低温ラジエータ5とは反対側に配置された構成にしてもよい。   In addition, in FIG. 4, although the heat pump structure 1 which concerns on this embodiment has shown the example arrange | positioned between the engine 4 and the low temperature radiator 5 with the continuous line, it is not restricted to this. That is, a configuration in which the engine 4 is disposed on the opposite side of the low-temperature radiator 5 as in the heat pump structure 1 ′ indicated by a two-dot chain line in FIG. 4 may be used.

上記の吸着式エアコン10は、高温熱源であるエンジン4の廃熱によって駆動される廃熱駆動エアコンであり、冷媒及び吸着剤が封入された一対の吸着式ヒートポンプ2、3に対し、高温と低温の熱媒体の入替え、及び低温と冷温の熱媒体の入替えを行う。これにより、一対の吸着式ヒートポンプ2、3のうちの一方において冷媒の吸着及び蒸発を行っている間に、他方において冷媒の脱離及び凝縮を行い、これを交互に切り替えることにより、蒸発潜熱による冷房冷温を連続的に得る構成になっている。以下、具体的に説明する。   The adsorption air conditioner 10 is a waste heat drive air conditioner that is driven by waste heat of the engine 4 that is a high temperature heat source, and has a high temperature and a low temperature for the pair of adsorption heat pumps 2 and 3 in which a refrigerant and an adsorbent are enclosed. The heat medium is replaced with a low temperature and a cold heat medium. Thereby, while the refrigerant is adsorbed and evaporated in one of the pair of adsorption heat pumps 2 and 3, the refrigerant is desorbed and condensed on the other side, and this is switched alternately to thereby generate the latent heat of vaporization. The cooling / cooling temperature is continuously obtained. This will be specifically described below.

図1及び図2に示されるように、一対の吸着式ヒートポンプ2、3は、冷媒の吸着及び脱離を行う吸着部11、12と、冷媒の蒸発及び凝縮を行う蒸発凝縮部13、14とを各々が備えている。吸着部11、12及び蒸発凝縮部13、14は、内部が略真空に保たれた状態で冷媒が封入されたステンレス製のケーシング15、16内に収容されている。この冷媒は、例えば、水、アンモニア等とされている。   As shown in FIGS. 1 and 2, the pair of adsorption heat pumps 2 and 3 includes adsorption units 11 and 12 that perform adsorption and desorption of refrigerant, and evaporation and condensation units 13 and 14 that perform vaporization and condensation of the refrigerant. Each is equipped. The adsorbing units 11 and 12 and the evaporating and condensing units 13 and 14 are accommodated in stainless steel casings 15 and 16 in which a refrigerant is sealed in a state where the inside is kept in a substantially vacuum state. This refrigerant is, for example, water, ammonia or the like.

各吸着部11、12には、熱媒体(ここではエンジン4の冷却液)が流れる第一熱媒体通路17、18が形成されている。同様に、各蒸発凝縮部13、14には、熱媒体(ここではエンジン4の冷却液)が流れる第二熱媒体通路19、20が形成されている。吸着部11、12及び蒸発凝縮部13、14は、第一熱媒体通路17、18及び第二熱媒体通路への高温、低温及び冷温の熱媒体の入替えによって加熱及び冷却される。また、各吸着部11、12には、図示しない吸着剤が封入されている。この吸着剤は、例えば、シリガゲル、ゼオライト、活性炭、活性アルミナ等とされている。また、エンジン4の冷却液は、例えば、LLC入りの水等とされている。   In each of the adsorbing portions 11 and 12, first heat medium passages 17 and 18 through which a heat medium (here, the coolant of the engine 4) flows are formed. Similarly, the second heat medium passages 19 and 20 through which the heat medium (here, the coolant of the engine 4) flows are formed in the evaporating and condensing units 13 and 14, respectively. The adsorbing units 11 and 12 and the evaporating and condensing units 13 and 14 are heated and cooled by replacing the high-temperature, low-temperature, and cold heat media into the first heat medium passages 17 and 18 and the second heat medium passage. Further, an adsorbent (not shown) is enclosed in each of the adsorbing portions 11 and 12. Examples of the adsorbent include silica gel, zeolite, activated carbon, activated alumina, and the like. The coolant of the engine 4 is, for example, water containing LLC.

一対の吸着式ヒートポンプ2、3は、図1〜図3に示されるように、第一対向方向Xに並んで配置されると共に、各々に設けられた吸着部11、12と蒸発凝縮部13、14とが第一対向方向Xと直交する第二対向方向Yに並んで配置されている。つまり、吸着部11、12が第一対向方向Xに向かい合って配置されると共に、蒸発凝縮部13、14が第一対向方向Xに向かい合って配置されている。   As shown in FIGS. 1 to 3, the pair of adsorption heat pumps 2, 3 are arranged side by side in the first facing direction X, and the adsorption units 11, 12 and the evaporation condensing unit 13 provided in each. 14 are arranged side by side in a second opposing direction Y orthogonal to the first opposing direction X. That is, the adsorbing portions 11 and 12 are disposed facing the first facing direction X, and the evaporating and condensing portions 13 and 14 are disposed facing the first facing direction X.

そして、図2に示されるように、吸着部11、12に設けられた第一熱媒体通路17、18の出口部17A、18A同士、及び入口部17B、18B同士が、第一対向方向Xに互いに向い合っている。同様に、図3に示されるように、蒸発凝縮部13、14に設けられた第二熱媒体通路19、20の出口部19A、20A同士、及び入口部19B、20B同士が、第一対向方向Xに互いに向い合っている。なお、図2に示される矢印F1、F2、及び図3に示される矢印F3、F4は、第一熱媒体通路17、18及び第二熱媒体通路19、20における熱媒体の流れの方向を示している。   And as FIG. 2 shows, the exit parts 17A and 18A of the 1st heat-medium channel | paths 17 and 18 provided in the adsorption | suction parts 11 and 12 and inlet parts 17B and 18B are in the 1st opposing direction X. Face each other. Similarly, as shown in FIG. 3, the outlet portions 19A and 20A and the inlet portions 19B and 20B of the second heat medium passages 19 and 20 provided in the evaporating and condensing portions 13 and 14 are in the first opposing direction. X faces each other. The arrows F1 and F2 shown in FIG. 2 and the arrows F3 and F4 shown in FIG. 3 indicate the direction of the heat medium flow in the first heat medium passages 17 and 18 and the second heat medium passages 19 and 20. ing.

4つの4方弁21〜24は、吸着部11、12の間に配置された一対の4方弁21、22と、蒸発凝縮部13、14間に配置された一対の4方弁23、24とによって構成されている。一対の4方弁21、22は、本発明に係る「一対の吸着側4方弁」に相当し、一対の4方弁23、24は、本発明に係る「一対の蒸発側4方弁」に相当する。以下、4方弁21、22を、吸着側4方弁21、22と称し、4方弁23、24を、蒸発側4方弁23、24と称する場合がある。   The four four-way valves 21 to 24 are a pair of four-way valves 21 and 22 disposed between the adsorption units 11 and 12 and a pair of four-way valves 23 and 24 disposed between the evaporation condensing units 13 and 14. And is composed of. The pair of four-way valves 21 and 22 correspond to “a pair of adsorption side four-way valves” according to the present invention, and the pair of four-way valves 23 and 24 correspond to “a pair of evaporation side four-way valves” according to the present invention. It corresponds to. Hereinafter, the four-way valves 21 and 22 may be referred to as adsorption-side four-way valves 21 and 22, and the four-way valves 23 and 24 may be referred to as evaporation-side four-way valves 23 and 24.

