JP2017074650A - End mill - Google Patents

End mill Download PDF

Info

Publication number
JP2017074650A
JP2017074650A JP2015204142A JP2015204142A JP2017074650A JP 2017074650 A JP2017074650 A JP 2017074650A JP 2015204142 A JP2015204142 A JP 2015204142A JP 2015204142 A JP2015204142 A JP 2015204142A JP 2017074650 A JP2017074650 A JP 2017074650A
Authority
JP
Japan
Prior art keywords
cutting edge
angle
end mill
edge
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015204142A
Other languages
Japanese (ja)
Other versions
JP6602148B2 (en
Inventor
平野 哲也
Tetsuya Hirano
哲也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015204142A priority Critical patent/JP6602148B2/en
Publication of JP2017074650A publication Critical patent/JP2017074650A/en
Application granted granted Critical
Publication of JP6602148B2 publication Critical patent/JP6602148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an end mill that is able to obtain satisfactory flatness and surface roughness when thinly processing a work piece made of a flexible material such as an aluminum alloy.SOLUTION: In an end mill, the concave of a bottom edge 4 is composed of a primary cutting edge 41 on the corner side of an outer peripheral cutting edge 3 and a secondary cutting edge 42 continuously formed from the primary cutting edge, and at least one cutting edge is provided, which has a gash rand such that the concave angle α of the primary cutting edge has 0° to 30°. The torsion angle γ of the outer peripheral cutting edge is set so as to fall in a range of 30° to 60°, and the concave angle θ of the concave face 5 of the bottom edge is set so as to fall in a range of 30°to 45°, which is smaller than the torsion angle γ.SELECTED DRAWING: Figure 1

Description

この発明はエンドミルに関するものであり、特に、厚みの薄いアルミニウム合金の底面仕上げ加工等に適したエンドミルに関する。   The present invention relates to an end mill, and more particularly to an end mill suitable for bottom finishing of a thin aluminum alloy.

電子機器の小型軽量化、高密度化に伴い、電子機器を構成するアルミニウム合金製の部品には良好な平面度と表面粗さの要求が高まっており、このような部品の加工にはエンドミルが使用される。
アルミニウム合金の加工に適したエンドミルとして、底刃のすくい角(アキシャルレーキ)を0°〜8°に設定したものがある(例えば特許文献1参照)。
また、アルミニウム合金の底面仕上げ加工に適したエンドミルとして、底刃のすかしが外周刃コーナ側の一次切れ刃と一次切れ刃から連続して形成された二次切れ刃から構成され、一次切れ刃のすかし角αは3′〜30′、二次切れ刃のすかし角は1°〜5°とし、一次切れ刃のすかし角αと二次切れ刃のすかし角βの関係をα<βとし、かつ一次切れ刃の量を外径の0.6%〜6.5%の長さとし、少なくともエンドミル先端部の一次切れ刃には0.002〜0.05mmの厚さのコーティング膜を被覆したものがある(例えば特許文献2参照)。
As electronic devices become smaller, lighter, and higher in density, aluminum alloy parts that make up electronic devices are increasingly required to have good flatness and surface roughness. End mills are used to process these parts. used.
As an end mill suitable for processing an aluminum alloy, there is one in which a rake angle (axial rake) of a bottom blade is set to 0 ° to 8 ° (see, for example, Patent Document 1).
Also, as an end mill suitable for bottom finishing of aluminum alloy, the bottom edge is composed of a primary edge and a secondary edge formed continuously from the primary edge and the primary edge on the outer peripheral edge corner. The watermark angle α is 3 ′ to 30 ′, the watermark angle of the secondary cutting edge is 1 ° to 5 °, and the relationship between the watermark angle α of the primary cutting edge and the watermark angle β of the secondary cutting edge is α <Β and the amount of the primary cutting edge is 0.6% to 6.5% of the outer diameter, and the coating film has a thickness of 0.002 to 0.05 mm at least on the primary cutting edge of the end mill tip. (For example, refer to Patent Document 2).

特開2004−90148号公報JP 2004-90148 A 特開2000−42822号公報JP 2000-42822 A

厚みの薄い部品をエンドミルにより加工すると、加工面に残留応力が生じ、加工時の固定具等を外した際に、応力のつりあいにより変形が生じ、平面度が悪化する。加工時に生じる残留応力は、加工に用いる工具の形状と加工条件の影響を大きく受ける。また、表面粗さも工具の形状と加工条件の影響を大きく受ける。
上記のような従来のエンドミルでは、何れの場合も加工面の表面粗さの改善は図られるものの、加工条件を調整しても要求された平面度と表面粗さを共に達成するのは困難であり、後工程によって手直しや磨き作業が発生するという問題があった。
When a thin part is processed by an end mill, residual stress is generated on the processed surface, and when a fixture or the like is removed at the time of processing, deformation occurs due to stress balance, and flatness deteriorates. Residual stress generated during processing is greatly affected by the shape of the tool used for processing and the processing conditions. Also, the surface roughness is greatly influenced by the shape of the tool and the processing conditions.
Although the conventional end mill as described above can improve the surface roughness of the machined surface in any case, it is difficult to achieve both the required flatness and surface roughness even if the machining conditions are adjusted. There was a problem in that reworking and polishing work would occur in the subsequent process.

本発明は、上記のような課題を解決するためになされたものであり、加工条件によらず良好な平面度と表面粗さを得ることができるエンドミルを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an end mill capable of obtaining good flatness and surface roughness regardless of processing conditions.

この発明に係るエンドミルは、底刃のすかしが外周切れ刃のコーナー側の一次切れ刃とその一次切れ刃から連続して形成された二次切れ刃からなり、前記一次切れ刃のすかし角αを0′〜30′としたギャッシュランドを有する少なくとも1つの切れ刃を備えたエンドミルであって、前記外周切れ刃のねじれ角γを30°〜60°、前記底刃のすくい面のすくい角θを前記ねじれ角γよりも小さい角度で30°〜45°の範囲としたことを特徴とするものである。   The end mill according to the present invention comprises a primary cutting edge formed by a primary cutting edge of a corner side of a peripheral cutting edge and a secondary cutting edge formed continuously from the primary cutting edge. An end mill having at least one cutting edge having a gash land in which α is 0 ′ to 30 ′, wherein the torsion angle γ of the outer peripheral cutting edge is 30 ° to 60 °, and the rake angle of the rake face of the bottom edge The angle θ is smaller than the twist angle γ and is in the range of 30 ° to 45 °.

