JP2017075921A - Storage battery deterioration estimation system, storage battery deterioration estimation method, and storage battery deterioration estimation program - Google Patents

Storage battery deterioration estimation system, storage battery deterioration estimation method, and storage battery deterioration estimation program Download PDF

Info

Publication number
JP2017075921A
JP2017075921A JP2015204921A JP2015204921A JP2017075921A JP 2017075921 A JP2017075921 A JP 2017075921A JP 2015204921 A JP2015204921 A JP 2015204921A JP 2015204921 A JP2015204921 A JP 2015204921A JP 2017075921 A JP2017075921 A JP 2017075921A
Authority
JP
Japan
Prior art keywords
discharge
storage battery
predetermined time
predetermined
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204921A
Other languages
Japanese (ja)
Other versions
JP6532373B2 (en
Inventor
壮平 中島
Sohei Nakashima
壮平 中島
正宏 山崎
Masahiro Yamazaki
正宏 山崎
會城 金谷
Kaisei Kanetani
會城 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2015204921A priority Critical patent/JP6532373B2/en
Publication of JP2017075921A publication Critical patent/JP2017075921A/en
Application granted granted Critical
Publication of JP6532373B2 publication Critical patent/JP6532373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow the deterioration state of a storage battery to be appropriately estimated even when the storage battery discharges at an actual load for a prescribed time.SOLUTION: A storage battery management device 3 measures discharge data including discharge current and voltage at the time of discharge end when battery packs 20 discharge to a load facility 102 for a prescribed time and transmits the data to a monitoring device 5. The monitoring device 5 comprises: a discharge database 52 for storing the discharge data; an analysis task 55 for performing quantile point regression analysis at a prescribed quantile point of a discharge rate indicative of the ratio of the discharge current to the capacity of the battery pack 20 and the voltage at the time of discharge end on the basis of the discharge data of each battery pack 20; and an extraction task 56 for extracting a battery pack 20 belonging to the prescribed quantile point or below on the basis of a result of the analysis.SELECTED DRAWING: Figure 1

Description

この発明は、蓄電池の劣化状態を推定する蓄電池劣化推定システム、蓄電池劣化推定方法および蓄電池劣化推定プログラムに関する。   The present invention relates to a storage battery deterioration estimation system that estimates a deterioration state of a storage battery, a storage battery deterioration estimation method, and a storage battery deterioration estimation program.

シール型鉛蓄電池やリチウムイオン二次電池などの蓄電池・二次電池は、使用年数の経過に伴ってその容量が低下し、容量が所定の容量未満に達した場合には、新たな蓄電池と交換する必要がある。また、蓄電池の製造メーカなどによって、蓄電池の期待寿命が提示されているが、蓄電池の実際の寿命は、使用環境や使用条件などによって影響される。このため、実際の運用においては、現時点での蓄電池容量がどのくらいであるかを知り、さらには、寿命に至るまでの期間・残寿命を予測して、蓄電池交換などの計画を策定する必要がある。   Rechargeable batteries and secondary batteries such as sealed lead-acid batteries and lithium-ion secondary batteries are replaced with new ones when their capacity drops below the specified capacity as the years of use decrease. There is a need to. In addition, the expected life of the storage battery is presented by the manufacturer of the storage battery, but the actual life of the storage battery is affected by the use environment, use conditions, and the like. For this reason, in actual operation, it is necessary to know how much the storage battery capacity is at the present time, and to predict the period and remaining life until the end of the life, and to formulate a plan for replacing the storage battery, etc. .

一方、現時点での蓄電池容量を正確に知るには、放電試験を行う必要があるが、蓄電池を放電終止電圧(仕様上、放電を終了させるべき電圧)まで放電させるには、長時間を要し、その間、蓄電池の使用が不可能となる。つまり、UPS(Uninterruptible Power Supply)などのバックアップ電源として使用されている蓄電池の場合、放電試験を行っている間は、バックアップ電源としての機能が失われてしまう。このため、蓄電池を放電終止電圧まで放電させることなく、蓄電池を短時間放電させて蓄電池の端子電圧を測定し、測定電圧の変化から放電終止電圧に到達するまでの蓄電池容量を推定する方法が知られている(例えば、特許文献1参照。)。   On the other hand, in order to know the storage battery capacity at the present time accurately, it is necessary to perform a discharge test. However, it takes a long time to discharge the storage battery to the discharge end voltage (the voltage at which discharge should be terminated in the specification). During this time, the storage battery cannot be used. That is, in the case of a storage battery used as a backup power source such as UPS (Uninterruptable Power Supply), the function as the backup power source is lost during the discharge test. For this reason, a method is known in which the storage battery is discharged for a short time without discharging the storage battery to the end-of-discharge voltage, the terminal voltage of the storage battery is measured, and the storage battery capacity from the change of the measured voltage to the end-of-discharge voltage is estimated. (For example, refer to Patent Document 1).

また、直流電源を負荷設備(運用対象設備)に供給する整流装置に並列に接続され、負荷設備のバックアップ用電源として使用される蓄電池では、整流装置の出力電圧を低下させることで、蓄電池を実負荷(負荷設備に供給すべき放電電流)で放電させて劣化判定を行っている。この際、各蓄電池の実負荷(放電電流)が異なることや、停電時のバックアップに備える必要があること、さらには、膨大な量の蓄電池を運用、管理する必要があることなどから、所定時間までに所定電圧に達した場合に「異常」と判定する、という判定方法が採用されている。ここで、所定時間や所定電圧は、蓄電池の容量や実負荷などに基づいて設定されている。   In addition, a storage battery connected in parallel to a rectifier that supplies DC power to a load facility (operation target facility) and used as a backup power source for the load facility can be realized by reducing the output voltage of the rectifier. The deterioration is determined by discharging with a load (discharge current to be supplied to the load equipment). At this time, because the actual load (discharge current) of each storage battery is different, it is necessary to prepare for backup in the event of a power failure, and furthermore, it is necessary to operate and manage a huge amount of storage battery, etc. A determination method of determining “abnormal” when a predetermined voltage has been reached is adopted. Here, the predetermined time and the predetermined voltage are set based on the capacity and actual load of the storage battery.

特開平10−040967号公報JP-A-10-040967

ところで、従来の判定方法では、所定時間までに所定電圧に達した場合に「異常」と判定されるだけで、所定時間までに所定電圧に達しない場合には「正常」と判定される。しかしながら、所定時間までに所定電圧に達しない場合であっても、蓄電池が劣化(容量低下)している場合がある。つまり、「正常」と判定された場合に、その蓄電池が異常・劣化に近いのか、そうではないのかを推定することができない。このため、次回の放電時に「異常」と判定されて、蓄電池を緊急に交換しなければならない事態が生じ得る。   By the way, in the conventional determination method, it is determined as “abnormal” only when the predetermined voltage is reached by a predetermined time, and “normal” is determined when the predetermined voltage is not reached by the predetermined time. However, even when the predetermined voltage is not reached by the predetermined time, the storage battery may be deteriorated (capacity reduction). That is, when it is determined as “normal”, it cannot be estimated whether or not the storage battery is close to abnormality / deterioration. For this reason, it may be determined as “abnormal” at the next discharge, and a situation in which the storage battery must be replaced urgently may occur.