図4に示されるように、一対の吸着側4方弁21、22及び一対の蒸発側4方弁23、24は、第一対向方向Xの両側に接続部71、72を有すると共に、第二対向方向Yの両側に接続部73、74を有している。また、これらの4方弁21〜24は、駆動部75と、当該駆動部75によって駆動される機構部76とを有している。   As shown in FIG. 4, the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24 have connection portions 71 and 72 on both sides in the first facing direction X, and the second Connection portions 73 and 74 are provided on both sides in the facing direction Y. Each of the four-way valves 21 to 24 includes a drive unit 75 and a mechanism unit 76 driven by the drive unit 75.

これらの4方弁21〜24は、接続部71と接続部73とを連通させ且つ接続部72と接続部74とを連通させた第一状態(図4に実線で示される矢印F5、F6参照)と、接続部72と接続部73とを連通させ且つ接続部71と接続部74とを連通させた第二状態(図4に二点鎖線で示される矢印F7、F8参照)とを取り得る構成になっている。   These four-way valves 21 to 24 are in a first state in which the connecting portion 71 and the connecting portion 73 are communicated and the connecting portion 72 and the connecting portion 74 are communicated (see arrows F5 and F6 indicated by solid lines in FIG. 4). ) And the second state in which the connecting portion 72 and the connecting portion 73 are in communication and the connecting portion 71 and the connecting portion 74 are in communication (see arrows F7 and F8 indicated by a two-dot chain line in FIG. 4). It is configured.

一対の吸着側4方弁21、22は、第一対向方向X及び第二対向方向Yと直交する第三対向方向Zに並んで配置されている。同様に、蒸発側4方弁23、24は、第三対向方向Zに並んで配置されている。但し、一対の吸着側4方弁21、22と、一対の蒸発側4方弁23、24とは、第二対向方向Yにおいて互いに反対向きに(各々の駆動部75が向かい合う姿勢で)配置されている。   The pair of suction side four-way valves 21 and 22 are arranged side by side in a third facing direction Z orthogonal to the first facing direction X and the second facing direction Y. Similarly, the evaporation side four-way valves 23 and 24 are arranged side by side in the third facing direction Z. However, the pair of suction side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24 are arranged in opposite directions in the second facing direction Y (with the respective driving portions 75 facing each other). ing.

また、一対の吸着側4方弁21、22は、第三対向方向Zにおいて互いに反対向きに(各々の駆動部75を互いに反対側へ向けた姿勢で)配置されている。同様に、一対の蒸発側4方弁23、24は、第三対向方向Zにおいて互いに反対向きに(各々の駆動部75を反対側へ向けた姿勢で)配置されている。   Further, the pair of suction side four-way valves 21 and 22 are arranged in opposite directions in the third facing direction Z (in a posture in which each drive unit 75 is directed to the opposite side). Similarly, the pair of evaporation side four-way valves 23 and 24 are disposed in opposite directions in the third facing direction Z (in a posture in which each drive unit 75 is directed to the opposite side).

さらに、一対の吸着側4方弁21、22及び一対の蒸発側4方弁23、24は、第一対向方向Xの両側の端面71A、72A(図4参照:図1〜図3では符号省略)における第一対向方向Xの位置を揃えて配置されている。なお、この「揃えて」には、製造上の多少の誤差(例えば数ミリメートル程度のずれ)があるものが含まれる。   Further, the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24 are end faces 71A and 72A on both sides in the first facing direction X (see FIG. 4: reference numerals are omitted in FIGS. 1 to 3). ) In the first facing direction X. This “alignment” includes those having some manufacturing errors (for example, a deviation of several millimeters).

また、本実施形態では、一対の吸着側4方弁21、22は、第三対向方向Zに延びる弁軸(機構部76の回転軸)が、図2に示される同一の軸77上に配置された構成になっている。同様に、一対の蒸発側4方弁23、24は、第三対向方向Zに延びる弁軸(機構部76の回転軸)が、図3に示される同一の軸78上に配置された構成になっている。   In the present embodiment, the pair of suction side four-way valves 21 and 22 has a valve shaft (rotating shaft of the mechanism portion 76) extending in the third facing direction Z arranged on the same shaft 77 shown in FIG. It has been configured. Similarly, the pair of evaporation side four-way valves 23 and 24 has a configuration in which a valve shaft (rotating shaft of the mechanism portion 76) extending in the third facing direction Z is disposed on the same shaft 78 shown in FIG. It has become.

一方の吸着側4方弁21の接続部71、72は、第一熱媒体通路17、18の出口部17A、18Aに対して第一対向方向Xに向い合っており、配管(吸着部接続管)51、52を介して出口部17A、18Aと接続されている。他方の吸着側4方弁22の接続部71、72は、第一熱媒体通路17、18の入口部17B、18Bに対して第一対向方向Xに向い合っており、配管(吸着部接続管)53、54を介して入口部17B、18Bと接続されている。   The connection portions 71 and 72 of the one suction side four-way valve 21 face the first facing direction X with respect to the outlet portions 17A and 18A of the first heat medium passages 17 and 18, and are connected to a pipe (adsorption portion connection pipe). ) The outlets 17A and 18A are connected via 51 and 52. The connection portions 71 and 72 of the other adsorption side four-way valve 22 face the first facing direction X with respect to the inlet portions 17B and 18B of the first heat medium passages 17 and 18, and are connected to a pipe (adsorption portion connection pipe). ) Are connected to the inlet portions 17B and 18B via 53 and 54.

同様に、一方の蒸発側4方弁23の接続部71、72は、第二熱媒体通路19、20の出口部19A、20Aに対して第一対向方向Xに向い合っており、配管(蒸発凝縮部接続管)55、56を介して出口部19A、20Aと接続されている。他方の蒸発側4方弁24の接続部71、72は、第二熱媒体通路19、20の入口部19B、20Bに対して第一対向方向Xに向い合っており、配管(蒸発凝縮部接続管)57、58を介して入口部19B、20Bと接続されている。   Similarly, the connection portions 71 and 72 of the one evaporation side four-way valve 23 face the first facing direction X with respect to the outlet portions 19A and 20A of the second heat medium passages 19 and 20, and the piping (evaporation) The outlets 19A and 20A are connected via condensing part connecting pipes 55 and 56. The connection portions 71 and 72 of the other evaporation side four-way valve 24 face the first facing direction X with respect to the inlet portions 19B and 20B of the second heat medium passages 19 and 20, and are connected to the piping (evaporation condensing portion connection). Pipes) 57 and 58 and connected to the inlet portions 19B and 20B.

