JP2017078291A - Device and method for confirming vertical bearing capacity of pile - Google Patents

Device and method for confirming vertical bearing capacity of pile Download PDF

Info

Publication number
JP2017078291A
JP2017078291A JP2015206640A JP2015206640A JP2017078291A JP 2017078291 A JP2017078291 A JP 2017078291A JP 2015206640 A JP2015206640 A JP 2015206640A JP 2015206640 A JP2015206640 A JP 2015206640A JP 2017078291 A JP2017078291 A JP 2017078291A
Authority
JP
Japan
Prior art keywords
main body
pile
strain gauge
force
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015206640A
Other languages
Japanese (ja)
Other versions
JP6504016B2 (en
Inventor
俊彦 南部
Toshihiko Nanbu
俊彦 南部
隆 棚邉
Takashi Tanabe
隆 棚邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015206640A priority Critical patent/JP6504016B2/en
Publication of JP2017078291A publication Critical patent/JP2017078291A/en
Application granted granted Critical
Publication of JP6504016B2 publication Critical patent/JP6504016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for confirming vertical bearing capacity of a pile capable of accurately confirming the vertical bearing capacity when the pile is constructed before constructing the same.SOLUTION: A device 1 for confirming vertical bearing capacity of a pile comprises: a body 3 made of a steel pile; a spiral blade 5 attached to a tip section of the body 3; a bottom plate 7 installed at the tip section of the body 3 in a manner that closes a tip opening; an inner pipe 11 which is made of a steel pipe with a tip end thereof fixed to an upper face side of the bottom plate 7 and the other end thereof fixed to an annular plate 9 on an inner face of the body 3; a distortion meter which measures distortion of the inner pipe 11 in an axial direction; and a calculation device 19 which calculates penetration resistance Pgenerated on the bottom plate 7 on the basis of the distortion on the inner pipe 11 measured by the distortion meter.SELECTED DRAWING: Figure 1

Description

本発明は、地盤に杭を施工するに先だって当該地盤に杭を施工した際に得られる杭の鉛直支持力を杭の施工前に確認する装置及び方法に関する。   The present invention relates to an apparatus and a method for confirming the vertical supporting force of a pile obtained when the pile is constructed on the ground prior to the construction of the pile before the construction of the pile.

杭の鉛直支持力を確認する方法として、打撃工法にあってはハンマーのラム重量、同落下高さ、貫入量、リバウンド量などから鉛直支持力を杭施工中に確認する方法がある。
しかしながら、打撃工法以外の杭工法にあっては、施工前や施工中に杭の鉛直支持力を確認する方法がない。
As a method for confirming the vertical bearing capacity of the pile, there is a method of confirming the vertical bearing capacity during pile construction from the hammer ram weight, the fall height, the penetration amount, the rebound quantity, etc. in the hammering method.
However, in the pile construction methods other than the striking construction method, there is no method for confirming the vertical supporting force of the pile before construction or during construction.

そのため、例えば杭の施工後に載荷試験により確認する方法等が行われている。その具体例としては特許文献1の[従来技術]の欄に記載されているように、測定対象の杭(試験杭)の周囲に2本あるいは4本の反力杭を打設すると共に、試験杭の上方において反力杭に支持された主梁およびこれに係合する副梁を備えた反力桁装置を構築すると共に、前記試験杭と主梁との間に加圧用ジャッキを配設し、該ジャッキにより試験杭に押圧力を作用させ、その反力を副梁に間接的に係合すると共に前記反力杭に係合する引張り材を介して前記複数の反力杭により受けるようにした載荷装置を用いるというものである(特許文献1の段落[0002]〜[0003]参照)。   Therefore, for example, a method of confirming by a loading test after construction of a pile is performed. As a specific example, as described in [Prior Art] in Patent Document 1, two or four reaction force piles are placed around a measurement target pile (test pile) and tested. A reaction force girder device having a main beam supported by a reaction force pile and a secondary beam engaged with the main beam above the pile is constructed, and a pressure jack is disposed between the test pile and the main beam. The pressure force is applied to the test pile by the jack so that the reaction force is indirectly engaged with the secondary beam and is received by the plurality of reaction force piles via the tensile material engaged with the reaction force pile. (See paragraphs [0002] to [0003] of Patent Document 1).

特開2002−47677号公報JP 2002-47677 A

しかしながら、上記のような載荷装置を用いる方法の場合は、特許文献1にも記載されているように、反力杭の施工が必要になると共に、反力桁装置の施工が必要になるので、載荷試験にかかる試験費用や所要日数が工事に大きな負担となっている。
また、コンクリートを現場で硬化させて杭を構築する場所打ち杭の場合、そもそも硬化した後でなければ載荷試験ができず、杭の打設後おおよそ1ヵ月後でないと載荷試験ができないという問題がある。
さらに、施工後に実施される載荷試験において鉛直支持力不足が判明した場合は、当初の計画よりも杭の本数を増やす、いわゆる増し杭などによる対応しか取れないという問題もある。
However, in the case of the method using the loading device as described above, the construction of the reaction force pile is necessary and the construction of the reaction force girder device is necessary, as described in Patent Document 1, The cost of testing and the number of days required for the loading test are a heavy burden on the construction.
In addition, in the case of cast-in-place piles where concrete is hardened on site, the loading test can only be performed after the pile has been hardened. is there.
In addition, when a lack of vertical bearing capacity is found in a loading test carried out after construction, there is also a problem that the number of piles can be increased more than the initial plan, and only so-called additional piles can be taken.

以上のような事情から、杭を施工する前に杭を施工した場合の鉛直支持力を確認(予測)できる装置及び方法の開発が望まれていた。   In view of the above circumstances, it has been desired to develop an apparatus and method that can confirm (predict) the vertical bearing force when a pile is constructed before the pile is constructed.

本発明はかかる課題を解決するためになされたものであり、杭を施工する前に杭を施工した場合の鉛直支持力を精度よく確認できる杭の鉛直支持力確認装置及び方法を提供することを目的としている。   This invention is made | formed in order to solve this subject, and provides the vertical bearing capacity confirmation apparatus and method of a pile which can confirm the vertical bearing capacity at the time of constructing a pile accurately before constructing a pile. It is aimed.

