JP2017077921A - Oil feed device - Google Patents

Oil feed device Download PDF

Info

Publication number
JP2017077921A
JP2017077921A JP2015207683A JP2015207683A JP2017077921A JP 2017077921 A JP2017077921 A JP 2017077921A JP 2015207683 A JP2015207683 A JP 2015207683A JP 2015207683 A JP2015207683 A JP 2015207683A JP 2017077921 A JP2017077921 A JP 2017077921A
Authority
JP
Japan
Prior art keywords
fuel oil
oil
vapor
liquid separation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015207683A
Other languages
Japanese (ja)
Other versions
JP6222199B2 (en
Inventor
直裕 小倉
Tadahiro Ogura
直裕 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuno Corp
Original Assignee
Tatsuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuno Corp filed Critical Tatsuno Corp
Priority to JP2015207683A priority Critical patent/JP6222199B2/en
Priority to KR1020160136262A priority patent/KR101927727B1/en
Publication of JP2017077921A publication Critical patent/JP2017077921A/en
Application granted granted Critical
Publication of JP6222199B2 publication Critical patent/JP6222199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/42Filling nozzles
    • B67D7/54Filling nozzles with means for preventing escape of liquid or vapour or for recovering escaped liquid or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants
    • B67D7/0476Vapour recovery systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an error between a calculated value of an amount of fuel oil recovered from fuel oil vapor and the amount of actual recovery in an oil feed device.SOLUTION: An oil feed device 1 includes: an oil feed system; and a vapor liquefaction recovery system which has a vapor return pipe which has one end opened in the vicinity of an oil feed nozzle, a compression pipe, a condenser 23a, and a gas liquid separation measurement tank 23b which are interposed in the vapor return pipe, and adsorption towers which adsorb fuel oil vapor from the gas liquid separation measurement tank. The gas liquid separation measurement tank includes: a fuel oil return valve 25 for returning fuel oil to the oil feed system; a fuel oil upper limit sensor 47d; and a fuel oil lower limit sensor 47e which is provided on a lower side of the fuel oil upper limit sensor and is provided at the same position as the fuel oil return valve or on an upper side of the fuel oil return valve. The fuel oil return valve becomes fully opened upon receiving a detection signal when the fuel oil upper limit sensor detects that the fuel oil has reached an upper limit level, and becomes fully closed upon receiving a detection signal when the fuel oil lower limit sensor detects that the fuel oil has reached a lower limit level.SELECTED DRAWING: Figure 3

Description

本発明は、給油装置に関し、特に、自動車等へ燃料油を供給する給油所に設置され、給油中に自動車等の燃料タンクから流出する燃料油ベーパを回収するベーパ液化回収系統を備えた給油装置に関する。   TECHNICAL FIELD The present invention relates to a fueling device, and more particularly, a fueling device provided with a vapor liquefaction recovery system that is installed in a fueling station that supplies fuel oil to an automobile or the like and collects fuel oil vapor that flows out from a fuel tank of the automobile or the like About.

従来、自動車等の燃料タンクにガソリン等の揮発性の高い燃料油を供給する給油装置において、燃料タンクから給油量に応じた燃料油ベーパが流出する。この燃料油ベーパが大気中に放出されると、資源が無駄になるだけでなく、引火による火災の危険性や環境汚染を引き起こす虞もあった。   2. Description of the Related Art Conventionally, in a fuel supply apparatus that supplies highly volatile fuel oil such as gasoline to a fuel tank of an automobile or the like, fuel oil vapor corresponding to the amount of fuel supplied flows out of the fuel tank. When this fuel oil vapor is released into the atmosphere, not only resources are wasted, but there is also a risk of fire and environmental pollution due to ignition.

そこで、本出願人は、特許文献1において、ベーパ液化回収系統を備えた給油装置を提案した。図6に示すように、このベーパ液化回収系統61は、一端が給油ノズル近傍に開口するベーパ戻り管62と、このベーパ戻り管62に介装された圧縮ポンプ63、凝縮器64及び気液分離計測槽65と、気液分離計測槽65からの燃料油ベーパの吸着等を行う2つの吸着塔66a、66bを備え、凝縮器64において燃料油ベーパを液化して気液分離計測槽65にて回収し、回収した燃料油を給油系統へ戻す。   Therefore, the present applicant has proposed an oil supply apparatus having a vapor liquefaction recovery system in Patent Document 1. As shown in FIG. 6, the vapor liquefaction recovery system 61 includes a vapor return pipe 62 having one end opened near the oil supply nozzle, a compression pump 63 interposed in the vapor return pipe 62, a condenser 64, and a gas-liquid separation. A measurement tank 65 and two adsorption towers 66a and 66b for adsorbing fuel oil vapor from the gas-liquid separation measurement tank 65, etc. are provided. Collect and return the collected fuel oil to the oil supply system.

上記気液分離計測槽65は、凝縮器64より供給される、燃料油ベーパが凝縮した燃料油と、ベーパ戻り管に侵入した空気が凝縮した水と、凝縮しなかった燃料油ベーパ及び空気とを、水、燃料油及び気体に各々分離するために設けられる。   The gas-liquid separation measuring tank 65 is supplied from the condenser 64, the fuel oil in which the fuel oil vapor is condensed, the water in which the air that has entered the vapor return pipe is condensed, and the fuel oil vapor and the air that are not condensed. Are provided to separate water, fuel oil and gas, respectively.