そして、配管51、52の管軸が同軸上に配置され、配管53、54の管軸が同軸上に配置され、配管55、56の管軸が同軸上に配置され、配管57、58の管軸が同軸上に配置されている。また、配管51、52の管軸と、配管53、54の管軸と、配管55、56の管軸と、配管57、58の管軸とが、それぞれ平行になるように配置されている。なお、上記の「同軸上」及び「平行」は、厳密なものではなく、多少の誤差があるものが含まれる。   The pipe axes of the pipes 51 and 52 are coaxially arranged, the pipe axes of the pipes 53 and 54 are coaxially arranged, the pipe axes of the pipes 55 and 56 are coaxially arranged, and the pipes of the pipes 57 and 58 are arranged. The shaft is arranged coaxially. Further, the pipe axes of the pipes 51 and 52, the pipe axes of the pipes 53 and 54, the pipe axes of the pipes 55 and 56, and the pipe axes of the pipes 57 and 58 are arranged in parallel. Note that the above “coaxial” and “parallel” are not exact and include those with some errors.

また、図1に示されるように、一対の吸着式ヒートポンプ2、3の間で且つ一対の吸着側4方弁21、22と一対の蒸発側4方弁23、24との間には、第三対向方向Zの両側が開放された空間60が形成されている。なお、図1〜図3においては、空間60における第二対向方向Yの寸法を矢印Aで示し、空間60における第一対向方向Xの寸法を矢印Bで示している。   Further, as shown in FIG. 1, between the pair of adsorption heat pumps 2 and 3 and between the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24, A space 60 in which both sides in the three opposing directions Z are opened is formed. 1 to 3, the dimension in the second facing direction Y in the space 60 is indicated by an arrow A, and the dimension in the first facing direction X in the space 60 is indicated by an arrow B.

この空間60には、低温の熱媒体(ここではエンジン4の冷却液)が流れる4本の低温接続管33〜36(図1〜3では一部のみ図示)が配置されている。4本の低温接続管33〜36は、一対の吸着側4方弁21、22及び一対の蒸発側4方弁23、24における第二対向方向Yの両側の接続部73、74のうち、空間60側の接続部74にそれぞれ接続されている。   In this space 60, four low-temperature connection pipes 33 to 36 (only a part of which are shown in FIGS. 1 to 3) through which a low-temperature heat medium (here, the coolant of the engine 4) flows are arranged. The four low-temperature connection pipes 33 to 36 are spaces among the connection portions 73 and 74 on both sides in the second facing direction Y in the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24. Each is connected to a connection portion 74 on the 60 side.

詳細には、低温接続管33は、吸着側4方弁21の接続部74に接続されており、低温接続管34は、吸着側4方弁22の接続部74に接続されており、低温接続管35は、蒸発側4方弁23の接続部74に接続されており、低温接続管36は、蒸発側4方弁24の接続部74に接続されている。   Specifically, the low temperature connection pipe 33 is connected to the connection part 74 of the adsorption side four-way valve 21, and the low temperature connection pipe 34 is connected to the connection part 74 of the adsorption side four way valve 22, so that the low temperature connection is established. The pipe 35 is connected to the connection part 74 of the evaporation side four-way valve 23, and the low temperature connection pipe 36 is connected to the connection part 74 of the evaporation side four-way valve 24.

低温接続管33、35は、空間60の外側へ配索されると共に、図示しない分岐配管に接続されており、当該分岐配管を介して図4に示される低温接続管43の一端部と接続されている。この低温接続管43の他端部は、低温ラジエータ5の熱媒体入口部に接続されている。同様に、低温接続管34、36は、空間60の外側へ配索されると共に、図示しない分岐配管に接続されており、当該分岐配管を介して図4に示される低温接続管44の一端部と接続されている。この低温接続管44の他端部は、低温ラジエータ5の熱媒体出口部に接続されている。この低温接続管44の他端側には、ウォータポンプ63が設けられている。   The low temperature connection pipes 33 and 35 are routed outside the space 60 and connected to a branch pipe (not shown), and are connected to one end of the low temperature connection pipe 43 shown in FIG. 4 via the branch pipe. ing. The other end of the low temperature connecting pipe 43 is connected to the heat medium inlet of the low temperature radiator 5. Similarly, the low temperature connection pipes 34 and 36 are routed outside the space 60 and connected to a branch pipe (not shown), and one end portion of the low temperature connection pipe 44 shown in FIG. 4 via the branch pipe. Connected with. The other end of the low-temperature connection pipe 44 is connected to the heat medium outlet of the low-temperature radiator 5. A water pump 63 is provided on the other end side of the low temperature connection pipe 44.

また、吸着側4方弁21、22における空間60とは反対側の接続部73には、高温接続管31、32が接続されている。これらの高温接続管31、32は、吸着部11、12の吸着剤から冷媒を脱離させるための高温の熱媒体(エンジン4の廃熱)を、第一熱媒体通路17、18に導入するための配管である。これらの高温接続管31、32は、図4に示される高温接続管81、82に、図示しない分岐配管を介して接続されている。   Moreover, the high temperature connection pipes 31 and 32 are connected to the connection part 73 on the opposite side to the space 60 in the adsorption side four-way valves 21 and 22. These high-temperature connection pipes 31 and 32 introduce a high-temperature heat medium (waste heat of the engine 4) for desorbing the refrigerant from the adsorbents of the adsorption parts 11 and 12 into the first heat medium passages 17 and 18. It is piping for. These high temperature connection pipes 31 and 32 are connected to the high temperature connection pipes 81 and 82 shown in FIG. 4 via a branch pipe (not shown).

また、吸着側4方弁23、24における空間60とは反対側の接続部73には、冷温接続管37、38が接続されている。これらの冷温接続管37、38は、冷房用のクーラ熱交換器7に対して冷媒の気化潜熱を供給するための冷温の熱媒体を、第二熱媒体通路13、14に導入するための配管である。一方の冷温接続管37は、吸着側4方弁23の接続部73とクーラ熱交換器7の熱媒体入口部とを接続しており、他方の冷温接続管38は、吸着側4方弁23の接続部73とクーラ熱交換器7の熱媒体出口部とを接続している。冷温接続管38の中間部には、ウォータポンプ62が設けられている。   Moreover, the cold / hot connection pipes 37 and 38 are connected to the connection part 73 on the opposite side to the space 60 in the adsorption side four-way valves 23 and 24. These cold temperature connection pipes 37 and 38 are pipes for introducing a cold heat medium for supplying the latent heat of vaporization of the refrigerant to the cooling cooler heat exchanger 7 into the second heat medium passages 13 and 14. It is. One cold temperature connecting pipe 37 connects the connection portion 73 of the adsorption side four-way valve 23 and the heat medium inlet portion of the cooler heat exchanger 7, and the other cold temperature connecting pipe 38 is the adsorption side four way valve 23. Are connected to the heat medium outlet of the cooler heat exchanger 7. A water pump 62 is provided at an intermediate portion of the cold / hot connection pipe 38.