(1)本発明に係る杭の鉛直支持力確認装置は、鋼管からなる本体と、該本体の先端部に設けられた螺旋状の翼部と、前記本体の先端部に該先端開口を塞ぐように設けられた底板と、先端が底板の上面側に固定され、他端が本体の内面に設けられた支持板に固定された鋼管からなる内筒と、該内筒に生じる軸方向のひずみを計測するひずみ計と、該ひずみ計によって前記内筒に生ずるひずみを計測し、該ひずみに基づいて、前記底板に生ずる貫入抵抗Pを演算する演算装置とを備えたことを特徴とするものである。 (1) The vertical supporting force confirmation device for a pile according to the present invention is configured to block the tip opening at the tip of the main body, a spiral wing provided at the tip of the main body, and the tip of the main body. A bottom plate provided on the inner plate, an inner cylinder composed of a steel pipe having a tip fixed to the upper surface side of the bottom plate and the other end fixed to a support plate provided on the inner surface of the main body, and axial strain generated in the inner cylinder. A strain gauge to be measured, and a calculation device that measures strain generated in the inner cylinder by the strain gauge and calculates a penetration resistance P p generated in the bottom plate based on the strain. is there.

(2)本発明に係る杭の鉛直支持力確認装置は、鋼管からなる本体と、該本体の先端部に設けられた螺旋状の翼部と、前記本体の先端部に該先端開口を塞ぐように設けられた底板と、先端が底板の上面側に固定され、他端が本体の内面に設けられた支持板に固定された鋼管からなる内筒と、前記本体の上端部の周面に設けられて本体の当該部位の軸方向のひずみを計測する第1ひずみ計と、前記本体における翼部の近傍上部周面に設けられて前記本体の当該部位の軸方向のひずみを計測する第2ひずみ計と、前記内筒の周面に設けられて内筒の軸方向のひずみを計測する第3ひずみ計と、前記第1ひずみ計の計測値に基づいて押し込み力Pを演算し、前記第2ひずみ計の計測値に基づいて翼の推進力Pを演算し、前記第3ひずみ計の計測値に基づいて貫入抵抗Pを演算し、これらP、P、Pの値を用いて、前記本体に生ずる周面摩擦力Pを、P=P−P+Pとして演算する演算装置とを備えたことを特徴とするものである。 (2) The pile vertical supporting force confirmation device according to the present invention is such that a main body made of a steel pipe, a spiral wing provided at the front end of the main body, and the front end opening of the main body are closed. Provided on the upper surface of the bottom plate, and the other end is provided on the peripheral surface of the upper end portion of the main body, and an inner cylinder made of a steel pipe fixed to a support plate provided on the inner surface of the main body. A first strain gauge that measures the axial strain of the part of the main body and a second strain that is provided on the upper peripheral surface in the vicinity of the wing portion of the main body and measures the axial strain of the part of the main body And a third strain gauge provided on the peripheral surface of the inner cylinder for measuring the strain in the axial direction of the inner cylinder, and a pushing force Po is calculated based on the measured value of the first strain gauge, based on the measurement values of 2 strain gauge calculates the thrust P w of the wing, a total of the third strain gauge Calculating a penetration resistance P p based on the values, these P o, P w, using the values of P p, the skin friction P f generated on the main body, as P f = P w -P p + P o And an arithmetic device for calculating.

(3)また、上記(2)に記載のものにおいて、押し込み力Pを、第1ひずみ計の計測値に代えて本体を地盤に押し込むジャッキの元圧を計測して該計測値に基づいて演算するようにしたことを特徴とするものである。 (3) Further, in those described in the above (2), the pushing force P o, based on the measurement values by measuring the initial pressure of the jacks to push the body to the ground instead of the measured value of the first strain gauge It is characterized by being operated.

(4)本発明に係る杭の鉛直支持力確認方法は、上記(1)乃至(3)のいずれかに記載の杭の鉛直支持力確認装置を用いた杭の鉛直支持力確認方法であって、
計測対象とする地盤に前記鉛直支持力確認装置をねじ込みながら、前記演算装置によって演算される貫入抵抗P、又は貫入抵抗P及び周面摩擦力Pに基づいて杭の鉛直支持力を確認することを特徴とするものである。
(4) The pile vertical supporting force confirmation method according to the present invention is a pile vertical supporting force confirmation method using the pile vertical supporting force confirmation device according to any one of the above (1) to (3). ,
While screwing the vertical supporting force confirmation device into the ground to be measured, the vertical supporting force of the pile is confirmed based on the penetration resistance P p calculated by the calculation device, or the penetration resistance P p and the circumferential friction force P f It is characterized by doing.

本発明においては、鋼管からなる本体と、該本体の先端部に設けられた螺旋状の翼部と、前記本体の先端部に該先端開口を塞ぐように設けられた底板と、先端が底板の上面側に固定され、他端が本体の内面に設けられた支持板に固定された鋼管からなる内筒と、該内筒に生じる軸方向のひずみを計測するひずみ計と、該ひずみ計によって前記内筒に生ずるひずみを計測し、該ひずみに基づいて、前記底板に生ずる貫入抵抗Pを演算する演算装置とを備えたことにより、杭を施工する前に杭を施工した場合の鉛直支持力を精度よく確認することができる。 In the present invention, a main body made of a steel pipe, a spiral wing provided at the tip of the main body, a bottom plate provided at the tip of the main body so as to close the tip opening, and a tip of the bottom plate An inner cylinder made of a steel pipe fixed to the upper surface side and the other end fixed to a support plate provided on the inner surface of the main body, a strain gauge for measuring axial strain generated in the inner cylinder, and the strain gauge The vertical bearing force when the pile is constructed before the pile is constructed by measuring the strain produced in the inner cylinder and calculating the penetration resistance P p produced in the bottom plate based on the strain. Can be confirmed with high accuracy.

本発明の実施の形態に係る杭の鉛直支持力確認装置の説明図である。It is explanatory drawing of the vertical supporting force confirmation apparatus of the pile which concerns on embodiment of this invention.

