JP2017078069A - Method for producing methyl fluoride - Google Patents
Method for producing methyl fluoride Download PDFInfo
- Publication number
- JP2017078069A JP2017078069A JP2016215554A JP2016215554A JP2017078069A JP 2017078069 A JP2017078069 A JP 2017078069A JP 2016215554 A JP2016215554 A JP 2016215554A JP 2016215554 A JP2016215554 A JP 2016215554A JP 2017078069 A JP2017078069 A JP 2017078069A
- Authority
- JP
- Japan
- Prior art keywords
- fluoride
- mixed gas
- methyl fluoride
- raw material
- methyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、ドライエッチングガスとして有用なフッ化メチルを製造する方法に関する。 The present invention relates to a method for producing methyl fluoride useful as a dry etching gas.
ハイドロフルオロカーボンは、半導体、液晶などの微細加工用のエッチングガスとして有用であり、特にフッ化メチル(CH3F)は、最先端の微細構造を形成するためのエッ
チングガスとして注目されている。
Hydrofluorocarbon is useful as an etching gas for microfabrication of semiconductors, liquid crystals, and the like, and in particular, methyl fluoride (CH 3 F) has attracted attention as an etching gas for forming the most advanced microstructure.
フッ化メチルの製造方法としては、例えば、原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る方法等が知られている(特許文献1)。 As a method for producing methyl fluoride, for example, a method of obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing a raw material compound in a gas phase is known (Patent Document 1).
上記において、得られた混合ガスに含まれるフッ化メチルと酸フルオリドを分離する方法としては、混合ガスを冷却することによって、フッ化メチル(沸点−79℃)を主成分とする低沸点成分からなるガス成分と、酸フルオリド(例えば、3,3,3−トリフルオロ−2−(トリフルオロメチル)プロパノイルフルオライド(沸点32℃)等)を主成分として、さらに未反応原料(1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテル(沸点68.5℃)等)を含むことのある高沸点成分からなる液成分に分離する方法が提案されている(特許文献1)。 In the above, as a method for separating methyl fluoride and acid fluoride contained in the obtained mixed gas, by cooling the mixed gas, from a low boiling point component mainly composed of methyl fluoride (boiling point -79 ° C.) And a non-reacted raw material (1,1), mainly composed of a gas component and an acid fluoride (for example, 3,3,3-trifluoro-2- (trifluoromethyl) propanoyl fluoride (boiling point 32 ° C.)). , 3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether (boiling point 68.5 ° C., etc.) has been proposed (patented). Reference 1).
また、別の分離方法として、得られた混合ガスを水又はアルカリ水溶液等と接触させて酸フルオリドを水相中に溶解させて除去する方法も提案されている(特許文献1)。この場合、水及びアルカリ水溶液の代わりに、アルコールを用いることも提案されている。アルコールを接触させてエステルを生成させることにより、燃焼処理しやすくなる。従来の方法では、このようにして得られた、フッ化メチルを多く含むガスをさらに精留操作に供してフッ化メチルを精製することが行われていた。 As another separation method, a method in which the obtained mixed gas is brought into contact with water or an aqueous alkaline solution to dissolve and remove the acid fluoride in the aqueous phase has been proposed (Patent Document 1). In this case, it has also been proposed to use alcohol instead of water and an aqueous alkali solution. Combustion treatment is facilitated by producing an ester by contacting with alcohol. In the conventional method, a gas containing a large amount of methyl fluoride obtained as described above is further subjected to a rectification operation to purify methyl fluoride.
本発明は、原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る方法において、より簡易に混合ガスに含まれるフッ化メチルと酸フルオリドを分離する方法を提供することを課題とする。 The present invention provides a method for separating methyl fluoride and acid fluoride contained in a mixed gas more easily in a method for obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing a raw material compound in a gas phase state. It is an issue to provide.
本発明者らは、上記した目的を達成すべく、鋭意研究を重ねてきた。その結果、混合ガスをそのまま精留操作に供することによりフッ化メチルを選択的に得ることができることを見出した。本発明は、これらの知見に基づいて更に研究を重ねた結果、完成されたものである。
項1.フッ化メチルの製造方法であって、
(1)原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る工程;及び
(2)前記工程(1)で得られた混合ガスを精留することによりフッ化メチルを得る工程を含む方法。
項2.前記工程(2)において、前記工程(1)で得られた混合ガスを精留塔に供給する、項1に記載の方法。
項3.前記供給を、大気圧を超える圧力で行う、項2に記載の方法。
項4.
前記原料化合物が、一般式(1)で表わされる含フッ素メチルエーテルである、項1〜3のいずれか一項に記載の方法
The present inventors have intensively studied to achieve the above-described object. As a result, it has been found that methyl fluoride can be selectively obtained by subjecting the mixed gas to the rectification operation as it is. The present invention has been completed as a result of further research based on these findings.
Item 1. A method for producing methyl fluoride, comprising:
(1) A step of obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing the raw material compound in a gas phase; and (2) rectifying the mixed gas obtained in the step (1). A process comprising the step of obtaining methyl fluoride by
Item 2. Item 2. The method according to Item 1, wherein in the step (2), the mixed gas obtained in the step (1) is supplied to a rectification column.
Item 3. Item 3. The method according to Item 2, wherein the supplying is performed at a pressure exceeding atmospheric pressure.
Item 4.