なお、図1では、配管53、54、57、58、高温接続管31、及び冷温接続管38が、配管51、52、55、56、高温接続管32、及び冷温接続管37の背後に位置しているため、配管53、54、57、58、高温接続管31、及び冷温接続管38の符号に括弧を付している。   In FIG. 1, the pipes 53, 54, 57, 58, the high temperature connection pipe 31, and the cold / hot connection pipe 38 are located behind the pipes 51, 52, 55, 56, the high temperature connection pipe 32, and the cold / hot connection pipe 37. Therefore, the reference numerals of the pipes 53, 54, 57, 58, the high temperature connection pipe 31, and the cold / hot connection pipe 38 are parenthesized.

上記構成のヒートポンプ構造1を備えた吸着式エアコン10では、4方弁21〜24の駆動部が図示しない制御装置と電気的に接続されている。この制御装置は、車室内を冷房する要求があった場合に、ヒートポンプ構造1の4方弁21〜24を、所定時間おきに前述した第一状態と第二状態とに交互に切り替える。この切り替えは、エンジン4及びウォータポンプ61〜63が作動した状態で行われる。   In the adsorption type air conditioner 10 including the heat pump structure 1 having the above-described configuration, the drive units of the four-way valves 21 to 24 are electrically connected to a control device (not shown). When there is a request for cooling the passenger compartment, this control device switches the four-way valves 21 to 24 of the heat pump structure 1 alternately between the first state and the second state every predetermined time. This switching is performed while the engine 4 and the water pumps 61 to 63 are operating.

4方弁21〜24が第一状態のときは、一方の吸着式ヒートポンプ2において冷媒の吸着及び蒸発が行われ、他方の吸着式ヒートポンプ3において冷媒の蒸発及び凝縮が行われる。具体的には、この第一状態では、低温ラジエータ5と吸着部11の第一熱媒体通路17との間で低温(例えば大気温度より高い40°C程度:以下同じ)の熱媒体が循環する。これにより、吸着部11における冷媒の吸着熱が低温ラジエータ5で放熱される。またこの第一状態では、蒸発凝縮部13における冷媒の蒸発熱によって冷却された冷温(例えば車内温度より低い10°C程度:以下同じ)の熱媒体が、蒸発凝縮部13の第二熱媒体通路19とクーラ熱交換器7との間で循環する。これにより、クーラ熱交換器7に冷房冷温が供給される。   When the four-way valves 21 to 24 are in the first state, the adsorption and evaporation of the refrigerant is performed in one adsorption heat pump 2, and the refrigerant is evaporated and condensed in the other adsorption heat pump 3. Specifically, in this first state, a low-temperature heat medium (for example, about 40 ° C. higher than the atmospheric temperature; the same applies hereinafter) circulates between the low-temperature radiator 5 and the first heat medium passage 17 of the adsorption unit 11. . Thereby, the heat of adsorption of the refrigerant in the adsorption unit 11 is radiated by the low-temperature radiator 5. In this first state, the cooling medium cooled by the evaporation heat of the refrigerant in the evaporating and condensing unit 13 (for example, about 10 ° C. lower than the in-vehicle temperature: the same applies hereinafter) is the second heat medium passage of the evaporating and condensing unit 13. It circulates between 19 and the cooler heat exchanger 7. Thereby, the cooling / cooling temperature is supplied to the cooler heat exchanger 7.

また、この第一状態では、エンジン4と吸着部12の第一熱媒体通路18との間で高温(例えば脱離を促す90°C程度:以下同じ)の熱媒体が循環する。これにより、吸着部12の吸着剤から冷媒が脱離する。さらに、この第一状態では、低温ラジエータ5と蒸発凝縮部14の第二熱媒体通路20との間で低温の熱媒体が循環する。これにより、蒸発凝縮部14における冷媒の凝縮熱が低温ラジエータ5で放熱される。   In this first state, a high-temperature heat medium (for example, about 90 ° C. that promotes desorption: the same applies hereinafter) circulates between the engine 4 and the first heat medium passage 18 of the adsorption unit 12. As a result, the refrigerant is desorbed from the adsorbent of the adsorption unit 12. Furthermore, in this first state, a low-temperature heat medium circulates between the low-temperature radiator 5 and the second heat medium passage 20 of the evaporative condensing unit 14. Thereby, the heat of condensation of the refrigerant in the evaporative condensing unit 14 is radiated by the low-temperature radiator 5.

これに対し、4方弁21〜24が第二状態のときは、他方の吸着式ヒートポンプ3において冷媒の吸着及び蒸発が行われ、一方の吸着式ヒートポンプ2において冷媒の蒸発及び凝縮が行われる。具体的には、この第二状態では、低温ラジエータ5と吸着部12の第一熱媒体通路18との間で低温の熱媒体が循環する。これにより、吸着部12の吸着熱が低温ラジエータ5で放熱される。また、この第二状態では、蒸発凝縮部14における冷媒の蒸発熱によって冷却された冷温の熱媒体が、蒸発凝縮部14の第二熱媒体通路20とクーラ熱交換器7との間で循環する。これにより、クーラ熱交換器7に冷房冷温が供給される。   On the other hand, when the four-way valves 21 to 24 are in the second state, the other adsorption heat pump 3 adsorbs and evaporates the refrigerant, and the one adsorption heat pump 2 evaporates and condenses the refrigerant. Specifically, in this second state, a low-temperature heat medium circulates between the low-temperature radiator 5 and the first heat medium passage 18 of the adsorption unit 12. Thereby, the adsorption heat of the adsorption part 12 is radiated by the low-temperature radiator 5. In this second state, the cold heat medium cooled by the evaporation heat of the refrigerant in the evaporative condensing unit 14 circulates between the second heat medium passage 20 of the evaporative condensing unit 14 and the cooler heat exchanger 7. . Thereby, the cooling / cooling temperature is supplied to the cooler heat exchanger 7.

また、この第二状態では、エンジン4と吸着部11の第一熱媒体通路17との間で高温の熱媒体が循環する。これにより、吸着部11内の吸着剤から冷媒が脱離する。さらに、この第二状態では、低温ラジエータ5と蒸発凝縮部13の第一熱媒体通路19との間で低温の熱媒体が循環する。これにより、蒸発凝縮部13の凝縮熱が低温ラジエータ5で放熱される。   In this second state, a high-temperature heat medium circulates between the engine 4 and the first heat medium passage 17 of the adsorption unit 11. As a result, the refrigerant is desorbed from the adsorbent in the adsorption unit 11. Furthermore, in this second state, a low-temperature heat medium circulates between the low-temperature radiator 5 and the first heat medium passage 19 of the evaporative condensing unit 13. Thereby, the heat of condensation of the evaporating and condensing unit 13 is radiated by the low-temperature radiator 5.

(作用及び効果)
次に、本第1実施形態の作用及び効果について説明する。
(Function and effect)
Next, the operation and effect of the first embodiment will be described.

