JP2017076561A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2017076561A
JP2017076561A JP2015204261A JP2015204261A JP2017076561A JP 2017076561 A JP2017076561 A JP 2017076561A JP 2015204261 A JP2015204261 A JP 2015204261A JP 2015204261 A JP2015204261 A JP 2015204261A JP 2017076561 A JP2017076561 A JP 2017076561A
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
coil
current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204261A
Other languages
Japanese (ja)
Other versions
JP6589545B2 (en
Inventor
津田 正徳
Masanori Tsuda
正徳 津田
中井 泰弘
Yasuhiro Nakai
泰弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2015204261A priority Critical patent/JP6589545B2/en
Publication of JP2017076561A publication Critical patent/JP2017076561A/en
Application granted granted Critical
Publication of JP6589545B2 publication Critical patent/JP6589545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating device that can inductively heat plural coils with one power source and contributes to uniformity of the power distribution of all the coils.SOLUTION: Two coils 51 and 52 are individually arranged in coil arrangement areas A1 and A2 partitioned along an axial direction H of a vacuum container 4 on the outside of the vacuum container 4. As an induction heating power source 6 is applied a high-frequency power source for supplying power from a common current type inverter to a parallel resonance series connection circuit in which two parallel resonance circuits are mutually connected to each other in series, the parallel resonance circuit including resonance capacitors connected in parallel for each of heating coils 51, 52 which are arranged individually in respective coil arrangement areas A1, A2. The respective resonance frequencies of the parallel resonance circuits are set to different values, and the drive frequency is changed, whereby the current ratio of each induction heating coil 51, 52 in the parallel resonance series connection circuit can be changed.SELECTED DRAWING: Figure 1

Description

本発明は、通電した誘導加熱コイルによって被加熱物を誘導加熱可能な誘導加熱装置に関するものである。   The present invention relates to an induction heating apparatus capable of induction heating an object to be heated by an energized induction heating coil.

誘導加熱コイルを通電させて加熱することにより被加熱物を誘導加熱可能な誘導加熱装置は、一般的な電熱線タイプのヒータを加熱源とする加熱装置と比較して、所定の処理温度まで昇温させる処理の短時間化(短時間で高温化)を図ることが可能であり、種々の分野で用いられている。   An induction heating apparatus that can heat an object to be heated by energizing an induction heating coil is heated to a predetermined processing temperature as compared with a heating apparatus that uses a general heating wire type heater as a heating source. It is possible to shorten the heating process (high temperature in a short time), and it is used in various fields.

例えば、半導体の単結晶を材料ウェハの上に形成する半導体を製造する工程において、近時では、気密状態に密閉可能な真空容器内にサセプタを配置し、誘導加熱コイルに高周波電流を印加することによってサセプタを加熱するように構成された誘導加熱装置が用いられている。このような半導体誘導加熱装置によれば、サセプタに載置されているウェハも加熱され、当該ウェハの表面上に厚み及び不純物濃度を精密に制御した薄膜を形成することが可能である。特に、優れた物理的・化学的性質を有することからシリコン(Si)半導体を凌駕する小型・低損失の半導体デバイスの実現が可能とされるデバイスとして注目されている炭化ケイ素(SiC)半導体を製造する場合には、1800℃程度までの処理温度が必要であり、処理温度が最高で1200℃程度までに制限される電熱線タイプのヒータを加熱源とする装置を適用することができない。   For example, in a process of manufacturing a semiconductor in which a semiconductor single crystal is formed on a material wafer, recently, a susceptor is disposed in a vacuum container that can be sealed in an airtight state, and a high frequency current is applied to the induction heating coil. An induction heating device configured to heat the susceptor is used. According to such a semiconductor induction heating apparatus, the wafer placed on the susceptor is also heated, and a thin film with a precisely controlled thickness and impurity concentration can be formed on the surface of the wafer. Manufactures silicon carbide (SiC) semiconductors that are attracting attention as devices that can realize small and low-loss semiconductor devices that surpass silicon (Si) semiconductors due to their excellent physical and chemical properties. In this case, a processing temperature up to about 1800 ° C. is necessary, and an apparatus using a heating wire type heater whose processing temperature is limited to about 1200 ° C. at the maximum cannot be applied.

このように短時間で高温化を図ることが可能な誘導加熱装置によって半導体を製造する場合、処理効率の向上を図るべく、真空容器内に複数のサセプタを多段状に配置してバッチ処理可能に構成された誘導加熱装置も実用化されている。例えば図7に示すように、真空容器4の内部空間4Sのうち少なくともサセプタ2(ウェハWが載置される台)を配置した領域全体を真空容器4の外側から共通の誘導加熱コイル5(同一の誘導加熱コイル)で周囲するように配置された構成であれば、真空容器4の外側において誘導加熱コイル5が配置されたエリアAのうち、真空容器4の長手方向H(サセプタ5の並び方向と同一方向)中心部及びその近傍のエリアに配置されている誘導加熱コイル5の電力が、真空容器4の長手方向両端部(図示例では上下端部)のエリアに配置されている誘導加熱コイル5の電力よりも相対的に高くなる傾向がある。なお、同図では、真空容器4の長手方向H(軸方向)に延伸する誘導加熱コイル5の配置エリアAを、真空容器5の長手方向Hに複数(図示例は8つ)の配置エリア単位Aaに区分けしたものと捉えた場合、全ての配置エリア単位Aaに共通の誘導加熱コイル5が配置されている構成を模式的に示している。   When manufacturing semiconductors with induction heating equipment that can increase the temperature in such a short time, batch processing is possible by arranging multiple susceptors in multiple stages in a vacuum vessel in order to improve processing efficiency. The constructed induction heating apparatus has also been put into practical use. For example, as shown in FIG. 7, a common induction heating coil 5 (identical from the outside of the vacuum vessel 4 is formed over the entire region in which at least the susceptor 2 (the table on which the wafer W is placed) is arranged in the internal space 4 </ b> S of the vacuum vessel 4. In the area A where the induction heating coil 5 is arranged outside the vacuum vessel 4, the longitudinal direction H of the vacuum vessel 4 (the direction in which the susceptors 5 are arranged) The induction heating coil 5 in which the electric power of the induction heating coil 5 arranged in the central portion and the area in the vicinity thereof is arranged in the areas of both ends in the longitudinal direction (upper and lower ends in the illustrated example) of the vacuum vessel 4. It tends to be relatively higher than the power of 5. In the figure, the arrangement area A of the induction heating coil 5 extending in the longitudinal direction H (axial direction) of the vacuum vessel 4 is arranged in plural (8 in the illustrated example) arrangement area units in the longitudinal direction H of the vacuum vessel 5. When it is assumed that it is divided into Aa, the configuration in which the induction heating coil 5 common to all the arrangement area units Aa is arranged is schematically shown.

また、同図に示すように、真空容器4の下端部にガスG(キャリアガス、ケイ素原料ガス、炭素原料ガス等)の給気口41及び排気口42が形成され、給気口41から供給されて真空容器内4Sにおいて上方に流れるガスGを排気口42から排出するように構成されている場合、真空容器内4Sにおける抜熱に着目すると、抜熱量は、真空容器4の長手方向中心部よりも、給気口41及び排気口42が形成される真空容器4の下端部が相対的に多いため、真空容器内4Sの温度分布も、長手方向下端部が他の部分よりも低くなる傾向が確認されている。   Further, as shown in the figure, an air supply port 41 and an exhaust port 42 for gas G (carrier gas, silicon raw material gas, carbon raw material gas, etc.) are formed at the lower end of the vacuum vessel 4 and supplied from the air supply port 41. In the case where the gas G flowing upward in the vacuum vessel 4S is discharged from the exhaust port 42, when attention is paid to the heat removal in the vacuum vessel 4S, the heat removal amount is the center in the longitudinal direction of the vacuum vessel 4. Since there are relatively many lower ends of the vacuum vessel 4 in which the air supply port 41 and the exhaust port 42 are formed, the temperature distribution in the vacuum vessel 4S also tends to be lower at the lower end in the longitudinal direction than the other portions. Has been confirmed.

誘導加熱装置による加熱処理中に、誘導加熱コイルの電力分布の偏りに伴って各サセプタの加熱状態を均一にできない場合には、多段状に配置されたサセプタ上の各ウェハに対する加工処理にばらつきが生じ、全てのウェハに対して要求されている高度に均一な加工処理(薄膜形成処理)を実施することができず、十分な品質を確保できないことになる。   If the heating state of each susceptor cannot be made uniform during the heat treatment by the induction heating device due to the uneven power distribution of the induction heating coil, the processing for each wafer on the susceptor arranged in multiple stages will vary. As a result, the highly uniform processing (thin film formation processing) required for all wafers cannot be performed, and sufficient quality cannot be ensured.

そこで、真空容器の長手方向中心部における誘導加熱コイルの巻回状態を、真空容器の長手方向両端部における誘導加熱コイルの巻回状態よりも密に設定し、均一加熱及び温度分布の平準化を図る構成が案出されている。この場合、巻回状態の粗密を高い精度で設定することが要求される。   Therefore, the winding state of the induction heating coil at the central portion in the longitudinal direction of the vacuum vessel is set more densely than the winding state of the induction heating coil at both longitudinal ends of the vacuum vessel, and uniform heating and leveling of the temperature distribution are performed. A configuration has been devised. In this case, it is required to set the density of the wound state with high accuracy.

また、誘導加熱コイルを複数に分割して、それぞれの誘導加熱コイルに専用の電源を設け、各電源を個別に制御して、均熱化及び温度分布の平準化を図る構成も知られている。このような構成は、複数の電源が必要であるため、高コスト化を招来することに加えて、隣接する誘導加熱コイル間で鎖交磁束があり、他に悪影響を及ぼすため、電源単位で煩雑な制御が要求される。   There is also known a configuration in which the induction heating coil is divided into a plurality of parts, a dedicated power source is provided for each induction heating coil, and each power source is individually controlled to equalize the temperature and level the temperature distribution. . Since such a configuration requires a plurality of power sources, in addition to incurring high costs, there is a linkage magnetic flux between adjacent induction heating coils, and other adverse effects are adversely affected. Control is required.

また、1つの電源を用いて複数の誘導加熱コイルを加熱する誘導加熱装置として、下記特許文献1には、誘導加熱調理器(いわゆるIHヒータ)に関して、誘導加熱コイルと共振コンデンサを直列に接続した2つの直列共振回路を同一のインバータ回路に並列に接続した構成が開示されている。直列共振回路が接続されているインバータは、一定の電圧を交流化する電圧型インバータである。   In addition, as an induction heating apparatus that heats a plurality of induction heating coils using a single power source, Japanese Patent Application Laid-Open No. 2004-26883 discloses an induction heating cooker (so-called IH heater) in which an induction heating coil and a resonant capacitor are connected in series. A configuration in which two series resonant circuits are connected in parallel to the same inverter circuit is disclosed. The inverter to which the series resonant circuit is connected is a voltage type inverter that converts a constant voltage into an alternating current.

このように、電圧型インバータに接続した「電圧型直列共振回路」を並列に配置する構成は、電力容量が10kW程度の誘導加熱調理器に好適に用いることができる。   Thus, the structure which arrange | positions the "voltage type series resonance circuit" connected to the voltage type inverter in parallel can be used suitably for the induction heating cooking appliance whose power capacity is about 10 kW.

特開2012−124081号公報(特許第5605198号)JP 2012-124081 A (Patent No. 5605198)

しかしながら、例えば1000kWを越える大容量の電源として、並列に配置された電圧型直列共振回路を同一の電圧型インバータに接続した構成を採用した場合、電圧型インバータを構成するスイッチング素子やダイオードは、大容量の電流が流れ込んだ時のショックに耐え切れず、通常、素子のターンオフ損失を吸収するためのスナバ回路を並列に取り付けるが、そのスナバ回路の損失が多くなり、極めて複雑な回路構成を採用しない限り、電源として機能しないか、機能が大幅に低下し、システム全体(誘導加熱装置全体)に悪影響を与えることになる。また、並列に配置された電圧型直列共振回路を同一の電圧型インバータに接続した構成を採用した場合、上述のターンオフ損失以外に、電源と負荷コイルとの整合を合わすために、通常、変成器(変圧器や変流器)を間に挿入する。これは、電圧型インバータは、直列共振方式のため、負荷コイル側の大電流がそのまま電源側に流れることに対する対処である。すなわち、インバータ内の素子に直接流れるならば、大きな電流容量の素子を用意しなければならないが、通常は、インバータと共振回路の間に設置する変成器の2次側に大電流が流れる。このため、電圧型直列共振の場合、いずれにしても大きな電流容量の機器が必要となる。   However, for example, when a configuration in which a voltage-type series resonance circuit arranged in parallel is connected to the same voltage-type inverter as a large-capacity power source exceeding 1000 kW, switching elements and diodes constituting the voltage-type inverter are large. A snubber circuit is usually installed in parallel to absorb the turn-off loss of the element, but the snubber circuit loss increases and does not employ an extremely complicated circuit configuration. As long as it does not function as a power source, the function is greatly reduced and the entire system (the entire induction heating apparatus) is adversely affected. In addition, when adopting a configuration in which voltage type series resonance circuits arranged in parallel are connected to the same voltage type inverter, in addition to the above-mentioned turn-off loss, in order to match the matching between the power source and the load coil, usually a transformer Insert a transformer or current transformer between them. This is a countermeasure against a large current on the load coil side flowing directly to the power source side because the voltage type inverter is a series resonance system. That is, if it flows directly to the element in the inverter, an element having a large current capacity must be prepared, but usually a large current flows to the secondary side of the transformer installed between the inverter and the resonance circuit. For this reason, in the case of voltage-type series resonance, a device with a large current capacity is required in any case.

さらに、電圧型直列共振回路を構成する素子は、自己消弧型の素子に制限される。このような制約を受ける電圧型直列共振回路が必須である誘導加熱装置において、1000kWを越える大容量にも対応できる構成にするためには、大幅なコストアップ及び回路構成の複雑化・カスタム化を避けることができない。   Furthermore, the elements constituting the voltage type series resonance circuit are limited to self-extinguishing elements. In an induction heating device that requires a voltage-type series resonance circuit subject to such restrictions, in order to achieve a configuration that can handle a large capacity exceeding 1000 kW, the cost must be significantly increased and the circuit configuration must be complicated and customized. Inevitable.

上述した諸問題は、真空容器内に配置した複数のサセプタを誘導加熱する装置に限らず、所定の軸方向に延伸する内部空間を他の空間と仕切る筒状の隔壁の外側に巻回状態で配置された誘導加熱コイルによって、内部空間に配置される被加熱物を誘導加熱可能な誘導加熱装置であっても同様に生じる。   The above-mentioned problems are not limited to a device that induction-heats a plurality of susceptors arranged in a vacuum vessel, but are wound around the outside of a cylindrical partition that partitions an internal space extending in a predetermined axial direction from other spaces. This similarly occurs even in an induction heating apparatus capable of induction heating an object to be heated arranged in the internal space by the arranged induction heating coil.

本発明は、このような点に着目してなされたものであって、主たる目的は、1つの電源で複数の誘導加熱コイルを誘導加熱することが可能であり、さらに、所定の軸方向に沿って配置される誘導加熱コイル全体の電力分布や、被加熱物が配置される空間の温度分布の調整が可能な誘導加熱装置を提供することにある。   The present invention has been made paying attention to such points, and the main object is to be able to induction-heat a plurality of induction heating coils with a single power source, and further along a predetermined axial direction. It is an object of the present invention to provide an induction heating apparatus capable of adjusting the power distribution of the entire induction heating coil arranged and the temperature distribution of the space in which the object to be heated is arranged.

