JP2017077754A - Stern structure of ship and ship - Google Patents

Stern structure of ship and ship Download PDF

Info

Publication number
JP2017077754A
JP2017077754A JP2015205695A JP2015205695A JP2017077754A JP 2017077754 A JP2017077754 A JP 2017077754A JP 2015205695 A JP2015205695 A JP 2015205695A JP 2015205695 A JP2015205695 A JP 2015205695A JP 2017077754 A JP2017077754 A JP 2017077754A
Authority
JP
Japan
Prior art keywords
stern
ship
propeller
tunnel
inflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205695A
Other languages
Japanese (ja)
Inventor
秀聡 秋林
Hidesato Akibayashi
秀聡 秋林
虎卓 山本
Kotaku Yamamoto
虎卓 山本
智 藤田
Satoshi Fujita
智 藤田
沙織 岡
saori Oka
沙織 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2015205695A priority Critical patent/JP2017077754A/en
Publication of JP2017077754A publication Critical patent/JP2017077754A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B2001/325Interceptors, i.e. elongate blade-like members projecting from a surface into the fluid flow substantially perpendicular to the flow direction, and by a small amount compared to its own length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stern shape of a ship which reduces a wave resistance at a stern of the ship in which a recess is formed on a stern bottom of a propeller upper part.SOLUTION: A ship bottom surface 2e constituting a stern tunnel 3 is formed in such a manner that the ship bottom surface is changed from an ascent inclination toward an upper part 2c of a propeller 4 from a forward ship bottom into a descent inclination toward a stern end 2a, an inflection part 3b which shifts from the ascent inclination to the decent inclination, is provided at a rear position with respect to the propeller 4, the ship bottom surface constituting the stern tunnel 3 in a part toward the stern end 2a from the inflection part 3b is maintained to the stern end, and a curvature degree of the recess in a cross sectional shape thereof is continuously reduced.SELECTED DRAWING: Figure 1

Description

本発明は、船舶の船尾形状に関し、より詳細には、船尾船底がトンネル形状に形成されている船舶において船尾造波抵抗を低減することができる船舶の船尾構造及び船舶に関する。   The present invention relates to a stern shape of a ship, and more particularly to a stern structure of a ship and a ship that can reduce stern wave resistance in a ship having a stern bottom formed in a tunnel shape.

従来、船舶の船尾において船底にトンネル形状を形成するトンネル船型は、船舶の横復原力の確保と造波抵抗の低減の両立、プロペラと船体とのクリアランスの確保等、さまざまな面でメリットを有しているので、採用されてきている。   Conventionally, a tunnel hull form that forms a tunnel shape at the bottom of a ship at the stern of a ship has advantages in various aspects, such as ensuring the lateral stability of the ship and reducing wave resistance, and ensuring the clearance between the propeller and the hull. Has been adopted.

例えば、プロペラと船尾船底との間の距離を確保するとともに造波抵抗を低減することができる船舶の船尾形状として、上方へ湾曲した横断面形状を有して前後方向に延在するトンネル形状に形成する船尾形状が提案されている(例えば、特許文献1参照)。   For example, as the stern shape of a ship that can secure the distance between the propeller and the stern bottom and reduce the wave-making resistance, the tunnel shape has a transverse cross-sectional shape that curves upward and extends in the front-rear direction. A stern shape to be formed has been proposed (see, for example, Patent Document 1).

図4で例示するように、この従来技術のトンネル形状に形成された船舶1Xの船尾構造は、側断面形状では、船尾部2の船底面2eがプロペラ4の上部から船尾端2aまで、上昇傾斜を維持するように形成されている。そのため、この船尾構造1Xでは、航行時に船底面2eに沿って上昇してくる水流が勢いを保ったまま船尾端2aで上方向に排出されるので、船尾造波が生じて造波抵抗の要因となる。このように、従来技術の船舶の船尾構造には造波抵抗を低減させる上で改善すべき課題が残されていた。   As illustrated in FIG. 4, the stern structure of the ship 1X formed in the tunnel shape according to the prior art is such that, in a side cross-sectional shape, the bottom surface 2e of the stern portion 2 is inclined upward from the top of the propeller 4 to the stern end 2a. It is formed to maintain. Therefore, in this stern structure 1X, the water flow rising along the bottom surface 2e during navigation is discharged upward at the stern end 2a while maintaining momentum. It becomes. As described above, the stern structure of the prior art still has a problem to be improved in reducing the wave resistance.

また、このような船舶の船尾構造1Xでは、船尾端2aに近い船底面2eが上方向を向いているため、図6で示すように、実海域航行時にピッチング(縦揺れ)により船体が傾いて船首が下降して船尾が上昇すると、船尾端2a側から船底面2eに空気aが入り易く、船尾トンネル3Xの凹部において空気aを巻き込み、波面が船尾トンネル3Xの船底面2eを叩く、即ちパンチングすることにより騒音が生じるという問題もあった。   Further, in such a stern structure 1X of the ship, since the bottom 2e close to the stern end 2a faces upward, as shown in FIG. 6, the hull is tilted by pitching (pitch) during actual sea area navigation. When the bow descends and the stern rises, air a easily enters the stern bottom 2e from the stern end 2a side, and the air a is engulfed in the recess of the stern tunnel 3X, and the wavefront hits the stern bottom 2e of the stern tunnel 3X, that is, punching There was also a problem that noise was generated by doing so.