そこでこの発明は、蓄電池を実負荷で所定時間放電させる場合であっても、蓄電池の劣化状態を適正に推定可能な蓄電池劣化推定システム、蓄電池劣化推定方法および蓄電池劣化推定プログラムを提供することを目的とする。   Accordingly, an object of the present invention is to provide a storage battery deterioration estimation system, a storage battery deterioration estimation method, and a storage battery deterioration estimation program capable of appropriately estimating the deterioration state of the storage battery even when the storage battery is discharged for a predetermined time with an actual load. And

上記目的を達成するために請求項1に記載の発明は、複数の蓄電池を監視する監視装置と、前記各蓄電池に配設された蓄電池管理装置とが通信自在に接続され、前記各蓄電池管理装置は、前記蓄電池が負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを測定して前記監視装置に送信し、前記監視装置は、前記放電データを記憶する記憶手段と、前記記憶手段に記憶された前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析する分析手段と、前記分析手段による分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する抽出手段と、を備える、ことを特徴とする蓄電池劣化推定システムである。   In order to achieve the above object, according to the first aspect of the present invention, a monitoring device for monitoring a plurality of storage batteries and a storage battery management device arranged in each storage battery are connected to be able to communicate, and each storage battery management device is connected. Measures the discharge data including the discharge current and the voltage at the end of discharge when the storage battery is discharged to the load facility for a predetermined time and transmits it to the monitoring device, and the monitoring device stores the discharge data Based on the discharge data of each storage battery stored in the storage means and the storage means, the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge are divided at a predetermined quantile point. A storage battery deterioration estimation system comprising: analysis means for performing regression analysis of points; and extraction means for extracting storage batteries belonging to the predetermined quantile or lower based on an analysis result by the analysis means. A.

この発明によれば、各蓄電池が負荷設備に対して所定時間放電すると、対応する蓄電池管理装置が放電電流と放電終了時電圧を含む放電データを測定して監視装置に送信し、監視装置は、記憶手段によって放電データを記憶、蓄積する。そして、監視装置は、記憶された放電データに基づいて、分析手段によって放電率と放電終了時電圧を所定の分位点で分位点回帰分析し、この分析結果に基づいて、抽出手段によって所定の分位点以下に属する蓄電池を抽出する。   According to this invention, when each storage battery is discharged to the load facility for a predetermined time, the corresponding storage battery management device measures discharge data including the discharge current and the discharge end voltage and transmits it to the monitoring device. The storage unit stores and accumulates discharge data. Based on the stored discharge data, the monitoring device performs the quantile regression analysis on the discharge rate and the discharge end voltage at a predetermined quantile by the analyzing unit, and on the basis of the analysis result, the extracting unit performs a predetermined regression analysis. The storage batteries belonging to the quantile below are extracted.

請求項2に記載の発明は、請求項1に記載の蓄電池劣化推定システムにおいて、前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、前記分析手段は、前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、ことを特徴とする。   According to a second aspect of the present invention, in the storage battery deterioration estimation system according to the first aspect, the predetermined time includes a first predetermined time which is a discharge time when discharging only a predetermined discharge amount, and a discharge amount. A second predetermined time that is a non-related fixed time, and the analysis means includes a first group that is a group of storage batteries discharged for the first predetermined time, and a storage battery that is discharged for the second predetermined time. The analysis is performed on each of the second group which is a group.

請求項3に記載の発明は、請求項1または2に記載の蓄電池劣化推定システムにおいて、前記所定の分位点を任意の値に変更可能である、ことを特徴とする。   The invention according to claim 3 is characterized in that, in the storage battery deterioration estimation system according to claim 1 or 2, the predetermined quantile can be changed to an arbitrary value.

請求項4に記載の発明は、複数の蓄電池がそれぞれの負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを記憶し、前記記憶した前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析し、前記分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する、ことを特徴とする蓄電池劣推定定方法である。   The invention according to claim 4 stores discharge data including a discharge current and a voltage at the end of discharge when a plurality of storage batteries are discharged to each load facility for a predetermined time, and discharges the stored storage batteries. Based on the data, the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge are quantized at a predetermined quantile, and based on the analysis result, the predetermined A storage battery inferior estimation method for extracting storage batteries belonging to a quantile or lower.

請求項5に記載の発明は、請求項4に記載の蓄電池劣化推定方法において、前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、ことを特徴とする。   According to a fifth aspect of the present invention, in the storage battery deterioration estimation method according to the fourth aspect of the present invention, the predetermined time includes a first predetermined time that is a discharge time when discharging only a predetermined discharge amount, and a discharge amount. And a second group of storage batteries discharged only for the second predetermined time, and a second group of storage batteries discharged for the first predetermined time. The above analysis is performed on each of the groups.

請求項6に記載の発明は、コンピュータを、複数の蓄電池がそれぞれの負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを記憶する記憶手段と、前記記憶手段に記憶された前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析する分析手段と、前記分析手段による分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する抽出手段、として機能させるための蓄電池劣化推定プログラムである。   According to a sixth aspect of the present invention, there is provided a storage means for storing discharge data including a discharge current and a discharge end voltage when a plurality of storage batteries are discharged to each load facility for a predetermined time. Based on the discharge data of each storage battery stored in the means, an analysis for performing a quantile regression analysis on a discharge rate indicating a ratio of the discharge current to the capacity of the storage battery and a voltage at the end of discharge at a predetermined quantile point And a storage battery deterioration estimation program for functioning as an extraction means for extracting a storage battery belonging to the predetermined quantile or lower based on an analysis result by the analysis means.

請求項7に記載の発明は、請求項6に記載の蓄電池劣化推定プログラムにおいて、前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、前記分析手段は、前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、ことを特徴とする。   According to a seventh aspect of the present invention, in the storage battery deterioration estimation program according to the sixth aspect, the predetermined time includes a first predetermined time that is a discharge time when discharging only a predetermined discharge amount, and a discharge amount. A second predetermined time that is a non-related fixed time, and the analysis means includes a first group that is a group of storage batteries discharged for the first predetermined time, and a storage battery that is discharged for the second predetermined time. The analysis is performed on each of the second group which is a group.

請求項1、請求項4および請求項6に記載の発明によれば、複数の蓄電池がそれぞれの負荷設備に対して(実負荷で)所定時間放電した際の放電率と放電終了時電圧を分位点回帰分析して、所定の分位点以下に属する蓄電池を抽出するため、蓄電池の劣化状態を適正に推定することが可能となる。すなわち、所定の分位点を例えば1%とした場合、全体の1%以下に属する蓄電池、つまり、他の多くの蓄電池に比べて特異であり劣化(容量低下)している可能性が高い蓄電池を抽出することができる。このため、そのような蓄電池は、従来の判定方法で「正常」と判定されても、異常・劣化に近いものであると推定することが可能となる。   According to the first, fourth, and sixth aspects of the present invention, the discharge rate and the discharge end voltage when a plurality of storage batteries are discharged for a predetermined time (with an actual load) to each load facility are divided. Since the rank regression analysis is performed and the storage batteries belonging to a predetermined quantile or less are extracted, it is possible to appropriately estimate the deterioration state of the storage battery. That is, when the predetermined quantile is, for example, 1%, storage batteries belonging to 1% or less of the whole, that is, storage batteries that are more specific and more likely to be deteriorated (decrease in capacity) than many other storage batteries. Can be extracted. For this reason, even if it determines with such a storage battery being "normal" by the conventional determination method, it becomes possible to estimate that it is a thing close | similar to abnormality and deterioration.

この際、各蓄電池において放電時の実負荷・放電電流が異なるが、蓄電池の容量に対する放電電流の割合を示す放電率と放電終了時電圧を分位点回帰分析するため、放電電流が異なっても各蓄電池の劣化状態を適正に推定することが可能となる。そして、このようにして蓄電池の劣化状態を適正に推定可能となるため、蓄電池の保守や交換などを適正・早期かつ計画的に行うことが可能となる。   At this time, although the actual load and discharge current at the time of discharge differ in each storage battery, the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge are analyzed by quantile regression, so even if the discharge current is different It becomes possible to estimate the deterioration state of each storage battery appropriately. And since the deterioration state of a storage battery can be estimated appropriately in this way, it becomes possible to perform maintenance, replacement, etc. of the storage battery appropriately, early and systematically.