上記構成のヒートポンプ構造1では、一対の吸着式ヒートポンプ2、3は、第一対向方向Xに並んで配置されており、吸着部11と蒸発凝縮部13、及び吸着部12と蒸発凝縮部14が第一対向方向Xと直交する第二対向方向Yに並んで配置されている。そして、吸着部11、12に設けられた第一熱媒体通路17、18の出口部17A、18A同士及び入口部17B、18B同士が互いに向い合うと共に、蒸発凝縮部13、14に設けられた第二熱媒体通路19、20の出口部19A、20A同士及び入口部19B、19A同士が互いに向い合っている。   In the heat pump structure 1 configured as described above, the pair of adsorption heat pumps 2 and 3 are arranged in the first facing direction X, and the adsorption unit 11 and the evaporation condensing unit 13, and the adsorption unit 12 and the evaporation condensing unit 14 are arranged. They are arranged side by side in a second facing direction Y orthogonal to the first facing direction X. The outlet portions 17A and 18A and the inlet portions 17B and 18B of the first heat medium passages 17 and 18 provided in the adsorption portions 11 and 12 face each other, and the first heat medium passages 17 and 18 are provided in the evaporative condensation portions 13 and 14, respectively. The outlet portions 19A and 20A and the inlet portions 19B and 19A of the two heat medium passages 19 and 20 face each other.

また、吸着部11、12間に配置された一対の吸着側4方弁21、22が第三対向方向Zに並んで配置されると共に、蒸発凝縮部13、14間に配置された一対の蒸発側4方弁23、24が第三対向方向Zに並んで配置されている。そして、上記各4方弁21〜24における第一対向方向Xの両側の接続部71、72が、出口部17A、18A、入口部17B、18B、出口部19A、20A、及び入口部19B、20Bに対して、それぞれ第一対向方向に向い合っている。   In addition, a pair of adsorption side four-way valves 21 and 22 arranged between the adsorption units 11 and 12 are arranged side by side in the third facing direction Z, and a pair of evaporation arranged between the evaporation condensing units 13 and 14. Side four-way valves 23 and 24 are arranged side by side in the third facing direction Z. And the connection parts 71 and 72 of the both sides of the 1st opposing direction X in each said four-way valve 21-24 are outlet part 17A, 18A, inlet part 17B, 18B, outlet part 19A, 20A, and inlet part 19B, 20B. On the other hand, they face each other in the first facing direction.

上記のように構成されているため、4方弁21〜24における第二対向方向Yの両側の接続部73、74に接続される配管(高温接続管31、32、低温接続管33〜36及び冷温接続管37、38)の配索スペースを、4方弁21〜24と吸着式ヒートポンプ2、3との間に設ける必要がない。これにより、接続部73、74に接続される配管の配索スペースを、4方弁21〜24と吸着式ヒートポンプ2、3との間に設ける場合と比較して、4方弁21〜24と吸着式ヒートポンプ2、3とを近接して配置させることができる。   Since it is configured as described above, the pipes connected to the connection portions 73 and 74 on both sides in the second facing direction Y in the four-way valves 21 to 24 (the high temperature connection pipes 31 and 32, the low temperature connection pipes 33 to 36, and It is not necessary to provide a wiring space for the cold and hot connection pipes 37 and 38 between the four-way valves 21 to 24 and the adsorption heat pumps 2 and 3. Thereby, compared with the case where the wiring space of piping connected to the connection parts 73 and 74 is provided between the four-way valves 21 to 24 and the adsorption heat pumps 2 and 3, the four-way valves 21 to 24 and The adsorption heat pumps 2 and 3 can be arranged close to each other.

その結果、4方弁21〜24と熱媒体通路17〜20とを繋ぐ配管51〜58を短縮することが可能になるので、ヒートポンプ構造1の全体構成の小型軽量化に寄与する。また、上記のように配管51〜58を短縮することが可能になるので、4方弁21〜24と熱媒体通路17〜20との間において、配管51〜58及び配管51〜58中の熱媒体の顕熱分が熱的なロスに繋がることを防止又は効果的に抑制できる。したがって、熱的なロスの低減に寄与する。   As a result, the pipes 51 to 58 that connect the four-way valves 21 to 24 and the heat medium passages 17 to 20 can be shortened, which contributes to a reduction in size and weight of the overall configuration of the heat pump structure 1. In addition, since the pipes 51 to 58 can be shortened as described above, the heat in the pipes 51 to 58 and the pipes 51 to 58 is interposed between the four-way valves 21 to 24 and the heat medium passages 17 to 20. It is possible to prevent or effectively suppress the sensible heat of the medium from leading to thermal loss. Therefore, it contributes to reduction of thermal loss.

また、本実施形態では、一対の吸着式ヒートポンプ2、3の間で、且つ一対の吸着側4方弁21、22と一対の蒸発側4方弁23、24との間には、第三対向方向Zの両側が開放された空間60が形成されている。このため、4方弁21〜24における空間60側の接続部74に接続される配管(ここでは低温接続管33〜36)を、別部材に遮られることなく、空間60の外側へ配索することができる。しかも、これらの低温接続管33〜36を空間60から第三対向方向Zの何れの側にも配策することができる。したがって、配管の配策自由度が向上する。   Further, in the present embodiment, there is a third facing between the pair of adsorption heat pumps 2 and 3 and between the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24. A space 60 that is open on both sides in the direction Z is formed. For this reason, piping (here low temperature connection pipes 33-36) connected to connection part 74 by the side of space 60 in four-way valves 21-24 is routed outside space 60, without being blocked by another member. be able to. In addition, these low-temperature connecting pipes 33 to 36 can be routed from the space 60 to any side in the third facing direction Z. Therefore, the degree of freedom of piping arrangement is improved.

また、低温接続管33〜36が空間60側から4方弁21〜24に接続されるため、当該接続のために、吸着側4方弁21、22の間及び蒸発側4方弁23、24の間に低温接続管33〜36の配策経路を確保したり、配管51〜58を伸ばして低温接続管33〜36の配策経路を確保する必要がない。したがって、前述したように、ヒートポンプ構造1の全体構成の小型軽量化に寄与する。   Moreover, since the low temperature connection pipes 33 to 36 are connected to the four-way valves 21 to 24 from the space 60 side, for the connection, between the adsorption side four-way valves 21 and 22 and the evaporation side four-way valves 23 and 24. It is not necessary to secure the routing path for the low-temperature connection pipes 33 to 36 or to secure the routing path for the low-temperature connection pipes 33 to 36 by extending the pipes 51 to 58. Therefore, as described above, it contributes to the reduction in size and weight of the overall configuration of the heat pump structure 1.