特開平6−344973号公報JP-A-6-344773

本発明は、船尾船底がトンネル形状に形成されている船舶において船尾造波抵抗を低減することができる船舶の船尾構造及び船舶を提供することにある。   An object of the present invention is to provide a stern structure of a ship and a ship capable of reducing stern wave resistance in a ship having a stern bottom formed in a tunnel shape.

上記の目的を達成するため本発明の船舶の船尾形状は、航行時に船底面に沿う水流を船尾のプロペラの上部へ導く船尾トンネルを備えている船舶の船尾構造において、前記船尾トンネルを構成している船底面を、前方の船底から前記プロペラの上部に向かう上昇傾斜から船尾端に向かう下降傾斜に変化させて形成し、この上昇傾斜から下降傾斜に移行する変曲部を前記プロペラよりも後方の位置に設けているとともに、前記変曲部から前記船尾端に向かう部位における前記船尾トンネルを構成している船底面を船尾端まで維持し、その横断面形状における凹部の湾曲度合を連続的に減少していくように形成されて構成される。   In order to achieve the above object, the stern shape of the ship according to the present invention is a stern structure of a ship having a stern tunnel that guides the water flow along the bottom of the ship to the top of the stern propeller during navigation. The bottom surface of the ship is formed by changing from an ascending slope toward the upper part of the propeller from the front ship bottom to a descending slope toward the stern end, and an inflection part that transitions from the ascending slope to the descending slope is located behind the propeller. In addition to maintaining the bottom of the stern tunnel that forms the stern tunnel in the region from the inflection part toward the stern end to the stern end, the degree of curvature of the recess in the cross-sectional shape is continuously reduced. It is formed to be configured.

この構成によれば、前方の船底からプロペラ上部に向かう上方向の流れが、変曲部を境にして、変曲部から船尾端に向かう下方向の流れに変化するので、このことにより、船尾端に生じる波崩れや造波が抑制され、船尾造波抵抗が低減する。さらに、トンネル状の船底が船尾端まで維持されているので、船尾トンネルを形成したことによる造波抵抗における低減効果を発揮することができる。   According to this configuration, the upward flow from the front ship bottom toward the top of the propeller changes to the downward flow from the inflection part to the stern end at the inflection part. Wave collapse and wave generation at the edge are suppressed, and stern wave resistance is reduced. Furthermore, since the tunnel-shaped ship bottom is maintained up to the stern end, the effect of reducing the wave-making resistance due to the formation of the stern tunnel can be exhibited.

また、プロペラ上部の船尾船底面を上方へ湾曲した側断面形状に形成しながら、船尾端の下端の位置を変曲部を設けない場合に比べて下方に位置することができる。そのため、航行時にピッチングにより船首が下降して船尾が上昇した場合においても、船尾から船底に空気が入り、船尾トンネルの凹部に空気を巻き込み難くなる。したがって、波面が船底を叩くことにより生じる騒音の発生を抑制できる。   Moreover, the bottom end position of the stern end can be positioned below compared to the case where the inflection portion is not provided while the bottom surface of the stern stern at the top of the propeller is formed in a side sectional shape curved upward. Therefore, even when the bow descends due to pitching and the stern rises during navigation, air enters the stern from the stern to the stern tunnel, making it difficult to entrain the air in the recess of the stern tunnel. Therefore, it is possible to suppress the generation of noise caused by the wavefront hitting the ship bottom.

また、上記の船舶の船尾構造において、前記プロペラの上部から前記船尾端までの水平距離を距離Xaとし、前記プロペラの上部から前記変曲部の位置までの水平距離を距離X1として、距離Xaに対する距離X1の比率が0.3〜0.8の範囲になる位置に前記変曲部を配置して構成されていると、船尾トンネルにおける、横復原力の確保と造波抵抗の低減などのトンネル効果を維持しつつ、船尾における造波抵抗の低減とピッチング動揺時の空気巻き込みの低減による騒音抑制効果を発揮でき、両方の効果をバランスよく発揮できる。   In the stern structure of the ship, a horizontal distance from the top of the propeller to the stern end is a distance Xa, and a horizontal distance from the top of the propeller to the position of the inflection part is a distance X1 with respect to the distance Xa. When the inflection part is arranged at a position where the ratio of the distance X1 is in the range of 0.3 to 0.8, tunnels such as securing lateral recovery force and reducing wave resistance in the stern tunnel While maintaining the effect, it is possible to exert a noise suppression effect by reducing the wave-making resistance at the stern and reducing the air entrainment during pitching, and both effects can be exhibited in a balanced manner.