[実施の形態1]
本発明に係る杭の鉛直支持力確認装置1を図1に基づいて説明する。
杭の鉛直支持力確認装置1の基本的な形状は鋼管杭と同様であり、鋼管からなる本体3と、本体3の先端部に設けられた螺旋状の翼部5と、本体3の先端部に該先端部から1〜2cm下方側に離れた位置に本体3の先端開口を塞ぐように設けられた底板7と、先端が底板7の上面側に固定され、他端が本体3の内周面に設けられた円環板9に固定された鋼管からなる内筒11とを備えている。
[Embodiment 1]
A pile vertical supporting force confirmation device 1 according to the present invention will be described with reference to FIG.
The basic shape of the vertical supporting force confirmation device 1 of the pile is the same as that of the steel pipe pile, and a main body 3 made of a steel pipe, a spiral wing part 5 provided at the front end of the main body 3, and a front end of the main body 3 A bottom plate 7 provided so as to close the front end opening of the main body 3 at a position 1 to 2 cm below the front end portion, the front end is fixed to the upper surface side of the bottom plate 7, and the other end is the inner circumference of the main body 3. And an inner cylinder 11 made of a steel pipe fixed to an annular plate 9 provided on the surface.

また、杭の鉛直支持力確認装置1は、本体3の上端部の内周面に設けられて本体3の当該部位の軸方向のひずみを計測する第1ひずみ計13と、本体3における翼部5の近傍上部内周面に設けられて本体3の当該部位の軸方向のひずみを計測する第2ひずみ計15と、内筒11の内周面に設けられて内筒11の軸方向のひずみを計測する第3ひずみ計17とを備えている。
さらに、第1ひずみ計13の計測値に基づいて押し込み力Pを演算し、第2ひずみ計15の計測値に基づいて翼の推進力Pを演算し、第3ひずみ計17の計測値に基づいて貫入抵抗Pを演算し、これらP、P、Pの値を用いて、本体3に生ずる周面摩擦力Pを演算する演算装置19を備えている。
なお、杭の鉛直支持力確認装置1は、図1に示すように、演算装置19の演算結果を表示する表示部21を備えるのが望ましい。
以下、各構成について説明する。
Further, the pile vertical supporting force confirmation device 1 is provided on the inner peripheral surface of the upper end portion of the main body 3 to measure the strain in the axial direction of the portion of the main body 3 and the wing portion in the main body 3. 5, a second strain gauge 15 provided on the inner peripheral surface of the upper portion of the main body 3 for measuring the axial strain of the body 3, and an axial strain of the inner cylinder 11 provided on the inner peripheral surface of the inner cylinder 11. And a third strain gauge 17 for measuring.
Further, the indentation force Po is calculated based on the measured value of the first strain gauge 13, the propulsive force P w of the blade is calculated based on the measured value of the second strain gauge 15, and the measured value of the third strain gauge 17 is calculated. The calculation device 19 is provided which calculates the penetration resistance P p based on the above and calculates the peripheral frictional force P f generated in the main body 3 using the values of P o , P w and P p .
In addition, as shown in FIG. 1, the pile vertical supporting force confirmation device 1 desirably includes a display unit 21 that displays a calculation result of the calculation device 19.
Each configuration will be described below.

<本体>
本体3は、外径が例えばφ400mm〜φ600mmの鋼管からなる。本体3の先端近傍に翼部5が溶接されており、翼部5の推進力によって本体3が地中に回転貫入される。
本体3の上端部の外周面には、図示しない突起が設けられ、該突起に回転力が付与される。
<Main body>
The main body 3 is made of a steel pipe having an outer diameter of, for example, φ400 mm to φ600 mm. The wing part 5 is welded in the vicinity of the tip of the main body 3, and the main body 3 is rotated and penetrated into the ground by the propulsive force of the wing part 5.
A protrusion (not shown) is provided on the outer peripheral surface of the upper end portion of the main body 3, and a rotational force is applied to the protrusion.

<翼部>
翼部5は、本体3に推進力を与えるものであり、例えば螺旋翼によって構成されている。
<Wings>
The wing | blade part 5 gives a thrust to the main body 3, and is comprised by the spiral wing, for example.

<底板>
底板7は、本体3の先端開口を閉塞し、本体3が回転貫入する際に土砂が本体3内に入るのを防止する機能を有する。
該機能を発揮するためには、底板7の面積は本体3の先端開口と同等又は若干大きくすればよいが、底板7は、先端支持力を演算するための地盤反力を受けるという機能も有しているので、これらの機能を発揮するという観点から、底板7は本体3の先端開口と同等にするのが望ましい。
<Bottom plate>
The bottom plate 7 has a function of closing the front end opening of the main body 3 and preventing earth and sand from entering the main body 3 when the main body 3 rotates and penetrates.
In order to exhibit this function, the area of the bottom plate 7 may be equal to or slightly larger than the tip opening of the main body 3, but the bottom plate 7 also has a function of receiving a ground reaction force for calculating the tip support force. Therefore, it is desirable that the bottom plate 7 is equivalent to the opening of the front end of the main body 3 from the viewpoint of exhibiting these functions.

<内筒>
内筒11は、本体3と同じ材質の鋼管からなり、底板7を本体3の先端部に該先端部から1〜2cm下方側に離れた位置に支持するものである。内筒11の下端側に底板7が固定され、内筒11の上端は本体3の内周面に設けられた円環板9に固定されている。
なお、内筒11の上端側は、円環板9に固定しなくとも、本体3の内周面に連結するように設けられた支持板に固定するようにしてもよい。
<Inner cylinder>
The inner cylinder 11 is made of a steel pipe made of the same material as that of the main body 3, and supports the bottom plate 7 at the distal end portion of the main body 3 at a position 1 to 2 cm below the distal end portion. The bottom plate 7 is fixed to the lower end side of the inner cylinder 11, and the upper end of the inner cylinder 11 is fixed to an annular plate 9 provided on the inner peripheral surface of the main body 3.
Note that the upper end side of the inner cylinder 11 may be fixed to a support plate provided so as to be connected to the inner peripheral surface of the main body 3 without being fixed to the annular plate 9.