すなわち本発明は、誘導加熱コイルに任意の周波数の交流電力を出力可能な1つの誘導加熱電源と、被加熱物が配置可能な1つの軸方向に延伸する内部空間を他の空間と仕切る筒状の隔壁と、隔壁の外側に巻回状態で配置される誘導加熱コイルに高周波電流を印加することで被加熱物を誘導加熱により加熱可能な誘導加熱装置に関するものである。ここで、本発明における「筒状の隔壁」は、円筒状の隔壁または角筒状の隔壁の何れも包含するものである。また、筒状の隔壁によって他の空間と仕切られる内部空間は、単一の軸方向に沿った両端が他の空間に連通している空間(筒抜けの空間)であってもよいし、単一の軸方向に沿った何れか一方の端のみが他の空間に連通し、他方の端は他の空間に連通していない空間、或いは軸方向の両端が閉じられた空間であっても構わない。このような本発明における内部空間に配置可能な被加熱物は、1つであってもよいし、複数であってもよい。   That is, the present invention is a cylindrical shape that partitions one induction heating power source capable of outputting alternating-current power of an arbitrary frequency to the induction heating coil, and one internal space extending in the axial direction where an object to be heated can be arranged, from another space. The present invention relates to an induction heating apparatus capable of heating an object to be heated by induction heating by applying a high-frequency current to the partition wall and an induction heating coil arranged in a wound state outside the partition wall. Here, the “tubular partition” in the present invention includes both a cylindrical partition and a rectangular tubular partition. Further, the internal space partitioned from the other space by the cylindrical partition wall may be a space in which both ends along the single axial direction communicate with the other space (a space through the cylinder), or a single space. Only one end along the axial direction may communicate with the other space, and the other end may be a space not communicating with the other space, or a space where both ends in the axial direction are closed. . The number of objects to be heated that can be arranged in the internal space in the present invention may be one or plural.

そして、本発明に係る誘導加熱装置は、隔壁の外側におけるコイル配置エリアを軸方向に沿って区分けし、少なくとも2つの誘導加熱コイルを相互に異なるコイル配置エリアに個別に配置し、誘導加熱電源として、交流電源からの出力電流を直流電流に変換する順変換回路、及び順変換回路からの出力電流をスイッチング素子により交流電流に変換する逆変換回路を用いて構成した電流型インバータと、少なくとも2つの誘導加熱コイルに共振コンデンサを個別に並列に接続した少なくとも2つの並列共振回路を相互に直列接続し、電流型インバータから交流電力が供給される並列共振直列接続回路とを備えたものを適用し、各並列共振回路の共振周波数を異なる値に設定し、誘導加熱電源から出力する交流電力の周波数である駆動周波数を変化させることによって各誘導加熱コイルの電流比を変更可能に構成していることを特徴としている。   And the induction heating apparatus which concerns on this invention divides the coil arrangement | positioning area in the outer side of a partition along an axial direction, arrange | positions at least two induction heating coils separately in mutually different coil arrangement | positioning areas, and uses it as an induction heating power supply. A current conversion inverter configured using a forward conversion circuit that converts an output current from an alternating current power source into a direct current, and an inverse conversion circuit that converts an output current from the forward conversion circuit into an alternating current using a switching element, and at least two Applying at least two parallel resonance circuits in which resonance capacitors are individually connected in parallel to the induction heating coil in series, and a parallel resonance series connection circuit to which AC power is supplied from a current type inverter; Set the resonant frequency of each parallel resonant circuit to a different value and set the drive frequency, which is the frequency of the AC power output from the induction heating power supply. It is characterized in that it is capable of changing the current ratio of the induction heating coil by reduction.

本発明に係る誘導加熱装置であれば、共通の並列共振直列接続回路を構成する少なくとも2つ並列共振回路においてそれぞれ共振コンデンサに並列接続した誘導加熱コイルに対して、電流型並列共振方式を採用した1つの誘導加熱電源から高周波電流を印加して、被加熱物を誘導加熱により加熱可能であるため、複数の誘導加熱コイル毎に専用の電源を設け、各電源を個別に制御する構成と比較して、電源単位の煩雑な制御が要求されず、高コスト化を回避できる。また、本発明に係る誘導加熱装置であれば、少なくとも2つの誘導加熱コイルに共振コンデンサを個別に並列に接続した少なくとも2つの並列共振回路を相互に直列接続した並列共振直列接続回路に、電流型インバータから電力を供給する電流型並列共振方式の誘導加熱電源を適用しているため、並列に配置された複数の電圧型直列共振回路を同一の電圧型インバータに接続した電圧型直列方式の電源を適用した構成と比較して、インバータ回路を構成するスイッチング素子が自己消弧型の素子に制限されず、自己消弧型ではない素子を用いることが可能であり、スイッチング損失も低減することができ、複雑な回路構成の設計を強いられることなく1000kWを越える大容量(例えば2000kW乃至3000kW)にも対応することが可能である。   In the induction heating apparatus according to the present invention, the current-type parallel resonance method is adopted for the induction heating coils connected in parallel to the resonance capacitors in at least two parallel resonance circuits constituting a common parallel resonance series connection circuit. Compared with a configuration in which a dedicated power source is provided for each of the plurality of induction heating coils, and each power source is individually controlled, because a high-frequency current can be applied from one induction heating power source and the object to be heated can be heated by induction heating. Thus, complicated control for each power source is not required, and cost increase can be avoided. In addition, in the induction heating device according to the present invention, a current type is connected to a parallel resonance series connection circuit in which at least two induction resonance coils are connected in series with at least two parallel resonance circuits in which resonance capacitors are individually connected in parallel. Since a current-type parallel resonance induction heating power supply that supplies power from an inverter is applied, a voltage-type series power supply in which multiple voltage-type series resonance circuits arranged in parallel are connected to the same voltage-type inverter. Compared with the applied configuration, the switching elements constituting the inverter circuit are not limited to self-extinguishing elements, and it is possible to use non-self-extinguishing elements and reduce switching loss. Can handle large capacity exceeding 1000 kW (for example, 2000 kW to 3000 kW) without being forced to design a complicated circuit configuration. It is a function.

そして、本発明に係る誘導加熱装置では、各並列共振回路の共振周波数を異なる値に設定し、誘導加熱電源から出力する交流電力の周波数である駆動周波数を変化させることによって各誘導加熱コイルの電流比を変更可能に構成しているため、所定の軸方向に沿って区分けした誘導加熱コイルの配置エリアが、例えば電力分布や温度分布等においてどのようなエリアに該当するのかに応じて、各配置エリアに個別に配置する誘導加熱コイルの電流比を制御することによって、隔壁の外側に配置される誘導加熱コイル全体の電力分布を調整したり、被加熱物が配置される空間の温度分布を調整することが可能である。その結果、隔壁の外側に配置される誘導加熱コイル全体の電力分布の均一化や、被加熱物が配置される空間の温度分布の平準化を図ることができる。なお、本発明に係る誘導加熱装置であれば、上述のとおり、各配置エリアに個別に配置する誘導加熱コイルの電流比を制御することによって、隔壁の外側に配置される誘導加熱コイル全体の電力分布を調整したり、被加熱物が配置される空間の温度分布を調整することが可能であるため、敢えて、隔壁の外側に配置される誘導加熱コイル全体の電力分布を不均一にしたり、被加熱物が配置される空間の温度分布の非平準化を図ることもできる。特に、隔壁によって仕切られる空間内における被加熱物の配置箇所や、被加熱物に対する加工処理内容等によっては、誘導加熱コイル全体の電力分布や被加熱物が配置される空間の温度分布に高低差がある状態を確保することが有利になる場合もある。本発明では、少なくとも2つの誘導加熱コイルを相互に異なるコイル配置エリアに個別に配置する構成を採用しており、例えば、所定の軸方向に沿って誘導加熱コイルの配置エリアを3以上の任意の数に区分けし、3以上のコイル配置エリアにそれぞれ別々の誘導加熱コイルを配置し、各誘導加熱コイルを用いて構成した各並列共振回路の共振周波数を相互に異なる値に設定しておくことで、駆動周波数を変化させることよって3以上の誘導加熱コイルの電流比を変更可能に構成することも可能である。   In the induction heating apparatus according to the present invention, the resonance frequency of each parallel resonance circuit is set to a different value, and the current of each induction heating coil is changed by changing the drive frequency that is the frequency of the AC power output from the induction heating power supply. Since the ratio can be changed, the arrangement area of the induction heating coil divided along the predetermined axial direction can be changed depending on the area in the power distribution, temperature distribution, etc. By controlling the current ratio of the induction heating coils placed individually in the area, the power distribution of the entire induction heating coil placed outside the partition wall can be adjusted, and the temperature distribution of the space where the object to be heated is placed can be adjusted Is possible. As a result, the power distribution of the entire induction heating coil arranged outside the partition wall can be made uniform, and the temperature distribution of the space where the object to be heated is arranged can be leveled. In addition, if it is the induction heating apparatus which concerns on this invention, as above-mentioned, the electric power of the whole induction heating coil arrange | positioned outside a partition by controlling the current ratio of the induction heating coil arrange | positioned separately in each arrangement | positioning area. Since the distribution can be adjusted and the temperature distribution in the space where the object to be heated is arranged can be adjusted, the power distribution of the entire induction heating coil arranged outside the partition wall can be made uneven, Non-leveling of the temperature distribution in the space where the heated object is arranged can also be achieved. In particular, depending on the location of the object to be heated in the space partitioned by the partition wall, the processing content of the object to be heated, etc., the power distribution of the induction heating coil as a whole and the temperature distribution of the space in which the object to be heated are arranged are different. It may be advantageous to ensure a certain state. In the present invention, a configuration in which at least two induction heating coils are individually arranged in mutually different coil arrangement areas is adopted. For example, the arrangement area of the induction heating coils is set to any arbitrary number of three or more along a predetermined axial direction. By dividing the number into different numbers, placing separate induction heating coils in three or more coil placement areas, and setting the resonance frequency of each parallel resonance circuit configured using each induction heating coil to a different value from each other It is also possible to change the current ratio of three or more induction heating coils by changing the drive frequency.

また、本発明において好適な誘導加熱コイルの配置エリアとしては、例えば、1つの誘導加熱コイルを筒状の隔壁の外側において軸方向(内部空間の延伸する方向)に沿って配置した場合に、誘導加熱コイルの電力が相対的に高くなるエリアと相対的に低くなるエリアに応じて軸方向に沿って区分けした配置エリアや、内部空間の温度が相対的に高くなるエリアと相対的に低くなるエリアに応じて軸方向に沿って区分けした配置エリアを挙げることができる。そして、少なくとも2つの誘導加熱コイルを相互に異なる配置エリアに個別に配置すれば、筒状の隔壁の外側に配置する誘導加熱コイル全体の電力分布を調整したり、被加熱物が配置される空間の温度分布を調整することが可能である。具体的には、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルの電流比を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルの電流比よりも大きくなるように駆動周波数を変化させることによって、誘導加熱コイル全体の電力分布の均一化や被加熱物が配置される空間の温度分布の平準化を図ることが可能である。   In addition, as an arrangement area of the induction heating coil suitable for the present invention, for example, when one induction heating coil is arranged along the axial direction (direction in which the internal space extends) outside the cylindrical partition wall, induction is performed. Arrangement area divided along the axial direction according to the area where the power of the heating coil is relatively high and the area where it is relatively low, and the area where the temperature of the internal space is relatively high and the area where it is relatively low The arrangement area divided along the axial direction can be given. If at least two induction heating coils are individually arranged in mutually different arrangement areas, the power distribution of the entire induction heating coil arranged outside the cylindrical partition wall is adjusted, and the space in which the object to be heated is arranged It is possible to adjust the temperature distribution. Specifically, the current ratio of the induction heating coil disposed in the area corresponding to the area where the power of the induction heating coil is relatively low or the temperature of the internal space is relatively low is determined by the power of the induction heating coil. By changing the drive frequency so as to be larger than the current ratio of the induction heating coil arranged in the relatively high area or the arrangement area corresponding to the area where the temperature of the internal space is relatively high, the entire induction heating coil It is possible to make the power distribution uniform and level the temperature distribution of the space where the object to be heated is arranged.

また、本発明では、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも小さくなるように駆動周波数を変化させることによって、誘導加熱コイル全体の電力分布や被加熱物が配置される空間の温度分布に敢えてバラツキ(高低差)が生じるようにすることも可能である。さらにはまた、本発明では、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも小さくなるように駆動周波数を変化させる時間帯と、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも大きくなるように駆動周波数を変化させる時間帯とを意図的に区別してコントロールすることによって、誘導加熱コイル全体の電力分布や被加熱物が配置される空間の温度分布にバラツキ(高低差)を生じさせる時間帯と、誘導加熱コイル全体の電力分布の均一化や被加熱物が配置される空間の温度分布の平準化を図る時間帯とを確保するように構成することも可能である。 Further, in the present invention, the current flowing in the induction heating coil arranged in the area corresponding to the area where the power of the induction heating coil is relatively low or the temperature of the internal space is relatively low, The induction heating coil as a whole by changing the drive frequency so that it is smaller than the current flowing in the induction heating coil arranged in the relatively high area or in the arrangement area corresponding to the area where the internal space temperature is relatively high It is also possible to deliberately generate variations (level differences) in the power distribution and the temperature distribution of the space in which the object to be heated is arranged. Furthermore, in the present invention, the current flowing through the induction heating coil arranged in the area corresponding to the area where the power of the induction heating coil is relatively low or the temperature of the internal space is relatively low, The time period during which the drive frequency is changed to be smaller than the current flowing in the induction heating coil placed in the placement area corresponding to the relatively high power area or the area where the internal space temperature is relatively high, and induction The current flowing in the induction heating coil arranged in the area corresponding to the area where the power of the heating coil is relatively low or the temperature of the internal space is relatively low, the area where the power of the induction heating coil is relatively high The drive frequency is changed so that the current flows through the induction heating coil arranged in the arrangement area corresponding to the area where the temperature of the internal space is relatively high. By intentionally distinguishing and controlling the time zone, the power zone of the induction heating coil as a whole and the temperature distribution of the space where the object to be heated are distributed (the difference in height) and the entire induction heating coil It is also possible to secure a time zone for equalizing the power distribution and leveling the temperature distribution of the space in which the object to be heated is arranged.