Item 4. The method according to any one of Items 1 to 3, wherein the raw material compound is a fluorine-containing methyl ether represented by General Formula (1).
(式中、R1及びR2は、同一又は異なって、置換されていてもよい、直鎖状若しくは分岐状の一価の脂肪族炭化水素基、一価の芳香族炭化水素基若しくは一価の環状脂肪族炭化水素基;水素原子又はハロゲン原子である)。 Wherein R 1 and R 2 are the same or different and may be substituted, a linear or branched monovalent aliphatic hydrocarbon group, monovalent aromatic hydrocarbon group or monovalent A cyclic aliphatic hydrocarbon group; a hydrogen atom or a halogen atom).
本発明によれば、原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る方法において、より簡易に混合ガスからフッ化メチルを精製できる。具体的には、以下の通りである。従来は、精製の前に混合ガスを冷却して分留を行ったり、水若しくはアルカリ水溶液により水洗を行ったり、又はアルコール等と接触させて酸フルオリドを水相中に溶解させて除去したりする必要があった。これに対して本発明では、精製前にそのような操作を行う必要がない。このため、本発明は、操作がより簡便であるという点で有利である。さらに、アルコールと接触させて酸フルオリドを除去する際にはエステル化により産業廃棄処理物に相当する成分が生じることが不可避であったが、本発明ではそのような産業廃棄処理物を生じることがなく、処理対象物の取扱いが容易であるという点でも有利である。 According to the present invention, methyl fluoride can be purified from a mixed gas more easily in a method for obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing the raw material compound in a gas phase state. Specifically, it is as follows. Conventionally, before purification, the mixed gas is cooled to perform fractional distillation, washed with water or an aqueous alkali solution, or contacted with alcohol or the like to dissolve and remove the acid fluoride in the aqueous phase. There was a need. On the other hand, in the present invention, it is not necessary to perform such an operation before purification. For this reason, the present invention is advantageous in that the operation is simpler. Furthermore, when the acid fluoride is removed by contact with alcohol, it is inevitable that a component corresponding to the industrial waste treatment product is generated by esterification. In the present invention, such an industrial waste treatment product may be produced. There is also an advantage that the object to be treated is easy to handle.
本発明の方法は、フッ化メチルの製造方法であって、
(1)原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る工程;及び
(2)前記工程(1)で得られた混合ガスを精留することによりフッ化メチルを得る工程を含む方法
である。
The method of the present invention is a method for producing methyl fluoride,
(1) A step of obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing the raw material compound in a gas phase; and (2) rectifying the mixed gas obtained in the step (1). To obtain methyl fluoride.
1.原料化合物
本発明で用いる原料化合物は、気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを生じる化合物であればよく、特に限定されない。
1. Raw Material Compound The raw material compound used in the present invention is not particularly limited as long as it is a compound that generates a mixed gas containing methyl fluoride and acid fluoride by thermal decomposition in a gas phase state.
気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを生じる反応は既に知られており、例えば、特開2014−114277号公報等に開示されている。 A reaction that generates a mixed gas containing methyl fluoride and acid fluoride by thermal decomposition in a gas phase is already known, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-114277.
本発明では、原料化合物としては、好ましくは、一般式(1)で表される含フッ素メチルエーテルを用いる。 In the present invention, the fluorine-containing methyl ether represented by the general formula (1) is preferably used as the raw material compound.
(式中、R1及びR2は、同一又は異なって、置換されていてもよい、直鎖状若しくは分岐状の一価の脂肪族炭化水素基、一価の芳香族炭化水素基若しくは一価の環状脂肪族炭化水素基;水素原子又はハロゲン原子である)。 Wherein R 1 and R 2 are the same or different and may be substituted, a linear or branched monovalent aliphatic hydrocarbon group, monovalent aromatic hydrocarbon group or monovalent A cyclic aliphatic hydrocarbon group; a hydrogen atom or a halogen atom).
原料化合物として用いる含フッ素メチルエーテルの製造方法については特に限定はなく、任意の方法で得られた化合物を用いることができる。 There is no limitation in particular about the manufacturing method of fluorine-containing methyl ether used as a raw material compound, The compound obtained by arbitrary methods can be used.
上記一般式(1)において、好ましくはR1及びR2は、同一又は異なって、置換されていてもよい、炭素数1〜30の直鎖状若しくは分岐状の一価の脂肪族炭化水素基、炭素数6〜12の一価の芳香族炭化水素基又は炭素数6〜12の一価の環状脂肪族炭化水素基である。より好ましくは、R1及びR2は、同一又は異なって、置換されていてもよい、炭素数1〜10の直鎖状若しくは分岐状の一価の脂肪族炭化水素基、炭素数6〜10の一価の芳香族炭化水素基又は炭素数6〜10の一価の環状脂肪族炭化水素基である。 In the general formula (1), preferably R 1 and R 2 are the same or different and may be substituted, a linear or branched monovalent aliphatic hydrocarbon group having 1 to 30 carbon atoms. , A monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms or a monovalent cyclic aliphatic hydrocarbon group having 6 to 12 carbon atoms. More preferably, R 1 and R 2 are the same or different and may be substituted, a linear or branched monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, or 6 to 10 carbon atoms. A monovalent aromatic hydrocarbon group or a monovalent cycloaliphatic hydrocarbon group having 6 to 10 carbon atoms.