<ひずみ計>
第1ひずみ計13は、本体3の上端部の内周面に設けられて本体3の当該部位の軸方向のひずみを計測する。
本体3の上端部には、本体3を地盤に貫入させるための押しこみ力が付与され、この押し込み力に起因して生ずる軸方向のひずみを計測することで、押し込み力を求めることができる。
本例において、第1ひずみ計13は本体3の周方向180°離れた位置で、かつ軸方向が同じ位置に1個づつ設置(1対設置)しており、このような配置にすることで曲げひずみをキャンセルして軸方向ひずみを正確に計測することができる。
なお、ひずみ計は一般に断線することも考えられるので2対以上設けるようにしてもよい。
また、本例では、第1ひずみ計13を本体3の内周面に設けているが、本体3の外周面に設けるようにしてもよい。外周面に設ける場合には、外力によって破損しないように保護すればよい。また、第1ひずみ計13を外周面に設けたとしても、配線は本体3の内側を通すため、配線を通すための孔を本体3に設ける必要がある。この場合、孔の位置は第1ひずみ計13の設置位置から遠ざけるようにする。
以上のような、ひずみ計の設置位置、設置個数に関しては、後述の第2ひずみ計15、第3ひずみ計17でも同様である。
<Strain gauge>
The first strain gauge 13 is provided on the inner peripheral surface of the upper end portion of the main body 3 and measures the axial strain of the part of the main body 3.
A pressing force for allowing the main body 3 to penetrate into the ground is applied to the upper end portion of the main body 3, and the indentation force can be obtained by measuring an axial strain caused by the pressing force.
In this example, the first strain gauges 13 are installed one by one (one pair installation) at positions that are 180 ° apart from the main body 3 in the circumferential direction and the axial direction is the same. The axial strain can be accurately measured by canceling the bending strain.
Since it is generally considered that the strain gauges are disconnected, two or more pairs may be provided.
In the present example, the first strain gauge 13 is provided on the inner peripheral surface of the main body 3, but may be provided on the outer peripheral surface of the main body 3. When provided on the outer peripheral surface, it may be protected from being damaged by an external force. Even if the first strain gauge 13 is provided on the outer peripheral surface, since the wiring passes through the inside of the main body 3, it is necessary to provide a hole for passing the wiring in the main body 3. In this case, the position of the hole is kept away from the installation position of the first strain gauge 13.
The same applies to the second strain gauge 15 and the third strain gauge 17, which will be described later, with respect to the position and number of strain gauges installed as described above.

第2ひずみ計15は、本体3における翼部5の近傍上部の内周面に設けられて本体3の当該部位の軸方向のひずみを計測する。第2ひずみ計15の本体3における軸方向の位置は、翼部5と円環板9の間であって、両者の中間位置付近が好ましい。両者の中間位置にすることで、両端部の影響を少なくできる。
本体3が回転貫入する際に翼部5が回転すると、土が翼部5によって掬い上げられ、掬い上げた土は翼上面に沿って上方へ押し上げられる。そして、押し上げられた土は次第に締め固まり、この土の反力によって翼部5に推進力が生ずる。このとき、本体3における翼部5の近傍上部には翼部5を介して下方への引張力が作用するので、該引張力によって本体3の当該部位に生ずるひずみを計測することで、翼部5の推進力を求めることができる。
The second strain gauge 15 is provided on the inner peripheral surface of the upper portion of the main body 3 in the vicinity of the wing portion 5 and measures the strain in the axial direction of the portion of the main body 3. The position of the second strain gauge 15 in the main body 3 in the axial direction is between the wing portion 5 and the annular plate 9 and is preferably in the vicinity of an intermediate position between the two. By setting the intermediate position between the two, the influence of both ends can be reduced.
When the wing part 5 is rotated while the main body 3 is rotating and penetrating, the soil is scooped up by the wing part 5, and the scooped up soil is pushed upward along the upper surface of the wing. The pushed-up soil is gradually compacted, and a propulsive force is generated in the wing portion 5 by the reaction force of the soil. At this time, since a downward tensile force acts on the upper portion of the main body 3 in the vicinity of the wing portion 5 via the wing portion 5, the wing portion is measured by measuring the strain generated in the portion of the main body 3 by the tensile force. 5 driving forces can be obtained.

第3ひずみ計17は、内筒11の内周面に設けられて内筒11の軸方向のひずみを計測する。第3ひずみ計17の内筒11における軸方向の位置は、底板7と円環板9の間であって、両者の中間位置付近が好ましい。両者の中間位置にすることで、両端部の影響を少なくできる。
本体3が回転貫入する際に底板7には地盤反力が作用し、該地盤反力によって内筒11は圧縮力を受ける。したがって、内筒11に生ずるひずみを計測することで、地盤反力を求めることができる。
The third strain gauge 17 is provided on the inner peripheral surface of the inner cylinder 11 and measures the axial strain of the inner cylinder 11. The position of the third strain gauge 17 in the inner cylinder 11 in the axial direction is between the bottom plate 7 and the annular plate 9 and is preferably in the vicinity of an intermediate position between the two. By setting the intermediate position between the two, the influence of both ends can be reduced.
When the main body 3 rotates and penetrates, a ground reaction force acts on the bottom plate 7, and the inner cylinder 11 receives a compressive force by the ground reaction force. Therefore, the ground reaction force can be obtained by measuring the strain generated in the inner cylinder 11.

<演算装置>
演算装置19は、第1ひずみ計13の計測値に基づいて押し込み力Pを演算し、第2ひずみ計15の計測値に基づいて翼の推進力Pを演算し、第3ひずみ計17の計測値に基づいて貫入抵抗Pを演算し、これらP、P、Pの値を用いて、本体3に生ずる周面摩擦力Pを演算する。
なお、演算装置19におけるP、P、Pの演算方法の詳細は、後述の実施の形態2で説明する。
<Calculation device>
Arithmetic unit 19, based on the measurement values of the first strain gauge 13 calculates the pushing force P o, it calculates the thrust P w wings based on the measurement value of the second strain gauge 15, a third strain gauge 17 The penetration resistance P p is calculated on the basis of the measured value, and the peripheral friction force P f generated in the main body 3 is calculated using the values of P o , P w and P p .
The details of the calculation method of P o , P w , and P p in the calculation device 19 will be described in the second embodiment described later.

<表示部>
表示部21は、演算装置19の演算結果を表示するものである。表示部21を設けることで、本体3が回転貫入している際に、本体3の推進途中の任意の深度における杭の鉛直支持力を確認できる。
<Display section>
The display unit 21 displays the calculation result of the calculation device 19. By providing the display unit 21, when the main body 3 is rotating and penetrating, the vertical supporting force of the pile at an arbitrary depth during the propulsion of the main body 3 can be confirmed.