この気液分離計測槽65は、図7に示すように、主に燃料油及び水を貯留する槽71と、槽71の上方に流入口72及び気体排出口73と、槽71の底部に水排出口74と、槽71の下部に燃料油排出口75と、槽71内に配置され、燃料油及び水の液位を各々監視する2つの液面センサ76、77と、液面センサ76、77と電気的に接続され、槽71の上部開口を塞ぐ制御部78と、制御部78からの信号によって水排出口74及び燃料油排出口75を各々開閉する水戻し弁79及びガソリン戻し弁80等で構成される。尚、燃料油は、水よりも比重が小さいため自然に水の上方に分離し、流入口72から流入した気体は気体排出口73から排出される。   As shown in FIG. 7, the gas-liquid separation measuring tank 65 includes a tank 71 mainly storing fuel oil and water, an inlet 72 and a gas outlet 73 above the tank 71, and water at the bottom of the tank 71. A discharge port 74; a fuel oil discharge port 75 at the bottom of the tank 71; two liquid level sensors 76 and 77 disposed in the tank 71 for monitoring the liquid levels of fuel oil and water; 77, a control unit 78 that is electrically connected to the tank 71 and closes the upper opening of the tank 71, and a water return valve 79 and a gasoline return valve 80 that open and close the water discharge port 74 and the fuel oil discharge port 75, respectively, according to signals from the control unit 78. Etc. In addition, since fuel oil has a specific gravity smaller than water, it isolate | separates naturally above water, and the gas which flowed in from the inflow port 72 is discharged | emitted from the gas discharge port 73. FIG.

液面センサ76は、水に対して浮力を生じ、磁性材料を含むフロート76aと、フロート76aの上下動を規制するストッパ76b、76cと、フロート76aが上限位置まで移動したことを検知して検知信号を出力する磁気センサ76dとで構成される。   The liquid level sensor 76 detects and detects that the float 76a that generates buoyancy with respect to water and includes the magnetic material, the stoppers 76b and 76c that regulate the vertical movement of the float 76a, and the float 76a have moved to the upper limit position. And a magnetic sensor 76d that outputs a signal.

液面センサ77は、液面センサ76の上方に配置され、油に対して浮力を生じ、磁性材料を含むフロート77aと、フロート77aの上下動を規制するストッパ77b、77c(77cはストッパ76bと兼用)と、フロート77aが上限位置まで移動したことを検知して検知信号を出力する磁気センサ77dとで構成される。   The liquid level sensor 77 is disposed above the liquid level sensor 76, generates buoyancy with respect to the oil, and includes a float 77a containing a magnetic material, and stoppers 77b and 77c (77c is a stopper 76b) that regulates the vertical movement of the float 77a. And a magnetic sensor 77d that detects that the float 77a has moved to the upper limit position and outputs a detection signal.

各磁気センサ76d、77dの検知信号が制御部78に入力されると、制御部78は、水戻し弁79及びガソリン戻し弁80が別々のタイミングで開くように制御して燃料油及び水を各々排出する。   When the detection signals of the magnetic sensors 76d and 77d are input to the control unit 78, the control unit 78 controls the water return valve 79 and the gasoline return valve 80 to open at different timings so that fuel oil and water are respectively supplied. Discharge.

特許第5598682号公報Japanese Patent No. 5598682

上記気液分離計測槽65において、フロート77aが上限位置まで移動したことを磁気センサ77dが検知すると、制御部78が所定時間(例えば4秒)ガソリン戻し弁80を全開し、この開弁時間と燃料油排出口75の径に基づいて燃料油の回収量を算出していた。しかし、燃料油排出口75の加工精度や、気液分離計測槽65の前後の圧力の変化等により、燃料油回収量の算出値と実際の回収量の間に誤差が生じる虞があった。   In the gas-liquid separation measuring tank 65, when the magnetic sensor 77d detects that the float 77a has moved to the upper limit position, the control unit 78 fully opens the gasoline return valve 80 for a predetermined time (for example, 4 seconds). The amount of recovered fuel oil was calculated based on the diameter of the fuel oil discharge port 75. However, there may be an error between the calculated value of the fuel oil recovery amount and the actual recovery amount due to the processing accuracy of the fuel oil discharge port 75 and the change in pressure before and after the gas-liquid separation measuring tank 65.

そこで、本発明は、上記問題点に鑑みてなされたものであって、燃料油ベーパからの燃料油回収量の算出値と実際の回収量の間の誤差を低減し、燃料油回収量の計測精度を向上させることを目的とする。   Therefore, the present invention has been made in view of the above problems, and reduces an error between the calculated value of the fuel oil recovery amount from the fuel oil vapor and the actual recovery amount, and measures the fuel oil recovery amount. The purpose is to improve accuracy.

上記目的を達成するため、本発明は、給油装置であって、一端が貯油タンクに接続され、他端が給油ノズルを有する給油ホースに接続される給油管と、該給油管に介装された給油ポンプ及び流量計とを有する給油系統と、一端が給油ノズル近傍に開口するベーパ戻り管と、該ベーパ戻り管に介装された圧縮ポンプ、凝縮器及び気液分離計測槽と、該気液分離計測槽からの燃料油ベーパを吸着する吸着塔とを有するベーパ液化回収系統とを備える給油装置において、前記気液分離計測槽は、該気液分離計測槽内の燃料油を前記給油系統へ戻すための燃料油戻し弁と、該気液分離計測槽内の燃料油が上限レベルに達したことを検知する燃料油上限センサと、該気液分離計測槽内の燃料油が下限レベルに達したことを検知する燃料油下限センサとを備え、前記燃料油戻し弁は、燃料油が前記上限レベルに達したことを前記燃料油上限センサが検知した際に検知信号を受信して全開となり、燃料油が前記下限レベルに達したことを前記燃料油下限センサが検知した際に検知信号を受信して全閉となることを特徴とする。   In order to achieve the above-mentioned object, the present invention is an oil supply device, wherein one end is connected to an oil storage tank and the other end is connected to an oil supply hose having an oil supply nozzle, and the oil supply pipe is interposed in the oil supply pipe. An oil supply system having an oil supply pump and a flow meter, a vapor return pipe having one end opened in the vicinity of the oil supply nozzle, a compression pump, a condenser and a gas-liquid separation measuring tank interposed in the vapor return pipe, and the gas-liquid In a fuel supply apparatus comprising a vapor liquefaction recovery system having an adsorption tower for adsorbing fuel oil vapor from a separation measurement tank, the gas-liquid separation measurement tank is configured to supply the fuel oil in the gas-liquid separation measurement tank to the oil supply system. A fuel oil return valve for returning, a fuel oil upper limit sensor for detecting that the fuel oil in the gas-liquid separation measuring tank has reached the upper limit level, and the fuel oil in the gas-liquid separation measuring tank has reached the lower limit level A fuel oil lower limit sensor that detects The fuel oil return valve receives a detection signal when the fuel oil upper limit sensor detects that the fuel oil has reached the upper limit level, and is fully opened, and indicates that the fuel oil has reached the lower limit level. When the fuel oil lower limit sensor detects, the detection signal is received and the fuel oil lower limit sensor is fully closed.