更に、上記の船舶の船尾構造において、前記船尾端の横断面における前記船尾トンネルの最下端位置と最上端位置との間の鉛直距離H1をプロペラ直径Dpの0.05倍以上かつ0.2倍以下とし、前記変曲部の横断面における前記船尾トンネルの最下端位置と最上端位置との間の鉛直距離H2を前記プロペラ直径Dpの0.3倍以下として構成されていると、船尾トンネルにおける、横復原力の確保と造波抵抗の低減などのトンネル効果を維持しつつ、船尾における造波抵抗の低減とピッチング動揺時の空気巻き込みの低減による騒音抑制効果を発揮でき、両方の効果をバランスよく発揮できる。   Furthermore, in the stern structure of the ship described above, the vertical distance H1 between the lowest end position and the highest end position of the stern tunnel in the cross section of the stern end is 0.05 times or more and 0.2 times the propeller diameter Dp. If the vertical distance H2 between the lowermost position and the uppermost position of the stern tunnel in the cross section of the inflection part is set to 0.3 times or less of the propeller diameter Dp, In addition, while maintaining the tunnel effect such as securing the transverse restoring force and reducing the wave-making resistance, it can exert the noise suppression effect by reducing the wave-making resistance at the stern and the air entrainment when pitching swaying, balancing both effects Can be used well.

上記の目的を達成するため本発明の船舶は、上記の船舶の船尾形状を備えて構成されていると、この構成により、上記の船舶の船尾形状と同様の効果を発揮できる。   In order to achieve the above object, when the ship of the present invention is configured to have the stern shape of the above ship, this structure can exhibit the same effect as the stern shape of the above ship.

本発明の船舶の船尾形状及び船舶によれば、前方の船底からプロペラ上部に向かう上方向の流れが、変曲部を境にして、変曲部から船尾端に向かう下方向の流れに変化するので、このことにより、船尾端に生じる波崩れや造波が抑制され、船尾造波抵抗が低減する。さらに、トンネル状の船底が船尾端まで維持されているので、トンネル形状を形成したことによる造波抵抗の低減効果を発揮することができる。   According to the stern shape of the ship and the ship of the present invention, the upward flow from the front ship bottom to the upper propeller changes to the downward flow from the inflection part to the stern end at the inflection part. As a result, wave collapse and wave generation at the stern end are suppressed, and stern wave resistance is reduced. Furthermore, since the tunnel-shaped ship bottom is maintained up to the stern end, the effect of reducing the wave-making resistance due to the formation of the tunnel shape can be exhibited.

本発明に係る実施の形態の船舶の船尾形状を有する船舶の船尾部分の側断面図である。It is a sectional side view of the stern part of the ship which has the stern shape of the ship of embodiment which concerns on this invention. 図1のA矢視図である。It is A arrow directional view of FIG. 図1の船舶がピッチングにより船首が下降して船尾が上昇した状況を示す船尾部分の側断面図である。It is a sectional side view of the stern part which shows the situation where the bow of the ship of FIG. 1 descended by pitching and the stern rose. 従来技術の船尾トンネルを有する船舶の船尾部分の側断面図である。It is a sectional side view of the stern part of the ship which has a stern tunnel of a prior art. 図4のB矢視図である。It is a B arrow view of FIG. 図4の船舶がピッチングにより船首が下降して船尾が上昇した状況を示す船尾部分の側断面図である。It is a sectional side view of the stern part which shows the situation where the bow of the ship of FIG. 4 descended by pitching and the stern rose.

以下、本発明に係る実施の形態の船舶の船尾形状及び船舶を図を参照しながら説明する。尚、この実施の形態では、1軸船に適用した場合の船尾構造を示して説明するが、本発明は、1軸船に限らず、例えば2軸船や3軸船においてもそれぞれのプロペラに対してそれぞれ船尾トンネルを形成していることにより、1軸船の場合と同様に適用することができる。   Hereinafter, a stern shape of a ship and a ship according to embodiments of the present invention will be described with reference to the drawings. In this embodiment, the stern structure when applied to a uniaxial ship is shown and described. However, the present invention is not limited to a uniaxial ship, and for example, in a biaxial ship or a triaxial ship, each propeller is used. On the other hand, by forming a stern tunnel for each, it can be applied in the same manner as in the case of a uniaxial ship.

図1に示すように、本発明に係る実施の形態の船舶1は、以下に説明する本発明に係る実施の形態の船舶の船尾構造を備えて構成されており、この船舶の船尾構造と同様の作用効果を奏する。   As shown in FIG. 1, a ship 1 according to an embodiment of the present invention includes a stern structure of a ship according to an embodiment of the present invention described below, and is similar to the stern structure of this ship. Has the effect of.

この船舶1は、図1及び図2で示すように、航行時にプロペラ4の前方の船底面2eからこの船底面2eに沿って流れる水流Wを、船尾部2のプロペラ4の上部2cを経て、船尾端2aに導く船尾トンネル3を有する船舶の船尾構造を備えており、この船尾トンネル3は、船尾部2の船底面2eにおいて、プロペラ4と船底面2eとの間にプロペラチップクリアランス(隙間)を保ちつつ、舵5の上部から船尾端2aに到っている。   As shown in FIG. 1 and FIG. 2, the ship 1 passes a water flow W flowing along the ship bottom surface 2 e from the ship bottom surface 2 e in front of the propeller 4 during navigation through the upper part 2 c of the propeller 4 in the stern part 2, A stern structure of a ship having a stern tunnel 3 leading to the stern end 2a is provided. The stern tunnel 3 has a propeller tip clearance (gap) between the propeller 4 and the bottom surface 2e on the bottom surface 2e of the stern part 2. , And reaches the stern end 2a from the upper part of the rudder 5.