請求項2、請求項5および請求項7に記載の発明によれば、第1の所定時間だけ放電した蓄電池群と、第2の所定時間だけ放電した蓄電池群に対して、それぞれ分位点回帰分析して蓄電池を抽出するため、放電時間が異なる場合であっても、同じ時間だけ放電した蓄電池群のなかから、劣化している可能性が高い蓄電池を抽出することが可能となる。   According to the invention of claim 2, claim 5 and claim 7, the quantile regression is performed for the storage battery group discharged for the first predetermined time and the storage battery group discharged for the second predetermined time, respectively. Since a storage battery is extracted by analysis, it is possible to extract a storage battery that is highly likely to be deteriorated from a group of storage batteries that have been discharged for the same time even when the discharge times are different.

請求項3に記載の発明によれば、所定の分位点を任意の値に変更可能なため、劣化判定基準や蓄電池の経年数、蓄電池の特性などに応じて、所定の分位点を所望の値に設定することで、劣化の可能性が高い蓄電池をより適正に抽出することが可能となる。   According to the invention described in claim 3, since the predetermined quantile can be changed to an arbitrary value, the predetermined quantile is desired in accordance with the deterioration criterion, the age of the storage battery, the characteristics of the storage battery, and the like. By setting to this value, it becomes possible to more appropriately extract a storage battery having a high possibility of deterioration.

この発明の実施の形態に係る蓄電池劣化推定システムを示す概略構成図である。It is a schematic block diagram which shows the storage battery deterioration estimation system which concerns on embodiment of this invention. 図1の蓄電池劣化推定システムにおける劣化推定試験での電圧変化を示す図である。It is a figure which shows the voltage change in the deterioration estimation test in the storage battery deterioration estimation system of FIG. 図1の蓄電池劣化推定システムの監視装置の概略構成ブロック図である。It is a schematic block diagram of the monitoring apparatus of the storage battery deterioration estimation system of FIG. 図3の監視装置の分析タスクによる3時間放電群に対する分析結果を示す図である。It is a figure which shows the analysis result with respect to the 3-hour discharge group by the analysis task of the monitoring apparatus of FIG. 図3の監視装置の分析タスクによる30%放電群に対する分析結果を示す図である。It is a figure which shows the analysis result with respect to the 30% discharge group by the analysis task of the monitoring apparatus of FIG. 図1の蓄電池劣化推定システムによる蓄電池劣化推定方法を示すフローチャートである。It is a flowchart which shows the storage battery deterioration estimation method by the storage battery deterioration estimation system of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る蓄電池劣化推定システム1を示す概略構成図である。この蓄電池劣化推定システム1は、蓄電池の劣化状態(容量低下状態)を推定するシステムであり、この実施の形態では、セル(単位電池・二次電池)2が複数(例えば、23セル)直列に接続された組電池20全体を推定対象の蓄電池とし、組電池20が複数のサイトRにそれぞれ配設されているものとする。また、各組電池20の公称電圧は同等であるとする。   FIG. 1 is a schematic configuration diagram showing a storage battery deterioration estimation system 1 according to an embodiment of the present invention. This storage battery deterioration estimation system 1 is a system that estimates the deterioration state (capacity reduction state) of a storage battery. In this embodiment, a plurality of cells (for example, 23 cells) 2 (for example, 23 cells) are connected in series. Assume that the connected assembled battery 20 as a whole is a storage battery to be estimated, and the assembled battery 20 is disposed at each of a plurality of sites R. Further, it is assumed that the nominal voltages of the assembled batteries 20 are the same.

各サイトRは、監視センタCから遠隔地に位置し、監視センタCには、各組電池20を監視する監視装置5が設置され、各組電池20には、蓄電池管理装置3が配設され、監視装置5と各蓄電池管理装置3とは、通信網NWを介して通信自在に接続されている。ここで、サイトRおよび組電池20は、膨大な数(例えば、数千〜数万)を有し、後述する分位点回帰分析を適正に行える数となっており、また、1サイトRに複数の組電池20および蓄電池管理装置3が配設されている場合を含む。   Each site R is located at a remote location from the monitoring center C. In the monitoring center C, a monitoring device 5 for monitoring each assembled battery 20 is installed, and in each assembled battery 20, a storage battery management device 3 is arranged. The monitoring device 5 and each storage battery management device 3 are communicably connected via a communication network NW. Here, the site R and the assembled battery 20 have an enormous number (for example, several thousand to several tens of thousands), and are numbers that can appropriately perform the quantile regression analysis described later. The case where the some assembled battery 20 and the storage battery management apparatus 3 are arrange | positioned is included.

さらに、この実施の形態では、通信機器などの負荷設備102に対してバックアップ電源として機能するシール型鉛蓄電池を対象蓄電池とする場合について、主として以下に説明する。また、各組電池20は、整流器4に接続され、商用電源101からの電力が整流器4で直流に変換されて組電池20に供給され、組電池20が充電されるようになっている。さらに、整流器4には負荷設備102が接続され、同様にして直流電力が負荷設備102に供給され、商用電源101が停電すると、組電池20から負荷設備102に直流電力が供給されるようになっている。ここで、負荷設備102は、整流器4や組電池20から電力を供給して運用する設備であり、蓄電池を容量試験等するための設備を除く。   Furthermore, in this embodiment, the case where a sealed lead-acid battery that functions as a backup power source for the load facility 102 such as a communication device is the target storage battery will be mainly described below. Each assembled battery 20 is connected to the rectifier 4, and the electric power from the commercial power supply 101 is converted into direct current by the rectifier 4 and supplied to the assembled battery 20, so that the assembled battery 20 is charged. Further, the load facility 102 is connected to the rectifier 4, and DC power is supplied to the load facility 102 in the same manner. When the commercial power source 101 is powered off, DC power is supplied from the assembled battery 20 to the load facility 102. ing. Here, the load facility 102 is a facility that operates by supplying power from the rectifier 4 or the assembled battery 20, and excludes facilities for performing capacity tests on the storage battery.

また、各サイトRの整流器4は、組電池20に対する充電電流値と放電電流値とを計測する機能を備え、さらに、通信網NWを介して監視装置5と通信自在に接続されている。また、整流器4は、組電池20を試験的に放電させる日時(放電スケジュール)を記憶し、この日時に至ると出力電圧を低下させる。これにより、並列に接続された組電池20が、負荷設備102に対して放電して劣化推定試験が行われ、その放電電流値を整流器4が監視装置5に送信する。   The rectifier 4 at each site R has a function of measuring a charging current value and a discharging current value with respect to the assembled battery 20, and is connected to the monitoring device 5 via a communication network NW so as to be communicable. Moreover, the rectifier 4 memorize | stores the date (discharge schedule) which discharges the assembled battery 20 experimentally, and will reduce an output voltage, if this date is reached. Thereby, the assembled battery 20 connected in parallel is discharged with respect to the load equipment 102, a deterioration estimation test is performed, and the rectifier 4 transmits the discharge current value to the monitoring device 5.

蓄電池管理装置3は、組電池20内の各セル2の電圧などを常時測定する装置であり、既知・既存の蓄電池管理装置と同等の構成となっている。すなわち、各セル2の電圧や組電池20の総電圧を常時測定し、測定電圧値が所定の適正な電圧範囲外の場合に、異常検出結果を監視装置5に送信・通知する。また、組電池20の温度(周囲温度)を常時測定し、測定温度を定期的に監視装置5に送信する機能を備えている。さらに、劣化推定試験が行われた場合に、試験終了時の各セル2の電圧値(放電終了時電圧)や組電池20の総電圧値(放電終了時電圧)を監視装置5に送信する機能を備えている。   The storage battery management device 3 is a device that constantly measures the voltage of each cell 2 in the assembled battery 20 and has the same configuration as a known and existing storage battery management device. That is, the voltage of each cell 2 and the total voltage of the assembled battery 20 are constantly measured, and when the measured voltage value is outside a predetermined appropriate voltage range, the abnormality detection result is transmitted / notified to the monitoring device 5. Moreover, the temperature (ambient temperature) of the assembled battery 20 is always measured, and the function which transmits measured temperature to the monitoring apparatus 5 regularly is provided. Furthermore, when the deterioration estimation test is performed, a function of transmitting to the monitoring device 5 the voltage value of each cell 2 at the end of the test (discharge end voltage) and the total voltage value of the assembled battery 20 (discharge end voltage). It has.