上記において、炭素数1〜10の直鎖状若しくは分岐状の一価の脂肪族炭化水素基としては、特に限定されないが、例えば、炭素数1〜10のアルキル基等が挙げられる。 In the above, the linear or branched monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms.
具体的には、炭素数1〜10のアルキル基として、メチル基、エチル基、トリメチル基、プロピル基、2−メチルエチル基、ヘキシル基及びオクチル基等が挙げられる。 Specifically, examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a trimethyl group, a propyl group, a 2-methylethyl group, a hexyl group, and an octyl group.
炭素数1〜10のアルキル基の中では、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましく、炭素数1〜3のアルキル基がさらに好ましい。 Among the alkyl groups having 1 to 10 carbon atoms, alkyl groups having 1 to 6 carbon atoms are preferable, alkyl groups having 1 to 4 carbon atoms are more preferable, and alkyl groups having 1 to 3 carbon atoms are more preferable.
炭素数6〜10の一価の芳香族炭化水素基としては、特に限定されないが、例えば、フェニル基、メチルフェニル基及びエチルフェニル基等が挙げられる。 The monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a methylphenyl group, and an ethylphenyl group.
炭素数6〜10の一価の環状脂肪族炭化水素基としては、特に限定されないが、例えば、シクロヘキシル基、メチルシクロヘキシル基及びエチルシクロヘキシル基等が挙げられる。 The monovalent cyclic aliphatic hydrocarbon group having 6 to 10 carbon atoms is not particularly limited, and examples thereof include a cyclohexyl group, a methylcyclohexyl group, and an ethylcyclohexyl group.
上記において、一価の脂肪族炭化水素基、一価の芳香族炭化水素基又は一価の環状脂肪族炭化水素基はフッ素原子、塩素原子、臭素原子からなる群より選択される少なくとも一種のヘテロ原子で、水素原子の少なくとも一つが置換されていてもよく、また全ての水素原子が置換されていてもよい。 In the above, the monovalent aliphatic hydrocarbon group, monovalent aromatic hydrocarbon group or monovalent cyclic aliphatic hydrocarbon group is at least one hetero selected from the group consisting of a fluorine atom, a chlorine atom and a bromine atom. At least one hydrogen atom may be substituted with an atom, or all hydrogen atoms may be substituted.
上記において、ハロゲン原子は、好ましくはフッ素原子、塩素原子、臭素原子子であり、より好ましくはフッ素原子である。 In the above, the halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a fluorine atom.
特に限定されないが、原料として用いることができる具体的な化合物の例として、1,
1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテル等が挙
げられる。
Although not particularly limited, examples of specific compounds that can be used as raw materials include 1,
1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether and the like.
特に、フッ素樹脂の原料として使用するヘキサフロオロプロペンを製造する際に副生するパーフルオロイソブチレン((CF3)2C=CF2))は、従来不要物として廃棄され
ていたが、これをメタノールと反応させることによって1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルを得ることができ、これを本発明方法の原料として用いることによって、廃棄物の有効利用を図ることができ、低コストの原料を用いて、安価に目的物を得ることが可能となる。なお、本発明において、原料とする1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルが、「パーフルオロイソブチレンとメタノールを反応させて得られるものである」というときは、その1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルが、かかる反応により得られたものに限定され、他の反応により得られたものではないことを意味する。パーフルオロイソブチレンとメタノールとを反応させて1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルを得る方法は、公知の方法であり、公知の反応条件に従えばよい。例えば、特表2001−506261号公報に記載の方法に従って反応を行えばよい。
In particular, perfluoroisobutylene ((CF 3 ) 2 C = CF 2 )) produced as a by-product when producing hexafluoropropene used as a raw material for fluororesin has been conventionally discarded as an unnecessary substance. By reacting with methanol, 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether can be obtained, and by using this as a raw material of the method of the present invention, the waste can be effectively utilized. Therefore, the target product can be obtained at low cost by using a low-cost raw material. In the present invention, when 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether as a raw material is “obtained by reacting perfluoroisobutylene with methanol” Means that the 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether is limited to those obtained by such a reaction and is not obtained by any other reaction. To do. The method of obtaining 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether by reacting perfluoroisobutylene with methanol is a known method, and may be performed according to known reaction conditions. . For example, the reaction may be performed according to the method described in JP-T-2001-506261.
2.工程(1)
本発明の工程(1)は、上記した原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る工程である。
2. Process (1)
Step (1) of the present invention is a step of obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing the above-described raw material compound in a gas phase state.
(i)触媒
触媒としては、気相における熱分解反応に対して活性を有する触媒であれば特に限定無く用いることができる。この様な触媒としては、金属酸化物、フッ素化された金属酸化物、金属フッ化物等を挙げることができ、これらを一種単独又は二種以上混合して用いることができる。
(I) Catalyst As the catalyst, any catalyst can be used without particular limitation as long as it is active for the thermal decomposition reaction in the gas phase. Examples of such a catalyst include metal oxides, fluorinated metal oxides, metal fluorides, and the like, and these can be used alone or in combination of two or more.