[実施の形態2]
次に、上記のように構成された杭の鉛直支持力確認装置1を用いて、杭の鉛直支持力を確認する方法について説明する。
杭の鉛直支持力確認装置1を、確認対象とする地盤上に立設して回転させ、翼部5に推進力を生じさせて地中にねじ込む。
回転貫入している間、各ひずみ計は測定値を出力するので、これを記録するようにする。
この杭の鉛直支持力確認装置1が地中にねじ込まれるときの鉛直方向の力の釣り合いを式で表すと下式(1)となる。
+P≧P+P・・・(1)
ここで、
は、翼が回転することにより掬い上げた土を翼上面に沿って上方へ押し上げることにより次第に締め固まった土の反力から翼部5に生じる推進力
は本体3と地盤の摩擦抵抗
は底板7に生じる地盤の貫入抵抗
は本体3に加えられる押しこみ力である。
[Embodiment 2]
Next, a method for confirming the vertical supporting force of the pile using the pile vertical supporting force confirmation device 1 configured as described above will be described.
The vertical supporting force confirmation device 1 for piles is erected on the ground to be confirmed and rotated, and a propulsive force is generated in the wing part 5 and screwed into the ground.
During the rotation penetration, each strain gauge outputs a measured value, which should be recorded.
When the vertical force balance confirmation device 1 for this pile is screwed into the ground, the balance of the force in the vertical direction is expressed by the following equation (1).
P w + P o ≧ P p + P f (1)
here,
P w is the driving force P f cause soil wings scooped by rotating the reaction force upon the clamping solidified soil by pushing up upward along the upper wing surface to the blade portion 5 friction body 3 and Soil The resistance P p is the penetration resistance P o of the ground generated in the bottom plate 7 and the pushing force applied to the main body 3.

一般の杭と同様にP、Pは接している土の強度や深さに応じて大きさが決まる。
また、Pも接している土の強度や深さに応じて大きさが変わりながら杭の鉛直支持力確認装置1を地中に引き込む働きをする。翼部5の推進力は、底板7が接する地盤の上載圧を減少させて底板7の貫入抵抗を減少させる働きもする。
これらの結果、杭の鉛直支持力確認装置1は主として翼部5の推進力のみで杭が地中へ貫入して行くが、貫入抵抗のPとPが、翼推進力Pより大きいと貫入できなくなり、不足分をPとして付加する。
Similar to general piles, P p and P f are determined in accordance with the strength and depth of the soil in contact.
Further, Pw also works to draw the pile vertical supporting force confirmation device 1 into the ground while changing its size according to the strength and depth of the soil in contact with Pw. The propulsive force of the wing part 5 also serves to reduce the penetration pressure of the bottom plate 7 by reducing the upper pressure of the ground in contact with the bottom plate 7.
These results, although vertical bearing capacity checking apparatus 1 piles mainly piles only thrust of the blade portion 5 gradually penetrates into the ground, P p and P f of penetration resistance is greater than the wing thrust P w and you will not be able to penetrate, adding the shortfall as P o.

上記のことから、杭の鉛直支持力確認装置1を回転貫入中にP、P、Pの値を求めることによって、最終的に施工される杭が地盤から受ける鉛直支持力を事前に確認することができる。
前述したように、本体3に加えられる押しこみ力Pは、本体3の軸力として第1ひずみ計13の計測値を用いて求めることができる。
また、翼部5の推進力Pは、第2ひずみ計15の計測値を用いて求めることができる。
また、地盤の貫入抵抗Pは、内筒11の軸力として第3ひずみ計17の計測値を用いて求めることができる。
さらに、本体3と地盤の摩擦抵抗Pは、(1)式の不等号を等号した式を変形して、P=P−P+Pより求めることができる。
From the above, the vertical bearing force that the pile to be finally constructed receives from the ground in advance by calculating the values of P w , P p , Po during rotation penetration of the pile vertical bearing confirmation device 1 Can be confirmed.
As described above, the force P o Push applied to the body 3 can be determined by using the measured values of the first strain gauge 13 as an axial force of the body 3.
Further, thrust P w of the wings 5 can be determined using the measurement value of the second strain gauge 15.
Further, the penetration resistance P p of the ground can be obtained using the measured value of the third strain gauge 17 as the axial force of the inner cylinder 11.
Furthermore, the frictional resistance P f between the main body 3 and the ground can be obtained from P f = P w −P p + P o by modifying an equation obtained by equalizing the inequality sign of the equation (1).

ここで、P、P、P及びPの求め方について説明する。
本体3を構成する鋼管の外径:D、厚み:tと、内筒11を構成する鋼管の外径:D、厚みtとする。
本体3を構成する鋼管の断面積Aは、:A=πD /4−π(D−2t)/4=πt(D−t)となる。
また、内筒11を構成する鋼管の断面積Aは、:A=πD /4−π(D−2t)/4=πt(D−t)となる。
Here, how to obtain P w , P p , P o and P f will be described.
The outer diameter of the steel pipe constituting the main body 3 is D 1 , the thickness is t 1, and the outer diameter of the steel pipe constituting the inner cylinder 11 is D 2 and the thickness is t 2 .
Cross-sectional area A 1 of the steel pipe constituting the main body 3,: A 1 = πD 1 2 /4-π (D 1 -2t 1) a 2/4 = πt 1 (D 1 -t 1).
Further, the cross-sectional area A 2 of the steel pipe constituting the inner cylinder 11 is: a A 2 = πD 2 2/4 -π (D 2 -2t 2) 2/4 = πt 2 (D 2 -t 2).