本発明に係る誘導加熱装置では、所定の軸方向に延伸して筒状をなす隔壁の外側から、当該隔壁に包囲された内部空間を被覆し得る誘導加熱コイルを、軸方向に沿って区分けしたコイル配置エリアにそれぞれ別個に配置した複数の誘導加熱コイルに分割して、各誘導加熱コイルに共振コンデンサを並列に接続した少なくとも2つの並列共振回路を同一の電流型インバータ回路に直列に接続し、各並列共振回路の共振周波数を相互に異なる値に設定し、駆動周波数を変化させることによって各誘導加熱コイルの電流比を変更可能に構成したことによって、回路構成の複雑化を招来することなく、分割した複数の誘導加熱コイルに電力供給可能な電源の大容量化を図ることができるとともに、誘導加熱コイルの電力分布を調整したり、被加熱物が配置される空間の温度分布を調整することができ、所定の軸方向に沿って配置されるコイル全体によって被加熱物を均一加熱したり、被加熱物の特定部分のみを他の部分よりも積極的に高温化させた状態で加熱することが可能な誘導加熱装置を提供することができる。   In the induction heating device according to the present invention, the induction heating coil that can cover the internal space surrounded by the partition wall is divided along the axial direction from the outside of the partition wall that extends in a predetermined axial direction to form a cylindrical shape. Dividing into a plurality of induction heating coils arranged separately in the coil arrangement area, and connecting at least two parallel resonance circuits in which a resonance capacitor is connected in parallel to each induction heating coil in series with the same current type inverter circuit, By setting the resonance frequency of each parallel resonance circuit to a different value and changing the drive frequency to change the current ratio of each induction heating coil, without complicating the circuit configuration, It is possible to increase the capacity of the power source that can supply power to the plurality of divided induction heating coils, adjust the power distribution of the induction heating coil, The temperature distribution of the space to be placed can be adjusted, and the object to be heated is uniformly heated by the entire coil arranged along the predetermined axial direction, or only a specific part of the object to be heated is more aggressive than the other parts. It is possible to provide an induction heating apparatus that can be heated in a state where the temperature is increased.

本発明の一実施形態に係る誘導加熱装置の模式的な断面図。The typical sectional view of the induction heating device concerning one embodiment of the present invention. 同実施形態におけるサセプタ及びウェハの相対位置関係を模式的に示す図。The figure which shows typically the relative positional relationship of the susceptor and wafer in the embodiment. 同実施形態における誘導加熱電源を模式的に示す回路図。The circuit diagram which shows typically the induction heating power supply in the embodiment. 同実施形態において周波数の変化による各誘導加熱コイルの電流比の変化を模式的に示す図。The figure which shows typically the change of the current ratio of each induction heating coil by the change of the frequency in the same embodiment. 本発明の一実施形態に係る誘導加熱装置を図1に対応して示す図。The figure which shows the induction heating apparatus which concerns on one Embodiment of this invention corresponding to FIG. 本発明の一実施形態に係るビレットヒータの模式的な断面図。The typical sectional view of the billet heater concerning one embodiment of the present invention. 周知の誘導加熱装置の模式的な断面図。A typical sectional view of a known induction heating device.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る誘導加熱装置1は、図1に示すように、ウェハWを載置可能なサセプタ2と、多段状に配置される複数のサセプタ2を支持するボート3と、サセプタ2及びボート3を内部空間4Sに収容可能な耐熱性に優れた真空容器4と、真空容器4の周囲に巻回された誘導加熱コイル5と、誘導加熱コイル5に任意の周波数の交流電力を出力可能な誘導加熱電源6とを備えたものである。   As shown in FIG. 1, the induction heating apparatus 1 according to this embodiment includes a susceptor 2 on which a wafer W can be placed, a boat 3 that supports a plurality of susceptors 2 arranged in multiple stages, a susceptor 2, and a boat. 3 can be accommodated in the internal space 4S, an excellent heat resistance vacuum vessel 4, an induction heating coil 5 wound around the vacuum vessel 4, and an AC power of any frequency can be output to the induction heating coil 5. And an induction heating power source 6.

サセプタ2は、誘導加熱処理時の最高温度よりも融点が高い高融点金属材料である黒鉛から形成されたカーボンサセプタである。このサセプタ2が本発明における被加熱物である。本実施形態では、所定厚みに設定された円盤状のサセプタ2を水平姿勢で配置している。本実施形態では、面方向に大きな熱伝導率(例えば、面方向の熱伝導率が200W/m・K以上、面方向の導電率が1000S/cm以上)を有する異方性黒鉛シートによってサセプタ2を形成している。なお、本実施形態では、厚み方向の熱伝導率が50W/m・K以下であり、厚み方向の導電率が50S/cm以下のサセプタ2を適用している。本実施形態のサセプタ2は、このような面方向に大きな熱伝導率を有する異方性黒鉛シートを複数枚重ねて形成されたものである。これにより、サセプタ2の面内をより一層均一に加熱することが可能である。なお、図1及び後述の図2では複数枚の黒鉛シートを積層状に形成したサセプタ2全体を示し、各黒鉛シートについては省略している。   The susceptor 2 is a carbon susceptor formed from graphite, which is a refractory metal material having a melting point higher than the maximum temperature during induction heat treatment. This susceptor 2 is an object to be heated in the present invention. In this embodiment, the disk-shaped susceptor 2 set to a predetermined thickness is arranged in a horizontal posture. In the present embodiment, the susceptor 2 is made of an anisotropic graphite sheet having a large thermal conductivity in the plane direction (for example, the thermal conductivity in the plane direction is 200 W / m · K or more and the conductivity in the plane direction is 1000 S / cm or more). Is forming. In the present embodiment, the susceptor 2 having a thermal conductivity in the thickness direction of 50 W / m · K or less and an electrical conductivity in the thickness direction of 50 S / cm or less is applied. The susceptor 2 of the present embodiment is formed by stacking a plurality of anisotropic graphite sheets having a large thermal conductivity in such a plane direction. Thereby, the surface of the susceptor 2 can be heated more uniformly. Note that FIG. 1 and FIG. 2 described later show the entire susceptor 2 in which a plurality of graphite sheets are formed in a laminated form, and each graphite sheet is omitted.

本実施形態で適用する円盤状のサセプタ2は、図2に示すように、その半径を、当該サセプタ2に載置する円盤状のウェハWの半径よりも図2に示す所定寸法L分だけ大きく設定している。本実施形態では、Lの値を、誘導加熱コイル5によりサセプタ2に発生する浸透深さ(以下、「浸透深さδ」とする)よりも大きな値(例えば浸透深さδの1.5倍から2.0倍)に設定している。   As shown in FIG. 2, the disk-shaped susceptor 2 applied in this embodiment has a radius larger than the radius of the disk-shaped wafer W placed on the susceptor 2 by a predetermined dimension L shown in FIG. It is set. In this embodiment, the value of L is larger than the penetration depth (hereinafter referred to as “penetration depth δ”) generated in the susceptor 2 by the induction heating coil 5 (for example, 1.5 times the penetration depth δ). To 2.0 times).

ここで、浸透深さについて、表面からxの部分の導体(加熱体)内部を流れる電流と浸透深さの関係は、
Ix=Io exp(−x/δ)
但し、Ix:表面から深さxにおける電流、Io:導体の表面を流れる渦電流、δ:浸透深さ、であらわすことができる。したがって、浸透深さδのところに流れる電流は、1/e=0.37となり、表面を流れる電流の0.37倍に減衰した電流が流れることになる。この関係は、磁場でも同じ関係である。
Here, with respect to the penetration depth, the relationship between the current flowing inside the conductor (heating body) in the portion x from the surface and the penetration depth is:
Ix = Io exp (−x / δ)
However, Ix: current at the depth x from the surface, Io: eddy current flowing through the surface of the conductor, and δ: penetration depth. Therefore, the current flowing at the penetration depth δ is 1 / e = 0.37, and a current attenuated 0.37 times the current flowing on the surface flows. This relationship is the same for magnetic fields.

また、周波数fと浸透深さδの関係は、以下の式1で表すことができる。   Further, the relationship between the frequency f and the penetration depth δ can be expressed by the following formula 1.

Figure 2017076561
Figure 2017076561

本実施形態のサセプタ2は、上述のように、面方向の導電率が1000S/cm以上であり、抵抗率は1000μ.Ω・cmであるため、式1より、周波数が20kHzであれば、浸透深さδは1.12cmとなる。このことは、周波数が20kHzである場合に、サセプタ2の外縁2Eから中心2Sに向かって1.12cmまでの領域に多くの磁束が入り、その部分が誘導加熱されることを意味する。したがって、誘導加熱コイル5から発生する磁束は、サセプタ2のエッジ2Eから中心2Sに向かった所定領域であって且つ浸透深さδに相当する領域(図2における領域2A)に渦電流を発生させてジュール損によりサセプタ2を加熱する。以上より、サセプタ2のうち、加熱電力が入る(通る)のはエッジ2Eを含むエッジ近傍領域2Aであることが把握できる。   As described above, the susceptor 2 of the present embodiment has a surface conductivity of 1000 S / cm or more and a resistivity of 1000 μ. Since Ω · cm, from Equation 1, if the frequency is 20 kHz, the penetration depth δ is 1.12 cm. This means that when the frequency is 20 kHz, a large amount of magnetic flux enters the region from the outer edge 2E of the susceptor 2 to 1.12 cm toward the center 2S, and that portion is induction-heated. Therefore, the magnetic flux generated from the induction heating coil 5 generates an eddy current in a predetermined region from the edge 2E of the susceptor 2 toward the center 2S and corresponding to the penetration depth δ (region 2A in FIG. 2). The susceptor 2 is heated by Joule loss. From the above, it can be understood that in the susceptor 2, the heating power enters (passes) in the edge vicinity region 2A including the edge 2E.

本実施形態の誘導加熱装置1は、このようなサセプタ2を、その中心2Sを真空容器4の中心、より具体的には、真空容器4の内部空間4Saの軸中心に一致させた状態で配置している。   In the induction heating apparatus 1 of the present embodiment, such a susceptor 2 is arranged with its center 2S aligned with the center of the vacuum vessel 4, more specifically, the axial center of the internal space 4Sa of the vacuum vessel 4. doing.

また、サセプタ2の半径をウェハWの半径よりも、浸透深さδ(電流の浸透深さδ)の1.5倍から2倍に設定することで、中心WSをサセプタ2の中心2Sに一致させた姿勢でサセプタ2に載置したウェハWに、誘導加熱コイル5からサセプタ2への磁束が極めて通りにくい状況を確保することができ、誘導加熱コイル5から発生する磁界の影響によってウェハWにダメージが与えられる不具合を防止することが可能である。一方で、面方向に大きな熱伝導率を持つ異方性黒鉛材を用いて構成したサセプタ2を適用していることで、ジュール損により加熱したサセプタ2のエッジ近傍領域2Aから当該サセプタ2の面方向中央部分に向けて(図2でサセプタ2の中央2Sに向かう矢印の方向に)熱が伝わり、サセプタ2全体を均熱化することができる。したがって、サセプタ2に載置したウェハW全体を均熱化することができ、ウェハW内の温度分布も均一にすることが可能である。   Further, the center WS is matched with the center 2S of the susceptor 2 by setting the radius of the susceptor 2 to be 1.5 to 2 times the penetration depth δ (current penetration depth δ) than the radius of the wafer W. It is possible to ensure that the magnetic flux from the induction heating coil 5 to the susceptor 2 is extremely difficult to pass through the wafer W placed on the susceptor 2 in the posture, and the wafer W is affected by the magnetic field generated from the induction heating coil 5. It is possible to prevent defects that cause damage. On the other hand, by applying the susceptor 2 configured using an anisotropic graphite material having a large thermal conductivity in the surface direction, the surface of the susceptor 2 from the edge vicinity region 2A of the susceptor 2 heated by Joule loss. Heat is transmitted toward the center of the direction (in the direction of the arrow toward the center 2S of the susceptor 2 in FIG. 2), and the susceptor 2 as a whole can be soaked. Therefore, the entire wafer W placed on the susceptor 2 can be heated, and the temperature distribution in the wafer W can be made uniform.

ボート3は、多段状に配置される複数枚のサセプタ2を所定ピッチで支持するものである。このようなボート3によって、真空容器4の内部空間4Sに、ウェハWを載置したサセプタ2を多段状に積み込むことができる。図1では模式的に10枚のサセプタ2を支持可能なボート3を例示しているが、数十枚以上のサセプタ2を支持可能なボートを適用することも可能である。なお、ボート3や真空容器4は、1800℃の処理温度に耐える耐熱性に優れて絶縁性を有する材質、例えばSiC等で構成することができる。また、処理温度が1200℃以下である場合には、石英を材質とするボートや真空容器4を適用しても構わない。本実施形態では、このようなボート3によって支持される複数のサセプタ2を、真空容器4の内部空間4Sのうち中空の部分球状をなす天井壁44近傍の内部空間(後述の半球状空間4Sb)を除く空間(後述の円筒状空間4Sa)に配置している。   The boat 3 supports a plurality of susceptors 2 arranged in multiple stages at a predetermined pitch. With such a boat 3, the susceptor 2 on which the wafers W are placed can be stacked in the inner space 4 </ b> S of the vacuum vessel 4 in a multistage manner. Although FIG. 1 schematically illustrates a boat 3 that can support ten susceptors 2, it is also possible to apply a boat that can support several tens of susceptors 2. In addition, the boat 3 and the vacuum vessel 4 can be comprised with the material which is excellent in heat resistance which can endure the process temperature of 1800 degreeC, and has insulation, for example, SiC. Further, when the processing temperature is 1200 ° C. or less, a boat made of quartz or a vacuum vessel 4 may be applied. In the present embodiment, the plurality of susceptors 2 supported by the boat 3 are arranged in an internal space (a hemispherical space 4Sb described later) in the vicinity of the ceiling wall 44 that forms a hollow partial spherical shape in the internal space 4S of the vacuum vessel 4. Is disposed in a space (cylindrical space 4Sa described later).

真空容器4は、筒状の形態を有することからチューブとも称されるものであり、給気口41から真空容器内4Sに供給され上方に流れるガスG(キャリアガス、ケイ素原料ガス、炭素原料ガス等)を排気口42から排出可能に構成されている。この真空容器4は、所定の軸方向H(本実施形態では鉛直方向または略鉛直方向)に延伸する内部空間4Sを他の空間と仕切る円筒状の側壁43(本発明の「隔壁」に相当)と、側壁43の上端に連続する半球状の天井壁44とを一体に有し、内部空間4Sを下方にのみ開放させたものである。本実施形態では、給気口41及び排気口42を真空容器4の下端部近傍に形成している。   The vacuum container 4 is also called a tube because it has a cylindrical shape, and is supplied from the air supply port 41 to the inside 4S of the vacuum container and flows upward (carrier gas, silicon source gas, carbon source gas). Etc.) can be discharged from the exhaust port 42. This vacuum vessel 4 has a cylindrical side wall 43 (corresponding to the “partition wall” of the present invention) that partitions the internal space 4S extending in a predetermined axial direction H (vertical direction or substantially vertical direction in this embodiment) from other spaces. And a hemispherical ceiling wall 44 continuous with the upper end of the side wall 43, and the internal space 4S is opened only downward. In the present embodiment, the air supply port 41 and the exhaust port 42 are formed in the vicinity of the lower end portion of the vacuum vessel 4.

真空容器4の内部空間4Sは、天井壁44に囲まれた中空半球状の内部空間(半球状空間4Sb)と、側壁43に囲まれた中空円筒状の内部空間(円筒状空間4Sa)とに大別することができる。本実施形態の真空容器4は、さらに円筒状空間4Saを、サセプタ2及びボート3を収容している内周側空間と、真空容器4の周壁に沿って高さ方向に延びる外周側空間とに区分けし、これら内周側空間及び外周側空間を半球状空間4Sbを介して相互に連通させている。   The internal space 4S of the vacuum vessel 4 is divided into a hollow hemispherical internal space (hemispherical space 4Sb) surrounded by the ceiling wall 44 and a hollow cylindrical internal space (cylindrical space 4Sa) surrounded by the side wall 43. It can be divided roughly. In the vacuum vessel 4 of the present embodiment, the cylindrical space 4Sa is further divided into an inner circumferential space that accommodates the susceptor 2 and the boat 3 and an outer circumferential space that extends in the height direction along the circumferential wall of the vacuum vessel 4. The inner circumferential space and the outer circumferential space are separated from each other via the hemispherical space 4Sb.