これらの内で、金属酸化物としては、アルミナ、酸化クロム、酸化チタン、酸化亜鉛、等が好ましい。また、これらの金属酸化物の一部をフッ素化したフッ素化金属酸化物を用いることもできる。前記フッ素化金属酸化物触媒は、あらかじめ金属酸化物触媒をフッ化水素などを用いてフッ素化したものであってもよく、本発明の製造方法の反応過程において、その一部がフッ素化された金属酸化物触媒を使用してもよい。金属フッ化物としては、AlF3、TiF4、CrF3及びZnF2等が好ましい。 Among these, as the metal oxide, alumina, chromium oxide, titanium oxide, zinc oxide, and the like are preferable. Further, a fluorinated metal oxide obtained by fluorinating a part of these metal oxides can also be used. The fluorinated metal oxide catalyst may be a fluorinated metal oxide catalyst previously using hydrogen fluoride or the like, and a part of the fluorinated metal oxide catalyst was fluorinated in the reaction process of the production method of the present invention. Metal oxide catalysts may be used. As the metal fluoride, AlF 3 , TiF 4 , CrF 3, ZnF 2 and the like are preferable.
金属酸化物の中でも、アルミナが好ましく、α-アルミナ及び活性アルミナなどを使用
できる。活性アルミナとしては、ρ-アルミナ、χ-アルミナ、κ-アルミナ、η-アルミナ、擬γ-アルミナ、γ-アルミナ、δ-アルミナ及びθ-アルミナなどが使用される。これらの中でもγ-アルミナ及びη-アルミナが好ましく、γ-アルミナが特に好ましい。また、
複合酸化物としてシリカアルミナ(SiO2/Al2O3)も触媒として用いることができる。シリカアルミナのシリカSiO2の組成は、20重量%〜90重量%が好ましく、50重量%〜80重量%がより好ましい。
Among the metal oxides, alumina is preferable, and α-alumina and activated alumina can be used. As the activated alumina, ρ-alumina, χ-alumina, κ-alumina, η-alumina, pseudo-γ-alumina, γ-alumina, δ-alumina, θ-alumina and the like are used. Among these, γ-alumina and η-alumina are preferable, and γ-alumina is particularly preferable. Also,
Silica alumina (SiO 2 / Al 2 O 3 ) can also be used as a catalyst as a composite oxide. The composition of silica SiO 2 of silica alumina is preferably 20% by weight to 90% by weight, and more preferably 50% by weight to 80% by weight.
触媒の細孔容積は大きいほど活性が高く、0.4ml/g以上であることが好ましく、0.5ml/g以上であることが特に好ましい。触媒の細孔容積の上限は特に限定されないが、通常、5ml/g以下であり、反応速度および触媒強度の点で、好ましくは2ml/g以下である。細孔容積は、ガス吸着法、水銀圧入法などで測定できる。 The larger the pore volume of the catalyst, the higher the activity, and it is preferably 0.4 ml / g or more, particularly preferably 0.5 ml / g or more. The upper limit of the pore volume of the catalyst is not particularly limited, but is usually 5 ml / g or less, and preferably 2 ml / g or less in terms of reaction rate and catalyst strength. The pore volume can be measured by a gas adsorption method, a mercury intrusion method, or the like.
また、触媒にKF、NaF及びMgF2などのアルカリ金属およびアルカリ土類金属のフッ化物を担持してもよい。 The catalyst may carry fluorides of alkali metals and alkaline earth metals such as KF, NaF and MgF 2 .
上記したフッ素化された金属酸化物を得る方法については特に限定はないが、例えば、加熱下において、上記した金属酸化物を無水フッ化水素またはフロンと接触させることに
よって、フッ素化反応が進行してフッ素化された金属酸化物を得ることができる。金属酸化物とフッ化水素とを接触させる方法については特に限定的ではなく、触媒を充填した反応管中にフッ化水素を流通させる連続法でもよく、触媒を収容した容器にフッ化水素またはフロンを封入するバッチ式でもよい。特に、流通方式は、処理時間が短い点で好ましい。
フロンは、フッ素原子の数が多く、炭素原子の数が少ないものが好ましい。例えば、トリフルオロメタン、ジフルオロクロロメタン、オクタフルオロエタンなどがあげられる。
The method for obtaining the fluorinated metal oxide is not particularly limited. For example, the fluorination reaction proceeds by bringing the metal oxide into contact with anhydrous hydrogen fluoride or chlorofluorocarbon under heating. Thus, a fluorinated metal oxide can be obtained. The method of bringing the metal oxide into contact with hydrogen fluoride is not particularly limited, and may be a continuous method in which hydrogen fluoride is circulated in a reaction tube filled with the catalyst, and hydrogen fluoride or fluorocarbon is contained in a container containing the catalyst. May be a batch type. In particular, the distribution method is preferable in that the processing time is short.
A fluorocarbon having a large number of fluorine atoms and a small number of carbon atoms is preferable. Examples thereof include trifluoromethane, difluorochloromethane, octafluoroethane and the like.
金属酸化物のフッ素化の程度については、特に限定的ではないが、フッ素化された金属酸化物全体の重量を基準として、フッ素含有率が5〜50重量%程度であることが好ましい。 The degree of fluorination of the metal oxide is not particularly limited, but the fluorine content is preferably about 5 to 50% by weight based on the weight of the entire fluorinated metal oxide.