この発明に係るエンドミルによれば、底刃の一次切れ刃のすかし角αを0′〜30′と小さくしているため、加工条件を変更しても良好な表面粗さを得ることができる上、底刃のすくい角θを30°〜45°と大きくしているため、加工面に生じる残留応力を低減できることにより、加工後のワークの変形をも抑制できるという効果が得られる。   According to the end mill according to the present invention, since the watermark angle α of the primary cutting edge of the bottom blade is reduced to 0 ′ to 30 ′, good surface roughness can be obtained even if the processing conditions are changed. In addition, since the rake angle θ of the bottom blade is increased to 30 ° to 45 °, the residual stress generated on the processed surface can be reduced, so that the effect of suppressing deformation of the workpiece after processing can be obtained.

本発明の実施の形態1によるエンドミルを示す側面図。The side view which shows the end mill by Embodiment 1 of this invention. 図1に示されたエンドミルの下面図。The bottom view of the end mill shown by FIG. 図1に示されたエンドミルの底刃の要部拡大図。The principal part enlarged view of the bottom blade of the end mill shown by FIG. エンドミルによってワークの底面加工をしたときの一次切れ刃のすかし角α及び一刃送り量fzと加工面の表面粗さRとの関係を説明する図。The figure explaining the relationship between the surface angle R of the primary cutting edge and the feed amount fz of the primary cutting edge and the surface roughness R when the bottom surface of the workpiece is machined by the end mill. 図1に示すエンドミルについて測定された底刃の一次切れ刃のすかし角αと加工面の表面粗さの関係を示す図。The figure which shows the relationship between the watermark angle (alpha) of the primary cutting edge of the bottom blade measured about the end mill shown in FIG. 1, and the surface roughness of a processed surface. エンドミルによる底面加工におけるワークの変形量の定義を説明する図。The figure explaining the definition of the deformation amount of the workpiece | work in the bottom face process by an end mill. 本発明の実施の形態1によるエンドミルと一般的なエンドミルで一刃送り量を変えて加工したときのワークの変形量について測定された結果を示す特性図。The characteristic view which shows the result measured about the deformation | transformation amount of the workpiece | work when changing the one-blade feed amount with the end mill by Embodiment 1 of this invention, and a general end mill. 一刃送り量を0.2mmに固定した場合における、底刃のすくい角θとワークの変形量との関係について測定された特性図。The characteristic view measured about the relationship between the rake angle (theta) of a bottom blade and the deformation | transformation amount of a workpiece | work at the time of fixing 1 blade feed amount to 0.2 mm. 本発明の実施の形態2によるエンドミルにおける複数の切れ刃の内、少なくとも1枚に構成されたピンカド形状の切れ刃を示す図。The figure which shows the pin-cad-shaped cutting blade comprised by at least 1 piece among the several cutting blade in the end mill by Embodiment 2 of this invention. 刃先の形状によって生じるコーナー部の削り残しを説明する図。The figure explaining the uncut material of the corner part produced by the shape of a blade edge | tip. 本発明の実施の形態2のエンドミルによるワークの底面加工後の加工面の表面粗さとすかし角との関係を説明する図。The figure explaining the relationship between the surface roughness of a processed surface after the bottom face processing of the workpiece | work by the end mill of Embodiment 2 of this invention, and a watermark angle. 本発明の実施の形態3によるエンドミルの底刃のピッチ角を説明する図。The figure explaining the pitch angle of the bottom blade of the end mill by Embodiment 3 of this invention. 本発明の実施の形態4によるエンドミルの構成を示す側面図。The side view which shows the structure of the end mill by Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1によるエンドミルを示す側面図、図2は図1に示されたエンドミルの下面図、図3は図1に示されたエンドミルの底刃の要部拡大図である。なお、各図を通じて同一または相当の部材・部分には同一符号を付している。図において、本発明のエンドミル1は超微粒子超硬合金等の硬質材料を用いた円柱状のボディ2の外周部に形成された外周切れ刃3と、ボディ2の先端部2aに形成された底刃4を有し、底刃4のすくい面5が外周切れ刃3の位置まで達している、いわゆるギャッシュランド付きの形状となっており、底刃4のすかしが外周切れ刃3のコーナー側の一次切れ刃41と、一次切れ刃41から連続して形成された二次切れ刃42から構成されている。
Embodiment 1 FIG.
1 is a side view showing an end mill according to Embodiment 1 of the present invention, FIG. 2 is a bottom view of the end mill shown in FIG. 1, and FIG. 3 is an enlarged view of a main part of a bottom blade of the end mill shown in FIG. is there. Throughout the drawings, the same or corresponding members / parts are denoted by the same reference numerals. In the figure, an end mill 1 of the present invention includes an outer peripheral cutting edge 3 formed on an outer peripheral portion of a cylindrical body 2 using a hard material such as an ultrafine particle cemented carbide and a bottom formed on a distal end portion 2 a of the body 2. The bottom edge 4 has a so-called gash land shape in which the rake face 5 of the bottom edge 4 reaches the position of the outer peripheral cutting edge 3, and the watermark of the bottom edge 4 is on the corner side of the outer peripheral cutting edge 3. Primary cutting edge 41 and a secondary cutting edge 42 formed continuously from the primary cutting edge 41.