なお、配管51〜58を伸ばして低温接続管33〜36の配策経路を確保すると、図1のB寸法が大きくなることに加え、熱的なロスが増加する。つまり、吸着部11、12は、脱離用の高温熱媒体で加熱され、冷媒の脱離を促した後、吸着側4方弁21、22により低温媒体が供給され、冷却される。このため、吸着側4方弁21、22、配管51〜54及び吸着部11、12の間の熱媒体及び熱媒体と接触部位は、例えば加熱用の熱媒体が低温の熱媒体に入れ替わるときにその温度差と熱容量に依存した熱量が低温の熱媒体に流れて、冷却負荷が高くなり、利用されない高熱源が増加する。この点、本実施形態では、配管51〜58を伸ばして低温接続管33〜36の配策経路を確保する必要がないため、上記の入れ替えに伴う熱的なロスを低減できる。   In addition, if the piping 51-58 is extended and the routing path | route of the low-temperature connection pipes 33-36 is ensured, in addition to B dimension of FIG. 1 becoming large, a thermal loss will increase. That is, the adsorption units 11 and 12 are heated by the high temperature heat medium for desorption and promote the desorption of the refrigerant, and then the low temperature medium is supplied by the adsorption side four-way valves 21 and 22 and cooled. For this reason, the heat medium between the adsorption side four-way valves 21 and 22, the pipes 51 to 54, and the adsorption parts 11 and 12, and the contact part are, for example, when the heat medium for heating is replaced with a low-temperature heat medium. The amount of heat depending on the temperature difference and the heat capacity flows to the low-temperature heat medium, the cooling load increases, and the number of high heat sources that are not used increases. In this respect, in the present embodiment, it is not necessary to extend the pipes 51 to 58 to secure the routing path for the low-temperature connection pipes 33 to 36, so that the thermal loss associated with the replacement can be reduced.

さらに、本実施形態では、上記の空間60には、低温の熱媒体が流れる4本の低温接続管33〜36が配置されている。これにより、例えば上記の空間60に、高温の熱媒体が流れる高温接続管31、32と、冷温の熱媒体が流れる冷温接続管37、38とが配置される構成と比較して、各接続管間での熱の伝達を少なくするための必要空間の分だけ配管スペースを縮小できる。   Furthermore, in this embodiment, four low-temperature connection pipes 33 to 36 through which a low-temperature heat medium flows are arranged in the space 60. Thereby, for example, each connection pipe is compared with a configuration in which the high temperature connection pipes 31 and 32 in which the high temperature heat medium flows and the cold temperature connection pipes 37 and 38 in which the cold heat medium flows are arranged in the space 60. Piping space can be reduced by the necessary space to reduce heat transfer between the two.

またさらに、本実施形態では、一対の吸着側4方弁21、22及び一対の蒸発側4方弁23、24は、第一対向方向Xの両側の端面71A、72Aにおける第一対向方向Xの位置を揃えて配置されている。これにより、上記各4方弁21〜24が第一対向方向Xにずれて配置された構成と比較して、上記各4方弁21〜24と一対の吸着式ヒートポンプ2、3とを近接して配置させることが可能になり、図1に示されるB寸法の短縮が可能になる。これにより、前述した小型軽量化及び熱的なロスの低減に一層寄与する。   Furthermore, in this embodiment, the pair of adsorption side four-way valves 21 and 22 and the pair of evaporation side four-way valves 23 and 24 are arranged in the first opposing direction X at the end faces 71A and 72A on both sides in the first opposing direction X. They are aligned. Accordingly, the four-way valves 21 to 24 and the pair of adsorption heat pumps 2 and 3 are brought closer to each other as compared with the configuration in which the four-way valves 21 to 24 are arranged to be shifted in the first facing direction X. Therefore, the dimension B shown in FIG. 1 can be shortened. This further contributes to the reduction in size and weight and reduction of thermal loss.

次に、本発明の他の実施形態について説明する。なお、前記第1実施形態と基本的に同様の構成及び作用については、前記第1実施形態と同符号を付与しその説明を省略する。   Next, another embodiment of the present invention will be described. In addition, about the structure and effect | action similar to the said 1st Embodiment, the same code | symbol as the said 1st Embodiment is provided, and the description is abbreviate | omitted.

<第2の実施形態>
図6には、本発明の第2実施形態に係るヒートポンプ構造100が図1に対応した正面図にて示されている。この実施形態は、前記第1実施形態と基本的に同様の構成とされているが、第一低温分岐配管41及び第二低温分岐配管42を備えている点が異なっている。なお、図6では、第二低温分岐配管42が、第一低温分岐配管41の背後に位置しているため、第二低温分岐配管42の符号に括弧を付している。
<Second Embodiment>
6 shows a heat pump structure 100 according to the second embodiment of the present invention in a front view corresponding to FIG. This embodiment has basically the same configuration as that of the first embodiment except that a first low-temperature branch pipe 41 and a second low-temperature branch pipe 42 are provided. In FIG. 6, since the second low-temperature branch pipe 42 is located behind the first low-temperature branch pipe 41, the reference numerals of the second low-temperature branch pipe 42 are given parentheses.

第一低温分岐配管41は、空間60の外側へ配索された1本の低温接続管43を、吸着側4方弁21及び蒸発側4方弁23に接続された2本の低温接続管33、35に分岐させている。また、第二低温分岐配管42は、空間60の外側へ配索された1本の低温接続管44を、吸着側4方弁22及び蒸発側4方弁24に接続された2本の低温接続管34、36に分岐させている。なお、図6では、低温接続管43、44の一端部のみを図示している。低温接続管43は、本発明に係る「第一低温集合管」に相当し、低温接続管44は、本発明に係る「第二低温集合管」に相当する。   The first low-temperature branch pipe 41 is composed of one low-temperature connection pipe 43 routed outside the space 60 and two low-temperature connection pipes 33 connected to the adsorption-side four-way valve 21 and the evaporation-side four-way valve 23. , 35. The second low-temperature branch pipe 42 has one low-temperature connection pipe 44 routed outside the space 60 and two low-temperature connections connected to the adsorption-side four-way valve 22 and the evaporation-side four-way valve 24. The tubes 34 and 36 are branched. In FIG. 6, only one end portion of the low temperature connection pipes 43 and 44 is illustrated. The low temperature connecting pipe 43 corresponds to a “first low temperature collecting pipe” according to the present invention, and the low temperature connecting pipe 44 corresponds to a “second low temperature collecting pipe” according to the present invention.

つまり、本実施形態では、吸着側4方弁21及び蒸発側4方弁23を介して出口部17A、18A及び出口部19A、20Aと繋がった低温接続管33、35(出口部側の低温接続管)を、第一低温分岐配管41において低温接続管43(第一低温集合管)に集合させている。また、吸着側4方弁22及び蒸発側4方弁24を介して入口部17B、18B及び入口部19B、20Bと繋がった低温接続管34、36(入口部側の低温接続管)を、第二低温分岐配管42において低温接続管44(第二低温集合管)に集合させている。   That is, in this embodiment, the low temperature connection pipes 33 and 35 (low temperature connection on the outlet side) connected to the outlet portions 17A and 18A and the outlet portions 19A and 20A via the adsorption side four-way valve 21 and the evaporation side four-way valve 23. Tube) is assembled in the first low-temperature branch pipe 41 to the low-temperature connection pipe 43 (first low-temperature collecting pipe). Further, the low temperature connection pipes 34 and 36 (low temperature connection pipes on the inlet side) connected to the inlet parts 17B and 18B and the inlet parts 19B and 20B via the adsorption side four-way valve 22 and the evaporation side four-way valve 24 are connected to the first side. The two low-temperature branch pipes 42 are assembled into a low-temperature connecting pipe 44 (second low-temperature collecting pipe).