図1に示すように、この船尾トンネル3は、船体中心の側断面形状においては、プロペラ上部2cの船底面2eが上方へ湾曲している、言い換えれば、上側に凸となる側断面形状を有し、一方、図2に示すように、横断面形状においては、上方へ湾曲した凹部形状を有する形状で湾曲形状が徐々に変化しつつ前後方向に連続するように構成されている。   As shown in FIG. 1, the stern tunnel 3 has a side cross-sectional shape at the center of the hull in which the bottom surface 2e of the propeller upper portion 2c is curved upward, in other words, has a side cross-sectional shape that is convex upward. On the other hand, as shown in FIG. 2, the cross-sectional shape is a shape having a concave shape that curves upward, and is configured to continue in the front-rear direction while gradually changing the curved shape.

船舶1は、この船尾トンネル3を備えていることにより、船尾の部分に両側に離間して没水部分(浮力発生)を有することによる船舶の横復原力の確保と、造波抵抗の減少による推進性能の向上、プロペラ4の上部2cでのプロペラチップクリアランスを確保しつつプロペラ直径の増大による推進効率の向上等のメリットを有している。   By providing the stern tunnel 3, the ship 1 has a submerged part (buoyancy generation) separated from both sides in the stern part, thereby ensuring the ship's lateral restoring force and reducing the wave-making resistance. Advantages such as improvement in propulsion performance and improvement in propulsion efficiency due to an increase in propeller diameter while ensuring a propeller tip clearance at the upper portion 2c of the propeller 4 are provided.

そして、本発明においては、船尾トンネル3を構成する船底面2eを、前方の船底面2eからプロペラ4の上部2cに向かう上昇傾斜から船尾端2aに向かう下降傾斜に変化させて形成し、この上昇傾斜から下降傾斜に移行する変曲部3bをプロペラ4よりも後方の位置に設けて構成している。   In the present invention, the bottom surface 2e constituting the stern tunnel 3 is formed by changing the upward slope from the forward bottom surface 2e toward the upper portion 2c of the propeller 4 to the downward slope toward the stern end 2a. The inflection part 3b which shifts from the inclination to the downward inclination is provided at a position behind the propeller 4 and configured.

言い換えれば、プロペラ4から一定距離後方の位置Pmaxに、前方の船底面2eからプロペラ4の上部2cに向かう上昇傾斜面3aを、船尾端2aに向かう下降傾斜面3cに変化させる変曲部3bを設けて構成する。また、この変曲部3bは、船舶1の船底ラインに対して、船尾トンネル3において最も高い位置となる。   In other words, the inflection part 3b that changes the ascending inclined surface 3a from the front ship bottom 2e toward the upper part 2c of the propeller 4 to the descending inclined surface 3c toward the stern end 2a at a position Pmax that is a certain distance behind the propeller 4 is provided. Provide and configure. Further, the inflection portion 3 b is the highest position in the stern tunnel 3 with respect to the ship bottom line of the ship 1.

即ち、図1に示すように、船尾トンネル3は、側面視で変曲部3bを頂点とする凹部形状に形成されている。この図1の実施の形態では、側面視で、変曲部3bの位置Pmaxより前方、少なくともプロペラ4の位置Ppから変曲部3bの位置Pmaxまでの間(距離X1)に設けられている上昇傾斜面3aと、変曲部3bの位置Pmaxから船尾端2aの位置Peまでの間(距離X2)に設けられている下降傾斜面3cとがそれぞれ曲線的な形状を有して構成され、これらの上昇傾斜面3aと下降傾斜面3cとが変曲部3bを介して曲線的に連続的に連結されている。なお、上昇傾斜面3aと下降傾斜面3cのいずれか一つまたは両方を曲線的な形状ではなく直線的な形状で形成していてもよい。また、変曲部3bは、側面視で滑らかな曲線状で折れ線でないことが、水流Wを滑らかに流すことができるので好ましいが、大きな角度の折れ線形状でなければ折れ線状であってもよい。   That is, as shown in FIG. 1, the stern tunnel 3 is formed in a concave shape having an inflection portion 3b as a vertex in a side view. In the embodiment of FIG. 1, ascending from the position Pmax of the inflection part 3b, at least between the position Pp of the propeller 4 and the position Pmax of the inflection part 3b (distance X1) in a side view. The inclined surface 3a and the descending inclined surface 3c provided between the position Pmax of the inflection part 3b and the position Pe of the stern end 2a (distance X2) are configured to have curved shapes, respectively. The ascending inclined surface 3a and the descending inclined surface 3c are continuously connected in a curved manner via the inflection portion 3b. Note that one or both of the ascending inclined surface 3a and the descending inclined surface 3c may be formed in a linear shape instead of a curved shape. In addition, the inflection portion 3b is preferably a smooth curved line in a side view and not a broken line because the water flow W can flow smoothly, but may be a broken line shape if it is not a large angle broken line shape.

更に、本発明においては、この変曲部3bから船尾端2aに向かう部位における船尾トンネル3を構成している船底面を船尾端まで維持し、その横断面形状における凹部の湾曲度合を連続的に減少していくように形成されている。   Further, in the present invention, the bottom of the stern tunnel 3 in the region from the inflection portion 3b toward the stern end 2a is maintained up to the stern end, and the curvature of the concave portion in the cross-sectional shape is continuously increased. It is formed to decrease.