本実施形態では、給気口41を内周側空間に直通する位置に形成し、排気口42を外周側空間に直通する位置に形成している。したがって、給気口41から円筒状空間4Saのうち内周側空間に供給されたガスGは、図1において矢印で示すように、円筒状空間4Saのうちサセプタ2及びウェハWが配置される内周側空間を通過した後に、円筒状空間4Saのうち外周側空間を通じて排気口42から排気される。すなわち、内周側空間は、ガスGが供給されるガス供給対象空間として機能し、外周側空間は、排気口42を通じて真空引きされる排気経路として機能する。また、給気口41には、真空容器内4SへのガスGの供給量を調整して、サセプタ2及びウェハWが配置される空間(円筒状空間4Sa、加熱室)を通過するガス流量を調整可能なガス供給制御弁(図示省略)を接続し、排気口42には真空容器内4Sの圧力を調整可能な圧力調整弁(図示省略)を接続し、これら各弁に接続した図示しない圧力調整装置により、各弁を制御して真空容器内4Sの圧力を所定値に調整するように構成している。真空容器4については、水冷2重構造のものを適用することも可能である。   In the present embodiment, the air supply port 41 is formed at a position that directly communicates with the inner space, and the exhaust port 42 is formed at a position that directly communicates with the outer space. Accordingly, the gas G supplied from the air supply port 41 to the inner circumferential side space of the cylindrical space 4Sa is an inner space in which the susceptor 2 and the wafer W are arranged in the cylindrical space 4Sa as shown by arrows in FIG. After passing through the circumferential space, the gas is exhausted from the exhaust port 42 through the outer circumferential space of the cylindrical space 4Sa. That is, the inner circumferential space functions as a gas supply target space to which the gas G is supplied, and the outer circumferential space functions as an exhaust path that is evacuated through the exhaust port 42. Further, the gas supply rate of the gas G passing through the space (cylindrical space 4Sa, heating chamber) in which the susceptor 2 and the wafer W are arranged is adjusted in the supply port 41 by adjusting the supply amount of the gas G to the vacuum vessel 4S. An adjustable gas supply control valve (not shown) is connected, and a pressure adjusting valve (not shown) capable of adjusting the pressure in the vacuum vessel 4S is connected to the exhaust port 42, and a pressure (not shown) connected to each of these valves. Each valve is controlled by the adjusting device to adjust the pressure in the vacuum vessel 4S to a predetermined value. As the vacuum container 4, a water-cooled double structure can be applied.

誘導加熱コイル5は、図1に示すように、真空容器4の側壁43の外側において、側壁43から所定距離離れた位置において真空容器4を取り巻くように巻回したものである。本実施形態では、側壁43の外側における誘導加熱コイル5の配置エリアAを軸方向Hに沿って第1コイル配置エリアA1と第2コイル配置エリアA2に区分けし、誘導加熱コイル5を、第1コイル配置エリアA1に配置した第1誘導加熱コイル51と、第2コイル配置エリアA2に配置した第2誘導加熱コイル52とに分割した構成を採用している。具体的には、円筒状空間4Saの長手方向上端部及び下端部を包囲する位置に設定した第1コイル配置エリアA1に第1誘導加熱コイル51を配置し、円筒状空間4Saの長手方向中央部を包囲する位置に設定した第2コイル配置エリアA2に第2誘導加熱コイル52を配置している。図1では、第1コイル配置エリアA1及び第2コイル配置エリアA2を、相互に異なるパターンを付して示すとともに、第1誘導加熱コイル51のうち巻回状態ではない部分、及び第2誘導加熱コイル52のうち巻回状態ではない部分をそれぞれ直線(相対的に太い線が第1誘導加熱コイル51を示す線であり、相対的に細い線が第2誘導加熱コイル52を示す線である)で模式的に示している。図1から把握できるように、第1コイル配置エリアA1及び第2コイル配置エリアA2は、共通の交流電源6から交流電力が供給される。   As shown in FIG. 1, the induction heating coil 5 is wound around the vacuum vessel 4 at a position away from the side wall 43 by a predetermined distance outside the side wall 43 of the vacuum vessel 4. In the present embodiment, the arrangement area A of the induction heating coil 5 outside the side wall 43 is divided along the axial direction H into a first coil arrangement area A1 and a second coil arrangement area A2, and the induction heating coil 5 is divided into the first The structure divided | segmented into the 1st induction heating coil 51 arrange | positioned in coil arrangement | positioning area A1 and the 2nd induction heating coil 52 arrange | positioned in 2nd coil arrangement | positioning area A2 is employ | adopted. Specifically, the first induction heating coil 51 is arranged in the first coil arrangement area A1 set at a position surrounding the upper and lower ends in the longitudinal direction of the cylindrical space 4Sa, and the longitudinal center of the cylindrical space 4Sa is arranged. The second induction heating coil 52 is arranged in the second coil arrangement area A2 set at a position surrounding the. In FIG. 1, the first coil arrangement area A1 and the second coil arrangement area A2 are shown with mutually different patterns, a portion of the first induction heating coil 51 that is not in a wound state, and the second induction heating. Each portion of the coil 52 that is not in a wound state is a straight line (a relatively thick line is a line indicating the first induction heating coil 51, and a relatively thin line is a line indicating the second induction heating coil 52). This is shown schematically. As can be understood from FIG. 1, the first coil arrangement area A <b> 1 and the second coil arrangement area A <b> 2 are supplied with AC power from a common AC power source 6.

なお、図1では、真空容器4の軸方向Hに延伸する誘導加熱コイル5の配置エリアAを、真空容器4の長手方向に複数(図示例は8つ)の配置エリア単位Aaに区分けしたものと捉えた場合に、円筒状空間4Saの長手方向中央部及びその近傍に該当する複数の配置エリア単位Aa(図示例では4つの配置エリア単位Aa)を第2コイル配置エリアA2に設定し、円筒状空間4Saの長手方向上端側に該当する複数の配置エリア単位Aa(図示例では2つの配置エリア単位Aa)と、円筒状空間4Saの長手方向下端側に該当する複数の配置エリア単位Aa(図示例では2つの配置エリア単位Aa)を第1コイル配置エリアA1に設定したケースを模式的に示している。   In FIG. 1, the arrangement area A of the induction heating coil 5 extending in the axial direction H of the vacuum vessel 4 is divided into a plurality of (eight in the illustrated example) arrangement area units Aa in the longitudinal direction of the vacuum vessel 4. In this case, a plurality of arrangement area units Aa (four arrangement area units Aa in the illustrated example) corresponding to the central portion in the longitudinal direction of the cylindrical space 4Sa and its vicinity are set as the second coil arrangement area A2, and the cylinder A plurality of arrangement area units Aa (two arrangement area units Aa in the illustrated example) corresponding to the upper end side in the longitudinal direction of the cylindrical space 4Sa and a plurality of arrangement area units Aa corresponding to the lower end side in the longitudinal direction of the cylindrical space 4Sa (see FIG. In the illustrated example, a case where two arrangement area units Aa) are set as the first coil arrangement area A1 is schematically shown.

また、第1誘導加熱コイル51及び第2誘導加熱コイル52は、それぞれ所定回数巻回して所定の筒状に形成した複数のコイル単位の集合体として捉えることができる。この場合、1つの配置エリア単位Aaに1つのコイル単位を配置するレイアウトを採用すれば、各コイル単位の配置箇所を容易に特定することができる。   Moreover, the 1st induction heating coil 51 and the 2nd induction heating coil 52 can be grasped | ascertained as the aggregate | assembly of the several coil unit each wound predetermined times and formed in the predetermined cylinder shape. In this case, if a layout in which one coil unit is arranged in one arrangement area unit Aa is adopted, the arrangement location of each coil unit can be easily specified.

また、本実施形態に係る誘導加熱装置1では、各誘導加熱コイル51,52同士の磁気的な結合が弱くなるような適宜の処理を要する。   Moreover, in the induction heating apparatus 1 which concerns on this embodiment, the appropriate process that a magnetic coupling of each induction heating coil 51 and 52 weakens is required.

ソレノイド状に巻回された第1誘導加熱コイル51及び第2誘導加熱コイル52には、任意の周波数(駆動周波数)の交流電力を出力可能な共通の誘導加熱電源6(高周波電源)が接続され、誘導加熱電源6から第1誘導加熱コイル51,第2誘導加熱コイル52に対して交流電力を供給することで、第1誘導加熱コイル51,第2誘導加熱コイル52の周囲に交番磁場を発生させ、この交番磁場を浸透対象物であるサセプタ2に浸透させて誘導加熱する。なお、本実施形態の誘導加熱装置1では、誘導加熱コイル5で加熱されたサセプタ2から放出される熱が真空容器4の外部へ漏れないように遮断する機能を発揮し得る断熱材(図示省略)を適宜の箇所に配置することもできる。断熱材としては、導電性及び耐熱性を有し且つ発熱体であるサセプタ2よりも十分に大きい体積固有抵抗率を有する素材から形成されたものを挙げることができる。なお、断熱材とサセプタ2は適宜の手段によって電気的に絶縁状態に設定すればよい。   The first induction heating coil 51 and the second induction heating coil 52 wound in a solenoid shape are connected to a common induction heating power source 6 (high frequency power source) that can output AC power of an arbitrary frequency (driving frequency). An alternating magnetic field is generated around the first induction heating coil 51 and the second induction heating coil 52 by supplying AC power from the induction heating power source 6 to the first induction heating coil 51 and the second induction heating coil 52. Then, this alternating magnetic field is caused to penetrate the susceptor 2 that is a permeation target, and induction heating is performed. In addition, in the induction heating apparatus 1 of this embodiment, the heat insulating material (illustration omitted) which can exhibit the function which interrupts | blocks so that the heat | fever emitted from the susceptor 2 heated with the induction heating coil 5 may not leak outside the vacuum vessel 4 is shown. ) Can be arranged at an appropriate place. Examples of the heat insulating material include those formed of a material having conductivity and heat resistance and having a volume specific resistivity sufficiently higher than that of the susceptor 2 that is a heating element. The heat insulating material and the susceptor 2 may be set in an electrically insulated state by appropriate means.

誘導加熱電源6は、第1誘導加熱コイル51及び第2誘導加熱コイル52に供給する交流電力の周波数(駆動周波数)を適宜変更することが可能である。本実施形態に係る誘導加熱装置1は、図3に示すように、電流型インバータ61と、後述する並列共振直列接続回路62とを用いて誘導加熱電源6を構成している。   The induction heating power source 6 can appropriately change the frequency (drive frequency) of AC power supplied to the first induction heating coil 51 and the second induction heating coil 52. As shown in FIG. 3, the induction heating apparatus 1 according to the present embodiment forms an induction heating power source 6 using a current type inverter 61 and a parallel resonance series connection circuit 62 described later.

電流型インバータ61は、交流電源から出力される三相交流電力を直流電力に変換する順変換回路63と、順変換回路63からの出力電圧を交流電力に変換する逆変換回路64とを用いて構成したものである。   The current type inverter 61 uses a forward conversion circuit 63 that converts three-phase AC power output from an AC power source into DC power, and an inverse conversion circuit 64 that converts an output voltage from the forward conversion circuit 63 into AC power. It is composed.

本実施形態では、順変換回路63を、複数の整流素子631(例えばサイリスタ等)と、コイル632(インダクタンス)とを用いて構成し、整流素子631で交流電力から変換した直流電力をコイル632(インダクタンス)でフィルタリングすることによって一定の直流にするように設定している。なお、順変換回路63のコイル632は、単なるコイルで構成されるものであってもよいし、電気回路のインダクタンス素子となる静止巻線機器、すなわちリアクトルと称されるものであってもよい。   In the present embodiment, the forward conversion circuit 63 is configured by using a plurality of rectifying elements 631 (for example, thyristors) and a coil 632 (inductance), and the DC power converted from AC power by the rectifying element 631 is the coil 632 ( It is set to be a constant direct current by filtering by (inductance). Note that the coil 632 of the forward conversion circuit 63 may be a simple coil, or may be a static winding device serving as an inductance element of an electric circuit, that is, a so-called reactor.

逆変換回路64は、スイッチング素子であるトランジスタ641を複数用いて構成し、これらトランジスタ641により順変換回路63から出力される直流電力を交流電力に変換するものであり、インバータ回路とも称されるものである。本実施形態の逆変換回路64には、複数のトランジスタ641(スイッチング素子)を直列に接続した直列接続回路部を複数並列に接続した回路を採用している。なお、スイッチング素子として用いるトランジスタは、バイポーラトランジスタ、電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)等の自己消弧型、または、自己消弧型でないサイリスタ等の何れのスイッチング素子であってもよい。   The inverse conversion circuit 64 is configured by using a plurality of transistors 641 which are switching elements, and converts DC power output from the forward conversion circuit 63 into AC power by the transistors 641, and is also referred to as an inverter circuit. It is. The inverse conversion circuit 64 of the present embodiment employs a circuit in which a plurality of series connection circuit units in which a plurality of transistors 641 (switching elements) are connected in series are connected in parallel. The transistor used as the switching element is any switching element such as a self-extinguishing type such as a bipolar transistor, a field effect transistor (FET), an insulated gate bipolar transistor (IGBT), or a thyristor that is not a self-extinguishing type. Also good.

逆変換回路64の出力側に、並列共振直列接続回路62を接続している。並列共振直列接続回路62は、図3に示すように、第1共振コンデンサC1及び第1誘導加熱コイル51を並列に接続した第1並列共振回路65と、第2共振コンデンサC2及び第2誘導加熱コイル52を並列に接続した第2並列共振回路66を相互に直列接続した回路である。   A parallel resonant series connection circuit 62 is connected to the output side of the inverse conversion circuit 64. As shown in FIG. 3, the parallel resonant series connection circuit 62 includes a first parallel resonant circuit 65 in which a first resonant capacitor C1 and a first induction heating coil 51 are connected in parallel, a second resonant capacitor C2, and a second induction heating. This is a circuit in which second parallel resonant circuits 66 having coils 52 connected in parallel are connected in series.

本実施形態では、このように、負荷である第1誘導加熱コイル51(図3に示すインダクタンスL1,抵抗R1が第1誘導加熱コイル51に相当する)と、第1誘導加熱コイル51に並列接続した第1共振コンデンサC1とによって第1並列共振回路65を構成するとともに、負荷である第2誘導加熱コイル52(同図に示すインダクタンスL2,抵抗R2が第2誘導加熱コイル52に相当する)と、第2誘導加熱コイル52に並列接続した第2共振コンデンサC2とによって第2並列共振回路66を構成している。各共振コンデンサ(第1共振コンデンサC1,第2共振コンデンサC2)は、インピーダンスを整合させる整合部としての機能を担うものである。   In the present embodiment, the first induction heating coil 51 (inductance L1, resistance R1 shown in FIG. 3 corresponds to the first induction heating coil 51) and the first induction heating coil 51 are connected in parallel as described above. A first parallel resonance circuit 65 is constituted by the first resonance capacitor C1 and a second induction heating coil 52 (inductance L2 and resistance R2 shown in the figure corresponds to the second induction heating coil 52) as a load. A second parallel resonance circuit 66 is constituted by the second resonance capacitor C2 connected in parallel to the second induction heating coil 52. Each resonance capacitor (the first resonance capacitor C1 and the second resonance capacitor C2) functions as a matching unit for matching impedance.