このように、この実施の形態では、整流器4が劣化推定試験時の放電電流(電流値)を監視装置5に送信し、蓄電池管理装置3が劣化推定試験時の放電終了時電圧(電圧値)を監視装置5に送信する。つまり、整流器4が蓄電池管理装置3の一部として機能し、整流器4と蓄電池管理装置3とで、放電電流と放電終了時電圧を含む放電データを測定して監視装置5に送信する。これに対して、蓄電池管理装置3のみで全放電データを測定して監視装置5に送信してもよい。また、後述するように、放電データには、蓄電池管理装置3または整流器4で測定・判定等された判定結果、放電開始時電圧、放電開始日時などを含む。   Thus, in this embodiment, the rectifier 4 transmits the discharge current (current value) at the time of the deterioration estimation test to the monitoring device 5, and the storage battery management device 3 has the voltage at the end of discharge (voltage value) at the time of the deterioration estimation test. Is transmitted to the monitoring device 5. That is, the rectifier 4 functions as a part of the storage battery management device 3, and the rectifier 4 and the storage battery management device 3 measure discharge data including the discharge current and the voltage at the end of discharge and transmit it to the monitoring device 5. In contrast, the total discharge data may be measured only by the storage battery management device 3 and transmitted to the monitoring device 5. Further, as will be described later, the discharge data includes a determination result measured / determined by the storage battery management device 3 or the rectifier 4, a discharge start voltage, a discharge start date and time, and the like.

ここで、劣化推定試験では、組電池20が負荷設備102に対して実負荷(実際の負荷に応じた電流値)で所定時間放電し、所定時間(試験時間)までに所定電圧に達した場合に「異常」と判定する。また、所定時間や所定電圧は、組電池20(セル2)の容量や実負荷などに基づいて設定されており、所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含む。   Here, in the degradation estimation test, the assembled battery 20 is discharged for a predetermined time with an actual load (current value corresponding to the actual load) to the load facility 102 and reaches a predetermined voltage by a predetermined time (test time). Is determined as “abnormal”. The predetermined time and the predetermined voltage are set based on the capacity of the assembled battery 20 (cell 2), the actual load, and the like, and the predetermined time is a discharge time when discharging by a predetermined discharge amount. And a second predetermined time which is a fixed time regardless of the discharge amount.

具体的には、第1の所定時間が、組電池20の容量(定格容量、正規容量)の30%を放電したことになる時間(30%放電時間)に演算、設定され、第2の所定時間が、実負荷・放電電流(放電率)に応じて3時間または1時間に設定・選定されている。そして、第1の所定時間または第2の所定時間のうち、短い時間を所定時間(試験時間)とする。ここで、試験時間が、第1の所定時間の場合の放電を「30%放電」、第2の所定時間の3時間の場合の放電を「3時間放電」、第2の所定時間の1時間の場合の放電を「1時間放電」とする。   Specifically, the first predetermined time is calculated and set to a time (30% discharge time) when 30% of the capacity (rated capacity, normal capacity) of the assembled battery 20 is discharged, and the second predetermined time is set. The time is set / selected to 3 hours or 1 hour depending on the actual load / discharge current (discharge rate). A short time out of the first predetermined time or the second predetermined time is defined as a predetermined time (test time). Here, the discharge when the test time is the first predetermined time is “30% discharge”, the discharge when the second predetermined time is 3 hours is “3 hour discharge”, and the second predetermined time is 1 hour. The discharge in this case is referred to as “1 hour discharge”.

この劣化推定試験では、図2に示すように、試験前においては、整流器4の出力電圧と組電池20の総電圧・端子電圧とは同じフロート充電電圧Vfであり、試験時に整流器4の出力電圧Vrが低下すると,組電池20が放電を開始する。そして、組電池20の総電圧V1が所定時間(試験時間)までに所定電圧(試験中止電圧)Vsに達しない場合には、この試験では「正常」と判定され、試験時間到達時の総電圧V1の値が放電終了時電圧(試験終了電圧)となり、試験時間が放電時間となる。一方、組電池20の総電圧V2が所定時間までに所定電圧Vsに達した場合には、この試験で「異常」と判定され、所定電圧Vsの値が放電終了時電圧となり、所定電圧Vsに達するまでの時間が放電時間となる。   In this deterioration estimation test, as shown in FIG. 2, before the test, the output voltage of the rectifier 4 and the total voltage / terminal voltage of the assembled battery 20 are the same float charging voltage Vf. When Vr decreases, the assembled battery 20 starts discharging. When the total voltage V1 of the assembled battery 20 does not reach the predetermined voltage (test stop voltage) Vs by the predetermined time (test time), it is determined as “normal” in this test, and the total voltage when the test time is reached. The value of V1 becomes the voltage at the end of discharge (test end voltage), and the test time becomes the discharge time. On the other hand, when the total voltage V2 of the assembled battery 20 reaches the predetermined voltage Vs by a predetermined time, it is determined as “abnormal” in this test, and the value of the predetermined voltage Vs becomes the voltage at the end of discharge, and becomes the predetermined voltage Vs. The time to reach is the discharge time.

試験後は、整流器4の出力電圧がフロート充電電圧Vfに復旧して、組電池20が充電される。ここで、図2中符号Vtは、組電池20の放電が可能な最低使用電圧である。   After the test, the output voltage of the rectifier 4 is restored to the float charging voltage Vf, and the assembled battery 20 is charged. Here, the reference symbol Vt in FIG. 2 is the lowest usable voltage at which the assembled battery 20 can be discharged.

このような劣化推定試験が終了すると、上記のように、組電池20の識別情報、判定結果、放電電流、放電開始時電圧、放電終了時電圧、周囲温度、放電開始日時および放電終了日時を含む放電データが、整流器4および蓄電池管理装置3から監視装置5に送信される。   When such a deterioration estimation test is completed, as described above, the identification information, determination result, discharge current, discharge start voltage, discharge end voltage, ambient temperature, discharge start date and time and discharge end date and time of the assembled battery 20 are included. Discharge data is transmitted from the rectifier 4 and the storage battery management device 3 to the monitoring device 5.

監視装置5は、各組電池20の状態を監視する装置であり、監視機能の他に、図3に示すように、主として、電池データベース(電池情報記憶手段)51と、放電データベース(記憶手段)52と、放電率タスク(放電率演算手段)53と、分類タスク(分類手段)54と、分析タスク(分析手段)55と、抽出タスク(抽出手段)56と、これらを制御などする中央処理部57と、を備えている。   The monitoring device 5 is a device that monitors the state of each assembled battery 20. In addition to the monitoring function, the monitoring device 5 mainly includes a battery database (battery information storage means) 51 and a discharge database (storage means) as shown in FIG. 52, a discharge rate task (discharge rate calculation means) 53, a classification task (classification means) 54, an analysis task (analysis means) 55, an extraction task (extraction means) 56, and a central processing unit that controls these 57.

電池データベース51は、各組電池20(セル2)に関する情報(蓄電池データ)を記憶したデータベースであり、組電池20の識別情報ごとに、組電池20の定格容量、セル2の数、経年数(製造年月)、設置されているサイトRの情報などが記憶されている。放電データベース52は、放電データを記憶するデータベースであり、各サイトRの整流器4および蓄電池管理装置3から受信した放電データを記憶、蓄積する。   The battery database 51 is a database that stores information (storage battery data) related to each assembled battery 20 (cell 2). For each piece of identification information of the assembled battery 20, the rated capacity of the assembled battery 20, the number of cells 2, the age ( Manufacturing date), information of the installed site R, and the like are stored. The discharge database 52 is a database that stores discharge data, and stores and accumulates discharge data received from the rectifier 4 and the storage battery management device 3 at each site R.