第1ひずみ計13の計測値をε、第2ひずみ計15の計測値をε、第3ひずみ計17の計測値をεとし、本体3及び内筒11を構成する鋼管のヤング率をEとすると、本体3における第1ひずみ計13が取り付けられた部位の軸方向応力σは、σ=E・ε、また本体3における第2ひずみ計15が取り付けられた部位の軸方向応力σはσ=E・ε、さらに、内筒11における第3ひずみ計17が取り付けられた部位の軸方向応力σは、σ=E・εとなる。 The measured value of the first strain gauge 13 is ε 0 , the measured value of the second strain gauge 15 is ε w , and the measured value of the third strain gauge 17 is ε p, and the Young's modulus of the steel pipe constituting the main body 3 and the inner cylinder 11. Is E, the axial stress σ 0 of the part of the main body 3 where the first strain gauge 13 is attached is σ 0 = E · ε 0 , and the axis of the part of the main body 3 where the second strain gauge 15 is attached. The directional stress σ w is σ w = E · ε w , and the axial stress σ p of the portion of the inner cylinder 11 to which the third strain gauge 17 is attached is σ p = E · ε p .

そして、これらσ、σ、σを用いて、本体3に加えられる押し込み力Pは、P=σ・A、土の反力から翼部5に生じる推進力Pは、P=σ・A、底板7に生じる地盤の貫入抵抗Pは、P=σ・Aとしても求めることができる。
また、前述したように、本体3と地盤の摩擦抵抗Pは、P=P−P+Pより求めることができる。
Then, using these σ 0 , σ w , and σ p , the pushing force P 0 applied to the main body 3 is P 0 = σ 0 · A 1 , and the propulsive force P w generated in the wing part 5 from the reaction force of the soil is , P w = σ w · A 1 , and the ground penetration resistance P p generated in the bottom plate 7 can also be obtained as P p = σ p · A 2 .
Further, as described above, frictional resistance P f of the main body 3 and the ground it can be determined from P f = P w -P p + P o.

地盤から決まる杭の鉛直支持力は一般的に「先端支持力」+「周面摩擦力」で表される。
先端支持力は、貫入抵抗Pとして求められ、また周面摩擦力は、上記の摩擦抵抗Pとして求められる。
したがって、本実施の形態の杭の鉛直支持力確認装置1を地中にねじ込むことで、適宜、貫入抵抗Pと摩擦抵抗Pが得られ、これによって、所定の深さにおける杭の鉛直支持力を確認することができる。
The vertical support force of a pile determined from the ground is generally expressed as "tip support force" + "circumferential friction force".
The tip support force is obtained as the penetration resistance P p , and the peripheral friction force is obtained as the friction resistance P f described above.
Therefore, the penetration resistance P p and the frictional resistance P f are appropriately obtained by screwing the pile vertical support force confirmation device 1 of the present embodiment into the ground, and thereby the vertical support of the pile at a predetermined depth. You can check the power.

なお、先端支持力は、杭径の二乗に比例し、周面摩擦力は、杭径に比例するが、上述のように、杭の鉛直支持力は一般的に「先端支持力」+「周面摩擦力」で表されるため、「先端支持力」と「周面摩擦力」のそれぞれを個別に求めることができなければ、換言すれば「先端支持力」と「周面摩擦力」の配分が分からなければ、杭径が変わった際の鉛直支持力を求めることができない。
この点、本実施の形態の杭の鉛直支持力確認装置1では、先端支持力と周面摩擦力をそれぞれ個別に求めることができ、かつ、P、P、Pを、それぞれ単位面積あたりの荷重に換算することができるので、計測されたP、P、Pの値から打設深度が同じで杭径の異なる杭における「鉛直支持力」を算出することができる。
Note that the tip support force is proportional to the square of the pile diameter, and the circumferential friction force is proportional to the pile diameter. As described above, the vertical support force of the pile is generally “tip support force” + “circumference Since it is expressed by “surface friction force”, if “tip support force” and “circumferential friction force” cannot be obtained individually, in other words, “tip support force” and “circumferential friction force” If the distribution is not known, the vertical bearing capacity when the pile diameter changes cannot be obtained.
In this respect, in the pile vertical support force confirmation device 1 of the present embodiment, the tip support force and the peripheral friction force can be obtained individually, and P 0 , P w , and P p are respectively determined as unit areas. Since it can be converted into a per load, “vertical support force” in piles having the same placement depth and different pile diameters can be calculated from the measured values of P 0 , P w , and P p .

したがって、杭の鉛直支持力確認装置1における本体3の径を、計画された本施工で予定されている杭径と同一にすることができない場合であっても、計測値から本施工の杭径の場合での「周面摩擦力」と「先端支持力」を個別に算出することができる。
これによって例えば、期待していた鉛直支持力が当初の予定杭径では確保できないことが判明した場合に本施工用の杭径を太くした場合の「周面摩擦力」と「先端支持力」を算出したり、あるいは期待していた以上の過剰の鉛直支持力が見込めることが判明した場合には本施工用の杭径を細くした場合の「周面摩擦力」と「先端支持力」を算出したりして、本施工前に過不足の無い適切な杭設計を行うことも出来る。
このように、PとPを個別に導出できることにより、予定杭径で不足が無いかの検証に加え、打設深度が同じ場合で、杭径を違えた場合の鉛直支持力も確認することが可能となる。
また、現場ごとに杭径をあわせた新たな杭の鉛直支持力確認装置1を作るのは非効率であるため、以前に製作・使用した近い径の杭の鉛直支持力確認装置1を使いまわすことも出来る。
Therefore, even if it is a case where the diameter of the main body 3 in the pile vertical bearing capacity confirmation device 1 cannot be made the same as the planned pile diameter in the planned main construction, the pile diameter of the main construction is determined from the measured value. In this case, the “circumferential friction force” and the “tip support force” can be calculated separately.
For example, if it is found that the expected vertical bearing capacity cannot be secured with the initial planned pile diameter, the "peripheral friction force" and "tip bearing capacity" when the pile diameter for this construction is increased If it is calculated, or if it is found that an excess vertical bearing force can be expected that exceeds the expected value, calculate the "frictional surface friction force" and "tip support force" when the pile diameter for this construction is reduced. Therefore, it is also possible to perform an appropriate pile design without excess or deficiency before this construction.
In this way, by being able to derive P p and P f individually, in addition to verifying that there is no shortage of the planned pile diameter, check the vertical bearing capacity when the pile diameter is the same when the placement depth is the same. Is possible.
In addition, since it is inefficient to make a new pile vertical bearing capacity confirmation device 1 that combines the pile diameters at each site, the vertical bearing capacity confirmation device 1 for piles of near diameters that have been produced and used before is reused. You can also

なお、上記の説明では、杭の鉛直支持力として、周面摩擦力と先端支持力との両方を考慮して杭の鉛直支持力を確認することにしているが、得られた値のうちの先端支持力だけで杭の設計を考えてもよい。(この場合、周面摩擦には期待しないことを意味する。)
また、上記の説明では、Pをひずみ計で計測する例を示したが、Pをジャッキ元圧の計測値に基づいて求めるようにしてもよい。
In the above description, as the vertical support force of the pile, it is decided to check the vertical support force of the pile in consideration of both the peripheral friction force and the tip support force. Of the obtained values, Pile design may be considered only with the tip support force. (In this case, it means not expecting the peripheral friction.)
In the above description, an example of measuring with strain gauges to P o, may be obtained based on the P o the measured value of the jack source pressure.