つまり、船尾トンネル3の横断面形状においては、図2に示すように、船体中心線LC上で最も高くなるような上方へ湾曲した状態を保ちつつ、船尾トンネル3の上方への湾曲の大きさ、言い換えれば湾曲度合を示す曲面の曲率半径が、変曲部3bから船尾端2aに向って連続的に大きくなるように形成されている。   That is, in the cross-sectional shape of the stern tunnel 3, as shown in FIG. 2, the magnitude of the upward curve of the stern tunnel 3 is maintained while maintaining the upwardly curved state on the hull center line LC. In other words, the curvature radius of the curved surface showing the degree of curvature is formed so as to continuously increase from the inflection portion 3b toward the stern end 2a.

より詳細には、図2で示すように、船尾トンネル3は、中央部分が上方へ湾曲したW型の横断面形状に形成されている。この船尾トンネル3の横断面における上方への湾曲の大きさを示す一例をあげれば、例えば、船底中央部分における上方への湾曲の頂点となる湾曲頂部3eから、船底の最下点となる湾曲最下端部3fまでの鉛直距離H1の大きさである。即ち、変曲部3bから船尾端2aに向って連続的に鉛直距離H1の大きさが小さくなっている。ここで、湾曲最下端部3fは船体幅方向の流れ成分にも対応できるようにナックル状の不連続点を有さず、滑らかな湾曲状となっている。   More specifically, as shown in FIG. 2, the stern tunnel 3 is formed in a W-shaped cross-sectional shape with a central portion curved upward. An example of the magnitude of the upward curvature in the cross section of the stern tunnel 3 is, for example, from the curved top 3e that is the top of the upward curvature in the center portion of the ship bottom to the lowest curvature of the bottom of the ship bottom. It is the magnitude of the vertical distance H1 to the lower end 3f. That is, the vertical distance H1 continuously decreases from the inflection portion 3b toward the stern end 2a. Here, the lowermost curved portion 3f has a smooth curved shape without knuckle-like discontinuities so as to be able to cope with a flow component in the width direction of the hull.

そして、この構造によれば、プロペラ4から一定距離後方の位置Pmaxに、前方の船底面2eからプロペラ4の上部2cに向かう上昇傾斜面3aを船尾端2aに向かう下降傾斜面3cに変化させる変曲部3bが設けられているので、図1で示すように、前方の船底面2eからプロペラ4の上部2cに向かう上方向の流れWが、変曲部3bを境にして、変曲部3bから船尾端2aに向かう下方向の流れWに変化する。そのため、従来技術の図4で示すような、変曲部3bが設けられずに船尾端2aまで上昇傾斜面で形成されている船舶の船尾構造に比して、船尾端に生じる波崩れや造波が抑制され、船尾造波抵抗が低減する。   According to this structure, a change is made to change the rising slope 3a from the front ship bottom 2e toward the upper portion 2c of the propeller 4 to the descending slope 3c toward the stern end 2a at a position Pmax that is a certain distance behind the propeller 4. Since the curved portion 3b is provided, as shown in FIG. 1, the upward flow W from the front ship bottom surface 2e toward the upper portion 2c of the propeller 4 crosses the curved portion 3b as a boundary. To a downward flow W toward the stern end 2a. Therefore, as shown in FIG. 4 of the prior art, compared to the stern structure of a ship that is formed with an upward inclined surface up to the stern end 2a without the inflection part 3b, the wave breakage and structure generated at the stern end are formed. Waves are suppressed and stern wave resistance is reduced.

さらに、船尾トンネル3を船尾端2aまで維持しているので、船尾端2aが直線形状に形成されて船尾端2aまで船尾トンネル3Xが維持されていない船尾形状に比して、本発明では、造波抵抗の減少による推進性能の向上の効果を高く維持することができる。   Further, since the stern tunnel 3 is maintained up to the stern end 2a, in the present invention, as compared with the stern shape in which the stern end 2a is formed in a linear shape and the stern tunnel 3X is not maintained up to the stern end 2a, The effect of improving the propulsion performance by reducing the wave resistance can be maintained high.

さらに、側面視においては、プロペラ4の上部2cの船尾船底面2eを上方へ湾曲した側断面形状を形成しながら、船尾端2aの下端2bの位置を、変曲部3bを設けない場合に比べて下方に位置することができる。そのため、図3で示すように、航行時にピッチングにより船体が水平に対してθ°傾斜し、船首が下降して船尾が上昇した場合においても、従来技術の図6で示す船尾構造に比して、船尾端2aから前方の船底面2eに空気が入り難くなっている。そのため、従来技術の図6で示す船尾構造では船尾トンネル3Xの船底に空気が入り、波面が船底を叩くことによる騒音が発生するが、本発明の船舶の船尾構造では、これを抑制できる。   Further, in a side view, the stern bottom 2e of the upper part 2c of the propeller 4 is formed in a side cross-sectional shape that is curved upward, and the position of the lower end 2b of the stern end 2a is compared with the case where the inflection part 3b is not provided. Can be located below. Therefore, as shown in FIG. 3, even when the hull is inclined by θ ° with respect to the horizontal due to pitching during navigation, the bow descends and the stern rises, as compared with the stern structure shown in FIG. 6 of the prior art. Air is difficult to enter from the stern end 2a to the front bottom 2e. Therefore, in the stern structure shown in FIG. 6 of the prior art, air enters the bottom of the stern tunnel 3X and noise is generated when the wavefront hits the bottom of the stern tunnel, but this can be suppressed in the stern structure of the ship of the present invention.