そして、外周切れ刃3のねじれ角γを30°〜60°、底刃のすくい面5のすくい角θをねじれ角γよりも小さい角度で30°〜45°の範囲にする一方、一次切れ刃41のすかし角αは0′〜30′、二次切れ刃42のすかし角βは1°〜6°とし、かつ一次切れ刃41の幅Bを外周切れ刃の直径Dの2%〜4%としている。本発明のエンドミルの典型的な特徴部分は、ギャッシュランド付きの工具で良好な表面粗さを確保しつつ、ワークの変形量を抑えるために、一次切れ刃41のすかし角αを0′〜30′と小さく設定すると同時に、底刃のすくい面5のすくい角θを30°〜45°と大きく設定したことにある。   And while setting the rake angle γ of the outer peripheral cutting edge 3 to 30 ° to 60 ° and the rake angle θ of the rake face 5 of the bottom blade to a range smaller than the torsion angle γ from 30 ° to 45 °, the primary cutting edge The watermark angle α of 41 is 0 ′ to 30 ′, the watermark angle β of the secondary cutting edge 42 is 1 ° to 6 °, and the width B of the primary cutting edge 41 is 2% to the diameter D of the outer peripheral cutting edge. 4%. A typical characteristic part of the end mill of the present invention is that the cutting angle α of the primary cutting edge 41 is set to 0 ′ to suppress the deformation amount of the workpiece while ensuring good surface roughness with a tool with a gash land. This is because the rake angle θ of the rake face 5 of the bottom blade is set to be as large as 30 ° to 45 ° while being set as small as 30 ′.

通常、アルミニウム合金等軟質材料のバルク材から製品を削り出し加工する場合、最初の工程で除去体積の多い荒加工を行い、最後に図面に指定された寸法精度、形状精度や表面粗さを満足するために、除去体積を少なくした仕上げ加工の2工程で行われることが多いが、本発明のエンドミルは、そのような加工手法における仕上げ加工に好ましく用いることができるものであり、上述の構成によって特に製品の仕上げ加工後の厚みを、例えば1〜2mmというように薄く加工する場合であっても残留応力によるワークの変形が抑制され、寸法精度、形状精度や表面粗さを満足することができるようにしたものである。以下、更に具体的に説明する。   Normally, when a product is machined from a bulk material such as an aluminum alloy, rough processing with a large removal volume is performed in the first step, and finally the dimensional accuracy, shape accuracy and surface roughness specified in the drawing are satisfied. Therefore, the end mill of the present invention can be preferably used for finishing in such a processing technique, and is often performed in two steps of finishing with a reduced removal volume. In particular, even when the thickness of the finished product is thin, for example, 1 to 2 mm, deformation of the workpiece due to residual stress is suppressed, and dimensional accuracy, shape accuracy, and surface roughness can be satisfied. It is what I did. More specific description will be given below.

エンドミル1は、何れも図示を省略している焼嵌め式やコレット式などのホルダ類を介してマシニングセンタなどの工作機械の主軸に取り付けられ、使用される。加工の際にはマシニングセンタなどの主軸が回転することによって、ホルダ類を介してエンドミル1に回転が伝達され、図1に示すように軸線Oのまわりに矢印Tで示す方向、即ち軸線Oの上方から下方(刃先の方向)を見たときに時計方向に回転しながら軸線Oに交差する方向に送り出されることによって、外周切れ刃3及び底刃4によりワークに切削加工を施して加工面を形成する。この時に工具の切れ刃毎に工具が進んだ長さを一刃送り量と呼ぶ。一刃送り量は、除去体積に関連する指標であり、加工時に生じる残留応力や表面粗さへの影響が大きい加工条件の一つである。この一刃送り量は下記の式(1)で求められる。   The end mill 1 is used by being attached to a spindle of a machine tool such as a machining center through holders such as shrink fitting type and collet type which are not shown. At the time of machining, a main shaft such as a machining center rotates, whereby rotation is transmitted to the end mill 1 through holders, and the direction indicated by an arrow T around the axis O as shown in FIG. The workpiece is cut by the outer peripheral cutting edge 3 and the bottom edge 4 to form a machining surface by being sent in a direction intersecting the axis O while rotating clockwise when viewed downward (in the direction of the cutting edge). To do. At this time, the length that the tool advances for each cutting edge of the tool is referred to as a single blade feed amount. The single-blade feed amount is an index related to the removal volume, and is one of the processing conditions that have a great influence on the residual stress and surface roughness generated during processing. This one-blade feed amount is obtained by the following equation (1).

一刃送り量fz[mm/刃]=
工具送り速度[mm/分]/工具回転数[1/分]/工具刃数[刃]・・・式(1)
以後、工具の送り量を示す指標としては式(1)に示される一刃送り量fzを用いて説明する。
図4はエンドミルによってワークの底面加工をしたときの一次切れ刃のすかし角α及び一刃送り量fzと加工面の表面粗さRとの関係を説明する図である。底面の表面粗さRはエンドミルの底刃形状の転写となるため、一刃送り量fzが一次切れ刃の幅Bよりも小さい場合には、一刃送り量と一次切れ刃41のすかし角αを用いて下記式(2)で表わされる。
表面粗さR[μm]=一刃送り量×tan(α)×1000 ・・・式(2)
式(2)より、一刃送り量fzを大きくするほど、あるいはすかし角αを大きくするほど表面粗さRは悪化することが分かる。
Single blade feed amount fz [mm / blade] =
Tool feed rate [mm / min] / tool rotation speed [1 / min] / tool blade count [blade] ... Equation (1)
Hereinafter, the single-blade feed amount fz shown in Expression (1) will be described as an index indicating the feed amount of the tool.
FIG. 4 is a diagram for explaining the relationship between the cutting edge angle α of the primary cutting edge and the single-blade feed amount fz and the surface roughness R of the machined surface when the bottom surface of the workpiece is machined by the end mill. Since the surface roughness R of the bottom surface is a transfer of the shape of the bottom edge of the end mill, when the single blade feed amount fz is smaller than the width B of the primary cutting edge, the single blade feed amount and the corner angle of the primary cutting edge 41 It is represented by the following formula (2) using α.
Surface roughness R [μm] = single blade feed amount × tan (α) × 1000 (2)
From the equation (2), it can be seen that the surface roughness R becomes worse as the one-blade feed amount fz is increased or the watermark angle α is increased.