この実施形態では、上記以外の構成は、前記第1実施形態と同様とされている。したがって、前記第1実施形態と基本的に同様の作用効果を奏する。しかも、この実施形態では、4本の低温接続管33〜36(配管)がそのまま空間60の外側へ配策されず、2本の低温接続管43、44に集合されて空間60の外側へ配索されている。これにより、空間60の外側における配管の配策スペースを縮小できる。   In this embodiment, the configuration other than the above is the same as that of the first embodiment. Therefore, there are basically the same effects as the first embodiment. Moreover, in this embodiment, the four low-temperature connection pipes 33 to 36 (piping) are not arranged outside the space 60 as they are, but are gathered in the two low-temperature connection pipes 43 and 44 and arranged outside the space 60. It has been searched. Thereby, the arrangement space of piping outside the space 60 can be reduced.

なお、前記各実施形態では、4方弁21〜24の接続部71、72が、配管51〜58を介して出口部17A、18A、入口部17B、18B、出口部19A、20A、及び入口部19B、20Bとそれぞれ接続された構成にしたが、本発明はこれに限らず、配管51〜58が省略された構成にしてもよい。すなわち、4方弁21〜24の接続部71、72が、出口部17A、18A、入口部17B、18B、出口部19A、20A、及び入口部19B、20Bと直接接続された構成にしてもよい。これにより、B寸法の更なる短縮が可能になり、小型軽量化及び熱的なロスの低減により一層寄与する。   In each of the above embodiments, the connection parts 71 and 72 of the four-way valves 21 to 24 are connected to the outlet parts 17A and 18A, the inlet parts 17B and 18B, the outlet parts 19A and 20A, and the inlet part via the pipes 51 to 58, respectively. Although it was set as the structure connected with 19B and 20B, respectively, this invention is not restricted to this, You may make it the structure by which piping 51-58 was abbreviate | omitted. That is, the connection parts 71 and 72 of the four-way valves 21 to 24 may be directly connected to the outlet parts 17A and 18A, the inlet parts 17B and 18B, the outlet parts 19A and 20A, and the inlet parts 19B and 20B. . As a result, the B dimension can be further shortened, which further contributes to reduction in size and weight and reduction in thermal loss.

また、前記各実施形態では、4方弁21〜24が、端面71A、72Aにおける第一対向方向Xの位置を揃えて配置された構成にしたが、本発明はこれに限らず、端面71A、72Aにおける第一対向方向Xの位置が多少ずれた構成にしてもよい。   In each of the above embodiments, the four-way valves 21 to 24 are configured so that the positions of the first facing direction X in the end faces 71A and 72A are aligned. However, the present invention is not limited thereto, and the end faces 71A and 71A, The position in the first facing direction X in 72A may be slightly shifted.

また、前記各実施形態では、一対の吸着側4方弁21、22が第三対向方向Zに並んだ構成にしたが、一対の吸着側4方弁21、22が第三対向方向Zに正確に並んだ構成に限らず、一対の吸着側4方弁21、22が第二対向方向Yに多少オフセットした構成にしてもよい。この点は、一対の蒸発側4方弁23、24においても同様である。   In each of the above embodiments, the pair of suction side four-way valves 21 and 22 are arranged in the third facing direction Z. However, the pair of suction side four-way valves 21 and 22 are accurately in the third facing direction Z. However, the pair of suction side four-way valves 21 and 22 may be slightly offset in the second facing direction Y. This also applies to the pair of evaporation side four-way valves 23 and 24.

その他、本発明は、その要旨を逸脱しない範囲で種々変更して実施できる。また、本発明の権利範囲が上記各実施形態に限定されないことは勿論である。   In addition, the present invention can be implemented with various modifications without departing from the scope of the invention. It goes without saying that the scope of rights of the present invention is not limited to the above embodiments.

1 ヒートポンプ構造
2、3 吸着式ヒートポンプ
11、12 吸着部
13、14 蒸発凝縮部
21、22 吸着側4方弁(4方弁)
23、34 蒸発側4方弁(4方弁)
33〜36 低温接続管
41 第一低温分岐配管
42 第二低温分岐配管
43 低温接続管(第一低温集合管)
44 低温接続管(第二低温集合管)
51〜58 配管
71〜74 接続部
71A、72A 端面
DESCRIPTION OF SYMBOLS 1 Heat pump structure 2, 3 Adsorption type heat pump 11, 12 Adsorption part 13, 14 Evaporation condensation part 21, 22 Adsorption side 4 way valve (4 way valve)
23, 34 Evaporation side 4-way valve (4-way valve)
33 to 36 Low temperature connection pipe 41 First low temperature branch pipe 42 Second low temperature branch pipe 43 Low temperature connection pipe (first low temperature collecting pipe)
44 Low temperature connecting pipe (second low temperature collecting pipe)
51-58 Piping 71-74 Connection 71A, 72A End face

Claims (5)