本実施形態の誘導加熱電源6は、図3に示すように、各並列共振回路(第1並列共振回路65,第2並列共振回路66)を互いに直列接続した並列共振直列接続回路62に、逆変換回路64の出力側を接続し、逆変換回路64で直流電力から生成した交流電力を並列共振直列接続回路62に供給している。すなわち、本実施形態の誘導加熱電源6における各並列共振回路(第1並列共振回路65,第2並列共振回路66)は、合成した上で、電流型インバータ61の負荷となり、電流型並列共振回路を構成する。   As shown in FIG. 3, the induction heating power source 6 of the present embodiment is reversely connected to a parallel resonance series connection circuit 62 in which the parallel resonance circuits (the first parallel resonance circuit 65 and the second parallel resonance circuit 66) are connected in series with each other. The output side of the conversion circuit 64 is connected, and AC power generated from DC power by the inverse conversion circuit 64 is supplied to the parallel resonant series connection circuit 62. That is, each parallel resonance circuit (first parallel resonance circuit 65, second parallel resonance circuit 66) in the induction heating power source 6 of the present embodiment is combined and then becomes a load of the current type inverter 61, and becomes a current type parallel resonance circuit. Configure.

そして、本実施形態の誘導加熱装置1では、相互に直列接続した第1並列共振回路65及び第2並列共振回路66の共振周波数を相互に異ならせた値(例えば1kHz程度の差)に設定し、各並列共振回路(第1並列共振回路65,第2並列共振回路66)のインピーダンスがある程度重なるように電流型並列共振方式の誘導加熱電源6で調整することにより、駆動周波数(動作周波数)を変数として、第1誘導加熱コイル51と第2誘導加熱コイル52の電流比(図3に示す「I1」と「I2」の相対比)を制御可能に構成している。ここで、図4に、周波数の変化による各誘導加熱コイル51,52の電流比の変化を模式的に示す。同図より、駆動周波数を変更することによって、誘導加熱コイル51,52同士の電流比が変化することが理解できる。本実施形態では、例えば、力率を所定の範囲内で変化させて、第1誘導加熱コイル51の電流が、第2誘導加熱コイル52の電流よりも大きくなる条件を満たすように、第1誘導加熱コイル51及び第2誘導加熱コイル52の電流比を制御するように構成している。   In the induction heating apparatus 1 of the present embodiment, the resonance frequencies of the first parallel resonance circuit 65 and the second parallel resonance circuit 66 connected in series with each other are set to values that differ from each other (for example, a difference of about 1 kHz). The drive frequency (operating frequency) is adjusted by adjusting the current-type parallel resonance type induction heating power supply 6 so that the impedances of the parallel resonance circuits (the first parallel resonance circuit 65 and the second parallel resonance circuit 66) overlap each other to some extent. As a variable, the current ratio between the first induction heating coil 51 and the second induction heating coil 52 (relative ratio between “I1” and “I2” shown in FIG. 3) is controllable. Here, FIG. 4 schematically shows changes in the current ratio of the induction heating coils 51 and 52 due to changes in frequency. From this figure, it can be understood that the current ratio between the induction heating coils 51 and 52 changes by changing the drive frequency. In the present embodiment, for example, the first induction is performed such that the power factor is changed within a predetermined range so that the current of the first induction heating coil 51 is larger than the current of the second induction heating coil 52. The current ratio between the heating coil 51 and the second induction heating coil 52 is controlled.

本実施形態では、電磁気的に互いに結合しない2つの誘導加熱コイル5(第1誘導加熱コイル51,第2誘導加熱コイル52)に対して、例えば20kHz程度の共振周波数で動作させるため、容量が1μF程度の第1共振コンデンサC1と、容量が4μF程度である第2共振コンデンサC2をそれぞれ第1誘導加熱コイル51,第2誘導加熱コイル52に並列に接続して、定電流型インバータ61で動作させる。   In this embodiment, since the two induction heating coils 5 (the first induction heating coil 51 and the second induction heating coil 52) that are not electromagnetically coupled to each other are operated at a resonance frequency of, for example, about 20 kHz, the capacitance is 1 μF. A first resonance capacitor C1 having a capacitance of about 4 μF and a second resonance capacitor C2 having a capacitance of about 4 μF are connected in parallel to the first induction heating coil 51 and the second induction heating coil 52, respectively, and are operated by the constant current inverter 61. .

次に、このような構成をなす誘導加熱電源6により誘導加熱コイル5(第1誘導加熱コイル51,第2誘導加熱コイル52)に交流電力を供給する手順及び作用について説明する。   Next, the procedure and operation for supplying AC power to the induction heating coil 5 (the first induction heating coil 51 and the second induction heating coil 52) by the induction heating power source 6 having such a configuration will be described.

本実施形態に係る誘導加熱電源6は、交流電源から順変換回路63に交流電力が出力されると、順変換回路63において、複数の整流素子631で交流電力を直流電力に変換し、続いてコイル632(インダクタンス)でフィルタリングすることによって一定の直流とする。次いで、本実施形態の誘導加熱電源6は、順変換回路63から平滑された直流電力を逆変換回路64に出力し、逆変換回路64においてトランジスタ641(スイッチング素子641)をオン・オフ制御することにより直流電力を交流電力に変換する。具体的に、このような直流/交流変換は、整合部を構成する共振コンデンサ(第1共振コンデンサC1,第2共振コンデンサC2)の電圧がゼロとなる直前に、その時点で導通中以外のスイッチング素子641をON(点弧)することにより、全導通状態となり、共振コンデンサ(第1共振コンデンサC1,第2共振コンデンサC2)の電圧を短絡する経路が生じて、点弧時刻以前に導通していたスイッチング素子641は、電流がゼロに向かい、点弧したスイッチング素子641は、一定電流値まで増大して、電流経路が変化することになる。この電流反転作用(転流)は、共振コンデンサ(第1共振コンデンサC1,第2共振コンデンサC2)の電圧、つまりインバータ出力電圧を検出することによって、各並列共振回路(第1並列共振回路65,第2並列共振回路66)の共振周波数で動作することになる。この特性により、自己消弧型でないサイリスタでもインバータ動作が可能になり、大電流電源として用いることができる。   In the induction heating power source 6 according to this embodiment, when AC power is output from the AC power source to the forward conversion circuit 63, the forward conversion circuit 63 converts the AC power into DC power by the plurality of rectifier elements 631, and then A constant direct current is obtained by filtering with the coil 632 (inductance). Next, the induction heating power source 6 of the present embodiment outputs the DC power smoothed from the forward conversion circuit 63 to the inverse conversion circuit 64, and the inverse conversion circuit 64 performs on / off control of the transistor 641 (switching element 641). To convert DC power into AC power. Specifically, such DC / AC conversion is performed immediately before the voltage of the resonance capacitors (the first resonance capacitor C1 and the second resonance capacitor C2) constituting the matching unit becomes zero, and switching other than being conducted at that time. When the element 641 is turned on (ignited), all the elements are in a conducting state, and a path for short-circuiting the voltages of the resonance capacitors (the first resonance capacitor C1 and the second resonance capacitor C2) is generated. The switching element 641 has a current of zero, and the ignited switching element 641 increases to a constant current value, and the current path changes. This current reversal action (commutation) is performed by detecting the voltage of the resonance capacitors (first resonance capacitor C1, second resonance capacitor C2), that is, the inverter output voltage, thereby causing each parallel resonance circuit (first parallel resonance circuit 65, It will operate at the resonant frequency of the second parallel resonant circuit 66). Due to this characteristic, even a thyristor that is not self-extinguishing can be operated as an inverter and can be used as a large-current power source.

このようにして、本実施形態の誘導加熱電源6は、電流型インバータ61において、逆変換回路64のトランジスタ641(スイッチング素子641)をオン・オフ制御することにより直流電流を矩形状(矩形波)の交流電流に変換する。なお、電流型インバータ61の出力電圧は、正弦波状の波形であり、電流型インバータ61の出力電流と同位相程度で動作している。   In this way, the induction heating power source 6 of the present embodiment is configured such that the direct current is rectangular (rectangular wave) by controlling the transistor 641 (switching element 641) of the inverse conversion circuit 64 in the current type inverter 61. Convert to AC current. The output voltage of the current type inverter 61 has a sinusoidal waveform and operates at the same phase as the output current of the current type inverter 61.

引き続いて、本実施形態の誘導加熱電源6では、逆変換回路64で生成した交流電流(図3に示す「I」)が、第1並列共振回路65及び第2並列共振回路66を相互に直列接続した並列共振直列接続回路62に入力され、共振することにより、各並列共振回路(第1並列共振回路65,第2並列共振回路66)内ではほぼ正弦波状の交流電流となる。   Subsequently, in the induction heating power supply 6 of the present embodiment, the alternating current (“I” shown in FIG. 3) generated by the inverse conversion circuit 64 causes the first parallel resonance circuit 65 and the second parallel resonance circuit 66 to be in series with each other. By being input to the connected parallel resonance series connection circuit 62 and resonating, an alternating current having a substantially sinusoidal shape is generated in each parallel resonance circuit (the first parallel resonance circuit 65 and the second parallel resonance circuit 66).

以上の手順を経て、誘導加熱電源6から各誘導加熱コイル51,52に交流電力を供給すると、真空容器4内に配置されているサセプタ2を各誘導加熱コイル51,52によって誘導加熱することができる。   Through the above procedure, when AC power is supplied from the induction heating power source 6 to each induction heating coil 51, 52, the susceptor 2 disposed in the vacuum vessel 4 can be induction heated by each induction heating coil 51, 52. it can.

また、図示しないが、本実施形態の誘導加熱装置1は、真空容器4の内部温度を計測する1又は複数の温度計で計測した温度等に基づいて、第1誘導加熱コイル51及び第2誘導加熱コイル52の出力及び電流比を制御するように構成することもできる。   Although not shown, the induction heating apparatus 1 of the present embodiment is configured such that the first induction heating coil 51 and the second induction are based on the temperature measured by one or more thermometers that measure the internal temperature of the vacuum vessel 4. It can also be configured to control the output and current ratio of the heating coil 52.

以上の構成を有する本実施形態の誘導加熱装置1は、真空容器4の内部空間4Sを反応室として機能させ、反応室全体を加熱するホットウォール型のCVD(Chemical Vapor Deposition・化学気相成長)、エピタキシャル装置、アニール等の熱処理装置である。   The induction heating apparatus 1 of the present embodiment having the above-described configuration is a hot wall type CVD (Chemical Vapor Deposition) for heating the entire reaction chamber by causing the internal space 4S of the vacuum vessel 4 to function as a reaction chamber. , An epitaxial apparatus, a heat treatment apparatus such as annealing.

本実施形態に係る誘導加熱装置1は、ウェハWを載置したサセプタ2をボート3によって多段状に支持している状態で、誘導加熱電源6から各誘導加熱コイル51,52に交流電力を供給することによって、誘導加熱コイル5の周囲に交番磁場が生成され、この交番磁場は、黒鉛からなるサセプタ2に浸透し、サセプタ2を誘導加熱する。なお、真空容器内4Sであって且つサセプタ2よりも真空容器4の周壁側に近い位置に断熱材を配置した構成であれば、誘導加熱コイル5(第1誘導加熱コイル51,第2誘導加熱コイル52)の周囲に生成される交番磁場は、断熱材を通ってサセプタ2に浸透することになる。   The induction heating apparatus 1 according to the present embodiment supplies AC power from the induction heating power source 6 to the induction heating coils 51 and 52 in a state where the susceptor 2 on which the wafer W is mounted is supported in a multistage manner by the boat 3. By doing so, an alternating magnetic field is generated around the induction heating coil 5, and this alternating magnetic field penetrates into the susceptor 2 made of graphite and induction-heats the susceptor 2. Note that the induction heating coil 5 (the first induction heating coil 51, the second induction heating, etc.) has a configuration in which the heat insulating material is disposed in the vacuum vessel 4S and closer to the peripheral wall side of the vacuum vessel 4 than the susceptor 2. The alternating magnetic field generated around the coil 52) penetrates the susceptor 2 through the heat insulating material.

このような本実施形態に係る誘導加熱装置1は、誘導加熱以外の加熱方式を採用した構成と比較して、誘導加熱方式のメリットである所定の処理温度まで昇温させる処理の短時間化及び高温化を図ることが可能であり、処理工程時間全体の短縮化にも貢献する。特に、複数のサセプタ2を多段状に真空容器内4Sに配置している構成を採用した本実施形態に係る誘導加熱装置1によれば、複数のウェハWに対する加工処理を同時に実施するバッチ処理が可能になり、処理効率をより一層向上させることができる。   The induction heating apparatus 1 according to the present embodiment has a shorter processing time for raising the temperature to a predetermined processing temperature, which is a merit of the induction heating method, compared to a configuration employing a heating method other than induction heating. It is possible to increase the temperature and contribute to shortening the entire processing time. In particular, according to the induction heating apparatus 1 according to this embodiment that employs a configuration in which a plurality of susceptors 2 are arranged in a multistage manner in the vacuum vessel 4S, batch processing that simultaneously performs processing on a plurality of wafers W is performed. Therefore, the processing efficiency can be further improved.

また、例えば1つの誘導加熱コイル5を真空容器4の外側全域に巻回して配置した構成(例えば図7参照)であれば、誘導加熱コイル5に交流電力を供給した加熱状態において、誘導加熱コイル5の電力分布が、円筒状空間4Saの長手方向上端部及び下端部よりも円筒状空間4Saの長手方向中心部の方が高くなる傾向に着目し、上述の通り、本実施形態に係る誘導加熱装置1では、第1誘導加熱コイル51の配置エリアを、真空容器4の外側において円筒状空間4Saの長手方向上端部及び下端部を包囲する第1コイル配置エリアA1に設定し、第2誘導加熱コイル52の配置エリアを、真空容器4の外側において円筒状空間4Saの長手方向中央部を包囲する第2コイル配置エリアA2に設定している。   Further, for example, in the case of a configuration in which one induction heating coil 5 is wound around the entire outside of the vacuum vessel 4 (see, for example, FIG. 7), in the heating state in which AC power is supplied to the induction heating coil 5, the induction heating coil Focusing on the tendency that the power distribution of 5 is higher in the longitudinal center of the cylindrical space 4Sa than in the longitudinal upper end and the lower end of the cylindrical space 4Sa, as described above, the induction heating according to the present embodiment In the apparatus 1, the arrangement area of the first induction heating coil 51 is set to the first coil arrangement area A1 that surrounds the upper and lower ends in the longitudinal direction of the cylindrical space 4Sa outside the vacuum vessel 4, and the second induction heating is performed. The arrangement area of the coil 52 is set to a second coil arrangement area A2 that surrounds the central portion in the longitudinal direction of the cylindrical space 4Sa outside the vacuum vessel 4.