金属酸化物のフッ素化処理の温度は、後述する熱分解反応より高温であることが好ましく、例えば、150〜500℃程度が好ましく、200℃〜400℃程度がより好ましく、250℃〜350℃程度が更に好ましい。フッ素化処理の温度が低すぎるとフッ素化が不十分であるために触媒の効果が小さく、処理温度が高すぎると耐熱材料が特別に必要になるために実用的でない。 The temperature of the fluorination treatment of the metal oxide is preferably higher than the thermal decomposition reaction described later, for example, preferably about 150 to 500 ° C, more preferably about 200 ° C to 400 ° C, and about 250 ° C to 350 ° C. Is more preferable. If the temperature of the fluorination treatment is too low, the effect of the catalyst is small because the fluorination is insufficient, and if the treatment temperature is too high, a heat-resistant material is specially required, which is not practical.
(ii)熱分解反応条件
含フッ素メチルエーテルの熱分解反応は、上記した触媒の存在下で、含フッ素メチルエーテルを気相状態で触媒に接触させることによって進行させることができる具体的な方法については特に限定的ではないが、例えば、管型の流通型反応器を用い、該反応器に上記した触媒を充填し、原料として用いる含フッ素メチルエーテルを該反応器に導入して、気相状態で触媒に接触させる方法を挙げることができる。
(Ii) Thermal decomposition reaction conditions A specific method in which the thermal decomposition reaction of fluorinated methyl ether can proceed by bringing the fluorinated methyl ether into contact with the catalyst in the gas phase in the presence of the above-described catalyst. Is not particularly limited, for example, using a tubular flow reactor, filling the reactor with the catalyst described above, introducing fluorine-containing methyl ether used as a raw material into the reactor, The method of making it contact with a catalyst can be mentioned.
熱分解反応の温度については、低すぎると原料の転化率が低下し、高すぎると不純物が多くなる傾向がある。このため、100℃〜400℃程度とすることが好ましく、100℃〜300℃程度とすることがさらに好ましく、100℃〜250℃程度とすることが特に好ましい。 As for the temperature of the thermal decomposition reaction, if the temperature is too low, the conversion rate of the raw material is lowered, and if it is too high, impurities tend to increase. For this reason, it is preferable to set it as about 100 to 400 degreeC, it is more preferable to set it as about 100 to 300 degreeC, and it is especially preferable to set it as about 100 to 250 degreeC.
熱分解反応時の反応管内の圧力は、低すぎると空気の混入の可能性などがあるので操作上煩雑になり、高すぎると機器の耐圧を考慮する必要があり、漏えいの可能性も高くなる。これらの点から、0.05〜1MPa程度とすることが好ましく、0.1〜0.5MPa程度とすることが好ましく、特に、反応操作上、大気圧(約0.1MPa)程度の圧力が好ましい。 If the pressure in the reaction tube during the pyrolysis reaction is too low, there is a possibility that air may be mixed in. Therefore, if it is too high, it is necessary to consider the pressure resistance of the equipment, and the possibility of leakage increases. . From these points, the pressure is preferably about 0.05 to 1 MPa, more preferably about 0.1 to 0.5 MPa, and in particular, a pressure of about atmospheric pressure (about 0.1 MPa) is preferable for the reaction operation. .
反応させるための接触時間については特に限定的ではないが、反応管に供給する原料ガスである含フッ素メチルエーテルの流量F(0℃、一気圧(約0.1MPa)での流量:cc/sec)に対する触媒の充填量W(g)の比率:W/F(g・sec/cc)で表
される接触時間を、1〜100g・sec/cc程度とすることが好ましく、1〜50g・sec/cc程度とすることがより好ましい、5〜30g・sec/cc程度とすることが更に好ましい。接触時間が長すぎると、生成物を得るのに長時間を要するので、生産量を上げるためには接触時間を短くすることが好ましいが、接触時間が短すぎると、転化率が下がる傾向がある。このため、使用する触媒の種類、触媒量、反応条件などに応じて、原料の転化率と目的物の選択率の点から最も生産性が高くなる接触時間を選べばよい。通常は、使用する触媒の種類、触媒量、反応条件などに応じて、転化率が100%になる接触時間を選択して反応を行うことが望ましい。
The contact time for the reaction is not particularly limited, but the flow rate F (0 ° C., one atmospheric pressure (about 0.1 MPa)) of fluorinated methyl ether, which is the raw material gas supplied to the reaction tube, is cc / sec. The ratio of the catalyst filling amount W (g) to W) is preferably about 1 to 100 g · sec / cc, and the contact time represented by W / F (g · sec / cc) is preferably 1 to 50 g · sec. / Cc is more preferable, and about 5 to 30 g · sec / cc is still more preferable. If the contact time is too long, it takes a long time to obtain the product. Therefore, it is preferable to shorten the contact time in order to increase the production amount. However, if the contact time is too short, the conversion rate tends to decrease. . For this reason, the contact time with the highest productivity may be selected according to the type of catalyst used, the amount of catalyst, the reaction conditions, and the like, in terms of the conversion rate of raw materials and the selectivity of the target product. Usually, it is desirable to carry out the reaction by selecting a contact time at which the conversion rate is 100% according to the type of catalyst used, the amount of catalyst, reaction conditions, and the like.