タスク(蓄電池劣化推定プログラム)53〜56は、組電池20の劣化状態を推定するために、任意に、あるいは定期的に起動されるタスク・プログラムである。   The tasks (storage battery deterioration estimation programs) 53 to 56 are task programs that are arbitrarily or periodically started in order to estimate the deterioration state of the assembled battery 20.

放電率タスク53は、各劣化推定試験における放電率を演算するプログラムであり、組電池20の容量(定格容量、正規容量)に対する放電電流の割合を示す放電率を、「放電電流÷定格容量」の式に従って演算する。具体的には、放電データベース52からある組電池20の放電データを取得するとともに、電池データベース51からこの組電池20の蓄電池データを取得し、放電電流を定格容量で除算して放電率を算出する。さらに、劣化推定試験時の温度(周囲温度)に基づいて、放電率を標準温度(例えば、25℃)に換算する。このような演算を、放電データベース52に記憶されたすべての放電データ・劣化推定試験に対して行う。   The discharge rate task 53 is a program for calculating the discharge rate in each deterioration estimation test. The discharge rate indicating the ratio of the discharge current to the capacity (rated capacity, normal capacity) of the assembled battery 20 is expressed as “discharge current ÷ rated capacity”. Calculate according to the following formula. Specifically, the discharge data of the assembled battery 20 is acquired from the discharge database 52, the storage battery data of the assembled battery 20 is acquired from the battery database 51, and the discharge rate is calculated by dividing the discharge current by the rated capacity. . Furthermore, the discharge rate is converted to a standard temperature (for example, 25 ° C.) based on the temperature (ambient temperature) during the deterioration estimation test. Such calculation is performed for all discharge data / deterioration estimation tests stored in the discharge database 52.

分類タスク54は、各劣化推定試験を、第1の所定時間だけ放電した蓄電池群(放電群)である第1のグループと、第2の所定時間だけ放電した蓄電池群(放電群)である第2のグループとに、分類するプログラムである。すなわち、各劣化推定試験の放電(試験時間)が、30%放電(30%放電時間)か3時間放電か1時間放電かを、放電率タスク53で演算された放電率に従って分類する。   The classification task 54 includes a first group that is a storage battery group (discharge group) discharged for a first predetermined time and a storage battery group (discharge group) that is discharged for a second predetermined time. This is a program for classifying into two groups. That is, according to the discharge rate calculated in the discharge rate task 53, the discharge (test time) of each deterioration estimation test is 30% discharge (30% discharge time), 3 hour discharge, or 1 hour discharge.

例えば、放電率に従って30%放電時の第1の所定時間(30%放電時間)を演算するとともに、放電率に従って第2の所定時間が3時間か1時間かを判定し、第1の所定時間または第2の所定時間のうち短い時間を試験時間とする。あるいは、放電開始日時と放電終了日時との差による放電時間に従って、30%放電か3時間放電かなどを分類する。このような分類をすべての劣化推定試験に対して行う。ここで、30%放電の蓄電池群を「30%放電群」(第1のグループ)、3時間放電の蓄電池群を「3時間放電群」(第2のグループ)、1時間放電の蓄電池群を「1時間放電群」(第2のグループ)とする。   For example, the first predetermined time at 30% discharge (30% discharge time) is calculated according to the discharge rate, and the second predetermined time is determined to be 3 hours or 1 hour according to the discharge rate. Alternatively, a short time of the second predetermined time is set as the test time. Alternatively, according to the discharge time depending on the difference between the discharge start date and time and the discharge end date and time, it is classified as 30% discharge or 3 hour discharge. Such classification is performed for all deterioration estimation tests. Here, the storage battery group of 30% discharge is referred to as “30% discharge group” (first group), the storage battery group of 3 hour discharge is referred to as “3 hour discharge group” (second group), and the storage battery group of 1 hour discharge is referred to as Let it be a “1-hour discharge group” (second group).

分析タスク55は、放電データベース52に記憶された各組電池20の放電データに基づいて、組電池20の容量(定格容量、正規容量)に対する放電電流の割合を示す放電率と放電終了時電圧を、所定の分位点で分位点回帰分析するプログラムである。すなわち、放電率タスク53で演算された放電率と放電データ中の放電終了時電圧を全劣化推定試験分、所定の分位点で分位点回帰分析して、所定の分位点での回帰直線を演算する。ここで、所定の分位点は、任意の値に変更・設定可能で、しかも、複数の値を設定可能となっている。   Based on the discharge data of each assembled battery 20 stored in the discharge database 52, the analysis task 55 calculates a discharge rate indicating the ratio of the discharge current to the capacity (rated capacity, normal capacity) of the assembled battery 20 and the voltage at the end of discharge. , A quantile regression analysis at a predetermined quantile. In other words, the discharge rate calculated in the discharge rate task 53 and the voltage at the end of discharge in the discharge data are analyzed for quantile regression at a predetermined quantile for all the degradation estimation tests, and the regression at the predetermined quantile is performed. Calculate a straight line. Here, the predetermined quantile can be changed / set to an arbitrary value, and a plurality of values can be set.

具体的には、放電率をx、放電終了時電圧をyとして、分位点回帰分析を実施する。この際、分位点回帰分析の定式化は以下の通りである。

Figure 2017075921
Specifically, quantile regression analysis is performed with the discharge rate as x and the voltage at the end of discharge as y. At this time, the formulation of quantile regression analysis is as follows.
Figure 2017075921

そして、所定の分位点τを設定し、それによって回帰直線・回帰関数を求める。例えば、図4、図5に示すように、分位点τを0.01とすると1%回帰直線L1、L11を演算し、分位点τを0.05とすると5%回帰直線L2、L12を演算し、分位点τを0.5とすると50%回帰直線L3、L13を演算する。この実施の形態では、0.01と0.05の2つの分位点が設定されているとする。   Then, a predetermined quantile τ is set, thereby obtaining a regression line / regression function. For example, as shown in FIGS. 4 and 5, if the quantile τ is 0.01, the 1% regression lines L1 and L11 are calculated, and if the quantile τ is 0.05, the 5% regression lines L2 and L12 are calculated. When the quantile τ is 0.5, 50% regression lines L3 and L13 are calculated. In this embodiment, it is assumed that two quantile points of 0.01 and 0.05 are set.

このような分析タスク55は、第1の所定時間だけ放電した蓄電池群である第1のグループと、第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ分析を行う。すなわち、この実施の形態では、30%放電群と3時間放電群と1時間放電群のそれぞれに対して、3つの分位点で分位点回帰分析して回帰直線を演算する。ここで、図4は、3時間放電群の分析結果を示し、図5は、30%放電群の分析結果を示す。   Such an analysis task 55 performs an analysis on a first group that is a storage battery group that has been discharged for a first predetermined time and a second group that is a storage battery group that has been discharged for a second predetermined time. . That is, in this embodiment, a regression line is calculated by performing quantile regression analysis with three quantiles for each of the 30% discharge group, the 3-hour discharge group, and the 1-hour discharge group. Here, FIG. 4 shows the analysis result of the 3-hour discharge group, and FIG. 5 shows the analysis result of the 30% discharge group.

抽出タスク56は、分析タスク55による分析結果に基づいて、所定の分位点以下に属する組電池20を抽出するプログラムである。すなわち、この実施の形態では、所定の分位点を0.01と0.05とし、0.01の分位点以下(全体の下位1%以下)を警告領域とし、0.05の分位点以下(全体の下位5%以下)を注意領域とする。そして、例えば、図4の3時間放電群では、1%回帰直線L1以下(放電終了時電圧がL1以下)に属する組電池20を抽出して警告対象電池とし、5%回帰直線L2以下(放電終了時電圧がL2以下)に属する組電池20を抽出して注意対象電池とする。   The extraction task 56 is a program that extracts the assembled batteries 20 belonging to a predetermined quantile or lower based on the analysis result by the analysis task 55. That is, in this embodiment, the predetermined quantiles are 0.01 and 0.05, the quantiles below 0.01 (the lower 1% or less of the whole) are warning areas, and the quantiles are 0.05. The attention area is below the point (less than 5% of the total). For example, in the 3-hour discharge group of FIG. 4, the assembled battery 20 belonging to 1% regression line L1 or less (the voltage at the end of discharge is L1 or less) is extracted and used as a warning target battery, and 5% regression line L2 or less (discharge) The assembled battery 20 belonging to the end-time voltage of L2 or less) is extracted and set as a caution target battery.