そして、本実施形態に係る誘導加熱装置1では、第1誘導加熱コイル51に流れるコイル電流が、第2誘導加熱コイル52に流れるコイル電流よりも大きくなるように、誘導加熱電源6から出力する交流電力の駆動周波数を変数として各誘導加熱コイル51,52の電流比を制御することにより、誘導加熱コイル5全体の電力分布を均一または略均一にすることが可能である。このように、複数の誘導加熱コイル51,52の電流比を高周波電源である1つの誘導加熱電源6によって制御することによって、真空容器4の長手方向に並ぶ複数の誘導加熱コイル51,52毎(さらにいえば上述のコイル単位毎)に電力分布がばらつく事態を防止・抑制することができ、内部空間4Sにおいて多段状に配置された各サセプタ2を均一に誘導加熱することができる。その結果、本実施形態に係る誘導加熱装置1は、各サセプタ2に載置したウェハWをそれぞれ所定の目標温度(エピタキシャル成長温度、例えば1800℃)まで均一に加熱することができる。なお、所定の処理に到達した時点で、その温度を保持するように各誘導加熱コイル51,52の出力(駆動周波数によって調整可能な各誘導加熱コイル51,52の電流比に応じた各誘導加熱コイル51,52の出力)を制御し、高温の平衡状態を維持する。また、圧力調整装置により、真空容器内4Sの圧力値が所定の値となるように、ガス供給制御弁及び圧力調整弁を制御する。   And in the induction heating apparatus 1 which concerns on this embodiment, the alternating current output from the induction heating power supply 6 so that the coil current which flows into the 1st induction heating coil 51 becomes larger than the coil current which flows into the 2nd induction heating coil 52. By controlling the current ratio between the induction heating coils 51 and 52 using the power drive frequency as a variable, the power distribution of the induction heating coil 5 as a whole can be made uniform or substantially uniform. In this way, by controlling the current ratio of the plurality of induction heating coils 51 and 52 by one induction heating power source 6 which is a high frequency power source, the plurality of induction heating coils 51 and 52 arranged in the longitudinal direction of the vacuum vessel 4 ( Furthermore, it is possible to prevent or suppress the situation where the power distribution varies for each coil unit described above, and it is possible to uniformly inductively heat the susceptors 2 arranged in multiple stages in the internal space 4S. As a result, the induction heating apparatus 1 according to the present embodiment can uniformly heat the wafer W placed on each susceptor 2 to a predetermined target temperature (epitaxial growth temperature, for example, 1800 ° C.). In addition, when it reaches | attains a predetermined process, each induction heating coil 51 and 52 according to the current ratio of each induction heating coil 51 and 52 which can be adjusted with a drive frequency so that the temperature may be hold | maintained so that the temperature may be maintained. The outputs of the coils 51 and 52 are controlled to maintain a high temperature equilibrium state. Further, the gas supply control valve and the pressure adjusting valve are controlled by the pressure adjusting device so that the pressure value in the vacuum vessel 4S becomes a predetermined value.

本実施形態に係る誘導加熱装置1は、以上の処理を経て、高温(1800℃程度)の平衡状態を維持し、各サセプタ2に載置しているウェハWの表面に均一な膜厚の薄膜、本実施形態では単結晶SiC薄膜(SiCエピ膜とも称されるものであり、以下では、「SiC薄膜」と称す)を形成することができる。そして、給気口41から真空容器内4S(ガス供給対象空間、内周側空間)に供給する原料ガスGの供給量に比例してSiC薄膜の成長速度は増加することから、ガスGを効率良く加熱して十分なガスGの分解と供給を行うことでSiC薄膜の高速成長を得ることができる。つまり、本実施形態に係る誘導加熱装置1は、ウェハW上にSiC薄膜を形成するエピタキシャル成長を実現するCVDエピタキシャル装置として機能し、ウェハW上にエピタキシャル成長によってSiC薄膜を堆積させたエピタキシャルウェハWを生産することができる。   The induction heating apparatus 1 according to the present embodiment maintains a high temperature (about 1800 ° C.) equilibrium state through the above processing, and a thin film having a uniform thickness on the surface of the wafer W placed on each susceptor 2. In this embodiment, a single crystal SiC thin film (also referred to as a SiC epi film, hereinafter referred to as “SiC thin film”) can be formed. And since the growth rate of the SiC thin film increases in proportion to the supply amount of the raw material gas G supplied from the air supply port 41 to the inside 4S (gas supply target space, inner space), the gas G is made efficient. High-temperature growth of the SiC thin film can be obtained by sufficiently heating and sufficiently decomposing and supplying the gas G. That is, the induction heating apparatus 1 according to the present embodiment functions as a CVD epitaxial apparatus that realizes epitaxial growth for forming a SiC thin film on the wafer W, and produces an epitaxial wafer W in which a SiC thin film is deposited on the wafer W by epitaxial growth. can do.

以上に述べたように、本実施形態に係る誘導加熱装置1は、2つの誘導加熱コイル51,52を、真空容器4の外側において真空容器4の軸方向H(長手方向)に沿って区分けした第1コイル配置エリアA1,第2コイル配置エリアA2に個別に配置するとともに、誘導加熱電源6として、各コイル配置エリアA1,A2に配置した誘導加熱コイル51,52毎にそれぞれ共振コンデンサC1,C2を並列に接続した2つの並列共振回路(第1並列共振回路65,第2並列共振回路66)を相互に直列接続した並列共振直列接続回路62に対して、共通の電流型インバータ61から電力を供給する高周波電源を適用するとともに、各並列共振回路65,66の共振周波数を互いに異なる値に設定し、駆動周波数を変化させることによって並列共振直列接続回路62における各誘導加熱コイル51,52の電流比を変更可能に構成しているため、電流型並列共振方式を採用した1つの電源6だけで複数の誘導加熱コイル51,52を誘導加熱することが可能であり、さらに、真空容器4の軸方向Hに沿って配置されて電力分布の均一化を図った誘導加熱コイル5全体によって、被加熱物が配置される空間4Sの温度分布の平準化も図ることができ、真空容器4の内部空間4Sに軸方向Hに沿って配置されている被加熱物である複数のサセプタ2を均一加熱することができる。   As described above, the induction heating apparatus 1 according to the present embodiment divides the two induction heating coils 51 and 52 along the axial direction H (longitudinal direction) of the vacuum vessel 4 outside the vacuum vessel 4. Respectively arranged in the first coil arrangement area A1 and the second coil arrangement area A2, and as the induction heating power source 6, resonance capacitors C1 and C2 are respectively provided for the induction heating coils 51 and 52 arranged in the respective coil arrangement areas A1 and A2. Is supplied from a common current type inverter 61 to a parallel resonant series connection circuit 62 in which two parallel resonant circuits (first parallel resonant circuit 65 and second parallel resonant circuit 66) connected in parallel are connected in series. While applying the high frequency power supply to be supplied, the resonance frequencies of the parallel resonance circuits 65 and 66 are set to different values from each other, and the drive frequency is changed in parallel. Since the current ratio of the induction heating coils 51 and 52 in the oscillation series connection circuit 62 is configured to be changeable, the induction heating coils 51 and 52 are inducted by only one power source 6 adopting the current type parallel resonance method. Further, the temperature distribution of the space 4S in which the object to be heated is arranged by the entire induction heating coil 5 arranged along the axial direction H of the vacuum vessel 4 to make the power distribution uniform. Can be achieved, and the plurality of susceptors 2 that are the objects to be heated disposed in the internal space 4S of the vacuum vessel 4 along the axial direction H can be uniformly heated.

このような構成を適用した本実施形態に係る誘導加熱装置1は、複数の誘導加熱コイル毎に専用の電源を設け、各電源を個別に制御してコイル電力分布の均一化及び真空容器内の温度分布の平準化を図る構成と比較して、電源単位の煩雑な制御が要求されず、高コスト化を回避できるメリットがある。   The induction heating apparatus 1 according to the present embodiment to which such a configuration is applied is provided with a dedicated power source for each of the plurality of induction heating coils, and each power source is individually controlled to make the coil power distribution uniform and within the vacuum vessel. Compared with a configuration for leveling the temperature distribution, complicated control of the power supply unit is not required, and there is an advantage that an increase in cost can be avoided.

また、電流型並列共振方式の誘導加熱電源6を1つだけ用いて複数の誘導加熱コイル51,52の電力制御を行う本実施形態に係る誘導加熱装置1は、並列に配置された複数の電圧型直列共振回路を同一の電圧型インバータに接続した構成と比較して、インバータ回路を構成するスイッチング素子641が自己消弧型の素子に制限されず、自己消弧型でない素子を用いることが可能であり、スイッチング損失も低減することができ、複雑な回路構成の設計を強いられることなく1000kWを越える大容量にも対応することができるメリットがある。   In addition, the induction heating apparatus 1 according to the present embodiment that performs power control of the plurality of induction heating coils 51 and 52 using only one induction heating power source 6 of a current type parallel resonance method includes a plurality of voltages arranged in parallel. Compared with a configuration in which a type series resonance circuit is connected to the same voltage type inverter, the switching element 641 constituting the inverter circuit is not limited to a self-extinguishing type element, and a non-self-extinguishing type element can be used. Thus, switching loss can be reduced, and there is an advantage that it is possible to cope with a large capacity exceeding 1000 kW without being forced to design a complicated circuit configuration.

このようなメリットを有する本実施形態の誘導加熱装置1は、一回の誘導加熱処理によって、複数のサセプタ2にそれぞれ載置しているウェハW上に厚み及び不純物濃度を精密に制御したSiC薄膜を堆積させた高品質なエピタキシャルウェハを安定して供給することができ、SiC半導体デバイスの実用化に多いに貢献する。   The induction heating apparatus 1 of this embodiment having such merits is a SiC thin film in which the thickness and impurity concentration are precisely controlled on the wafers W respectively placed on the plurality of susceptors 2 by one induction heating process. It is possible to stably supply a high-quality epitaxial wafer having deposited thereon, which contributes to the practical application of SiC semiconductor devices.

また、本実施形態に係る誘導加熱装置1では、面方向に異方性を有するカーボン(黒鉛材)で形成したサセプタ2を適用しているため、高周波を用いた誘導加熱処理によってサセプタ2の外周部(エッジ近傍領域2A)を加熱すると、面方向に熱伝導率及び電気伝導率が高いサセプタ2の特性に基づいて、中心部分を含むサセプタ2全体を均一に加熱することができ、サセプタ2に載置したウェハW内の温度分布の均一化も図ることが可能である。   In addition, in the induction heating device 1 according to the present embodiment, the susceptor 2 formed of carbon (graphite material) having anisotropy in the plane direction is applied, so that the outer periphery of the susceptor 2 is obtained by induction heating processing using high frequency. When the portion (edge vicinity region 2A) is heated, the entire susceptor 2 including the central portion can be heated uniformly based on the characteristics of the susceptor 2 having a high thermal conductivity and electrical conductivity in the plane direction. It is also possible to make the temperature distribution in the mounted wafer W uniform.

特に、本実施形態の誘導加熱装置1は、サセプタ2の直径をウェハWの直径よりも所定寸法大きく設定し(具体的にはサセプタ2の直径をウェハWの直径よりも浸透深さδの1.5倍乃至2.0倍の寸法に設定し)、サセプタ2のうち、交流磁場が多く浸透する領域であるエッジ近傍領域2AにウェハWを載置する構成ではなく、交流磁場による渦電流によってサセプタ2上のウェハWが影響を受けない領域又は受け難い領域、また交流磁場による渦電流が極小となる領域にウェハWを載置する構成を採用しているため、ウェハWに多くの磁束を通す事態を回避して、渦電流によるウェハWへの影響が出ない、または出にくい状況下でサセプタ2全体を均一に加熱することができる。その結果、ウェハWの破壊や不良品化を回避することができる。   In particular, in the induction heating apparatus 1 of the present embodiment, the diameter of the susceptor 2 is set larger than the diameter of the wafer W by a predetermined dimension (specifically, the diameter of the susceptor 2 is set to a penetration depth δ of 1 than that of the wafer W). The size is set to 5 times to 2.0 times), and the susceptor 2 is not configured to place the wafer W in the edge vicinity region 2A, which is a region where the alternating magnetic field penetrates much, but by an eddy current due to the alternating magnetic field. Since the wafer W on the susceptor 2 is not affected or difficult to be affected, and the wafer W is placed in a region where the eddy current due to the alternating magnetic field is minimized, a large amount of magnetic flux is applied to the wafer W. By avoiding the situation of passing through, the entire susceptor 2 can be uniformly heated in a situation where the eddy current does not affect or is difficult to affect the wafer W. As a result, the wafer W can be prevented from being broken or defective.

なお、本発明は上述した実施形態に限定されるものではない。例えば、上述の実施形態では、円筒状空間4Saの長手方向上端部及び下端部を包囲する位置に設定した第1コイル配置エリアA1に第1誘導加熱コイル51を配置し、円筒状空間4Saの長手方向中央部を包囲する位置に設定した第2コイル配置エリアA2に第2誘導加熱コイル52を配置した構成を例示したが、各誘導加熱コイルの配置エリアはこれに限定されず、諸条件を考慮して、各誘導加熱コイルの配置エリアを設定することができる。   In addition, this invention is not limited to embodiment mentioned above. For example, in the above-described embodiment, the first induction heating coil 51 is arranged in the first coil arrangement area A1 set at a position surrounding the upper and lower ends in the longitudinal direction of the cylindrical space 4Sa, and the longitudinal length of the cylindrical space 4Sa is set. The configuration in which the second induction heating coil 52 is arranged in the second coil arrangement area A2 set at a position surrounding the central portion in the direction is illustrated, but the arrangement area of each induction heating coil is not limited to this, and various conditions are considered. And the arrangement | positioning area of each induction heating coil can be set.

一例として、真空容器内4Sにおける抜熱に着目すると、給気口41及び排気口42に近い部分、つまり、給気口41及び排気口42が形成される真空容器4の下端部及びその近傍では、真空容器内4Sに供給して排出されるガスGによる冷却作用のために、相対的に温度が低くなる傾向がある。そこで、図5に示すように、円筒状空間4Saを包囲し得るコイル配置エリアAを軸方向Hに2つのエリアA1,A2に区分けして、相対的に下側のエリアを第1コイル配置エリアA1に設定し、この第1コイル配置エリアA1に第1誘導加熱コイル51を配置するとともに、相対的に上側のエリアを第2コイル配置エリアA2に設定し、この第2コイル配置エリアA2に第2誘導加熱コイル52を配置し、第1誘導加熱コイル51に流れるコイル電流が、第2誘導加熱コイル52に流れるコイル電流よりも大きくなるように、誘導加熱電源6から出力する交流電力の駆動周波数を変数として各誘導加熱コイル51,52の電流比を制御する態様を適用することも可能である。なお、図5における各符号やパターンは、図1に示す各符号等に準じたものである。   As an example, paying attention to heat removal in the vacuum vessel 4S, in a portion close to the air supply port 41 and the exhaust port 42, that is, in the lower end portion of the vacuum vessel 4 where the air supply port 41 and the exhaust port 42 are formed and in the vicinity thereof. The temperature tends to be relatively low due to the cooling effect of the gas G supplied to and discharged from the vacuum vessel 4S. Therefore, as shown in FIG. 5, the coil arrangement area A that can surround the cylindrical space 4Sa is divided into two areas A1 and A2 in the axial direction H, and the relatively lower area is defined as the first coil arrangement area. The first induction heating coil 51 is arranged in the first coil arrangement area A1, and the relatively upper area is set as the second coil arrangement area A2, and the second coil arrangement area A2 is the second coil arrangement area A2. The drive frequency of the AC power output from the induction heating power supply 6 is arranged so that the coil current flowing through the first induction heating coil 51 is larger than the coil current flowing through the second induction heating coil 52. It is also possible to apply a mode in which the current ratio of each induction heating coil 51, 52 is controlled using as a variable. In addition, each code | symbol and pattern in FIG. 5 are based on each code | symbol etc. which are shown in FIG.