一般的なエンドミルでは底刃は一つの連続した切れ刃となっており、そのすかし角αは2°〜6°に設定されている。表面粗さRを向上させるために、単純にすかし角αを小さくすると底面切れ刃の接触面積が大きくなるため、切削時の抵抗が大きくなりびびり等の発生によってかえって表面粗さが悪化する場合がある。これに対して、本発明の実施の形態1では底刃のすかし部に一次切れ刃41から連続して形成された二次切れ刃42を設け、一次切れ刃41のすかし角αを0〜30′と小さくすることによって表面粗さRを良好にする一方、二次切れ刃42のすかし角βを1°〜6°と、一次切れ刃41のすかし角αよりも大きくすることによって接触面積を小さくし、切削抵抗の増加を抑制しているため、切削加工時にびびり等が発生することなく良好な表面粗さを得ることができる。   In a general end mill, the bottom edge is one continuous cutting edge, and the watermark angle α is set to 2 ° to 6 °. In order to improve the surface roughness R, if the watermark angle α is simply reduced, the contact area of the bottom cutting edge will increase, so the resistance during cutting will increase and the surface roughness will deteriorate due to chattering etc. There is. On the other hand, in Embodiment 1 of the present invention, the secondary cutting edge 42 formed continuously from the primary cutting edge 41 is provided at the bottom edge of the bottom cutting edge, and the cutting angle α of the primary cutting edge 41 is set to 0. The surface roughness R is improved by reducing it to ˜30 ′, while the corner angle β of the secondary cutting edge 42 is set to 1 ° to 6 °, which is larger than the corner angle α of the primary cutting edge 41. Thus, the contact area is reduced and the increase in cutting resistance is suppressed, so that a good surface roughness can be obtained without chattering or the like during cutting.

図5は図1に示す外周切れ刃のねじれ角γを30°〜60°、底刃のすくい面のすくい角θを30°〜45°の範囲で前記ねじれ角γよりも小さい角度にしたエンドミルについて測定された底刃の一次切れ刃のすかし角αと加工面の表面粗さRの関係を示す図である。ここでは、図5に白抜きの丸印で示すように一次切れ刃のすかし角αを30′(=0.5°)、2°、4°、及び6°と変えた工具を製作し、一刃送り量fzを0.1mmとしてアルミニウム合金のワークを加工したときに測定された一次切れ刃のすかし角αと表面粗さの関係を表わしている。なお、いずれの場合も、刃先の直径D=20mm、外周切れ刃のねじれ角γ=45°、底刃のすくい面のすくい角θ=30°、一次切れ刃の幅B=0.6mm(外周切れ刃の直径Dの3%)、二次切れ刃のすかし角βについては、α<2°のときはβ=2°、α≧2°のときはβ=αとし、材質は超微粒子超硬合金とした。   FIG. 5 shows an end mill in which the torsion angle γ of the outer peripheral cutting edge shown in FIG. 1 is 30 ° to 60 ° and the rake angle θ of the rake face of the bottom blade is in the range of 30 ° to 45 ° smaller than the torsion angle γ. It is a figure which shows the relationship between the watermark angle | corner (alpha) of the primary cutting edge of the bottom blade measured about surface roughness R of the processed surface. Here, as shown by the white circles in FIG. 5, a tool with the primary cutting edge α changed to 30 ′ (= 0.5 °), 2 °, 4 °, and 6 ° is manufactured. The relationship between the surface angle and the cutting angle α of the primary cutting edge measured when an aluminum alloy workpiece is machined with a single blade feed amount fz of 0.1 mm is shown. In any case, the blade edge diameter D = 20 mm, the outer peripheral cutting edge twist angle γ = 45 °, the bottom cutting edge rake angle θ = 30 °, the primary cutting edge width B = 0.6 mm (outer periphery). 3% of the cutting edge diameter D), and the secondary cutting edge angle β is β = 2 ° when α <2 °, β = α when α ≧ 2 °, and the material is ultrafine particles. A cemented carbide was used.

図5から、試験の結果は式(1)とほぼ一致しており、すかし角αが大きいほど表面粗さが悪化することが分かる。なお、より具体的には、一刃送り量fzの上限値は、例えば約0.4mm程度、表面粗さRの許容値は3.2μm程度以下であることから、その範囲で十分満足し得る表面粗さRを得るためには、図5とは別に実施された試験によって、一次切れ刃のすかし角αは0〜30′とするのが良いことが確認された。   From FIG. 5, it can be seen that the result of the test almost coincides with the formula (1), and that the surface roughness deteriorates as the watermark angle α increases. More specifically, the upper limit value of the one-blade feed amount fz is, for example, about 0.4 mm, and the allowable value of the surface roughness R is about 3.2 μm or less, so that the range can be sufficiently satisfied. In order to obtain the surface roughness R, it was confirmed by a test conducted separately from FIG. 5 that the primary cutting edge angle α should be 0 to 30 ′.