本実施の形態に係る杭の鉛直支持力確認装置1の実際の運用方法について説明する。
(1)回転貫入前に各ひずみゲージのゼロ点を取る。
(2)杭の鉛直支持力確認装置1を地中に回転貫入。その間、演算装置19は常に計測値を出力し、表示部21に表示させたり、記録をしたりする。
(3)杭の鉛直支持力確認装置1を予定深さまで回転貫入させる。なお、予定深さ到達前に期待鉛直支持力が確認できた場合にも、予定深さまでは進めるのが好ましい。
逆に、予定深さに到達しても期待鉛直支持力に達しない場合であっても、予定深さまで回転貫入した時点で完了とする。
(4)杭の鉛直支持力確認装置1を逆回転して地中から回収する。
(5)計測された杭の鉛直支持力の値に基づいて、杭の施工本数、杭径等を決定する。
The actual operation method of the vertical bearing capacity confirmation device 1 for piles according to the present embodiment will be described.
(1) Take the zero point of each strain gauge before rotating.
(2) Pile vertical bearing capacity confirmation device 1 rotates and penetrates into the ground. In the meantime, the arithmetic unit 19 always outputs the measurement value and displays it on the display unit 21 or records it.
(3) The pile vertical bearing capacity confirmation device 1 is rotated and penetrated to a predetermined depth. In addition, when the expected vertical bearing force can be confirmed before reaching the planned depth, it is preferable to proceed at the planned depth.
On the other hand, even if the expected vertical support force is not reached even if the planned depth is reached, the completion is made when the rotation penetrates to the planned depth.
(4) The pile vertical bearing capacity confirmation device 1 is reversely rotated and recovered from the ground.
(5) Based on the measured value of the vertical bearing capacity of the pile, determine the number of piles to be built, pile diameter, etc.

なお、上記の説明では、予定深さまで回転貫入させた時点で完了するようにしたが、期待する鉛直支持力が得られるまで、計測値をモニターしながら更に回転貫入を進めるようにしてもよい。   In the above description, the process is completed when the rotational penetration is made to the planned depth, but the rotational penetration may be further advanced while monitoring the measured value until the expected vertical support force is obtained.

1 鉛直支持力確認装置
3 本体
5 翼部
7 底板
9 円環板
11 内筒
13 第1ひずみ計
15 第2ひずみ計
17 第3ひずみ計
19 演算装置
21 表示部
DESCRIPTION OF SYMBOLS 1 Vertical support force confirmation apparatus 3 Main body 5 Wing | wing part 7 Bottom plate 9 Ring plate 11 Inner cylinder 13 1st strain gauge 15 2nd strain gauge 17 3rd strain gauge 19 Calculation apparatus 21 Display part

Claims (4)

鋼管からなる本体と、該本体の先端部に設けられた螺旋状の翼部と、前記本体の先端部に該先端開口を塞ぐように設けられた底板と、先端が底板の上面側に固定され、他端が本体の内面に設けられた支持板に固定された鋼管からなる内筒と、該内筒に生じる軸方向のひずみを計測するひずみ計と、該ひずみ計によって前記内筒に生ずるひずみを計測し、該ひずみに基づいて、前記底板に生ずる貫入抵抗Pを演算する演算装置とを備えたことを特徴とする杭の鉛直支持力確認装置。 A main body made of a steel pipe, a spiral wing provided at the front end of the main body, a bottom plate provided to close the front end opening at the front end of the main body, and the front end fixed to the upper surface side of the bottom plate An inner cylinder made of a steel pipe fixed to a support plate provided on the inner surface of the main body at the other end, a strain gauge for measuring axial strain generated in the inner cylinder, and strain generated in the inner cylinder by the strain gauge And a calculation device for calculating the penetration resistance P p generated in the bottom plate based on the strain. 鋼管からなる本体と、該本体の先端部に設けられた螺旋状の翼部と、前記本体の先端部に該先端開口を塞ぐように設けられた底板と、先端が底板の上面側に固定され、他端が本体の内面に設けられた支持板に固定された鋼管からなる内筒と、前記本体の上端部の周面に設けられて本体の当該部位の軸方向のひずみを計測する第1ひずみ計と、前記本体における翼部の近傍上部周面に設けられて前記本体の当該部位の軸方向のひずみを計測する第2ひずみ計と、前記内筒の周面に設けられて内筒の軸方向のひずみを計測する第3ひずみ計と、前記第1ひずみ計の計測値に基づいて押し込み力Pを演算し、前記第2ひずみ計の計測値に基づいて翼の推進力Pを演算し、前記第3ひずみ計の計測値に基づいて貫入抵抗Pを演算し、これらP、P、Pの値を用いて、前記本体に生ずる周面摩擦力Pを、P=P−P+Pとして演算する演算装置とを備えたことを特徴とする杭の鉛直支持力確認装置。 A main body made of a steel pipe, a spiral wing provided at the front end of the main body, a bottom plate provided to close the front end opening at the front end of the main body, and the front end fixed to the upper surface side of the bottom plate The first end is provided on the peripheral surface of the upper end portion of the main body, and the other end of the main body is used to measure the axial strain of the corresponding portion of the main body. A strain gauge, a second strain gauge provided on the upper peripheral surface in the vicinity of the wing portion of the main body to measure axial strain of the part of the main body, and a second strain gauge provided on the peripheral surface of the inner cylinder. The indentation force Po is calculated based on the measured value of the third strain gauge that measures the axial strain and the first strain gauge, and the propulsive force P w of the blade is calculated based on the measured value of the second strain gauge. And the penetration resistance P p is calculated based on the measured value of the third strain gauge. o, piles P w, using the values of P p, characterized in that the circumferential surface frictional force P f generated on the main body, and a computing device for computing a P f = P w -P p + P o Vertical bearing capacity confirmation device. 押し込み力Pを、第1ひずみ計の計測値に代えて本体を地盤に押し込むジャッキの元圧を計測して該計測値に基づいて演算するようにしたことを特徴とする請求項2記載の杭の鉛直支持力確認装置。 The pushing force P o, according to claim 2, wherein the main body in place of the measured value of the first strain gauge to measure the original pressure of the jacks to push the ground, characterized in that so as to calculation based on the measured value Pile vertical bearing capacity confirmation device. 請求項1乃至3のいずれかに記載の杭の鉛直支持力確認装置を用いた杭の鉛直支持力確認方法であって、
計測対象とする地盤に前記鉛直支持力確認装置をねじ込みながら、前記演算装置によって演算される貫入抵抗P、又は貫入抵抗P及び周面摩擦力Pに基づいて杭の鉛直支持力を確認することを特徴とする杭の鉛直支持力確認方法。
A method for confirming the vertical bearing capacity of a pile using the vertical bearing capacity confirmation device for a pile according to any one of claims 1 to 3,
While screwing the vertical supporting force confirmation device into the ground to be measured, the vertical supporting force of the pile is confirmed based on the penetration resistance P p calculated by the calculation device, or the penetration resistance P p and the circumferential friction force P f A method for confirming the vertical bearing capacity of a pile, characterized by:
JP2015206640A 2015-10-20 2015-10-20 Apparatus and method for confirming vertical bearing capacity of pile Active JP6504016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015206640A JP6504016B2 (en) 2015-10-20 2015-10-20 Apparatus and method for confirming vertical bearing capacity of pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015206640A JP6504016B2 (en) 2015-10-20 2015-10-20 Apparatus and method for confirming vertical bearing capacity of pile