また、図1や図5等に示す実施形態において、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも小さくなるように駆動周波数を変化させることによって、誘導加熱コイル全体の電力分布や被加熱物(サセプタ2)が配置される空間の温度分布に敢えてバラツキ(高低差)が生じるようにすることも可能である。さらにはまた、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも大きくなるように駆動周波数を変化させる時間帯と、誘導加熱コイルの電力が相対的に低いエリアや、内部空間の温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間の温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも小さくなるように駆動周波数を変化させる時間帯とを意図的に区別してコントロールすることによって、誘導加熱コイル全体の電力分布の均一化や被加熱物が配置される空間の温度分布の平準化を図る時間帯と、誘導加熱コイル全体の電力分布や被加熱物が配置される空間の温度分布に敢えてバラツキ(高低差)を生じさせる時間帯とを確保するように構成することも可能である。   In the embodiment shown in FIGS. 1 and 5, etc., the current flows through the induction heating coil arranged in an area corresponding to the area where the power of the induction heating coil is relatively low or the temperature of the internal space is relatively low. The drive frequency is changed so that the current is smaller than the current flowing in the induction heating coil arranged in the area corresponding to the area where the power of the induction heating coil is relatively high or the temperature of the internal space is relatively high. By doing so, it is possible to deliberately produce variations (level differences) in the power distribution of the entire induction heating coil and the temperature distribution of the space in which the object to be heated (susceptor 2) is arranged. Furthermore, the current flowing in the induction heating coil disposed in the area corresponding to the area where the power of the induction heating coil is relatively low or the temperature of the internal space is relatively low, the power of the induction heating coil is relative. Time when the drive frequency is changed to be larger than the current flowing in the induction heating coil arranged in the arrangement area corresponding to the area where the temperature of the internal space is relatively high or the temperature of the internal space is relatively high, and the power of the induction heating coil Current flowing in the induction heating coil arranged in the arrangement area corresponding to the area where the temperature of the internal space is relatively low or the area where the temperature of the internal space is relatively low, the area where the power of the induction heating coil is relatively high, A time zone in which the drive frequency is changed to be smaller than the current flowing in the induction heating coil arranged in the arrangement area corresponding to the area where the temperature is relatively high. By distinguishing and controlling graphically, the power distribution of the entire induction heating coil is equalized or the temperature distribution of the space where the object to be heated is leveled is equalized. It is also possible to configure so as to ensure a time zone in which the temperature distribution of the space in which the heated object is arranged is deliberately caused to vary.

また、誘導加熱コイルの配置エリアを軸方向に沿って区分けした複数のコイル配置エリアにそれぞれ個別に配置する各誘導加熱コイルは、巻回状態に粗密の差がないものであってもよいし、巻回状態に粗密の差があるものであってもよい。例えば、図1及び図5に示すように、各誘導加熱コイル51,52が配置されるコイル配置エリアA1,A2を、さらに軸方向Hに複数の配置エリア単位Aaに区分けしたものと捉えた場合、配置エリア単位Aa毎に各誘導加熱コイル51,52の巻回状態に粗密の差を設定することが可能である。   In addition, each induction heating coil that is individually arranged in a plurality of coil arrangement areas divided along the axial direction of the arrangement area of the induction heating coil may be a coiled state that does not have a difference in density, There may be a difference in density in the winding state. For example, as shown in FIGS. 1 and 5, when the coil arrangement areas A1 and A2 in which the induction heating coils 51 and 52 are arranged are further divided into a plurality of arrangement area units Aa in the axial direction H. It is possible to set a difference in density between the winding states of the induction heating coils 51 and 52 for each arrangement area unit Aa.

上述の実施形態では、化学的気相成長(CVD)によってウェハ上にエピタキシャル成長膜を作成する装置として機能する誘導加熱装置を例示したが、本発明の誘導加熱装置は、化学的気相成長(CVD)によってウェハ上に、エピタキシャル成長膜以外の有用な膜を作成する装置として機能させることもできる。   In the above-described embodiment, the induction heating apparatus functioning as an apparatus for forming an epitaxially grown film on the wafer by chemical vapor deposition (CVD) has been exemplified. However, the induction heating apparatus of the present invention is configured by chemical vapor deposition (CVD). ) Can also function as an apparatus for creating a useful film other than the epitaxially grown film on the wafer.

また、誘導加熱装置は、加熱対象物であるウェハに対して化学反応を利用して適宜の処置を施すものであってもよいし、加熱対象物に対して焼結又は溶解を利用して適宜の処理を施すものであってもよい。   Further, the induction heating device may perform an appropriate treatment using a chemical reaction with respect to a wafer that is a heating target, or may appropriately use a sintering or melting for the heating target. It is also possible to perform the process.

また、サセプタは、面方向に異方性を有するものが好ましいが、面方向に異方性のないものであっても構わない。なお、面方向に異方性を有するサセプタを適用する場合、面方向の熱伝導率や面方向の電気伝導率の値は特に制限されない。さらにまた、本発明では、サセプタにウェハの中心位置を合わせて載置した状態において、ウェハのエッジからサセプタのエッジまでの距離を、ウェハへの影響が出ない範囲であれば、コイルによりサセプタに発生する磁束の浸透深さの2.0倍よりも大きな値に設定したり、あるいは、コイルによりサセプタに発生する磁束の浸透深さの1.5倍よりも小さな値に設定することも可能である。   The susceptor preferably has anisotropy in the plane direction, but may have no anisotropy in the plane direction. When a susceptor having anisotropy in the plane direction is applied, the values of the thermal conductivity in the plane direction and the electrical conductivity in the plane direction are not particularly limited. Furthermore, in the present invention, if the distance from the edge of the wafer to the edge of the susceptor is within a range that does not affect the wafer in a state where the center position of the wafer is placed on the susceptor, the coil can be used as the susceptor. It is possible to set a value larger than 2.0 times the penetration depth of the generated magnetic flux or a value smaller than 1.5 times the penetration depth of the magnetic flux generated in the susceptor by the coil. is there.

上述の実施形態では、真空容器内に複数のサセプタを多段状に配置し、複数枚のウェハを同時に加熱処理可能な誘導加熱装置を例示したが、真空容器内に1つのサセプタを配置し、このサセプタに載置した1枚のウェハに対して加熱処理可能な誘導加熱装置であっても構わない。   In the above-described embodiment, the induction heating apparatus in which a plurality of susceptors are arranged in a multistage shape in a vacuum vessel and a plurality of wafers can be heated at the same time is illustrated. However, one susceptor is arranged in a vacuum vessel, It may be an induction heating apparatus capable of performing heat treatment on a single wafer placed on the susceptor.

サセプタが、シート状の黒鉛材を重ねて形成されたものではなく、単一のブロック状またはシート状の黒鉛材を用いて形成されたものであっても構わない。   The susceptor may be formed by using a single block-like or sheet-like graphite material instead of the sheet-like graphite material.

さらにはまた、サセプタが、面方向に異方性を有する黒鉛材の表面をSiCコーティングしたものであってもよい。この場合、黒鉛材とウェハとが直接接触する事態を回避し、ウェハへの汚染、無用なパーティクルの発生を抑制することができるとともに、プロセスガスとの意図しない反応を低減することが期待できる。   Furthermore, the susceptor may be obtained by SiC-coating the surface of a graphite material having anisotropy in the plane direction. In this case, it is possible to avoid a situation where the graphite material and the wafer are in direct contact with each other, suppress contamination of the wafer and generation of useless particles, and reduce unintended reaction with the process gas.

また、本発明に係る誘導加熱装置は、誘導加熱コイルを備えたビレットヒータ(鍛造前誘導加熱装置)であってもよい。一例として、図6に、誘導加熱コイルX5(第1誘導加熱コイルX51,第2誘導加熱コイルX52)に任意の周波数の交流電力を出力可能な1つの誘導加熱電源X6と、被加熱物であるビレット材X2が軸方向Hに沿って直線移動可能に配置される内部空間X4Sを他の空間と仕切る筒状の隔壁(ケーシングX4の周壁X43)と、周壁X43の外側に巻回状態で配置される誘導加熱コイルX5(第1誘導加熱コイルX51,第2誘導加熱コイルX52)に高周波電流を印加することでビレット材X2を誘導加熱により加熱可能なビレットヒータX1を示す。なお、ケーシングX4の周壁X43は、絶縁性を有する例えばコイルセメントによって構成したものである。誘導加熱電源X6は、上述の実施形態における電源6と同様に、電流型インバータと、2つの並列共振回路を相互に直列接続し、且つ電流型インバータから電力が供給される並列共振直列接続回路とを備えたものである(図示省略)。   The induction heating device according to the present invention may be a billet heater (an induction heating device before forging) including an induction heating coil. As an example, FIG. 6 shows one induction heating power source X6 capable of outputting AC power of an arbitrary frequency to the induction heating coil X5 (first induction heating coil X51, second induction heating coil X52), and an object to be heated. The billet material X2 is disposed in a wound state on the outside of the peripheral wall X43, and a cylindrical partition wall (the peripheral wall X43 of the casing X4) that partitions the internal space X4S in which the billet material X2 is linearly movable along the axial direction H from other spaces. A billet heater X1 capable of heating the billet material X2 by induction heating by applying a high frequency current to the induction heating coil X5 (first induction heating coil X51, second induction heating coil X52). The peripheral wall X43 of the casing X4 is made of, for example, coil cement having insulating properties. Similarly to the power supply 6 in the above-described embodiment, the induction heating power supply X6 is a parallel resonance series connection circuit in which a current type inverter and two parallel resonance circuits are connected in series to each other and power is supplied from the current type inverter. (Not shown).

そして、本発明に係るビレットヒータX1は、各並列共振回路の共振周波数を異なる値に設定し、電源6の駆動周波数を変化させることによって各誘導加熱コイルX51,X52の電流比を変更可能に構成している。   The billet heater X1 according to the present invention is configured such that the current ratio of the induction heating coils X51 and X52 can be changed by setting the resonance frequency of each parallel resonance circuit to a different value and changing the drive frequency of the power source 6. doing.

このビレットヒータX1について詳述すると、筒状をなすケーシングX4の周壁X43によって仕切られる内部空間X4Sは、軸方向Hに延伸し、軸方向Hの両端が開放されている。そして、ケーシングX4の周壁X43の外側における誘導加熱コイルX5の配置エリアXAを軸方向Hに沿って2つのエリアXA1,XA2に区分けし、2つの誘導加熱コイルX51,X52を相互に異なる配置エリアXA1,XA2に個別に配置する。図示例では、区分けした2つのコイル配置エリアXA1,XA2のうち、ダミーXDに回転可能に保持されたビレットX2の進行方向P下流側のエリアを第1コイル配置エリアXA1に設定し、この第1コイル配置エリアXA1に第1誘導加熱コイルX51を配置するとともに、ビレットX2の進行方向P上流側のエリアを第2コイル配置エリアXA2に設定し、この第2コイル配置エリアXA2に第2誘導加熱コイルX52を配置している。そして、誘導加熱電源X6から出力する交流電力の駆動周波数を変数として各誘導加熱コイルX51,X52の電流比を制御することによって、誘導加熱コイルX5全体のコイル電力分布や、及びビレットX2の配置空間X4Sの温度分布が所望の分布となるように調整することができる。なお、図6では、第1コイル配置エリアXA1及び第2コイル配置エリアXA2を、相互に異なるパターンを付して示すとともに、第1誘導加熱コイルX51のうち巻回状態ではない部分、及び第2誘導加熱コイルX52のうち巻回状態ではない部分をそれぞれ直線(相対的に太い線が第1誘導加熱コイルX51を示す線であり、相対的に細い線が第2誘導加熱コイルX52を示す線である)で模式的に示している。   The billet heater X1 will be described in detail. The internal space X4S partitioned by the peripheral wall X43 of the cylindrical casing X4 extends in the axial direction H, and both ends in the axial direction H are open. The arrangement area XA of the induction heating coil X5 outside the peripheral wall X43 of the casing X4 is divided into two areas XA1 and XA2 along the axial direction H, and the two induction heating coils X51 and X52 are arranged differently from each other. , XA2 individually. In the illustrated example, of the two divided coil arrangement areas XA1 and XA2, the area on the downstream side in the traveling direction P of the billet X2 rotatably held by the dummy XD is set as the first coil arrangement area XA1. The first induction heating coil X51 is arranged in the coil arrangement area XA1, the area upstream of the billet X2 in the traveling direction P is set as the second coil arrangement area XA2, and the second induction heating coil is arranged in the second coil arrangement area XA2. X52 is arranged. Then, by controlling the current ratio of the induction heating coils X51 and X52 using the drive frequency of the AC power output from the induction heating power supply X6 as a variable, the coil power distribution of the entire induction heating coil X5 and the arrangement space of the billet X2 are controlled. The temperature distribution of X4S can be adjusted to a desired distribution. In FIG. 6, the first coil arrangement area XA1 and the second coil arrangement area XA2 are shown with mutually different patterns, a portion of the first induction heating coil X51 that is not in a wound state, and a second Each portion of the induction heating coil X52 that is not in a wound state is a straight line (a relatively thick line is a line indicating the first induction heating coil X51, and a relatively thin line is a line indicating the second induction heating coil X52). This is schematically shown in FIG.

特に、図6に示す実施形態において、ビレットX2の進行方向P下流側に図示しないダイスを配置し、ダイスにビレットX2のうち進行方向P下流側の端部(ビレットX2の先端部)を接触させることで、接触部分を細い径の線材に加工可能に構成したビレットヒータX1であれば、ビレットX2の先端部(ダイスに接触する部分)は抜熱が多い。つまり、加熱されているビレットX2の先端部が、加熱されていないダイスに接触して熱を奪われることにより、ビレットX2の先端部が冷却されて加工温度以下になってしまう事象が生じる。   In particular, in the embodiment shown in FIG. 6, a die (not shown) is arranged on the downstream side in the traveling direction P of the billet X2, and the end of the billet X2 downstream in the traveling direction P (the tip of the billet X2) is brought into contact with the die. Thus, if the billet heater X1 is configured so that the contact portion can be processed into a thin wire, the tip portion of the billet X2 (the portion in contact with the die) has a lot of heat removal. That is, when the tip of the heated billet X2 comes into contact with an unheated die and heat is taken away, the tip of the billet X2 is cooled and the temperature falls below the processing temperature.

そこで、本実施形態に係るビレットヒータX1では、ビレットX2の先端部が冷却されて加工温度以下になってしまう事態を避けるために、先端部付近を他の部分よりも高い温度にすべく、ダミーXDに回転可能に保持されたビレットX2の進行方向P下流側のエリアである第1コイル配置エリアXA1に配置した第1誘導加熱コイルX51に流れるコイル電流が、ビレットX2の進行方向P上流側のエリアである第2コイル配置エリアXA2に配置した第2誘導加熱コイルX52に流れる電流よりも大きくなるように駆動周波数を変化させることによって、誘導加熱コイル全体の電力分布や被加熱物が配置される空間X4Sの温度分布に敢えてバラツキ(高低差)が生じるように設定することが可能である。   Therefore, in the billet heater X1 according to the present embodiment, in order to avoid a situation where the tip portion of the billet X2 is cooled to be lower than the processing temperature, a dummy is used to make the vicinity of the tip portion higher than the other portions. The coil current flowing in the first induction heating coil X51 arranged in the first coil arrangement area XA1, which is the area downstream of the billet X2 in the traveling direction P of the billet X2 held rotatably by the XD, is on the upstream side in the traveling direction P of the billet X2. By changing the drive frequency so as to be larger than the current flowing through the second induction heating coil X52 arranged in the second coil arrangement area XA2, which is the area, the power distribution of the entire induction heating coil and the object to be heated are arranged. It is possible to set so that the temperature distribution of the space X4S is intentionally varied (difference in height).