本発明によれば、燃料油下限センサを設けたため、従来のような開弁してからの時間による閉弁制御ではなく、気液分離計測槽の容量、すなわち燃料油の体積に基づく閉弁制御を行うことができ、燃料油回収量の算出値と実際の回収量の間の誤差を低減し、燃料油回収量の計測精度を向上させることができる。   According to the present invention, since the fuel oil lower limit sensor is provided, the valve closing control based on the capacity of the gas-liquid separation measuring tank, that is, the volume of the fuel oil, instead of the valve closing control based on the time after the valve opening as in the prior art. The error between the calculated value of the fuel oil recovery amount and the actual recovery amount can be reduced, and the measurement accuracy of the fuel oil recovery amount can be improved.

上記給油装置において、前記燃料油上限センサ及び前記燃料油下限センサの各々を、燃料油に対して浮力を生じ、磁性材料を含むフロートと、該フロートの近接を検知する磁気センサとで構成することができる。   In the fueling device, each of the fuel oil upper limit sensor and the fuel oil lower limit sensor includes a float that generates buoyancy with respect to the fuel oil and includes a magnetic material, and a magnetic sensor that detects the proximity of the float. Can do.

また、前記燃料油上限センサ及び前記燃料油下限センサを、同一基板に配置することができる。これにより、両センサの相対位置の調整が不要となり、製造コストを低減することができる。   Further, the fuel oil upper limit sensor and the fuel oil lower limit sensor can be arranged on the same substrate. Thereby, adjustment of the relative position of both sensors becomes unnecessary, and the manufacturing cost can be reduced.

さらに、前記気液分離計測槽は、前記基板を収容するケースを備え、該ケースは、上部に開口を有し、前記基板が前記開口から前記ケースに収容されると、該基板の下端が前記ケースの底面に当接し、前記ケースに対して前記基板が位置決めされるように構成することができる。   Furthermore, the gas-liquid separation measuring tank includes a case for accommodating the substrate, and the case has an opening in an upper portion, and when the substrate is accommodated in the case from the opening, the lower end of the substrate is The substrate can be configured to abut against the bottom surface of the case and be positioned with respect to the case.

前記気液分離計測槽は、前記燃料油戻し弁を有する槽本体と、前記ケースの開口を塞ぐ蓋とを備え、該蓋が前記槽本体の端部に当接することで、槽本体に対する基板の位置決め、すなわち両センサの位置決めを容易に行うことができる。   The gas-liquid separation measuring tank includes a tank body having the fuel oil return valve and a lid that closes the opening of the case, and the lid abuts against an end of the tank body, thereby Positioning, that is, positioning of both sensors can be easily performed.

以上のように、本発明によれば、燃料油回収量の計測精度を向上させることなどが可能となる。   As described above, according to the present invention, it is possible to improve the measurement accuracy of the fuel oil recovery amount.

本発明に係る給油装置の一実施の形態を示す一部破断斜視図である。It is a partially broken perspective view which shows one Embodiment of the oil supply apparatus which concerns on this invention. 図1に示す給油装置の構成を示すブロック図である。It is a block diagram which shows the structure of the oil supply apparatus shown in FIG. 図2に示す気液分離計測槽を含む分離ユニットの一部破断正面図である。It is a partially broken front view of the separation unit containing the gas-liquid separation measuring tank shown in FIG. 図3のA部拡大図であって基板及びケースのみを示す。It is the A section enlarged view of Drawing 3, and shows only a substrate and a case. ガソリン回収量の算出値と実際の回収量の間に生じる誤差を従来例と比較したグラフである。It is the graph which compared the error which arises between the calculation value of gasoline recovery amount, and actual recovery amount with a prior art example. 従来のベーパ液化回収系統の一例を示すブロック図である。It is a block diagram which shows an example of the conventional vapor | steam liquefaction collection system. 図6に示す気液分離計測槽の縦断面図である。It is a longitudinal cross-sectional view of the gas-liquid separation measuring tank shown in FIG.

次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。   Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

図1及び図2は、本発明に係る給油装置の一実施の形態を示し、この給油装置1は、本発明の特徴部分であるベーパ液化回収系統2と、給油系統3と、給油量等を表示する表示部5と、給油ノズルを掛けるためのノズル掛け6等を備える。   1 and 2 show an embodiment of a fueling device according to the present invention. The fueling device 1 includes a vapor liquefaction recovery system 2, a fueling system 3, a fueling amount, etc., which are characteristic parts of the present invention. A display unit 5 for displaying, a nozzle hook 6 for hooking the fueling nozzle, and the like are provided.

給油系統3は、一端が貯油タンクTに接続される給油管31と、給油管31に介装される給油ポンプ32、電磁弁33及び流量計34と、給油管31の他端に安全継手35を介して接続される給油ホース36と、給油ホース36の先端に設けられ、ノズル掛け6(図1参照)に掛けられる給油ノズル37等を備える。給油ポンプ32以外の各構成要素は、複数油種に対応するために各々6つ(3油種×2セット)ずつ設けられ、給油装置1の両側で2台の自動車に同時に給油を行うことができる。   The oil supply system 3 includes an oil supply pipe 31 connected at one end to the oil storage tank T, an oil supply pump 32 interposed in the oil supply pipe 31, an electromagnetic valve 33 and a flow meter 34, and a safety joint 35 at the other end of the oil supply pipe 31. And an oil supply nozzle 37 provided at the tip of the oil supply hose 36 and applied to the nozzle hook 6 (see FIG. 1). Each component other than the oil pump 32 is provided with six (3 oil types × 2 sets) in order to correspond to a plurality of oil types, and oil can be supplied to two automobiles simultaneously on both sides of the oil supply device 1. it can.