(iii)混合ガス
工程(1)により、フッ化メチル及び酸フルオリドを含む混合ガスが得られる。混合ガ
スには、目的物であるフッ化メチル(沸点−79℃)に加えて、同時に熱分解により生成
する酸フルオリドを含んでおり、さらに、原料化合物及び副生成物、並びに不純物のいずれか少なくとも一種を含んでいてもよい。原料化合物によっても異なるが、副生成物としては、例えば、プロペン(沸点−47.7℃)、塩化メチル(沸点−24℃)、五フッ化プロペン(沸点−21.1℃)及びプロパン(沸点−1.4℃)等が挙げられる。
(Iii) Mixed gas By the step (1), a mixed gas containing methyl fluoride and acid fluoride is obtained. The mixed gas contains, in addition to the target methyl fluoride (boiling point -79 ° C.), acid fluoride that is simultaneously generated by thermal decomposition, and at least any one of the raw material compounds and by-products, and impurities. One kind may be included. By-products such as propene (boiling point −47.7 ° C.), methyl chloride (boiling point −24 ° C.), propylene pentafluoride (boiling point −21.1 ° C.) and propane (boiling point) vary depending on the raw material compound. -1.4 ° C).
3.工程(2)
本発明の工程(2)は、前記工程(1)で得られた混合ガスを精留することによりフッ化メチルを得る工程である。
3. Step (2)
Step (2) of the present invention is a step of obtaining methyl fluoride by rectifying the mixed gas obtained in the step (1).
これにより、分留操作や、水洗又はアルコールによる酸フルオリドの除去等を精製の前に予め行う必要がなく、簡便にフッ化メチルを酸フルオリドから分離できる。 Thereby, it is not necessary to perform fractional distillation operation, washing with water or removal of acid fluoride by alcohol in advance before purification, and methyl fluoride can be easily separated from acid fluoride.
酸フルオリドは、例えば3,3,3−トリフルオロ−2−(トリフルオロメチル)プロパノイルフルオライドの沸点が32℃であるように、通常、沸点が室温以上であり、フッ化メチル(沸点−79℃)より相当沸点が高い。混合ガスにはフッ化メチルと酸フルオリドがモル比1:1で存在している。混合ガスをそのまま室温近辺の環境下に置くと、酸フルオリドが凝縮することが予想されるところ、本発明者らは、意外にも、これら二成分間に相互作用が生じ、混合ガスが全体として室温近辺でも(所定圧力条件下では)凝縮しないガスとしてふるまうという現象を見出した。本発明ではこの知見を利用して、この混合ガスをそのまま精留操作に供して、フッ化メチルを効率的に分離することができる。 The acid fluoride usually has a boiling point of room temperature or higher such that the boiling point of 3,3,3-trifluoro-2- (trifluoromethyl) propanoyl fluoride is 32 ° C., and methyl fluoride (boiling point− 79 ° C.). In the mixed gas, methyl fluoride and acid fluoride are present in a molar ratio of 1: 1. When the mixed gas is left in an environment near room temperature as it is, acid fluoride is expected to condense.Unexpectedly, an interaction occurs between these two components, and the mixed gas becomes a whole as a whole. We found a phenomenon in which it behaves as a gas that does not condense even near room temperature (under a predetermined pressure condition). In the present invention, using this knowledge, the mixed gas can be directly subjected to a rectification operation to efficiently separate methyl fluoride.
工程(2)においては、好ましくは、前記工程(1)で得られた混合ガスを精留塔に供給する。この供給を、大気圧を超える圧力で行うことが好ましい。これにより、精留塔に混合ガスを送り込むことが容易になる。このときの圧力は、0.2MPa〜0.15MPaであればより好ましい。この範囲内の圧力であれば、混合ガスの凝縮を避けつつ、精留塔に効果的に混合ガスを供給することができる。反応後のガスの温度が高いほど高い圧力で精留塔に反応ガスを送り込むことができる。通常は圧縮機にて反応後のガスを精留塔に送ることが多い。また、精留塔の温度を冷却することにより、精留塔の圧力が下がるため、圧縮機のガスの吸入側と排出側との圧力差が生まれやすくなり、精留塔に混合ガスを供給しやすくなる。精留塔の冷却において特に液が溜まっている精留塔の釜を冷却することで精留塔の圧力を下げる効果が大きくなり、精留塔への混合ガスの供給が容易になる。 In the step (2), preferably, the mixed gas obtained in the step (1) is supplied to the rectification column. It is preferable to perform this supply at a pressure exceeding atmospheric pressure. This makes it easy to feed the mixed gas into the rectification column. The pressure at this time is more preferably 0.2 MPa to 0.15 MPa. When the pressure is within this range, the mixed gas can be effectively supplied to the rectification column while avoiding condensation of the mixed gas. The higher the temperature of the gas after the reaction, the more the reaction gas can be fed into the rectification column at a higher pressure. Usually, the gas after reaction is often sent to a rectification column by a compressor. In addition, since the pressure of the rectification column is lowered by cooling the temperature of the rectification column, a pressure difference between the suction side and the discharge side of the compressor gas tends to be generated, and the mixed gas is supplied to the rectification column. It becomes easy. In the cooling of the rectifying column, the effect of lowering the pressure of the rectifying column is particularly increased by cooling the kettle of the rectifying column in which the liquid is stored, and the supply of the mixed gas to the rectifying column is facilitated.
精留は、特に限定されないが、通常、精留塔を二つ設け、最初の精留塔においてメタン又はエチレン等の低沸点成分を塔頂部から抜き出し、残りのフッ化メチル及び酸フルオリドを含む成分を塔底部から得て、これをさらに二つ目の精留塔に供して、塔頂部からフッ化メチルを抜き出すことができる。この際、二つの精留塔の塔頂部から最終的に得られるフッ化メチルの純度は、99.999重量%以上である。 The rectification is not particularly limited, but usually, two rectification columns are provided, a low boiling point component such as methane or ethylene is extracted from the top of the first rectification column, and the remaining components containing methyl fluoride and acid fluoride Is obtained from the bottom of the column, and this is further subjected to a second rectifying column to extract methyl fluoride from the top of the column. At this time, the purity of methyl fluoride finally obtained from the tops of the two rectification columns is 99.999% by weight or more.