次に、底刃のすくい角θを通常の0°〜8°程度よりも大きい30°〜45°の範囲にすることによって、加工後のワークの変形量が抑えられることについて、図6、図7を用いて説明する。なお、図6はエンドミルによる底面加工におけるワークの変形量の定義を説明する図、図7は本発明の実施の形態1によるエンドミルと一般的なエンドミルで一刃送り量を変えて加工したときのワークの変形量wについて測定された結果を示す特性図である。ここで、ワークの変形量w(μm)は30mm×10mmのブロック状のアルミニウム合金A5052を用意し、その厚みが1.5mmになるように、マシニングセンタの主軸に固定されたエンドミルを図6の白抜きの太線矢印で示すように該アルミニウム合金の長手方向に送って加工した後、ワークの保持を開放したときの反り量を変形量wとして定義して評価した。なお、正の変形を凸の反り、負の変形を凹の反りとした。また、エンドミルの刃先の直径D(図1に図示)は20mm、回転数は4775回転/分とした。   Next, the amount of deformation of the workpiece after machining can be suppressed by setting the rake angle θ of the bottom blade to a range of 30 ° to 45 ° which is larger than the usual 0 ° to 8 °. FIG. 7 for explanation. 6 is a diagram for explaining the definition of the deformation amount of the workpiece in the bottom machining by the end mill, and FIG. 7 is a diagram when machining by changing the one-blade feed amount between the end mill according to Embodiment 1 of the present invention and a general end mill. It is a characteristic view which shows the result measured about the deformation amount w of the workpiece | work. Here, a block-shaped aluminum alloy A5052 having a workpiece deformation amount w (μm) of 30 mm × 10 mm is prepared, and the end mill fixed to the main spindle of the machining center so that its thickness is 1.5 mm is shown in FIG. As indicated by the bold bold arrows, the amount of warpage when the workpiece was released after being sent in the longitudinal direction of the aluminum alloy was defined as the deformation amount w and evaluated. Positive deformation was defined as convex warpage, and negative deformation was defined as concave warpage. Further, the diameter D (shown in FIG. 1) of the end mill blade edge was 20 mm, and the rotation speed was 4775 rotations / minute.

図7において、黒塗りの三角印はすくい角θ=6°の一般的な工具、白抜きの丸印はすくい角θ=30°とした本発明の実施例の工具であり、何れも一刃送りを、0.1、0.2、及び0.3と3段階に変えて前述のブロック状のアルミニウム合金A5052の切削加工を行い、加工後のワークの変形量wを評価した結果である。なお、工具のその他の項目は、何れもねじれ角γ=45°、一次切れ刃のすかし角α=24′(=0.4°)、二次切れ刃のすかし角β=2°、及び切れ刃幅B=0.6mmとし、材質は超微粒子超硬合金とした。なお、黒塗りの三角印で示す、底刃のすくい角θ=6°の工具は、ギャッシュランド付きのエンドミルにおいて、底刃のすくい角θが8°を超えると刃先の強度が低下するといわれており、一般的に刃先の強度を確保するためにθ=0°〜8°程度に設定されていることから、比較のためにその範囲の代表例として作成したものである。   In FIG. 7, a black triangle mark is a general tool with a rake angle θ = 6 °, and a white circle mark is a tool according to an embodiment of the present invention with a rake angle θ = 30 °. This is a result of evaluating the amount of deformation w of the workpiece after machining by cutting the above-described block-shaped aluminum alloy A5052 while changing the feed into three stages of 0.1, 0.2, and 0.3. As for the other items of the tool, the twist angle γ = 45 °, the primary cutting edge angle α = 24 ′ (= 0.4 °), the secondary cutting edge angle β = 2 °, The cutting edge width B was 0.6 mm, and the material was an ultrafine particle cemented carbide. Note that the tool with a bottom edge rake angle θ = 6 ° indicated by a black triangle mark is said to reduce the strength of the blade edge when the bottom edge rake angle θ exceeds 8 ° in an end mill with a gash land. In general, since θ = 0 ° to 8 ° is set in order to ensure the strength of the blade edge, it is created as a representative example of the range for comparison.

図7から明らかなように、底刃のすくい角θを30°というように、大きくすることによって、すくい角θが6°と小さいものよりも変形を抑制できることが確認された。なお、一刃送り量を大きくすることで変形が凸から凹へと変化する傾向にあることから、評価した範囲よりも一刃送り量fzを大きくすることにより、すくい角θが0°〜8°程度の一般的な工具でも変形量wを小さくすることが可能であるようにも考えられるが、一般的に一刃送り量は工具の直径Dの0.5〜1.5%程度の範囲で使用されており、一刃送り量が2%を超えるような条件にすると、工具の欠損や工作機械が追従不可能となる場合があるので好ましくない。   As is clear from FIG. 7, it was confirmed that by increasing the rake angle θ of the bottom blade to 30 °, deformation can be suppressed as compared with a rake angle θ as small as 6 °. Since the deformation tends to change from convex to concave by increasing the single blade feed amount, the rake angle θ is set to 0 ° to 8 ° by increasing the single blade feed amount fz beyond the evaluated range. Although it can be considered that the deformation amount w can be reduced even with a general tool of about °°, the single-blade feed amount is generally in the range of about 0.5 to 1.5% of the diameter D of the tool. If the condition is such that the feed amount per blade exceeds 2%, it may not be possible for the tool to be lost or the machine tool to be unable to follow.

また、図8は一刃送り量を0.2mmに固定した場合における、底刃4のすくい角θとワークの変形量との関係について測定された特性図である。なお、この場合のエンドミルのその他のパラメータは図7の場合と同様である。図8から、すくい角θは30°〜45°の範囲に設定することにより加工後のワークの変形量を30mmの長さで±5μm程度以下に抑えることができることが分かる。なお、すくい角θが36°よりも大きくなると変形が凹に変化する傾向にあり、45°よりも大きくすると凹に変形が大きくなると共に、平面度が悪化するので、底刃のすくい角θを30°〜45°とすることにより、アルミニウム合金などの軽金属の仕上げ加工に用いる上で、良好な表面粗さを得ることができる上、加工面に生じる残留応力が低減されて、ワークの変形をも抑制でき、しかも刃先の強度低下による欠損などの問題を起こすことなく好ましく加工できることが確認された。なお、外周切れ刃のねじれ角γを30°〜60°としたのは、ギャッシュランドを設けるためには、ねじれ角γ>すくい角θとする必要があり、本発明では底刃のすくい面のすくい角θについて上記のように鋭意研究を重ねた結果、有意差のある効果が得られたすくい角θは30°〜45°の範囲であったことに伴うものである。   FIG. 8 is a characteristic diagram measured for the relationship between the rake angle θ of the bottom blade 4 and the amount of deformation of the workpiece when the single blade feed amount is fixed to 0.2 mm. The other parameters of the end mill in this case are the same as in FIG. From FIG. 8, it can be seen that the rake angle θ is set in the range of 30 ° to 45 °, whereby the deformation amount of the workpiece after machining can be suppressed to about ± 5 μm or less with a length of 30 mm. When the rake angle θ is larger than 36 °, the deformation tends to change into a concave shape. When the rake angle θ is larger than 45 °, the deformation becomes large in the concave shape and the flatness deteriorates. By using 30 ° to 45 °, it is possible to obtain a good surface roughness when used for finishing light metals such as aluminum alloys, and the residual stress generated on the processed surface is reduced, so that deformation of the workpiece can be achieved. It was also confirmed that processing can be preferably performed without causing problems such as chipping due to a decrease in the strength of the blade edge. The reason why the twist angle γ of the outer peripheral cutting edge is set to 30 ° to 60 ° is that in order to provide a gash land, the twist angle γ> the rake angle θ needs to be satisfied. As a result of intensive research on the rake angle θ as described above, the rake angle θ, which has a significant difference in effect, is in the range of 30 ° to 45 °.