ベーパ液化回収系統2は、一端が給油ノズル37の近傍に開口するベーパ戻り管21と、ベーパ戻り管21に介装された圧縮ポンプ22及び分離ユニット23と、圧縮ポンプ22を駆動するモータ24等を備える。   The vapor liquefaction recovery system 2 includes a vapor return pipe 21 having one end opened near the oil supply nozzle 37, a compression pump 22 and a separation unit 23 interposed in the vapor return pipe 21, a motor 24 for driving the compression pump 22, and the like. Is provided.

分離ユニット23は、ガソリンベーパ(以下「ベーパ」という)を凝縮させる凝縮器23aと、凝縮器23aから排出されるベーパ、空気、ガソリン及び水の混合物を、気体、ガソリン及び水に各々分離する気液分離計測槽23bと、気液分離計測槽23bから排出される気体からベーパを吸着した後、脱着して凝縮器23aに戻すための2つの吸着塔23c、23dと、凝縮器23a及び2つの吸着塔23c、23dを後述するガソリンで冷却するための冷却部23eとを備える。   The separation unit 23 is a condenser 23a for condensing gasoline vapor (hereinafter referred to as "vapor"), and a gas for separating the mixture of vapor, air, gasoline and water discharged from the condenser 23a into gas, gasoline and water, respectively. After adsorbing vapor from the liquid separation measurement tank 23b, the gas discharged from the gas-liquid separation measurement tank 23b, two adsorption towers 23c and 23d for desorption and returning to the condenser 23a, the condensers 23a and two And a cooling unit 23e for cooling the adsorption towers 23c and 23d with gasoline to be described later.

気液分離計測槽23bは、図3に示すように、ガソリン及び水を貯留する槽本体41と、槽本体41の上端部に流入口42及び気体排出口43と、槽本体41の底部に水排出口44と、槽の下部にガソリン排出口45とを備える。槽本体41内には、水の液位を監視する液面センサ46と、ガソリンの液位を監視する液面センサ47が配置され、両センサ46、47と電気的に接続される制御部48が槽本体41の上部開口を塞ぐ。制御部48からの信号によってガソリン排出口45及び水排出口44を各々開閉するガソリン戻し弁25及び水戻し弁49が設けられる。   As shown in FIG. 3, the gas-liquid separation measuring tank 23 b includes a tank body 41 for storing gasoline and water, an inlet 42 and a gas outlet 43 at the upper end of the tank body 41, and water at the bottom of the tank body 41. A discharge port 44 and a gasoline discharge port 45 are provided at the bottom of the tank. In the tank body 41, a liquid level sensor 46 for monitoring the liquid level of water and a liquid level sensor 47 for monitoring the liquid level of gasoline are arranged, and a controller 48 electrically connected to both the sensors 46, 47. Closes the upper opening of the tank body 41. A gasoline return valve 25 and a water return valve 49 are provided for opening and closing the gasoline discharge port 45 and the water discharge port 44, respectively, according to a signal from the control unit 48.

液面センサ46は、水に対して浮力を生じ、磁性材料を含むフロート46aと、フロート46aの上下動を規制するストッパ46b、46cと、フロート46aが上限位置まで移動したことを検知して検知信号を出力する磁気センサ46dとで構成される。   The liquid level sensor 46 detects and detects that the float 46a, which generates buoyancy with respect to water, includes a magnetic material, the stoppers 46b and 46c for restricting the vertical movement of the float 46a, and the float 46a has moved to the upper limit position. And a magnetic sensor 46d for outputting a signal.

一方、液面センサ47は、液面センサ46の上方に配置され、ガソリンに対して浮力を生じ、磁性材料を含むフロート47aと、フロート47aの上下動を規制するストッパ47b、47cと、フロート47aが上限位置まで移動したことを検知して検知信号を出力する磁気センサ47dと、フロート47aが下限位置まで移動したことを検知して検知信号を出力する磁気センサ47eとで構成される。   On the other hand, the liquid level sensor 47 is disposed above the liquid level sensor 46, generates buoyancy with respect to gasoline, and includes a float 47a containing a magnetic material, stoppers 47b and 47c for regulating the vertical movement of the float 47a, and a float 47a. The magnetic sensor 47d detects that the sensor has moved to the upper limit position and outputs a detection signal, and the magnetic sensor 47e detects that the float 47a has moved to the lower limit position and outputs a detection signal.

磁気センサ46d、47d、47eを1つの基板50上に配設する。これにより、組立作業によって各磁気センサ46d、47d、47eの相対位置にばらつきが生じることを防止することができ、分離ユニット23を量産しても品質保持が容易になる。   Magnetic sensors 46d, 47d, 47e are arranged on one substrate 50. Thereby, it is possible to prevent the relative positions of the magnetic sensors 46d, 47d, 47e from being varied due to the assembling work, and the quality can be easily maintained even if the separation unit 23 is mass-produced.