以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
150℃に加熱したγ−アルミナ触媒を充填した反応器に、1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルをガス状態で流入し熱分解させた。熱分解反応後のガスを0.15MPaの圧力をかけて、冷却した第一精留塔に捕集した。捕集した反応ガスの組成は、以下の通りであった。
メタン0.002mol%
エチレン0.0036mol%
フッ化メチル46.17mol%
プロピレン0.0092mol%
1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテル7.58mol%
酸フルオリド46.17mol%
その他成分0.0652mol%
第一精留塔でメタン及びエチレンなどの低沸点化合物を除去した後、残りの成分を第二精留塔に移送した。第二精留塔で精製して精留塔の塔頂からフッ化メチルを抜出し捕集した。得られたフッ化メチルの純度は99.999mol%であった。フッ化水素などの酸分や水分が発生しないため、酸分除去のための水洗塔、アルカリ塔及び水分除去のためのモレキュラーシーブスなどの入った乾燥塔等がいずれも不要であった。
1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether was introduced into a reactor filled with a γ-alumina catalyst heated to 150 ° C. in a gas state and thermally decomposed. The gas after the pyrolysis reaction was collected in the cooled first rectification column under a pressure of 0.15 MPa. The composition of the collected reaction gas was as follows.
Methane 0.002mol%
0.0036 mol% ethylene
Methyl fluoride 46.17 mol%
Propylene 0.0092 mol%
1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether 7.58 mol%
Acid fluoride 46.17 mol%
Other components 0.0652 mol%
After removing low-boiling compounds such as methane and ethylene in the first rectification column, the remaining components were transferred to the second rectification column. After purification in the second rectification column, methyl fluoride was extracted from the top of the rectification column and collected. The purity of the obtained methyl fluoride was 99.999 mol%. Since neither acid nor water such as hydrogen fluoride is generated, a washing tower for removing acid, an alkali tower and a drying tower containing molecular sieves for removing water are not required.
第二精留塔の精留釜に残った高沸点成分はそのままステンレス配管を通して焼却炉に導入し分解処理することができた。 The high-boiling components remaining in the rectification tank of the second rectification column were directly introduced into the incinerator through the stainless steel pipe and decomposed.
<比較例1>
実施例と同じようにして得られた熱分解反応後の反応ガスを、水洗塔、5%水酸化カリウム水溶液の入ったアルカリ塔及びモレキュラーシーブスの入った乾燥塔に順次通過させた。その後、第一精留塔に移送した。第一精留塔で、メタン及びエチレンなどの低沸点化合物を除去した後、残りの成分を第二精留塔に移送した。第二精留塔で還流させながら精製して精留塔の塔頂からフッ化メチルを抜出し捕集した。得られたフッ化メチルの純度は99.999mol%であった。
<Comparative Example 1>
The reaction gas after the thermal decomposition reaction obtained in the same manner as in the Examples was sequentially passed through a washing tower, an alkali tower containing 5% potassium hydroxide aqueous solution, and a drying tower containing molecular sieves. Then, it transferred to the 1st rectification tower. After removing low-boiling compounds such as methane and ethylene in the first rectification column, the remaining components were transferred to the second rectification column. Purification was carried out while refluxing in the second rectification column, and methyl fluoride was extracted from the top of the rectification column and collected. The purity of the obtained methyl fluoride was 99.999 mol%.
しかし、この比較例1の方法では、水洗塔及びアルカリ塔の追加設備が必要になり設備費が高くなっただけでなく、水洗塔及びアルカリ塔には未反応の1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルと酸フルオリドとが加水分解してできたカルボン酸及びフッ化水素酸を含んだ混合溶液が蓄積した。この廃棄物は、有機物と水溶物との混合溶液であるため、産業廃棄物として処理にしにくいという問題がある。また、この廃液は酸性度が高く金属を腐食させるため、ステンレスなどの金属配管にそのまま通すことができず、焼却炉に移送することが困難であった。この廃液を移送するためにはフッ素樹脂などのライニングした配管または容器が必要になった。またこの廃液は水分を多量に含んでいるため、燃焼させるのに余分なエネルギーを要した。 However, in the method of Comparative Example 1, not only the washing tower and the alkali tower need additional equipment and the equipment cost is high, but also the unwashed 1,1,3,3, A mixed solution containing carboxylic acid and hydrofluoric acid formed by hydrolysis of 3-pentafluoro-2-trifluoromethylpropyl methyl ether and acid fluoride accumulated. Since this waste is a mixed solution of an organic substance and a water-soluble substance, there is a problem that it is difficult to treat as an industrial waste. Moreover, since this waste liquid has high acidity and corrodes the metal, it cannot be directly passed through a metal pipe made of stainless steel or the like, and is difficult to transfer to an incinerator. In order to transfer the waste liquid, a lined pipe or container such as a fluororesin is required. In addition, since this waste liquid contains a large amount of moisture, extra energy was required to burn it.