以上のように、実施の形態1のエンドミルは、ギャッシュランド付きで、底刃4のすかしが外周切れ刃のコーナー側の一次切れ刃41とその一次切れ刃から連続して形成された二次切れ刃42からなり、しかも一次切れ刃41のすかし角αが0′〜30′と小さい角度のさらい刃付きのエンドミルにおいて、外周切れ刃3のねじれ角γを30°〜60°、底刃4のすくい面のすくい角θを、ねじれ角γよりも小さい角度で30°〜45°の範囲と、一般的なすくい角θが0°〜8°のエンドミルよりも大きくしたことを特徴とするものである。上記のように構成された実施の形態1によれば、一次切れ刃41のすかし角αを0′〜30′にすると共に、底刃4のすくい角θをねじれ角γよりも小さい角度で、30°〜45°の範囲に設定したことによって、アルミニウム合金の仕上げ加工において、良好な表面粗さが得られると同時に、加工後のワークの平面度をも良好にすることができるという顕著な効果が得られる。このため、電子機器の小型軽量化、高密度化に伴ってアルミニウム合金等の軟質金属製のワークをエンドミルによって厚みを薄く加工する際に要求される、良好な平面度と表面粗さの双方を満足した製品を製作することができる。また、手直しや磨き作業といった後工程の発生を無くすことができる。   As described above, the end mill according to the first embodiment is provided with a gash land, and the bottom of the bottom blade 4 is formed continuously from the primary cutting edge 41 on the corner side of the outer peripheral cutting edge and the primary cutting edge. In an end mill comprising a cutting edge 42 and a primary cutting edge 41 with a sharpening angle α of 0 ′ to 30 ′ and a small cutting edge, the twist angle γ of the outer peripheral cutting edge 3 is 30 ° to 60 °, and the bottom blade The rake angle θ of the rake face of 4 is in the range of 30 ° to 45 ° at an angle smaller than the helix angle γ, and larger than the end mill having a general rake angle θ of 0 ° to 8 °. Is. According to the first embodiment configured as described above, the corner angle α of the primary cutting edge 41 is set to 0 ′ to 30 ′, and the rake angle θ of the bottom edge 4 is set to an angle smaller than the twist angle γ. By setting it in the range of 30 ° to 45 °, a remarkable surface roughness can be obtained at the same time that a good surface roughness can be obtained in the finishing process of the aluminum alloy, and at the same time, the flatness of the workpiece can be improved. An effect is obtained. For this reason, both the good flatness and surface roughness required when processing thin metal workpieces such as aluminum alloys with an end mill as the electronic equipment becomes smaller, lighter, and denser. A satisfactory product can be produced. Further, it is possible to eliminate the occurrence of subsequent processes such as reworking and polishing work.

実施の形態2.
図9は本発明の実施の形態2によるエンドミルにおける複数の切れ刃の内、少なくとも1枚に構成されたピンカド形状の切れ刃を示す図であり、(a)は要部拡大図、(b)はすくい角θ2と外周切れ刃のねじれ角γ2を示す図である。図10は刃先の形状によって生じるコーナー部の削り残しを説明する図、図11は本発明の実施の形態2のエンドミルによるワークの底面加工後の加工面の表面粗さとすかし角との関係を説明する図である。なお、この実施の形態2は、エンドミルの切れ刃の枚数を複数とする場合において、そのうち少なくとも1枚を、実施の形態1における図3に示すものと同様に、底刃4のすくい面5が外周切れ刃3まで達しているいわゆるギャッシュランド付きの形状で、一次切れ刃41のすかし角αを0′〜30′で、かつ底刃4のすくい角θを30°〜45°に設定したものとし、他の切れ刃のうち少なくとも1枚の切れ刃の底刃4Aを図9(a)に示すような、すくい面5Aが外周切れ刃3まで達していない、いわゆるピンカド形状としたものである。なお、ピンカド形状の場合図9(b)に示すように、外周切れ刃3のねじれ角γ2は底刃4Aのすくい角θ2と同じである。なお、前述のピンカドの切れ刃のねじれ角γ2はギャッシュランド付きの切れ刃を構成する底刃4のすくい角θと同じとしてもよい。
Embodiment 2. FIG.
FIG. 9 is a view showing a pin-cad-shaped cutting edge constituted by at least one of a plurality of cutting edges in the end mill according to Embodiment 2 of the present invention, (a) is an enlarged view of a main part, and (b). It is a figure which shows the rake angle (theta) 2 and the torsion angle (gamma) 2 of an outer peripheral cutting edge. FIG. 10 is a diagram for explaining the uncut portion of the corner caused by the shape of the cutting edge, and FIG. 11 is a graph showing the relationship between the surface roughness of the processed surface after machining the bottom surface of the workpiece by the end mill according to Embodiment 2 of the present invention and the corner angle. It is a figure explaining. In the second embodiment, when the number of cutting edges of the end mill is plural, at least one of the cutting edges of the bottom blade 4 is the same as that shown in FIG. 3 in the first embodiment. In the shape with a so-called gash land reaching the outer peripheral cutting edge 3, the cutting angle α of the primary cutting edge 41 is set to 0 ′ to 30 ′, and the rake angle θ of the bottom cutting edge 4 is set to 30 ° to 45 °. The bottom edge 4A of at least one of the other cutting edges is a so-called pin-caded shape in which the rake face 5A does not reach the outer peripheral cutting edge 3 as shown in FIG. 9 (a). is there. In the case of a pin quad shape, as shown in FIG. 9B, the torsion angle γ2 of the outer peripheral cutting edge 3 is the same as the rake angle θ2 of the bottom edge 4A. It should be noted that the twist angle γ2 of the above-mentioned pincad cutting edge may be the same as the rake angle θ of the bottom edge 4 constituting the cutting edge with a gash land.