基板50をケース51に収容すると、図4に示すように、基板50の下端50aがケース51の底面51aに当接し、ケース51に対する基板50の上下方向の位置決めを行うことができる。また、図3に示すように、このケース51の上部開口を塞ぐためにケース51に一体化された蓋52を、気液分離計測槽23bの槽本体41の端部41aに当接させることで、槽本体41に対してケース51を位置決めすることができる。これによって、槽本体41に対する基板50の位置が決定し、槽本体41に対する磁気センサ46d、47d、47eの位置が決定する。ここで、槽本体41は鋳物であって抜き勾配を有するが、槽本体41に対する磁気センサ47d(上限センサ)、47e(下限センサ)の位置が同じであれば、抜き勾配に応じた容積(回収量)が等しくなり、回収量を高精度に安定させることができると共に、量産時の品質保持が可能となる。   When the substrate 50 is accommodated in the case 51, as shown in FIG. 4, the lower end 50 a of the substrate 50 comes into contact with the bottom surface 51 a of the case 51, and the substrate 50 can be positioned in the vertical direction with respect to the case 51. Further, as shown in FIG. 3, the lid 52 integrated with the case 51 in order to close the upper opening of the case 51 is brought into contact with the end 41a of the tank body 41 of the gas-liquid separation measuring tank 23b. The case 51 can be positioned with respect to the tank body 41. Thus, the position of the substrate 50 with respect to the tank body 41 is determined, and the positions of the magnetic sensors 46d, 47d, 47e with respect to the tank body 41 are determined. Here, the tank body 41 is a casting and has a draft, but if the positions of the magnetic sensors 47d (upper limit sensor) and 47e (lower limit sensor) with respect to the tank body 41 are the same, the volume (recovery) according to the draft is collected. Volume) becomes equal, the recovered amount can be stabilized with high accuracy, and quality can be maintained during mass production.

一方、この気液分離計測槽23bには、図2に示すように、吸着塔23c、23dのいずれか一方に気体を供給し、吸着塔23c、23dのいずれか他方からベーパの脱着を行うように流路の切替を行う切替弁26が付設される。   On the other hand, as shown in FIG. 2, gas is supplied to one of the adsorption towers 23c and 23d, and vapor is desorbed from the other of the adsorption towers 23c and 23d. A switching valve 26 for switching the flow path is additionally provided.

各吸着塔23c、23dには、吸着塔23c、23d内に外気を導入してベーパを搬送するための逆止弁27と、吸着塔23c、23d内の圧力を所定値以下にするためのリリーフ弁28とが各々付設される。   In each of the adsorption towers 23c and 23d, a check valve 27 for introducing outside air into the adsorption towers 23c and 23d and transporting the vapor, and a relief for reducing the pressure in the adsorption towers 23c and 23d to a predetermined value or less. A valve 28 is attached to each.

次に、上記構成を有する給油装置1のベーパ回収動作について、図2及び図3を参照しながら説明する。   Next, the vapor collection operation of the fueling apparatus 1 having the above configuration will be described with reference to FIGS.

給油ポンプ32がオンになり、給油が開始されると、地下タンクTから分離ユニット23の冷却部23eへガソリンG1が供給され、冷却部23e内の凝縮器23a及び2つの吸着塔23c、23dを冷却する。冷却後のガソリンG2は、後述する気液分離計測槽23bからガソリン戻し弁25を介して回収したガソリンと混合され、ガソリンG3として給油ポンプ32へ戻される。その後、ガソリンG4として給油ノズル37等を介して実際に車両へ供給される。尚、給油ポンプ32による給油量は、流量計34によって計測される。   When the fuel pump 32 is turned on and fueling is started, the gasoline G1 is supplied from the underground tank T to the cooling unit 23e of the separation unit 23, and the condenser 23a and the two adsorption towers 23c and 23d in the cooling unit 23e are connected. Cooling. The cooled gasoline G2 is mixed with gasoline recovered from a gas-liquid separation measuring tank 23b, which will be described later, through a gasoline return valve 25, and returned to the fuel pump 32 as gasoline G3. Thereafter, the gasoline G4 is actually supplied to the vehicle through the oil supply nozzle 37 and the like. The amount of oil supplied by the oil supply pump 32 is measured by the flow meter 34.

給油ノズル37からガソリンの供給を開始すると、圧縮ポンプ22がオンになり、給油に伴って発生したベーパと、車両の燃料タンク内の空気が、ベーパ戻り管21を介して圧縮ポンプ22の圧縮側22aへ流れて凝縮器23a内に導入される。   When the supply of gasoline from the refueling nozzle 37 is started, the compression pump 22 is turned on. It flows to 22a and is introduced into the condenser 23a.

凝縮器23aに導入された気体は、上述のように冷却部23eを流れるガソリンによって均一に冷却されながら気液分離計測槽23bへ送られる。ここで、ベーパは圧縮・冷却され、ベーパの一部がガソリンへ、またベーパと共に搬送された空気の一部が水へと状態変化する。   The gas introduced into the condenser 23a is sent to the gas-liquid separation measuring tank 23b while being uniformly cooled by the gasoline flowing through the cooling unit 23e as described above. Here, the vapor is compressed and cooled, and a part of the vapor changes to gasoline, and a part of the air conveyed together with the vapor changes to water.

凝縮器23aから流入口42を介して気液分離計測槽23bへ供給された水、ガソリン、空気及びベーパのうち、水及びガソリンは槽本体41内に沈降し、水より比重の小さいガソリンは水の上方に移動する。一方、空気及びベーパは槽本体41の上部に滞留する。   Of the water, gasoline, air, and vapor supplied from the condenser 23a to the gas-liquid separation measuring tank 23b through the inlet 42, water and gasoline settle in the tank body 41, and gasoline having a specific gravity smaller than water is water. Move up. On the other hand, air and vapor stay in the upper part of the tank body 41.

そして、槽本体41に沈降するガソリンの液面が上限位置まで達すると、すなわちフロート47aが上昇して磁気センサ47dがこのフロート47の近接を検知すると、磁気センサ47dから制御部48に対して検知信号が送信され、制御部48はガソリン戻し弁25を全開にする。   Then, when the liquid level of gasoline settled in the tank body 41 reaches the upper limit position, that is, when the float 47a rises and the magnetic sensor 47d detects the proximity of the float 47, the magnetic sensor 47d detects the controller 48. A signal is transmitted, and the control unit 48 fully opens the gasoline return valve 25.