そして、この変曲部3bの前後方向の位置は、プロペラ4の上部2cから船尾端2aまでの水平距離を距離Xaとし、プロペラ上部2cから変曲部3bまでの水平距離を距離X1とすると、距離Xaに対する距離X1の比率ε(=X1/Xa)が、0.3〜0.8の範囲になる位置としていることが好ましい。   The position of the inflection part 3b in the front-rear direction is defined as a distance Xa from the top 2c of the propeller 4 to the stern end 2a and a distance X1 from the top 2c of the propeller to the inflection part 3b. It is preferable that the ratio ε (= X1 / Xa) of the distance X1 to the distance Xa is a position in the range of 0.3 to 0.8.

変曲部3bの位置がこの範囲より前方であると、船尾トンネル3における、横復原力の確保と造波抵抗の低減などの一般的な船尾トンネルの効果が減少し、変曲部3bの位置がこの範囲より後方であると、船尾における造波抵抗の低減とピッチング動揺時の空気巻き込みの低減による騒音抑制効果が減少することになる。   If the position of the inflection part 3b is ahead of this range, the effects of general stern tunnels such as securing lateral recovery force and reducing wave resistance in the stern tunnel 3 will decrease, and the position of the inflection part 3b will be reduced. If it is behind this range, the noise suppression effect due to the reduction of wave-making resistance at the stern and the reduction of air entrainment during pitching oscillation will be reduced.

つまり、船尾トンネルにおける、横復原力の確保と造波抵抗の低減などのトンネル効果を維持しつつ、船尾における造波抵抗の低減とピッチング動揺時の空気巻き込みの低減による騒音抑制効果を発揮でき、両方の効果をバランスよく発揮できる。   In other words, while maintaining the tunnel effect such as securing lateral restoring force and reducing the wave-making resistance in the stern tunnel, it is possible to demonstrate the noise suppression effect by reducing the wave-making resistance at the stern and reducing air entrainment during pitching sway, Both effects can be demonstrated in a balanced manner.

この船尾トンネル3の船尾端2aにおける上方への湾曲の大きさは、船尾端2aの最下端位置と船尾トンネル3の最上端位置との間の鉛直距離H1はプロペラ直径Dpの0.05倍以上かつ0.2倍以下(若しくは5%以上20%以下)になっているように形成されていることが好ましい。   The upward curve at the stern end 2a of the stern tunnel 3 is such that the vertical distance H1 between the lowest end position of the stern end 2a and the highest end position of the stern tunnel 3 is 0.05 times the propeller diameter Dp or more. In addition, it is preferably formed so as to be 0.2 times or less (or 5% or more and 20% or less).

そして、また、変曲部3bの横断面における船尾トンネル3の上方への湾曲の大きさは、この変曲部3bの横断面における船尾トンネル3の最下端位置と船尾トンネル3の最上端位置との間の鉛直距離H2はプロペラ直径Dpの0.3倍以下(若しくは30%以下)になるように形成されることが好ましい。   In addition, the magnitude of the upward curve of the stern tunnel 3 in the transverse section of the inflection portion 3b is the lowest end position of the stern tunnel 3 and the uppermost end position of the stern tunnel 3 in the transverse section of the inflection portion 3b. It is preferable that the vertical distance H2 is formed so as to be 0.3 times or less (or 30% or less) of the propeller diameter Dp.

そして、変曲部3bから船尾端2aに向って連続的又は段階的又は一定部分を部分的に含んで低減する鉛直距離Hiの変化量ΔHiは、変曲部3bから船尾端2aまでの距離Xiの変化量ΔXiと同様の比率で変化するように(ΔHi/ΔXi=一定)形成していてもよく、それぞれの変化量の比率が異なるように形成していてもよい。   Then, the amount of change ΔHi of the vertical distance Hi that is reduced continuously or stepwise from the inflection part 3b toward the stern end 2a partially including a certain portion is a distance Xi from the inflection part 3b to the stern end 2a. It may be formed so as to change at the same ratio as the change amount ΔXi of (ΔHi / ΔXi = constant), or may be formed so that the ratio of the respective change amounts is different.

これらの構成により、船尾トンネルにおける、横復原力の確保と造波抵抗の低減などのトンネル効果を維持しつつ、船尾における造波抵抗の低減とピッチング動揺時の空気巻き込みの低減による騒音抑制効果を発揮でき、両方の効果をバランスよく発揮できる。   With these configurations, while maintaining the tunnel effect such as securing lateral restoring force and reducing the wave-making resistance in the stern tunnel, the noise-suppressing effect is achieved by reducing the wave-making resistance at the stern and reducing air entrainment during pitching. Can demonstrate both effects in a balanced manner.