なお、ダイスの有無にかかわらず、図6に示すようなビレットヒータX1において、誘導加熱コイルの電力が相対的に低いエリアや、内部空間X4Sの温度が相対的に低いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流を、誘導加熱コイルの電力が相対的に高いエリアや、内部空間X4Sの温度が相対的に高いエリアに対応する配置エリアに配置した誘導加熱コイルに流れる電流よりも大きくなるように駆動周波数を変化させて誘導加熱コイル全体の電力分布の均一化や内部空間X4Sの温度分布の平準化を図るように設定することも可能である。さらにはまた、各配置エリアに配置した誘導加熱コイルの駆動周波数を変化させて、誘導加熱コイル全体の電力分布の均一化や内部空間X4Sの温度分布の平準化を図る時間帯と、誘導加熱コイル全体の電力分布や内部空間X4Sの温度分布に高低差を生じさせる時間帯とを意図的に区別してコントロールするように設定することも可能である。   In addition, in the billet heater X1 as shown in FIG. 6 regardless of the presence or absence of the dice, in an arrangement area corresponding to an area where the power of the induction heating coil is relatively low or an area where the temperature of the internal space X4S is relatively low. The current flowing through the arranged induction heating coil is larger than the current flowing through the induction heating coil arranged in the arrangement area corresponding to the area where the power of the induction heating coil is relatively high or the temperature of the internal space X4S is relatively high. It is also possible to set so that the drive frequency is changed so as to increase and the power distribution of the entire induction heating coil is made uniform and the temperature distribution of the internal space X4S is made uniform. Furthermore, by changing the drive frequency of the induction heating coil arranged in each arrangement area, a time zone for equalizing the power distribution of the entire induction heating coil and leveling the temperature distribution of the internal space X4S, and the induction heating coil It is also possible to set so as to intentionally distinguish and control the time zone in which the overall power distribution and the temperature distribution of the internal space X4S cause a height difference.

本発明に係る誘導加熱装置をビレットヒータとして実現する場合、ケーシング内におけるビレットの直線移動は、一方向のみの直線移動であってもよいし、往復移動であってもよい。ビレットの進行方向と、ケーシングの軸方向(長手方向)は一致または略一致する。ケーシングの内部空間内においてビレットを往復移動させる構成であれば、「行き」の進行方向上流側と下流側とでコイル配置エリアを進行方向に沿って区分けすればよい。   When realizing the induction heating device according to the present invention as a billet heater, the linear movement of the billet in the casing may be a linear movement in only one direction or a reciprocating movement. The billet traveling direction coincides with or substantially coincides with the axial direction (longitudinal direction) of the casing. If the billet is configured to reciprocate in the internal space of the casing, the coil placement area may be divided along the traveling direction on the upstream side and the downstream side in the traveling direction of “bound”.

また、ビレットヒータにおいても、軸方向に区分けする各誘導加熱コイルの配置エリアは図6に示すエリアに限定されず、諸条件を考慮して、各誘導加熱コイルの配置エリアを設定することができる。   Also, in the billet heater, the arrangement area of each induction heating coil divided in the axial direction is not limited to the area shown in FIG. 6, and the arrangement area of each induction heating coil can be set in consideration of various conditions. .

本発明に係る誘導加熱装置では、3つ以上の誘導加熱コイルをそれぞれ異なるコイル配置エリアに個別に配置する構成を採用することもできる。この場合、誘導加熱電源の並列共振直列接続回路は、3つ以上の誘導加熱コイルに共振コンデンサを個別に並列に接続した3つ以上の並列共振回路を相互に直列接続したものになり、各並列共振回路の共振周波数を異なる値に設定し、駆動周波数を変化させることによって3つ以上の各誘導加熱コイルの電流比を変更可能に構成すればよい。   In the induction heating device according to the present invention, a configuration in which three or more induction heating coils are individually arranged in different coil arrangement areas may be employed. In this case, the parallel resonance series connection circuit of the induction heating power source is obtained by connecting in series three or more parallel resonance circuits in which resonance capacitors are individually connected in parallel to three or more induction heating coils. What is necessary is just to comprise so that the current ratio of three or more induction heating coils can be changed by setting the resonant frequency of a resonant circuit to a different value, and changing a drive frequency.

さらにまた、誘導加熱電源の駆動周波数を変化させる範囲(駆動周波数の変化幅)は、軸方向に沿って区分けした各コイル配置エリアに個別に配置した誘導加熱コイルの電流比の大小関係(比率ではなく、相対的なコイル電流値の大小関係)が維持される範囲内(例えば、第1コイル配置エリアに配置した第1誘導加熱コイルに流れる電流が、第2コイル配置エリアに配置した第2誘導加熱コイルに流れる電流よりも常に大きくなる範囲内)であってもよいし、各誘導加熱コイルの電流比の大小関係が逆転する値の駆動周波数を含む範囲に設定することも可能である。すなわち、本発明では、分割して配置した各誘導加熱コイルの電力分布の調整を図るために、一時的に、または所定時間だけ、各誘導加熱コイルの電流比の大小関係を逆転させる駆動周波数の交流電力を誘導加熱電源から各誘導加熱コイルに出力する構成を採用することができる。   Furthermore, the range in which the drive frequency of the induction heating power source is changed (the change width of the drive frequency) is the magnitude relationship (in terms of the ratio) of the current ratio of the induction heating coils individually arranged in each coil arrangement area divided along the axial direction. And the second induction in which the current flowing in the first induction heating coil arranged in the first coil arrangement area is within the range where the relative magnitude of the coil current value is maintained (for example, the first induction heating coil arranged in the first coil arrangement area). It may be within a range that is always larger than the current flowing through the heating coil), or it may be set within a range that includes a drive frequency with a value that reverses the magnitude relationship of the current ratio of each induction heating coil. That is, in the present invention, in order to adjust the power distribution of each induction heating coil divided and arranged, the drive frequency for reversing the magnitude relationship of the current ratio of each induction heating coil temporarily or for a predetermined time is set. A configuration in which AC power is output from the induction heating power source to each induction heating coil can be employed.

また、本発明に誘導加熱装置において加熱処理時に用いる高周波は、1kHz以上であることが好ましいが、特に制限されない。   Moreover, although it is preferable that the high frequency used at the time of heat processing in the induction heating apparatus for this invention is 1 kHz or more, it does not restrict | limit in particular.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…誘導加熱装置
2…被加熱物(サセプタ)
4…真空容器
43…隔壁(側壁)
5…誘導加熱コイル
51…第1誘導加熱コイル
52…第2誘導加熱コイル
6…誘導加熱電源
61…電流型インバータ
62…並列共振直列接続回路
65,66…並列共振回路(第1並列共振回路,第2並列共振回路)
C1,C2…共振コンデンサ(第1共振コンデンサ,第2共振コンデンサ)
DESCRIPTION OF SYMBOLS 1 ... Induction heating apparatus 2 ... Object to be heated (susceptor)
4 ... Vacuum container 43 ... Partition wall (side wall)
DESCRIPTION OF SYMBOLS 5 ... Induction heating coil 51 ... 1st induction heating coil 52 ... 2nd induction heating coil 6 ... Induction heating power supply 61 ... Current type inverter 62 ... Parallel resonance series connection circuit 65, 66 ... Parallel resonance circuit (1st parallel resonance circuit, Second parallel resonant circuit)
C1, C2 ... Resonance capacitors (first resonance capacitor, second resonance capacitor)

Claims (3)

誘導加熱コイルに任意の周波数の交流電力を出力可能な1つの誘導加熱電源と、被加熱物が配置可能な1つの軸方向に延伸する内部空間を他の空間と仕切る筒状の隔壁と、前記隔壁の外側に巻回状態で配置される前記誘導加熱コイルに高周波電流を印加することで前記被加熱物を誘導加熱により加熱可能な誘導加熱装置であり、
前記隔壁の外側における誘導加熱コイルの配置エリアを前記軸方向に沿って区分けし、少なくとも2つの前記誘導加熱コイルを相互に異なる配置エリアに個別に配置し、
前記誘導加熱電源が、
交流電源からの出力電流を直流電流に変換する順変換回路、及び前記順変換回路からの出力電流をスイッチング素子により交流電流に変換する逆変換回路を用いて構成した電流型インバータと、
少なくとも2つの前記誘導加熱コイルに共振コンデンサを個別に並列に接続した少なくとも2つの並列共振回路を相互に直列接続し、前記電流型インバータから電力が供給される並列共振直列接続回路とを備えたものであり、
前記各並列共振回路の共振周波数を異なる値に設定し、駆動周波数を変化させることによって前記各誘導加熱コイルの電流比を変更可能に構成していることを特徴とする誘導加熱装置。
One induction heating power source capable of outputting alternating-current power of an arbitrary frequency to the induction heating coil, a cylindrical partition wall that partitions an internal space extending in one axial direction in which an object to be heated can be arranged, from the other space; An induction heating device capable of heating the object to be heated by induction heating by applying a high-frequency current to the induction heating coil arranged in a wound state outside the partition;
Dividing the arrangement area of the induction heating coil outside the partition wall along the axial direction, and individually arranging at least two induction heating coils in mutually different arrangement areas;
The induction heating power source is
A current type inverter configured using a forward conversion circuit that converts an output current from an alternating current power source into a direct current, and an inverse conversion circuit that converts the output current from the forward conversion circuit into an alternating current using a switching element;
A parallel resonance series connection circuit in which at least two parallel resonance circuits each having a resonance capacitor individually connected in parallel to at least two induction heating coils are connected in series to each other, and power is supplied from the current type inverter. And
An induction heating apparatus configured to change a current ratio of each induction heating coil by setting a resonance frequency of each parallel resonance circuit to a different value and changing a driving frequency.
前記誘導加熱コイルの配置エリアは、単一の誘導加熱コイルを前記隔壁の外側において軸方向に沿って配置した場合に前記単一の誘導加熱コイルの電力が相対的に高くなるエリアと相対的に低くなるエリアに応じて前記軸方向に沿って区分けしたものである請求項1に記載の誘導加熱装置。 The arrangement area of the induction heating coil is relatively to the area where the electric power of the single induction heating coil is relatively high when the single induction heating coil is arranged along the axial direction outside the partition wall. The induction heating device according to claim 1, wherein the induction heating device is divided along the axial direction according to an area to be lowered. 前記誘導加熱コイルの配置エリアは、前記内部空間の温度が相対的に高くなるエリアと相対的に低くなるエリアに応じて前記軸方向に沿って区分けしたものである請求項1に記載の誘導加熱装置。 2. The induction heating according to claim 1, wherein the arrangement area of the induction heating coil is divided along the axial direction according to an area where the temperature of the internal space is relatively high and an area where the temperature is relatively low. apparatus.
JP2015204261A 2015-10-16 2015-10-16 Induction heating device Active JP6589545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204261A JP6589545B2 (en) 2015-10-16 2015-10-16 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204261A JP6589545B2 (en) 2015-10-16 2015-10-16 Induction heating device

Publications (2)

Publication Number Publication Date
JP2017076561A true JP2017076561A (en) 2017-04-20
JP6589545B2 JP6589545B2 (en) 2019-10-16

Family

ID=58550305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204261A Active JP6589545B2 (en) 2015-10-16 2015-10-16 Induction heating device

Country Status (1)

Country Link
JP (1) JP6589545B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084563A1 (en) * 2018-10-26 2020-04-30 Lpe S.P.A. Deposition reactor with inductors and electromagnetic shields
KR20200090156A (en) * 2017-11-21 2020-07-28 고오슈우하네쓰렌 가부시기가이샤 Power converter and method for controlling power converter
KR20210092690A (en) * 2020-01-16 2021-07-26 (주)오성하이텍 Vulcanizer with improved heating performance
CN113749299A (en) * 2020-06-04 2021-12-07 湖南中烟工业有限责任公司 Electromagnetic cigarette heating device and heating method thereof
KR102454830B1 (en) * 2021-06-03 2022-10-17 주식회사 다원시스 System and method for manufacturing capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090156A (en) * 2017-11-21 2020-07-28 고오슈우하네쓰렌 가부시기가이샤 Power converter and method for controlling power converter
US11368099B2 (en) 2017-11-21 2022-06-21 Neturen Co., Ltd. Power conversion apparatus that determines, based on a set of data, whether it is operable to perform an output
KR102508631B1 (en) * 2017-11-21 2023-03-14 고오슈우하네쓰렌 가부시기가이샤 Power conversion device and method for controlling the power conversion device
WO2020084563A1 (en) * 2018-10-26 2020-04-30 Lpe S.P.A. Deposition reactor with inductors and electromagnetic shields
KR20210092690A (en) * 2020-01-16 2021-07-26 (주)오성하이텍 Vulcanizer with improved heating performance
KR102405930B1 (en) * 2020-01-16 2022-06-07 (주)오성하이텍 Vulcanizer with improved heating performance
CN113749299A (en) * 2020-06-04 2021-12-07 湖南中烟工业有限责任公司 Electromagnetic cigarette heating device and heating method thereof
KR102454830B1 (en) * 2021-06-03 2022-10-17 주식회사 다원시스 System and method for manufacturing capacitor

Also Published As

Publication number Publication date
JP6589545B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6589545B2 (en) Induction heating device
US9674898B2 (en) Induction heating apparatus and induction heating method
TWI540941B (en) Inductively coupled plasma apparatus
TWI448207B (en) Induction heating device
US20160079038A1 (en) Plasma processing apparatus and filter unit
US20120138599A1 (en) Semiconductor substrate heat treatment apparatus
TW201814826A (en) Method and apparatus for substrate support with multi-zone heating
JPS62205619A (en) Method of heating semiconductor and susceptor used therein
JP6687829B2 (en) Induction heating device
EP2472575A2 (en) Heat treatment apparatus
JP5643143B2 (en) Heat treatment equipment
KR101184133B1 (en) Induction heating unit
JP2014093471A (en) Induction heating furnace, and sic substrate annealing method
JP2011228524A (en) Semiconductor heat treatment apparatus and semiconductor heat treatment method
CN110996419B (en) Induction heating device and semiconductor processing equipment
JP2014017439A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
TW201938838A (en) Plasma processing device, plasma processing method, and program for plasma processing device
JP5443228B2 (en) Semiconductor heat treatment equipment
CN103050364A (en) Circuit for increasing temperature of substrate in plasma treatment cavity
TWI737984B (en) An advanced ceramic lid with embedded heater elements and embedded rf coil for hdp cvd and inductively coupled plasma treatment chambers
JP5084069B2 (en) Induction heating apparatus and induction heating method
JP6135082B2 (en) Induction heating furnace
WO2012132077A1 (en) Induction heating device
JP5005120B1 (en) Induction heating method
TW202247381A (en) Substrate treatment device and substrate treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250