ガソリン戻し弁25を全開にした後、ガソリンの液面が下限位置まで達すると、すなわちフロート47aが上限位置から下降して磁気センサ47eがこのフロート47aの近接を検知すると、磁気センサ47eから制御部48に対して検知信号が送信され、制御部48はガソリン戻し弁25を全閉にし、ガソリン排出口45から給油ポンプ32へガソリンを戻す。   After the gasoline return valve 25 is fully opened, when the gasoline level reaches the lower limit position, that is, when the float 47a descends from the upper limit position and the magnetic sensor 47e detects the proximity of the float 47a, the control unit controls the magnetic sensor 47e. A detection signal is transmitted to 48, and the control unit 48 fully closes the gasoline return valve 25 and returns the gasoline from the gasoline discharge port 45 to the fuel supply pump 32.

この磁気センサ47eによる閉弁制御が本願発明の特徴の一つであって、この閉弁制御は、従来のようなガソリン戻し弁25が開いてからの時間によるものではなく、槽本体41の容量、すなわちガソリンの体積に基づくものであるため、ガソリン回収量の算出値と実際の回収量の間の誤差を低減することができる。   The valve closing control by the magnetic sensor 47e is one of the features of the present invention, and this valve closing control is not based on the time after the gasoline return valve 25 is opened as in the prior art. That is, since it is based on the volume of gasoline, an error between the calculated value of the gasoline recovery amount and the actual recovery amount can be reduced.

尚、槽本体41に沈降する水の液面が上限位置まで達すると、すなわちフロート46aが上昇して磁気センサ46dがこのフロート46aの近接を検知すると、水戻し弁49を全開にして水排出口44から水を排出する。   When the liquid level of the water settling in the tank body 41 reaches the upper limit position, that is, when the float 46a rises and the magnetic sensor 46d detects the proximity of the float 46a, the water return valve 49 is fully opened and the water discharge port is opened. Drain water from 44.

一方、槽本体41の上部に滞留するベーパと空気は、流出口43から切替弁26へ搬送される。ここで、切替弁26によってベーパ等の流路を図2の実線で示す状態とすることで、ベーパと空気は、吸着塔23cに導入されてベーパが吸着される。尚、ベーパと共に吸着塔23cの内部に導入された空気は、リリーフ弁28を介して外部へ排出される。これと同時に、吸着塔23dに吸着されたベーパの脱着が行われる。脱着されたベーパは、切替弁26を介して圧縮ポンプ22の真空側22bへ供給されて再度ベーパ戻り管21へ戻される。   On the other hand, vapor and air staying in the upper part of the tank body 41 are conveyed from the outlet 43 to the switching valve 26. Here, by setting the flow path of vapor or the like to the state indicated by the solid line in FIG. 2 by the switching valve 26, the vapor and air are introduced into the adsorption tower 23c and the vapor is adsorbed. The air introduced into the adsorption tower 23 c together with the vapor is discharged to the outside through the relief valve 28. At the same time, the vapor adsorbed on the adsorption tower 23d is desorbed. The desorbed vapor is supplied to the vacuum side 22b of the compression pump 22 via the switching valve 26 and returned to the vapor return pipe 21 again.

ガソリンの給油量が所定値(例えば、50L)に達すると、切替弁26によってベーパ等の流路を図2の破線で示す状態に切り替える。これによって、ベーパと空気は、吸着塔23dに導入されてベーパが吸着される。尚、ベーパと共に吸着塔23dの内部に導入された空気は、リリーフ弁28を介して外部へ排出される。これと同時に、吸着塔23cに吸着されたベーパの脱着が行われる。脱着されたベーパは、切替弁26を介して圧縮ポンプ22の真空側22bへ供給されて再度ベーパ戻り管21へ戻される。   When the fuel amount of gasoline reaches a predetermined value (for example, 50 L), the switching valve 26 switches the flow path of vapor or the like to the state indicated by the broken line in FIG. As a result, the vapor and air are introduced into the adsorption tower 23d and the vapor is adsorbed. The air introduced into the adsorption tower 23d together with the vapor is discharged to the outside through the relief valve 28. At the same time, the vapor adsorbed on the adsorption tower 23c is desorbed. The desorbed vapor is supplied to the vacuum side 22b of the compression pump 22 via the switching valve 26 and returned to the vapor return pipe 21 again.

上記切替弁26によってベーパ等の流路を切り替えることで、上記動作を繰り返し、2つの吸着塔23c、23dでベーパの吸着を交互に行う。これによって、吸着塔23c、23dが飽和状態となるのを防止し、給油時に発生するベーパを確実に回収することができる。   By switching the flow path of vapor or the like by the switching valve 26, the above operation is repeated, and vapor adsorption is alternately performed by the two adsorption towers 23c and 23d. As a result, the adsorption towers 23c and 23d can be prevented from being saturated, and the vapor generated during refueling can be reliably recovered.

上記本実施の形態における気液分離計測槽23bを用いた場合を実施例とし、上記従来の気液分離計測槽65を用いた場合を比較例として、ガソリン回収量の算出値と、実際の回収量の誤差を測定したところ、図5に示すような結果となった。尚、実施例を実線で、比較例を一点鎖線で各々示す。   The case where the gas-liquid separation measuring tank 23b in the present embodiment is used as an example, and the case where the conventional gas-liquid separation measuring tank 65 is used as a comparative example, the calculated value of the gasoline recovery amount and the actual recovery When the amount error was measured, the result shown in FIG. 5 was obtained. In addition, an Example is shown with a continuous line, and a comparative example is each shown with a dashed-dotted line.

同図において、縦軸は、一回の回収動作における計量器カウント量(ベーパからのガソリン回収量の算出値)と実際の回収量との差(mL)を示し、横軸は、気液分離計測槽23b前後の圧力差(kPa)を示す。   In the figure, the vertical axis shows the difference (mL) between the meter count amount (calculated value of the amount of gasoline recovered from the vapor) and the actual recovery amount in one recovery operation, and the horizontal axis shows the gas-liquid separation. The pressure difference (kPa) before and after the measurement tank 23b is shown.