さらに、警告対象電池の組電池20の蓄電池データを電池データベース51から取得し、警告対象として蓄電池データをディスプレイや他の設備などに出力する。同様に、注意対象電池の組電池20の蓄電池データを電池データベース51から取得し、注意対象として蓄電池データをディスプレイや他の設備などに出力するものである。このような抽出タスク56は、第1のグループと第2のグループに対してそれぞれ、つまり、30%放電群、3時間放電群および1時間放電群においてそれぞれ抽出を行う。   Furthermore, the storage battery data of the assembled battery 20 of the warning target battery is acquired from the battery database 51, and the storage battery data is output as a warning target to a display or other equipment. Similarly, the storage battery data of the assembled battery 20 of the caution target battery is acquired from the battery database 51, and the storage battery data is output as a caution target to a display or other equipment. Such an extraction task 56 performs extraction for the first group and the second group, that is, in the 30% discharge group, the 3-hour discharge group, and the 1-hour discharge group, respectively.

次に、このような構成の蓄電池劣化推定システム1の作用および、蓄電池劣化推定システム1による蓄電池劣化推定方法などについて説明する。   Next, an operation of the storage battery deterioration estimation system 1 having such a configuration, a storage battery deterioration estimation method by the storage battery deterioration estimation system 1, and the like will be described.

まず、組電池20に対する劣化推定試験が行われるたびに、整流器4からの放電電流と蓄電池管理装置3からの放電終了時電圧などが、放電データとして逐次監視装置5に送信され、放電データベース52に記憶、蓄積される(記憶ステップ)。   First, each time a deterioration estimation test is performed on the assembled battery 20, the discharge current from the rectifier 4, the voltage at the end of discharge from the storage battery management device 3, and the like are sequentially transmitted to the monitoring device 5 as discharge data. Stored and accumulated (storage step).

次に、組電池20の劣化推定(蓄電池劣化推定プログラム)を実行するように監視装置5に指令・入力すると、図6に示すように、まず、放電データベース52から放電データを取得し(ステップS1)、放電率タスク53によって各劣化推定試験における放電率を演算する(ステップS2)。続いて、分類タスク54によって各劣化推定試験を30%放電群、3時間放電群または1時間放電群に分類する(ステップS3)。   Next, when the monitoring device 5 is instructed and input to execute the deterioration estimation of the battery pack 20 (storage battery deterioration estimation program), as shown in FIG. 6, first, discharge data is obtained from the discharge database 52 (step S1). ), The discharge rate in each deterioration estimation test is calculated by the discharge rate task 53 (step S2). Subsequently, the classification task 54 classifies each deterioration estimation test into a 30% discharge group, a 3-hour discharge group, or a 1-hour discharge group (step S3).

次に、30%放電群、3時間放電群および1時間放電群に対してそれぞれ、分析タスク55によって放電率と放電終了時電圧を所定の分位点で分位点回帰分析して、所定の分位点での回帰直線を演算する(ステップS4、分析ステップ)。続いて、抽出タスク56によって所定の分位点以下に属する組電池20を抽出する(ステップS5、抽出ステップ)。そして、警告対象および注意対象の組電池20の蓄電池データをディスプレイや他の設備などに出力するものである。   Next, for each of the 30% discharge group, the 3-hour discharge group, and the 1-hour discharge group, the analysis task 55 performs a quantile regression analysis at a predetermined quantile with respect to the discharge rate and the discharge end voltage. A regression line at the quantile is calculated (step S4, analysis step). Subsequently, the battery pack 20 belonging to a predetermined quantile or lower is extracted by the extraction task 56 (step S5, extraction step). Then, the storage battery data of the assembled battery 20 to be warned and cautioned is output to a display or other equipment.

以上のように、この蓄電池劣化判定システム1および蓄電池劣化判定方法によれば、複数の組電池20がそれぞれの負荷設備102に対して(実負荷で)所定時間放電した際の放電率と放電終了時電圧を分位点回帰分析して、所定の分位点以下に属する組電池20を抽出するため、組電池20の劣化状態を適正に推定することが可能となる。すなわち、所定の分位点が例えば1%の場合、全体の1%以下に属する組電池20、つまり、他の多くの組電池20に比べて特異であり劣化(容量低下)している可能性が高い組電池20を抽出することができる。このため、そのような組電池20は、従来の判定方法で「正常」と判定されても、異常・劣化に近いものであると推定することが可能となる。   As described above, according to the storage battery deterioration determination system 1 and the storage battery deterioration determination method, the discharge rate and the discharge end when the plurality of assembled batteries 20 are discharged for a predetermined time (with an actual load) to each load facility 102. Since the assembled battery 20 belonging to the predetermined quantile or lower is extracted by performing the quantile regression analysis on the hourly voltage, the deterioration state of the assembled battery 20 can be appropriately estimated. That is, when the predetermined quantile is 1%, for example, the assembled battery 20 belonging to 1% or less of the whole, that is, there is a possibility that it is peculiar and deteriorated (capacity reduction) compared to many other assembled batteries 20. Can be extracted. For this reason, even if such an assembled battery 20 is determined as “normal” by the conventional determination method, it is possible to estimate that the assembled battery 20 is close to abnormality / deterioration.

この際、各組電池20において放電時の実負荷・放電電流が異なるが、組電池20の定格容量に対する放電電流の割合を示す放電率と放電終了時電圧を分位点回帰分析するため、放電電流が異なっても各組電池20の劣化状態を適正に推定することが可能となる。そして、このようにして蓄電池の劣化状態を適正に推定可能となるため、蓄電池の保守や交換などを適正・早期かつ計画的に行うことが可能となる。   At this time, the actual load / discharge current at the time of discharge is different in each assembled battery 20, but the discharge rate indicating the ratio of the discharge current to the rated capacity of the assembled battery 20 and the voltage at the end of discharge are subjected to quantile regression analysis. Even if the currents are different, the deterioration state of each assembled battery 20 can be estimated appropriately. And since the deterioration state of a storage battery can be estimated appropriately in this way, it becomes possible to perform maintenance, replacement, etc. of the storage battery appropriately, early and systematically.

また、第1の所定時間だけ放電した第1のグループと第2の所定時間だけ放電した第2のグループに対して、つまり、30%放電群、3時間放電群および1時間放電群に対して、それぞれ分位点回帰分析して組電池20を抽出する。このため、放電時間が異なる場合であっても、同じ時間だけ放電した組電池20群のなかから、劣化している可能性が高い組電池20を抽出することが可能となる。   Also, for the first group discharged for the first predetermined time and the second group discharged for the second predetermined time, that is, for the 30% discharge group, the 3 hour discharge group and the 1 hour discharge group. The assembled battery 20 is extracted by the quantile regression analysis. For this reason, even when the discharge times are different, it is possible to extract the assembled battery 20 that is highly likely to be deteriorated from the group of assembled batteries 20 that have been discharged for the same time.

しかも、第1の所定時間が、所定の放電量だけ放電させる場合の放電時間に設定され、第2の所定時間が、放電量に関わらない一定時間に設定され、2つのうち短い時間が試験時間となっている。このため、試験時間が第1の所定時間の場合には、一律な放電量だけ放電させてより正確な推定を行うことが可能となり、試験時間が第2の所定時間の場合には、過剰な放電を防止して停電等における実放電・バックアップに対応することが可能となる。   In addition, the first predetermined time is set to a discharge time when discharging by a predetermined discharge amount, the second predetermined time is set to a fixed time regardless of the discharge amount, and the shorter of the two times is the test time. It has become. For this reason, when the test time is the first predetermined time, it is possible to perform a more accurate estimation by discharging only a uniform discharge amount. When the test time is the second predetermined time, an excessive amount is obtained. It becomes possible to cope with actual discharge and backup in the event of a power failure by preventing discharge.