当業者において周知のように、ギャッシュランド付き工具のすくい面5は外周切れ刃3の一部を除去して製作するために、先端部で刃先の後退が生じ、コーナー部の加工に用いると、先端部(隅部)付近で、図10(b)に示すように削り残し部が生じる。幾何学形状から底刃のすくい角θと外周切れ刃3のねじれ角γの差が小さいほどこの削り残し部は小さくなり、ピンカドの工具では外周切れ刃3のねじれ角γ2が底刃のすくい角θ2と同じであるため、図10(a)に示すように、先端部付近で削り残しは生じない。また、ピンカドの工具は底刃4Aが外周切れ刃3の近傍でえぐれた形状で形成されるため、実質的なすかし角α2が大きくなる。したがって、式(1)から表面粗さが悪化することがわかる。
なお、切れ刃はエンドミルの先端面における回転中心から径方向外側に伸びる底刃と、その底刃からエンドミルの外周面に連なる如く形成される外周切れ刃から構成され、「切れ刃の数」は、その底刃の数または外周切れ刃の数で数えられる。
As is well known to those skilled in the art, the rake face 5 of the tool with a gash land is produced by removing a part of the outer peripheral cutting edge 3, so that the cutting edge is retracted at the tip portion, and when used for machining the corner portion, In the vicinity of the tip (corner), an uncut portion is generated as shown in FIG. The smaller the difference between the rake angle θ of the bottom blade and the twist angle γ of the outer peripheral cutting edge 3 from the geometrical shape, the smaller the uncut portion becomes. In a pin-cad tool, the twist angle γ2 of the outer peripheral cutting edge 3 is the rake angle of the bottom blade. Since it is the same as θ2, there is no uncut portion near the tip as shown in FIG. Further, since the pin CAD tool is formed in a shape in which the bottom edge 4A is hollowed out in the vicinity of the outer peripheral edge 3, the substantial watermark angle α2 is increased. Therefore, it can be seen from the formula (1) that the surface roughness is deteriorated.
The cutting edge is composed of a bottom blade extending radially outward from the center of rotation of the end face of the end mill, and an outer peripheral cutting edge formed from the bottom blade to the outer peripheral surface of the end mill. It is counted by the number of its bottom blades or the number of outer peripheral cutting blades.

実施の形態2のエンドミルは、上記のように一つの工具にギャッシュランド付きの切れ刃とピンカド形状の切れ刃を設ける構成としたことによって、ギャッシュランド付きの刃によって削り残しが生じても、別のピンカドの刃によって削り残し部をシャープに加工することができるため、工具全体としては隅部に削り残しを生じることなく加工することができる。本実施例ではすかし角αを0′〜30′としたギャッシュランド付きの底刃4を少なくとも1枚備えているため、図11に示すように、加工面の表面粗さはすかし角αと、実質的なすかし角α2で形成される複合的な面で決定され、良好な表面粗さとなる。
以上のように実施の形態2によれば、良好な表面粗さと良好な平面度を得ることができるとともに、コーナー部に削り残しを発生することなく1つの工具で効率的に切削加工できるという効果が得られる。また、一つの工具にギャッシュランドとピンカドの刃を設けているので、工具交換に要する時間やチッピングの確率も抑えることができる。
The end mill of the second embodiment has a configuration in which a cutting edge with a gash land and a cutting edge with a pin quad shape are provided in one tool as described above, so that even if uncut material is generated by the blade with a gash land, Since the uncut portion can be sharply processed by the pin caddy blade, the entire tool can be processed without causing uncut portions in the corners. In this embodiment, since at least one bottom blade 4 with a gashland having a watermark angle α of 0 ′ to 30 ′ is provided, the surface roughness of the processed surface is a watermark angle α as shown in FIG. The surface roughness is determined by a complex surface formed by a substantial watermark angle α2, and the surface roughness is excellent.
As described above, according to the second embodiment, it is possible to obtain a good surface roughness and a good flatness, and an effect that the cutting can be efficiently performed with one tool without generating an uncut residue in the corner portion. Is obtained. Further, since a gash land and a pin caddy blade are provided in one tool, the time required for tool change and the probability of chipping can be suppressed.