同図より、比較例は、気液分離計測槽23b前後の圧力差に比例して誤差が大きくなり、極差E2は27.6mLにも達する。この値は実際の回収量の±9.2%に上る。一方、実施例は、圧力差に比例して誤差が大きくなるものの、極差E1は0.1mLに過ぎず、この値は実際の回収量の僅か±0.2%であり、比較例よりも格段に誤差が低下している。   From the figure, in the comparative example, the error increases in proportion to the pressure difference before and after the gas-liquid separation measuring tank 23b, and the pole difference E2 reaches 27.6 mL. This value is ± 9.2% of the actual recovery. On the other hand, in the example, although the error increases in proportion to the pressure difference, the extreme difference E1 is only 0.1 mL, and this value is only ± 0.2% of the actual recovered amount, which is more than the comparative example. The error is remarkably reduced.

尚、上記説明においては、ガソリンベーパを液化回収する場合について説明したが、これに限らず、本発明は揮発性の高い様々な燃料油を供給する装置に適用可能である。   In the above description, the case of liquefying and recovering gasoline vapor has been described. However, the present invention is not limited to this, and the present invention can be applied to an apparatus that supplies various highly volatile fuel oils.

また、液面センサとして磁気センサを採用したが、上述のように燃料油や水の液位を検知することができればこれに限定されない。   Moreover, although the magnetic sensor was employ | adopted as a liquid level sensor, if the liquid level of fuel oil or water can be detected as mentioned above, it will not be limited to this.

さらに、磁気センサ46d、47d、47eを1つの基板50上に配設し、基板50をケース51に収容し、ケース51の開口を塞ぐ蓋52を気液分離計測槽23bの槽本体41の端部41aに当接させることで上記効果を奏して好ましいが、本発明は、これらの構成に限定されず、磁気センサ46d等を2つの基板に設けることも可能である。   Further, the magnetic sensors 46d, 47d, 47e are arranged on one substrate 50, the substrate 50 is accommodated in the case 51, and the lid 52 that closes the opening of the case 51 is connected to the end of the tank body 41 of the gas-liquid separation measuring tank 23b. Although it is preferable that the above-described effect is achieved by contacting the portion 41a, the present invention is not limited to these configurations, and the magnetic sensor 46d and the like can be provided on two substrates.

1 給油装置
2 ベーパ液化回収系統
3 給油系統
5 表示部
6 ノズル掛け
21 ベーパ戻り管
22 圧縮ポンプ
22a 圧縮側
22b 真空側
23 分離ユニット
23a 凝縮器
23b 気液分離計測槽
23c、23d 吸着塔
23e 冷却部
24 モータ
25 ガソリン戻し弁
26 切替弁
27 逆止弁
28 リリーフ弁
31 給油管
32 給油ポンプ
33 電磁弁
34 流量計
35 安全継手
36 給油ホース
37 給油ノズル
41 槽本体
41a 端部
42 流入口
43 気体排出口
44 水排出口
45 ガソリン排出口
46 液面センサ
46a フロート
46b、46c ストッパ
46d 磁気センサ
47 液面センサ
47a フロート
47b、47c ストッパ
47d、47e 磁気センサ
48 制御部
49 水戻し弁
50 基板
50a 下端
51 ケース
51a 底面
52 蓋
DESCRIPTION OF SYMBOLS 1 Oil supply apparatus 2 Vapor liquefaction collection system 3 Oil supply system 5 Display part 6 Nozzle hook 21 Vapor return pipe 22 Compression pump 22a Compression side 22b Vacuum side 23 Separation unit 23a Condenser 23b Gas-liquid separation measurement tank 23c, 23d Adsorption tower 23e Cooling part 24 motor 25 gasoline return valve 26 switching valve 27 check valve 28 relief valve 31 oil supply pipe 32 oil supply pump 33 electromagnetic valve 34 flow meter 35 safety joint 36 oil supply hose 37 oil supply nozzle 41 tank body 41a end 42 inlet 43 gas outlet 44 Water outlet 45 Gasoline outlet 46 Liquid level sensor 46a Float 46b, 46c Stopper 46d Magnetic sensor 47 Liquid level sensor 47a Float 47b, 47c Stopper 47d, 47e Magnetic sensor 48 Control unit 49 Water return valve 50 Substrate 50a Lower end 51 Case 51a Bottom 52 Lid

Claims (5)