<比較例2>
実施例と同じようにして得られた熱分解反応後の反応ガスを、メタノール水溶液の入った吸収塔及びモレキュラーシーブスの入った乾燥塔に順次通過させた後、第一精留塔に移送した。第一精留塔で、メタン及びエチレンなどの低沸点化合物を除去した。その後、残りの成分を第二精留塔に移送した。第二精留塔で還流させながら精製して精留塔の塔頂からフッ化メチルを抜出し捕集した。得られたフッ化メチルの純度は99.999mol%であった。
<Comparative example 2>
The reaction gas after the thermal decomposition reaction obtained in the same manner as in the Examples was sequentially passed through an absorption tower containing an aqueous methanol solution and a drying tower containing molecular sieves, and then transferred to the first rectification tower. In the first rectification column, low-boiling compounds such as methane and ethylene were removed. Thereafter, the remaining components were transferred to the second rectification column. Purification was carried out while refluxing in the second rectification column, and methyl fluoride was extracted from the top of the rectification column and collected. The purity of the obtained methyl fluoride was 99.999 mol%.
しかし、多量のメタノール及び吸収塔の追加設備も必要になり、薬剤費と設備費が高くなっただけでなく、吸収塔には、未反応の1,1,3,3,3−ペンタフルオロ−2−トリフルオロメチルプロピルメチルエーテルと酸フルオリドとがメタノールと反応してできたエステル及びフッ化水素を含んだ混合溶液が蓄積した。この廃棄物は、有機物であるがフッ化水素を含むため産業廃棄物として処理にしにくい問題が生じた。この廃液は有機物が主成分であるため酸性度は高くないが、フッ化水素が徐々に金属を腐食させるため、長時間、ステンレスなどの金属配管に流すことができず、焼却炉に移送することが困難であった。この廃液を移送するためにはフッ素樹脂などのライニングした配管または容器が必要になった。またこの廃液はフッ化水素を多量に含んでいるため、燃焼させるのに余分なエネルギーを要した。 However, a large amount of methanol and additional equipment for the absorption tower are required, which not only increases the chemical cost and the equipment cost, but also includes an unreacted 1,1,3,3,3-pentafluoro- A mixed solution containing ester and hydrogen fluoride formed by reacting 2-trifluoromethylpropyl methyl ether and acid fluoride with methanol accumulated. Although this waste is an organic matter, it contains hydrogen fluoride, which causes a problem that it is difficult to treat as an industrial waste. Although this waste liquid is mainly composed of organic substances, its acidity is not high, but hydrogen fluoride gradually corrodes the metal, so it cannot be flowed into metal pipes such as stainless steel for a long time and should be transferred to an incinerator. It was difficult. In order to transfer the waste liquid, a lined pipe or container such as a fluororesin is required. In addition, since this waste liquid contains a large amount of hydrogen fluoride, extra energy was required to burn it.
Claims (4)
(1)原料化合物を気相状態で熱分解させることにより、フッ化メチル及び酸フルオリドを含む混合ガスを得る工程;及び
(2)前記工程(1)で得られた混合ガスを精留することによりフッ化メチルを得る工程を含む方法。 A method for producing methyl fluoride, comprising:
(1) A step of obtaining a mixed gas containing methyl fluoride and acid fluoride by thermally decomposing the raw material compound in a gas phase; and (2) rectifying the mixed gas obtained in the step (1). A process comprising the step of obtaining methyl fluoride by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016215554A JP2017078069A (en) | 2016-11-02 | 2016-11-02 | Method for producing methyl fluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016215554A JP2017078069A (en) | 2016-11-02 | 2016-11-02 | Method for producing methyl fluoride |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015021408A Division JP6261531B2 (en) | 2015-02-05 | 2015-02-05 | Method for producing methyl fluoride |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017078069A true JP2017078069A (en) | 2017-04-27 |
Family
ID=58665903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016215554A Pending JP2017078069A (en) | 2016-11-02 | 2016-11-02 | Method for producing methyl fluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017078069A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012180285A (en) * | 2010-02-17 | 2012-09-20 | Central Glass Co Ltd | Method for producing monofluoromethane |
JP2014114277A (en) * | 2012-11-14 | 2014-06-26 | Daikin Ind Ltd | Method for producing dry etching gas |
JP6261531B2 (en) * | 2015-02-05 | 2018-01-17 | ダイキン工業株式会社 | Method for producing methyl fluoride |
-
2016
- 2016-11-02 JP JP2016215554A patent/JP2017078069A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012180285A (en) * | 2010-02-17 | 2012-09-20 | Central Glass Co Ltd | Method for producing monofluoromethane |
JP2014114277A (en) * | 2012-11-14 | 2014-06-26 | Daikin Ind Ltd | Method for producing dry etching gas |
JP6261531B2 (en) * | 2015-02-05 | 2018-01-17 | ダイキン工業株式会社 | Method for producing methyl fluoride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5704218B2 (en) | Method for producing dry etching gas | |
JP2012521430A (en) | Separation of R-1233 from hydrogen fluoride | |
JP2020063304A (en) | Separation of R-1233 from hydrogen fluoride | |
JP6640446B2 (en) | Method for producing fluorinated methane | |
US9988328B2 (en) | Method for producing fluorinated methane | |
JP6261531B2 (en) | Method for producing methyl fluoride | |
JP2021165315A (en) | Manufacturing method of methane fluoride | |
JP2017078069A (en) | Method for producing methyl fluoride | |
JP6372423B2 (en) | Composition containing fluorinated methane and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190723 |