また、所定の分位点を任意の値に変更可能なため、劣化判定基準や組電池20の経年数、組電池20の特性などに応じて、所定の分位点を所望の値に設定することで、劣化の可能性が高い組電池20をより適正に抽出することが可能となる。しかも、所定の分位点を複数の値に設定可能なため、複数の領域に属する組電池20、例えば上記のように、警告領域に属する組電池20と注意領域に属する組電池20とを同時に抽出することができ、利便性が高い。   In addition, since the predetermined quantile can be changed to an arbitrary value, the predetermined quantile is set to a desired value according to the deterioration criterion, the age of the assembled battery 20, the characteristics of the assembled battery 20, and the like. Thus, it becomes possible to more appropriately extract the assembled battery 20 having a high possibility of deterioration. Moreover, since the predetermined quantile can be set to a plurality of values, the assembled battery 20 belonging to a plurality of areas, for example, the assembled battery 20 belonging to the warning area and the assembled battery 20 belonging to the attention area as described above can be simultaneously used. It can be extracted and is very convenient.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、組電池20全体を推定対象の蓄電池としているが、単位電池(各セル2等)を推定対象の蓄電池としてもよい。また、シール型鉛蓄電池を対象とする場合のみならず、リチウムイオン二次電池などその他の蓄電池にも適用できることは、勿論である。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the entire assembled battery 20 is the storage battery to be estimated, but the unit battery (each cell 2 or the like) may be the storage battery to be estimated. Of course, the present invention can be applied not only to sealed lead-acid batteries but also to other storage batteries such as lithium ion secondary batteries.

また、放電データベース52に記憶された全劣化推定試験・全組電池20に対して、分位点回帰分析などを行って劣化推定しているが、所定・所望の劣化推定試験等に対してのみ、例えば、所定の期間に行われた劣化推定試験や所定の経年数の組電池20に対してのみ、劣化推定するようにしてもよい。さらに、劣化推定試験で「異常」と判定された組電池20を、劣化推定の対象から除外するようにしてもよい。   In addition, the deterioration estimation is performed by performing quantile regression analysis on the entire deterioration estimation test / all batteries 20 stored in the discharge database 52, but only for a predetermined / desired deterioration estimation test or the like. For example, the deterioration estimation may be performed only for the deterioration estimation test performed in a predetermined period or the assembled battery 20 having a predetermined age. Furthermore, the assembled battery 20 determined as “abnormal” in the deterioration estimation test may be excluded from the deterioration estimation targets.

一方、監視装置5に分析タスク55や抽出タスク56などを備えるのに代えて、汎用のコンピュータに次のような蓄電池劣化推定プログラムをインストールしてもよい。
コンピュータを、
複数の蓄電池がそれぞれの負荷設備102に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを記憶する記憶手段(放電データベース52)と、
記憶手段に記憶された各蓄電池の放電データに基づいて、蓄電池の容量に対する放電電流の割合を示す放電率と放電終了時電圧を、所定の分位点で分位点回帰分析する分析手段(分析タスク55)と、
分析手段による分析結果に基づいて、所定の分位点以下に属する蓄電池を抽出する抽出手段(抽出タスク56)、
として機能させるための蓄電池劣化推定プログラム。
On the other hand, instead of providing the monitoring device 5 with the analysis task 55, the extraction task 56, etc., the following storage battery deterioration estimation program may be installed in a general-purpose computer.
Computer
Storage means (discharge database 52) for storing discharge data including a discharge current and a voltage at the end of discharge when a plurality of storage batteries are discharged to each load facility 102 for a predetermined time;
Based on the discharge data of each storage battery stored in the storage means, an analysis means (analysis) that performs a regression analysis of the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge at a predetermined quantile. Task 55),
Extraction means (extraction task 56) for extracting storage batteries belonging to a predetermined quantile or lower based on the analysis result by the analysis means;
Storage battery deterioration estimation program to function as.

さらに、この蓄電池劣化推定プログラムの分析手段および抽出手段において、第1のグループと第2のグループに対して、つまり、30%放電群、3時間放電群および1時間放電群において、それぞれ分析および抽出を行うようにしてもよい。   Further, in the storage battery deterioration estimation program analysis means and extraction means, analysis and extraction are performed for the first group and the second group, that is, in the 30% discharge group, the 3-hour discharge group, and the 1-hour discharge group, respectively. May be performed.

1 蓄電池劣化判定システム
2 セル(蓄電池)
20 組電池
3 蓄電池管理装置
4 整流器(蓄電池管理装置)
5 監視装置
51 電池データベース(電池情報記憶手段)
52 放電データベース(記憶手段)
53 放電率タスク(放電率演算手段)
54 分類タスク(分類手段)
55 分析タスク(分析手段)
56 抽出タスク(抽出手段)
101 商用電源
102 負荷設備
NW 通信網
C 監視センタ
R サイト
1 Storage battery deterioration judgment system 2 cells (storage battery)
20 battery pack 3 storage battery management device 4 rectifier (storage battery management device)
5 Monitoring device 51 Battery database (battery information storage means)
52 Discharge database (storage means)
53 Discharge rate task (discharge rate calculation means)
54 Classification tasks (classification means)
55 Analysis Task (Analysis Means)
56 Extraction task (extraction means)
101 Commercial power supply 102 Load facility NW communication network C Monitoring center R Site

Claims (7)