冷媒の吸着及び脱離を行う吸着部と、冷媒の蒸発及び凝縮を行う蒸発凝縮部とが各々に設けられた一対の吸着式ヒートポンプに対し、4つの4方弁を用いて高温、低温及び冷温の熱媒体の入替えを行うヒートポンプ構造であって、
前記一対の吸着式ヒートポンプは、第一対向方向に並んで配置されると共に、各々の前記吸着部と前記蒸発凝縮部とが前記第一対向方向と直交する第二対向方向に並んで配置され、各前記吸着部に設けられた第一熱媒体通路の出口部同士及び入口部同士が互いに向い合うと共に、各前記蒸発凝縮部に設けられた第二熱媒体通路の出口部同士及び入口部同士が互いに向い合っており、
前記4つの4方弁は、前記第一対向方向及び前記第二対向方向と直交する第三対向方向に並んで前記各吸着部間に配置された一対の吸着側4方弁と、前記第三対向方向に並んで前記各蒸発凝縮部間に配置された一対の蒸発側4方弁と、からなり、
前記一対の吸着側4方弁及び前記一対の蒸発側4方弁は、前記第一対向方向の両側及び前記第二対向方向の両側に、それぞれ接続部を有しており、
前記一対の吸着側4方弁の一方は、前記第一対向方向両側の接続部が各前記第一熱媒体通路の前記出口部と向い合っており、
前記一対の吸着側4方弁の他方は、前記第一対向方向両側の接続部が各前記第一熱媒体通路の前記入口部と向い合っており、
前記一対の蒸発側4方弁の一方は、前記第一対向方向両側の接続部が各前記第二熱媒体通路の前記出口部と向い合っており、
前記一対の蒸発側4方弁の他方は、前記第一対向方向両側の接続部が各前記第二熱媒体通路の前記入口部と向い合っているヒートポンプ構造。
For a pair of adsorption heat pumps each provided with an adsorbing unit for adsorbing and desorbing refrigerant and an evaporating and condensing unit for evaporating and condensing the refrigerant, four four-way valves are used for high temperature, low temperature and cold temperature. A heat pump structure for replacing the heat medium of
The pair of adsorption heat pumps are arranged side by side in a first opposing direction, and each of the adsorption parts and the evaporation condensing part are arranged in a second opposing direction orthogonal to the first opposing direction, The outlet portions and the inlet portions of the first heat medium passage provided in each of the adsorption portions face each other, and the outlet portions and the inlet portions of the second heat medium passage provided in each of the evaporation condensing portions are Facing each other,
The four four-way valves include a pair of suction side four-way valves disposed between the suction portions side by side in a third facing direction orthogonal to the first facing direction and the second facing direction; A pair of evaporation side four-way valves arranged between the respective evaporation condensing units arranged in the opposite direction,
The pair of adsorption side four-way valves and the pair of evaporation side four-way valves have connecting portions on both sides in the first facing direction and both sides in the second facing direction, respectively.
One of the pair of adsorption side four-way valves has a connection portion on both sides in the first facing direction facing the outlet portion of each first heat medium passage,
In the other of the pair of adsorption side four-way valves, the connection portions on both sides in the first facing direction face the inlet portions of the first heat medium passages,
One of the pair of evaporation side four-way valves has the connection portions on both sides in the first facing direction facing the outlet portions of the second heat medium passages,
The other of the pair of evaporation side four-way valves is a heat pump structure in which connecting portions on both sides in the first facing direction face the inlet portions of the second heat medium passages.
前記一対の吸着式ヒートポンプの間で且つ前記一対の吸着側4方弁と前記一対の蒸発側4方弁との間には、前記第三対向方向の両側が開放された空間が形成されている請求項1に記載のヒートポンプ構造。   Between the pair of adsorption heat pumps and between the pair of adsorption side four-way valves and the pair of evaporation side four-way valves, a space is formed in which both sides in the third facing direction are open. The heat pump structure according to claim 1. 前記空間には、低温の熱媒体が流れる4本の低温接続管が配置されており、
前記4本の低温接続管は、前記一対の吸着側4方弁及び前記一対の蒸発側4方弁における前記第二対向方向両側の接続部のうち前記空間側の接続部にそれぞれ接続されている請求項2に記載のヒートポンプ構造。
In the space, four low-temperature connection pipes through which a low-temperature heat medium flows are arranged,
The four low-temperature connection pipes are respectively connected to the space-side connection portions among the connection portions on both sides in the second opposing direction in the pair of adsorption side four-way valves and the pair of evaporation side four-way valves. The heat pump structure according to claim 2.
前記空間には、第一低温分岐配管及び第二低温分岐配管が配置されており、
前記第一低温分岐配管は、前記空間の外側へ配索された1本の第一低温集合管を、前記4本の低温接続管のうちの2本に分岐させており、
前記第二低温分岐配管は、前記空間の外側へ配索された1本の第二低温集合管を、前記4本の低温接続管のうちの残りの2本に分岐させている請求項3に記載のヒートポンプ構造。
In the space, a first low-temperature branch pipe and a second low-temperature branch pipe are arranged,
The first low-temperature branch pipe branches one first low-temperature collecting pipe arranged outside the space into two of the four low-temperature connecting pipes,
The second low-temperature branch pipe branches one second low-temperature collecting pipe routed outside the space into the remaining two of the four low-temperature connecting pipes. The described heat pump structure.
前記一対の吸着側4方弁及び前記一対の蒸発側4方弁は、前記第一対向方向両側の接続部の端面における前記第一対向方向の位置を揃えて配置されている請求項1〜請求項4の何れか1項に記載のヒートポンプ構造。   The pair of adsorption side four-way valves and the pair of evaporation side four-way valves are arranged with the positions in the first facing direction on the end faces of the connecting portions on both sides in the first facing direction. Item 5. The heat pump structure according to any one of Items 4.
JP2015208330A 2015-10-22 2015-10-22 Heat pump structure Active JP6406208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208330A JP6406208B2 (en) 2015-10-22 2015-10-22 Heat pump structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208330A JP6406208B2 (en) 2015-10-22 2015-10-22 Heat pump structure

Publications (2)

Publication Number Publication Date
JP2017083025A true JP2017083025A (en) 2017-05-18
JP6406208B2 JP6406208B2 (en) 2018-10-17

Family

ID=58714084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208330A Active JP6406208B2 (en) 2015-10-22 2015-10-22 Heat pump structure

Country Status (1)

Country Link
JP (1) JP6406208B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243051A (en) * 2001-02-19 2002-08-28 Denso Corp Fluid passage switching device
JP2004233030A (en) * 2002-12-02 2004-08-19 Denso Corp Cooling device
WO2009000029A1 (en) * 2007-06-22 2008-12-31 Commonwealth Scientific And Industrial Research Organisation System for upgrading waste heat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243051A (en) * 2001-02-19 2002-08-28 Denso Corp Fluid passage switching device
JP2004233030A (en) * 2002-12-02 2004-08-19 Denso Corp Cooling device
WO2009000029A1 (en) * 2007-06-22 2008-12-31 Commonwealth Scientific And Industrial Research Organisation System for upgrading waste heat

Also Published As

Publication number Publication date
JP6406208B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6069505B2 (en) Cooling equipment for parts placed inside the switch cabinet
JP6097065B2 (en) Heat pump system
JP6216113B2 (en) Heat exchanger and heat pump system using the same
JP6292211B2 (en) Adsorption air conditioner for vehicles
WO2012086746A1 (en) Flow path switching valve and air conditioner with same
JP6846614B2 (en) Air conditioning and heat pump tower with high energy efficiency structure
JP6406208B2 (en) Heat pump structure
JP2017166429A (en) Waste heat recovery system
WO2016166966A1 (en) Adsorption refrigerator
JP6846613B2 (en) Split air conditioning and heat pump system with high energy efficiency configuration
JP6911328B2 (en) Heat storage device and vehicle air conditioner
US9931910B2 (en) Adsorption heat pump-equipped vehicle air conditioning device
WO2019087695A1 (en) Adsorption type refrigeration device
JP6980337B2 (en) Air conditioner for vehicles with adsorption refrigeration system and adsorption refrigeration system
CN107009840B (en) Equipped with the Vehicular air-conditioning apparatus of adsorption type heat pump
JP2018118562A (en) Vehicular air conditioner with adsorption heat pump
JP6375286B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
JP6578876B2 (en) Adsorber for refrigerator
JP6551223B2 (en) Heat pump and cold heat generation method
JP5910862B2 (en) Air conditioner
JP6638314B2 (en) Adsorber for refrigerator
JP2019168113A (en) Air conditioning device for vehicle utilizing adsorption heat storage system
JP2018025368A (en) Selector valve
JP2017146048A (en) Adsorptive carburation and cooling device
JP2018071923A (en) Vehicular air-conditioning device with adsorption type heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6406208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151