Publications (2)

Publication Number Publication Date
JP2017078291A true JP2017078291A (en) 2017-04-27
JP6504016B2 JP6504016B2 (en) 2019-04-24

Family

ID=58665877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015206640A Active JP6504016B2 (en) 2015-10-20 2015-10-20 Apparatus and method for confirming vertical bearing capacity of pile

Country Status (1)

Country Link
JP (1) JP6504016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112323875A (en) * 2020-10-23 2021-02-05 浙江中技建设工程检测有限公司 Pile foundation detection equipment and detection method using same
CN115288213A (en) * 2022-07-13 2022-11-04 中交天津港湾工程研究院有限公司 Method for predicting stability of offshore steel cylinder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130619A (en) * 1981-02-02 1982-08-13 Takechi Koumushiyo:Kk Method and apparatus for bearing test on deep sustratum
JPH06257138A (en) * 1993-03-08 1994-09-13 Kawasaki Steel Corp Rotational intrusion type steel pipe pile for loading test
JP2002047677A (en) * 2000-08-04 2002-02-15 Nippon Steel Corp Load carrying test method using double vane type pile and its device
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130619A (en) * 1981-02-02 1982-08-13 Takechi Koumushiyo:Kk Method and apparatus for bearing test on deep sustratum
JPH06257138A (en) * 1993-03-08 1994-09-13 Kawasaki Steel Corp Rotational intrusion type steel pipe pile for loading test
JP2002047677A (en) * 2000-08-04 2002-02-15 Nippon Steel Corp Load carrying test method using double vane type pile and its device
JP2005220662A (en) * 2004-02-06 2005-08-18 Kajima Road Co Ltd Steel pipe pile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112323875A (en) * 2020-10-23 2021-02-05 浙江中技建设工程检测有限公司 Pile foundation detection equipment and detection method using same
CN112323875B (en) * 2020-10-23 2022-04-12 浙江中技建设工程检测有限公司 Pile foundation detection equipment and detection method using same
CN115288213A (en) * 2022-07-13 2022-11-04 中交天津港湾工程研究院有限公司 Method for predicting stability of offshore steel cylinder
CN115288213B (en) * 2022-07-13 2024-02-09 中交天津港湾工程研究院有限公司 Marine steel cylinder stability prediction method

Also Published As

Publication number Publication date
JP6504016B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP2014088689A (en) Loading test method and loading test device for composite reinforcement ground
Bica et al. Instrumentation and axial load testing of displacement piles
JP6589549B2 (en) How to build cast-in-place piles
KR101166139B1 (en) Apparatus and method for horizontal load test of strip foundation
JP3823255B2 (en) Measuring method of axial force of ground improved pile
Alwalan et al. Analytical models of impact force-time response generated from high strain dynamic load test on driven and helical piles
Nazir et al. Appraisal of reliable skin friction variation in a bored pile
Ganju et al. Static capacity of closed-ended pipe pile driven in gravelly sand
CN110117968B (en) 4000 t-level pile foundation vertical compression-resistant static load test method
JP2017078291A (en) Device and method for confirming vertical bearing capacity of pile
CN105241648B (en) Simulate the loading device and its application method of loess tunnel lock pin anchor tube termination stress
Premalatha et al. Experimental study on behaviour of piles in berthing structure
US7931424B2 (en) Apparatus and method for producing soil columns
JP5845861B2 (en) Loading test method for soil cement column wall
CN104674857A (en) Drive-and-press pile foundation bearing capability detection method
CN215296993U (en) Multi-connected rock-soil in-situ shear testing device for full-stress path tracking
JP6436051B2 (en) How to build cast-in-place piles
CN106198382A (en) A kind of friction rock bolt anchoring body safety testing method and device
CN206638503U (en) Offshore wind farm testing stand
KR20100039008A (en) Measurement system and method for measuring of the same
Calvente et al. Methodology for confirming the micropiles service performance based on dynamic tests
Brown et al. Some observations on statnamic pile testing
JP6436050B2 (en) How to build cast-in-place piles
El-Garhy et al. Effect of pile cap elevation below ground surface on lateral resistance of pile groups-experimental study
CN116695800B (en) Detection and prediction method for horizontal bearing capacity of offshore wind power pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6504016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350