従って、上記の構成の船舶の船尾形状及び船舶1によれば、前方の船底からプロペラ4の上部2cに向かう上方向の流れWが、変曲部3bを境にして、変曲部3bから船尾端2aに向かう下方向の流れWに変化するので、このことにより、船尾端に生じる波崩れや造波が抑制され、船尾造波抵抗が低減する。さらに、トンネル状の船底が船尾端2aまで維持されているので、トンネル形状を形成したことによる造波抵抗の低減効果を発揮することができる。   Therefore, according to the stern shape of the ship and the ship 1 configured as described above, the upward flow W from the front ship bottom toward the upper part 2c of the propeller 4 starts from the inflection part 3b with the inflection part 3b as a boundary. Since the flow changes to the downward flow W toward the end 2a, this suppresses wave collapse and wave formation at the stern end, and reduces stern wave resistance. Furthermore, since the tunnel-shaped ship bottom is maintained up to the stern end 2a, the effect of reducing the wave resistance due to the formation of the tunnel shape can be exhibited.

本発明の船舶の船尾形状及び船舶によれば、前方の船底からプロペラ上部に向かう上方向の流れを変曲部を境にして船尾側では下方向の流れになるようにしているので、船尾端に生じる波崩れや造波を抑制して、船尾造波抵抗を低減でき、さらに、トンネル状の船底が船尾端まで維持されているので、トンネル形状を形成したことによる造波抵抗の低減効果を発揮することができるので、多くの船舶の船尾構造及び船舶に利用することができる。   According to the stern shape of the ship and the ship of the present invention, the upward flow from the front ship bottom to the upper propeller is made to flow downward on the stern side with the inflection part as a boundary. The stern wave resistance can be reduced by suppressing the wave collapse and wave generation that occurs in the tunnel, and the tunnel-shaped ship bottom is maintained up to the stern end, so the effect of reducing the wave-making resistance by forming the tunnel shape can be reduced. Since it can be exhibited, it can be utilized for the stern structure of many ships and ships.

1、1X 船舶
2 船尾部
2a 船尾端
2b 船尾端の下端
2c プロペラの上部
2d 船底(ベースライン)
2e 船底面
3、3X 船尾トンネル
3a 上昇傾斜面
3b 変曲部
3c 下降傾斜面
3e 湾曲頂点(船尾端横断面)
3f 湾曲最下端部(船尾端横断面)
4 プロペラ
5 舵
a 空気
1, 1X Ship 2 Stern part 2a Stern end 2b Stern end lower end 2c Propeller upper part 2d Ship bottom (baseline)
2e Stern bottom 3, 3X Stern tunnel 3a Ascending inclined surface 3b Inflection part 3c Inclining inclined surface 3e Curved apex (cross section at stern end)
3f Curved bottom end (cross section at stern end)
4 Propeller 5 Rudder a Air

Claims (4)

航行時に船底面に沿う水流を船尾のプロペラの上部へ導く船尾トンネルを備えている船舶の船尾構造において、
前記船尾トンネルを構成している船底面を、前方の船底から前記プロペラの上部に向かう上昇傾斜から船尾端に向かう下降傾斜に変化させて形成し、この上昇傾斜から下降傾斜に移行する変曲部を前記プロペラよりも後方の位置に設けているとともに、
前記変曲部から前記船尾端に向かう部位における前記船尾トンネルを構成している船底面を船尾端まで維持し、その横断面形状における凹部の湾曲度合を連続的に減少していくように形成されていることを特徴とする船舶の船尾構造。
In the stern structure of a ship equipped with a stern tunnel that guides the water flow along the bottom of the ship to the top of the stern propeller during navigation,
An inflection portion that forms the bottom of the stern tunnel by changing from an ascending slope toward the upper part of the propeller from a forward ship bottom to a descending slope toward the stern end, and transitions from the ascending slope to the descending slope. Is provided at a position behind the propeller,
The bottom of the stern tunnel in the region from the inflection part toward the stern end is maintained up to the stern end, and the curvature of the recess in the cross-sectional shape is continuously reduced. The stern structure of a ship characterized by
前記プロペラの上部から前記船尾端までの水平距離を距離Xaとし、前記プロペラの上部から前記変曲部の位置までの水平距離を距離X1として、距離Xaに対する距離X1の比率が0.3〜0.8の範囲になる位置に前記変曲部を配置していることを特徴とする請求項1に記載の船舶の船尾構造。   The horizontal distance from the upper part of the propeller to the stern end is a distance Xa, the horizontal distance from the upper part of the propeller to the position of the inflection part is a distance X1, and the ratio of the distance X1 to the distance Xa is 0.3-0. 2. The stern structure of a ship according to claim 1, wherein the inflection part is arranged at a position in a range of .8. 前記船尾端の横断面における前記船尾トンネルの最下端位置と最上端位置との間の鉛直距離H1をプロペラ直径Dpの0.05倍以上かつ0.2倍以下とし、前記変曲部の横断面における前記船尾トンネルの最下端位置と最上端位置との間の鉛直距離H2を前記プロペラ直径Dpの0.3倍以下としていることを特徴とする請求項1または2に記載の船舶の船尾構造。   A vertical distance H1 between the lowest end position and the highest end position of the stern tunnel in the cross section of the stern end is set to be 0.05 times to 0.2 times the propeller diameter Dp, and the cross section of the inflection portion The stern structure of a ship according to claim 1 or 2, wherein a vertical distance H2 between the lowermost position and the uppermost position of the stern tunnel is set to 0.3 times or less of the propeller diameter Dp. 請求項1〜3のいずれか1項に記載の船舶の船尾構造を備えていることを特徴とする船舶。   The ship provided with the stern structure of the ship of any one of Claims 1-3.
JP2015205695A 2015-10-19 2015-10-19 Stern structure of ship and ship Pending JP2017077754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205695A JP2017077754A (en) 2015-10-19 2015-10-19 Stern structure of ship and ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205695A JP2017077754A (en) 2015-10-19 2015-10-19 Stern structure of ship and ship