一端が貯油タンクに接続され、他端が給油ノズルを有する給油ホースに接続される給油管と、該給油管に介装された給油ポンプ及び流量計とを有する給油系統と、
一端が給油ノズル近傍に開口するベーパ戻り管と、該ベーパ戻り管に介装された圧縮ポンプ、凝縮器及び気液分離計測槽と、該気液分離計測槽からの燃料油ベーパを吸着する吸着塔とを有するベーパ液化回収系統とを備える給油装置において、
前記気液分離計測槽は、該気液分離計測槽内の燃料油を前記給油系統へ戻すための燃料油戻し弁と、該気液分離計測槽内の燃料油が上限レベルに達したことを検知する燃料油上限センサと、該気液分離計測槽内の燃料油が下限レベルに達したことを検知する燃料油下限センサとを備え、
前記燃料油戻し弁は、燃料油が前記上限レベルに達したことを前記燃料油上限センサが検知した際に検知信号を受信して全開となり、燃料油が前記下限レベルに達したことを前記燃料油下限センサが検知した際に検知信号を受信して全閉となることを特徴とする給油装置。
An oil supply system having one end connected to an oil storage tank and the other end connected to an oil supply hose having an oil supply nozzle, and an oil supply pump and a flow meter interposed in the oil supply pipe;
A vapor return pipe having one end opened in the vicinity of the fuel supply nozzle, a compression pump, a condenser and a gas-liquid separation measuring tank interposed in the vapor return pipe, and an adsorption for adsorbing fuel oil vapor from the gas-liquid separation measuring tank In a fueling device comprising a vapor liquefaction recovery system having a tower,
The gas-liquid separation measuring tank has a fuel oil return valve for returning the fuel oil in the gas-liquid separation measuring tank to the refueling system, and that the fuel oil in the gas-liquid separation measuring tank has reached the upper limit level. A fuel oil upper limit sensor to detect, and a fuel oil lower limit sensor to detect that the fuel oil in the gas-liquid separation measuring tank has reached a lower limit level,
The fuel oil return valve receives a detection signal when the fuel oil upper limit sensor detects that the fuel oil has reached the upper limit level and is fully opened, and indicates that the fuel oil has reached the lower limit level. When the oil lower limit sensor detects, a detection signal is received and the oil supply device is fully closed.
前記燃料油上限センサ及び前記燃料油下限センサの各々は、燃料油に対して浮力を生じ、磁性材料を含むフロートと、該フロートの近接を検知する磁気センサとで構成されることを特徴とする請求項1に記載の給油装置。   Each of the fuel oil upper limit sensor and the fuel oil lower limit sensor includes a float that generates buoyancy with respect to the fuel oil and includes a magnetic material, and a magnetic sensor that detects the proximity of the float. The oil supply apparatus according to claim 1. 前記燃料油上限センサ及び前記燃料油下限センサは、同一基板に配置されることを特徴とする請求項1又は2に記載の給油装置。   The fuel supply apparatus according to claim 1, wherein the fuel oil upper limit sensor and the fuel oil lower limit sensor are arranged on the same substrate. 前記気液分離計測槽は、前記基板を収容するケースを備え、
該ケースは、上部に開口を有し、
前記基板が前記開口から前記ケースに収容されると、該基板の下端が前記ケースの底面に当接し、前記ケースに対して前記基板が位置決めされることを特徴とする請求項3に記載の給油装置。
The gas-liquid separation measuring tank includes a case for accommodating the substrate,
The case has an opening at the top,
4. The oil supply according to claim 3, wherein when the substrate is received in the case from the opening, a lower end of the substrate abuts against a bottom surface of the case, and the substrate is positioned with respect to the case. apparatus.
前記気液分離計測槽は、前記燃料油戻し弁を有する槽本体と、前記ケースの開口を塞ぐ蓋とを備え、
該蓋が前記槽本体の端部に当接することを特徴とする請求項4に記載の給油装置。
The gas-liquid separation measuring tank includes a tank body having the fuel oil return valve, and a lid for closing the opening of the case.
The oil supply device according to claim 4, wherein the lid abuts against an end portion of the tank body.
JP2015207683A 2015-10-22 2015-10-22 Lubrication device Active JP6222199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015207683A JP6222199B2 (en) 2015-10-22 2015-10-22 Lubrication device
KR1020160136262A KR101927727B1 (en) 2015-10-22 2016-10-20 Oil supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207683A JP6222199B2 (en) 2015-10-22 2015-10-22 Lubrication device

Publications (2)

Publication Number Publication Date
JP2017077921A true JP2017077921A (en) 2017-04-27
JP6222199B2 JP6222199B2 (en) 2017-11-01

Family

ID=58665668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207683A Active JP6222199B2 (en) 2015-10-22 2015-10-22 Lubrication device

Country Status (2)

Country Link
JP (1) JP6222199B2 (en)
KR (1) KR101927727B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422816A (en) * 2019-07-24 2019-11-08 山东裕泰石油装备有限公司 A kind of water-oil separating skid-mounted gas station
WO2020183957A1 (en) * 2019-03-11 2020-09-17 株式会社タツノ Oil supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015223Y1 (en) * 1970-03-20 1975-05-13
JPS5717423U (en) * 1980-06-25 1982-01-29
JP2010094640A (en) * 2008-10-20 2010-04-30 Tatsuno Corp Vapor recovery device
JP2014019474A (en) * 2012-07-19 2014-02-03 Tatsuno Corp Oiling device
JP2014085144A (en) * 2012-10-19 2014-05-12 Yazaki Corp Float type liquid level sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015223Y1 (en) * 1970-03-20 1975-05-13
JPS5717423U (en) * 1980-06-25 1982-01-29
JP2010094640A (en) * 2008-10-20 2010-04-30 Tatsuno Corp Vapor recovery device
JP2014019474A (en) * 2012-07-19 2014-02-03 Tatsuno Corp Oiling device
JP2014085144A (en) * 2012-10-19 2014-05-12 Yazaki Corp Float type liquid level sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183957A1 (en) * 2019-03-11 2020-09-17 株式会社タツノ Oil supply device
JP7392915B2 (en) 2019-03-11 2023-12-06 株式会社タツノ Refueling device
CN110422816A (en) * 2019-07-24 2019-11-08 山东裕泰石油装备有限公司 A kind of water-oil separating skid-mounted gas station

Also Published As

Publication number Publication date
KR101927727B1 (en) 2018-12-11
KR20170047177A (en) 2017-05-04
JP6222199B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US9494325B2 (en) Fuel tank structure
US8910675B2 (en) Method and valve for the venting of a saddle fuel tank
US8813726B2 (en) Fuel tank system
US10302053B2 (en) Fuel tank structure
US11215130B2 (en) Fuel vapor processing system
KR101439172B1 (en) Fuel supplying apparatus
CN103429452A (en) Tank ventilation device for a motor vehicle
JP6222199B2 (en) Lubrication device
JP5123541B2 (en) Vapor collection device
JP4658888B2 (en) Vapor collection device and vapor collection method
US8075677B2 (en) Carbon canister with valve activated by weight of saturated carbon
RU2581789C2 (en) Liquid container for vehicle
KR101906270B1 (en) Fuel supplying apparatus
JP5177459B2 (en) Vapor collection device
CN108017033B (en) Oil filling device
JP2013029041A (en) Device and method for treatment of drain
JP5060159B2 (en) Vapor collection device
US8950616B2 (en) Closed fuel tank system
KR101185782B1 (en) Automatic Air Vent Device for Pipe Line
CN107986222B (en) Oil filling device
JP2012150021A (en) Oiling state detector
CN205154466U (en) A fuel -flow control valve for ORVR system
CN115869730A (en) Oil gas treatment device
JP6320124B2 (en) Vapor collection system
KR101445219B1 (en) A tar drainageway for efficiency elevation of an LPG filter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150