複数の蓄電池を監視する監視装置と、前記各蓄電池に配設された蓄電池管理装置とが通信自在に接続され、
前記各蓄電池管理装置は、前記蓄電池が負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを測定して前記監視装置に送信し、
前記監視装置は、
前記放電データを記憶する記憶手段と、
前記記憶手段に記憶された前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析する分析手段と、
前記分析手段による分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する抽出手段と、を備える、
ことを特徴とする蓄電池劣化推定システム。
A monitoring device that monitors a plurality of storage batteries and a storage battery management device disposed in each storage battery are connected to be freely communicable,
Each of the storage battery management devices measures discharge data including a discharge current and a voltage at the end of discharge when the storage battery is discharged to a load facility for a predetermined time, and transmits to the monitoring device,
The monitoring device
Storage means for storing the discharge data;
Based on the discharge data of each storage battery stored in the storage means, the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge are quantized at a predetermined quantile. Analysis means to
An extraction means for extracting a storage battery belonging to the predetermined quantile or lower based on an analysis result by the analysis means,
A storage battery deterioration estimation system characterized by that.
前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、
前記分析手段は、前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、
ことを特徴とする請求項1に記載の蓄電池劣化推定システム。
The predetermined time includes a first predetermined time that is a discharge time when discharging only a predetermined discharge amount, and a second predetermined time that is a fixed time regardless of the discharge amount,
The analysis means performs the analysis on a first group that is a storage battery group that has been discharged for the first predetermined time and a second group that is a storage battery group that has been discharged for the second predetermined time. ,
The storage battery deterioration estimation system according to claim 1.
前記所定の分位点を任意の値に変更可能である、
ことを特徴とする請求項1または2のいずれか1項に記載の蓄電池劣化推定システム。
The predetermined quantile can be changed to an arbitrary value.
The storage battery deterioration estimation system according to any one of claims 1 and 2.
複数の蓄電池がそれぞれの負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを記憶し、
前記記憶した前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析し、
前記分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する、
ことを特徴とする蓄電池劣化推定方法。
When a plurality of storage batteries are discharged to each load facility for a predetermined time, discharge data including a discharge current and a discharge end voltage is stored,
Based on the stored discharge data of each storage battery, a discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of the discharge are quantized at a predetermined quantile,
Based on the analysis result, a storage battery belonging to the predetermined quantile or lower is extracted.
The storage battery deterioration estimation method characterized by the above-mentioned.
前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、
前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、
ことを特徴とする請求項4に記載の蓄電池劣化推定方法。
The predetermined time includes a first predetermined time that is a discharge time when discharging only a predetermined discharge amount, and a second predetermined time that is a fixed time regardless of the discharge amount,
The analysis is performed for each of a first group that is a storage battery group discharged for the first predetermined time and a second group that is a storage battery group that is discharged for the second predetermined time.
The storage battery deterioration estimation method according to claim 4.
コンピュータを、
複数の蓄電池がそれぞれの負荷設備に対して所定時間放電した際の、放電電流と放電終了時電圧を含む放電データを記憶する記憶手段と、
前記記憶手段に記憶された前記各蓄電池の放電データに基づいて、前記蓄電池の容量に対する前記放電電流の割合を示す放電率と前記放電終了時電圧を、所定の分位点で分位点回帰分析する分析手段と、
前記分析手段による分析結果に基づいて、前記所定の分位点以下に属する蓄電池を抽出する抽出手段、
として機能させるための蓄電池劣化推定プログラム。
Computer
Storage means for storing discharge data including a discharge current and a discharge end voltage when a plurality of storage batteries are discharged to each load facility for a predetermined time;
Based on the discharge data of each storage battery stored in the storage means, the discharge rate indicating the ratio of the discharge current to the capacity of the storage battery and the voltage at the end of discharge are quantized at a predetermined quantile. Analysis means to
Extraction means for extracting a storage battery belonging to the predetermined quantile or lower based on an analysis result by the analysis means;
Storage battery deterioration estimation program to function as.
前記所定時間には、所定の放電量だけ放電させる場合の放電時間である第1の所定時間と、放電量に関わらない一定時間である第2の所定時間と、を含み、
前記分析手段は、前記第1の所定時間だけ放電した蓄電池群である第1のグループと、前記第2の所定時間だけ放電した蓄電池群である第2のグループに対して、それぞれ前記分析を行う、
ことを特徴とする請求項6に記載の蓄電池劣化推定プログラム。
The predetermined time includes a first predetermined time that is a discharge time when discharging only a predetermined discharge amount, and a second predetermined time that is a fixed time regardless of the discharge amount,
The analysis means performs the analysis on a first group that is a storage battery group that has been discharged for the first predetermined time and a second group that is a storage battery group that has been discharged for the second predetermined time. ,
The storage battery deterioration estimation program according to claim 6.
JP2015204921A 2015-10-16 2015-10-16 Storage battery deterioration estimation system, storage battery deterioration estimation method and storage battery deterioration estimation program Active JP6532373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204921A JP6532373B2 (en) 2015-10-16 2015-10-16 Storage battery deterioration estimation system, storage battery deterioration estimation method and storage battery deterioration estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204921A JP6532373B2 (en) 2015-10-16 2015-10-16 Storage battery deterioration estimation system, storage battery deterioration estimation method and storage battery deterioration estimation program

Publications (2)

Publication Number Publication Date
JP2017075921A true JP2017075921A (en) 2017-04-20
JP6532373B2 JP6532373B2 (en) 2019-06-19

Family

ID=58550131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204921A Active JP6532373B2 (en) 2015-10-16 2015-10-16 Storage battery deterioration estimation system, storage battery deterioration estimation method and storage battery deterioration estimation program

Country Status (1)

Country Link
JP (1) JP6532373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061490A (en) * 2018-07-30 2018-12-21 中国电力科学研究院有限公司 A kind of prediction echelon is in the method and system of capacity acceleration decling phase using power battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250590A (en) * 2000-03-06 2001-09-14 Idemitsu Eng Co Ltd Method for deciding deterioration of storage battery
JP2005037380A (en) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The Degradation determining method and degradation determining device of storage battery
JP2007078672A (en) * 2005-08-19 2007-03-29 Ntt Facilities Inc Battery degradation determining apparatus, battery degradation determination method, and computer program
JP2007101209A (en) * 2005-09-30 2007-04-19 Ntt Facilities Inc Computing device of capacity of secondary battery, and secondary battery monitoring device and method
JP2009527903A (en) * 2006-02-17 2009-07-30 テスト アドバンテージ, インコーポレイテッド Method and apparatus for data analysis
WO2012060190A1 (en) * 2010-11-04 2012-05-10 三菱重工業株式会社 Battery abnormality prediction system
US20150192643A1 (en) * 2012-05-26 2015-07-09 Audi Ag Method and device for determining the actual capacity of a battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250590A (en) * 2000-03-06 2001-09-14 Idemitsu Eng Co Ltd Method for deciding deterioration of storage battery
JP2005037380A (en) * 2003-06-27 2005-02-10 Furukawa Electric Co Ltd:The Degradation determining method and degradation determining device of storage battery
JP2007078672A (en) * 2005-08-19 2007-03-29 Ntt Facilities Inc Battery degradation determining apparatus, battery degradation determination method, and computer program
JP2007101209A (en) * 2005-09-30 2007-04-19 Ntt Facilities Inc Computing device of capacity of secondary battery, and secondary battery monitoring device and method
JP2009527903A (en) * 2006-02-17 2009-07-30 テスト アドバンテージ, インコーポレイテッド Method and apparatus for data analysis
WO2012060190A1 (en) * 2010-11-04 2012-05-10 三菱重工業株式会社 Battery abnormality prediction system
US20150192643A1 (en) * 2012-05-26 2015-07-09 Audi Ag Method and device for determining the actual capacity of a battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109061490A (en) * 2018-07-30 2018-12-21 中国电力科学研究院有限公司 A kind of prediction echelon is in the method and system of capacity acceleration decling phase using power battery

Also Published As

Publication number Publication date
JP6532373B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
KR101882113B1 (en) Storage-battery evaluation device, energy storage system, and storage-battery evaluation method
JP6686166B2 (en) Device and method for detecting battery health status
US11300625B2 (en) Evaluation device, evaluation method and evaluation system for energy storage device
US11221367B2 (en) Evaluation device, energy storage system, evaluation method and non-transitory computer readable medium
JP5992186B2 (en) Secondary battery device and secondary battery device abnormality detection method
US10845421B2 (en) Storage battery evaluation device, energy storage system, and storage battery evaluation method
CN103917884A (en) Battery-state monitoring system
JP5089619B2 (en) Secondary battery deterioration diagnosis device
US20190353711A1 (en) Predicting remaining useful life of a battery
KR101547004B1 (en) Apparatus and method for estimating state of health of battery
JP2015121520A (en) Storage battery state monitoring device and storage battery device
KR20230057894A (en) Apparatus of Detecting Abnormal Portent Cell in Batter Pack and Method thereof
KR20160098348A (en) Method of estimating the residual capacities of a plurality of batteries
JP6532374B2 (en) Storage battery state analysis system, storage battery state analysis method, and storage battery state analysis program
TWI492482B (en) Master-slave type battery management system for accurate capacity gauge of battery pack
EP3278125A1 (en) Apparatus and methods for battery monitoring using discharge pulse measurements
JP6532373B2 (en) Storage battery deterioration estimation system, storage battery deterioration estimation method and storage battery deterioration estimation program
CN107658921B (en) Fixed energy management system of communication base station and management method thereof
US20220268853A1 (en) Battery diagnosis system, power system and battery diagnosis method
JP6384824B2 (en) Storage battery deterioration judgment system
Banthia et al. Determination of Battery Life Using State of Health Data and Linear Regression
KR102300924B1 (en) Remote monitoring system for battery of electric forklift truck and the like
WO2024090453A1 (en) Information processing method, information processing system, and program
KR20130090861A (en) Detection of the rechargeable battery life and batteries chargers monitoring system
CN118151030A (en) Battery monitoring method and system for railway backup power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6532373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250