Publications (1)

Publication Number Publication Date
JP2017077754A true JP2017077754A (en) 2017-04-27

Family

ID=58665766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205695A Pending JP2017077754A (en) 2015-10-19 2015-10-19 Stern structure of ship and ship

Country Status (1)

Country Link
JP (1) JP2017077754A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179390A (en) * 1992-12-15 1994-06-28 Usukine Zosenjo:Kk Hull shape for reducing resistance
JPH06247386A (en) * 1993-02-26 1994-09-06 Tech Res & Dev Inst Of Japan Def Agency Device for increasing astern power of tunnel stern ship
JPH08133172A (en) * 1994-11-09 1996-05-28 Ishikawajima Harima Heavy Ind Co Ltd Stern shape for twin skeg ship type
JP2002068072A (en) * 2000-08-28 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Stern flap device for ship
JP2002104285A (en) * 2000-10-04 2002-04-10 Shin Kurushima Dockyard Co Ltd Tunnel fin device
JP2004148972A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Stern structure
JP2005186714A (en) * 2003-12-25 2005-07-14 Mitsubishi Heavy Ind Ltd Hull
JP2008189197A (en) * 2007-02-06 2008-08-21 Mitsubishi Heavy Ind Ltd Stern form
US20100000455A1 (en) * 2008-07-02 2010-01-07 Justin Harper Transom stern hull form and appendages for improved hydrodynamics
JP2012116401A (en) * 2010-12-02 2012-06-21 Mitsubishi Heavy Ind Ltd Ship
JP2012116402A (en) * 2010-12-02 2012-06-21 Mitsubishi Heavy Ind Ltd Ship
JP2015085930A (en) * 2013-07-26 2015-05-07 王悦 八本 On-water travel body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179390A (en) * 1992-12-15 1994-06-28 Usukine Zosenjo:Kk Hull shape for reducing resistance
JPH06247386A (en) * 1993-02-26 1994-09-06 Tech Res & Dev Inst Of Japan Def Agency Device for increasing astern power of tunnel stern ship
JPH08133172A (en) * 1994-11-09 1996-05-28 Ishikawajima Harima Heavy Ind Co Ltd Stern shape for twin skeg ship type
JP2002068072A (en) * 2000-08-28 2002-03-08 Ishikawajima Harima Heavy Ind Co Ltd Stern flap device for ship
JP2002104285A (en) * 2000-10-04 2002-04-10 Shin Kurushima Dockyard Co Ltd Tunnel fin device
JP2004148972A (en) * 2002-10-30 2004-05-27 Mitsubishi Heavy Ind Ltd Stern structure
JP2005186714A (en) * 2003-12-25 2005-07-14 Mitsubishi Heavy Ind Ltd Hull
JP2008189197A (en) * 2007-02-06 2008-08-21 Mitsubishi Heavy Ind Ltd Stern form
US20100000455A1 (en) * 2008-07-02 2010-01-07 Justin Harper Transom stern hull form and appendages for improved hydrodynamics
JP2012116401A (en) * 2010-12-02 2012-06-21 Mitsubishi Heavy Ind Ltd Ship
JP2012116402A (en) * 2010-12-02 2012-06-21 Mitsubishi Heavy Ind Ltd Ship
JP2015085930A (en) * 2013-07-26 2015-05-07 王悦 八本 On-water travel body

Similar Documents

Publication Publication Date Title
JP4939269B2 (en) Stern horizontal duct and ship
US10518842B1 (en) Boat hull
EP2876036B1 (en) Drillship having block for preventing vortex with concave type flow stabilizer part in moonpool
KR101094539B1 (en) Stern shape for displacement type ship
US10293886B2 (en) Watercraft vessel with a planing hull
KR102461779B1 (en) design of the front of the ship
CN102317147B (en) Method and arrangement of bulbous bow
KR20080043357A (en) Open sea hydrofoil craft
JP2015085930A (en) On-water travel body
NL2014763B1 (en) A vessel provided with a moon pool.
JP2015520063A (en) Sliding hull for rough seas
KR101654489B1 (en) Ship
JP2022520136A (en) Inflatable motorboat
JP2017077754A (en) Stern structure of ship and ship
JP6550375B2 (en) A ship with a cavity at the bottom
TWI596042B (en) Hydrofoil
JP4421495B2 (en) High speed catamaran
US9205898B2 (en) Fin structure for watercraft
KR102331923B1 (en) Ship Keys and Vessels
JP5393160B2 (en) Stern shape of a displacement type ship
JP4639176B2 (en) Stern fin arrangement structure
JP2018122661A (en) Marine vessel
JP2008189197A (en) Stern form
US20120227652A1 (en) Vessel
JP3128570U (en) Stabilized catamaran

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190730