実施の形態3.
図12は本発明の実施の形態3によるエンドミルの底刃のピッチ角を説明する図である。この実施の形態3は、エンドミルの切れ刃の枚数を複数とする場合において、そのうち少なくとも1枚を、実施の形態1における図1〜図3に示すものと同様に、底刃4のすくい面5が外周切れ刃3にまで達しているいわゆるギャッシュランド付きの形状とし、一次切れ刃41のすかし角αを0′〜30′かつ底刃のすくい角θを30°〜45°に設定したものとし、他の刃のうち少なくとも1枚を図9に示すような、すくい面5Aが外周切れ刃3まで達していない、いわゆるピンカド形状とし、ねじれ角γを前記のギャッシュランド付きの刃の底刃4のすくい角θと同じとする場合、図12に示すように、底刃のピッチ角φを一定となるように、切れ刃を形成したものである。なお、図示の例では切れ刃の数は2枚、底刃のピッチ角φ=180°としているが、切れ刃の数を3枚以上としても良く、奇数枚の場合は、底刃としてギャッシュランド付きの形状とピンカドの形状の何れを枚数の多い方に選んでも差し支えない。
Embodiment 3 FIG.
FIG. 12 is a view for explaining the pitch angle of the bottom blade of the end mill according to Embodiment 3 of the present invention. In the third embodiment, when the number of cutting edges of the end mill is plural, at least one of them is the rake face 5 of the bottom blade 4 in the same manner as that shown in FIGS. 1 to 3 in the first embodiment. With a so-called gashland shape that reaches the outer peripheral cutting edge 3, with the primary cutting edge 41 having a corner angle α of 0 ′ to 30 ′ and a bottom edge rake angle θ of 30 ° to 45 °. 9 and at least one of the other blades, as shown in FIG. 9, has a rake face 5A that does not reach the outer peripheral cutting edge 3, and has a so-called pincad shape, and a helix angle γ is the bottom blade of the blade with the above-mentioned gash land In the case where the rake angle θ is equal to 4, the cutting edge is formed so that the pitch angle φ of the bottom edge is constant as shown in FIG. In the example shown in the figure, the number of cutting edges is 2 and the pitch angle φ of the bottom edge is 180 °, but the number of cutting edges may be 3 or more. You can choose either the attached shape or the pin-caded shape for the larger number.

上記のように構成された実施の形態3によれば、ワークの底面を加工する場合には等ピッチのエンドミルとなるため、幾何学的にそれぞれの切れ刃で削る厚みが一定となり、安定した加工を行うことができる。さらに、ワークの側面を加工する場合には上記のような構成によって、ねじれ角に差が生じるため軸方向の高さによって外周切れ刃3のピッチ角が異なる、いわゆる不等ピッチ・不等リードのエンドミルとなる。不等ピッチ・不等リードのエンドミルには加工中の振動を抑制する効果があるため、前述の実施の形態2の効果に加えて、エンドミルが加工中にびびることなく安定した加工を行うことができるようになるという更なる効果が得られる。   According to the third embodiment configured as described above, when machining the bottom surface of the workpiece, it becomes an equal pitch end mill, so that the thickness that is geometrically shaved by each cutting edge is constant, and stable machining is achieved. It can be performed. Further, when machining the side surface of the workpiece, the above-described configuration causes a difference in torsion angle, so that the pitch angle of the outer peripheral cutting edge 3 varies depending on the height in the axial direction. It becomes an end mill. Since the end mill with unequal pitch and unequal lead has the effect of suppressing vibration during processing, in addition to the effect of the second embodiment described above, the end mill can perform stable processing without chatter during processing. A further effect of being able to do so is obtained.

実施の形態4.
図13は本発明の実施の形態4によるエンドミルの構成を示す側面図である。図において、この実施の形態4のエンドミル1Aは、図1〜図3に示す実施の形態1と同様の切れ刃、即ち、外周切れ刃3と底刃4を有し、底刃4のすくい面5が外周切れ刃3にまで達しているいわゆるギャッシュランド付きの形状となっており、底刃4のすかしが外周切れ刃3のコーナー側の一次切れ刃41と、一次切れ刃41から連続して形成された二次切れ刃42から構成される。外周切れ刃3のねじれ角γは30°〜60°とし、底刃のすくい面5のすくい角θはねじれ角γよりも小さい角度で30°〜45°の範囲とする。また、一次切れ刃41のすかし角αは0′〜30′、二次切れ刃42のすかし角βは1°〜6°とし、かつ一次切れ刃41の幅を外周切れ刃の直径の2%〜4%とした切れ刃を有するエンドミルを切れ刃部分21とシャンク部分22を分割して構成し、切れ刃部分21を、シャンク部分22に対して着脱可能にネジ結合したものである。ここでは、切れ刃部分21の後端側をおネジ部21aとし、シャフトからなるシャンク部分22の先端部に、おネジ部21aに対して同軸に螺合されるめネジ部22aを設け、シャンク部分22の材質として超硬合金よりも安価で加工が容易な例えば高速度鋼等の材料を用いるようにしたものである。
Embodiment 4 FIG.
FIG. 13 is a side view showing the configuration of an end mill according to Embodiment 4 of the present invention. In the figure, the end mill 1A of the fourth embodiment has the same cutting edge as that of the first embodiment shown in FIGS. 1 to 3, that is, the outer peripheral cutting edge 3 and the bottom cutting edge 4, and the rake face of the bottom cutting edge 4 5 has a shape with a so-called gash land that reaches the outer peripheral cutting edge 3, and the watermark of the bottom blade 4 is continuous from the primary cutting edge 41 on the corner side of the outer peripheral cutting edge 3 and the primary cutting edge 41. The secondary cutting edge 42 is formed. The torsion angle γ of the outer peripheral cutting edge 3 is 30 ° to 60 °, and the rake angle θ of the rake face 5 of the bottom blade is smaller than the torsion angle γ and is in the range of 30 ° to 45 °. The primary cutting edge 41 has a watermark angle α of 0 ′ to 30 ′, the secondary cutting edge 42 has a watermark angle β of 1 ° to 6 °, and the width of the primary cutting edge 41 is equal to the diameter of the outer peripheral cutting edge. An end mill having a cutting edge of 2% to 4% is configured by dividing the cutting blade portion 21 and the shank portion 22, and the cutting blade portion 21 is detachably screwed to the shank portion 22. Here, the rear end side of the cutting edge portion 21 is a male screw portion 21a, and a female screw portion 22a that is coaxially screwed to the male screw portion 21a is provided at the tip of the shank portion 22 formed of a shaft. The material of the portion 22 is made of a material such as high speed steel which is cheaper and easier to process than cemented carbide.

上記のように構成された実施の形態4においては、シャンク部分22がホルダ等を介してマシニングセンタなどの工作機械の主軸に取り付けられて使用され、おネジ部21aとめネジ部22aによって切れ刃部分21に回転が伝達されて加工が行われる。このように構成した場合、切削に関わる切れ刃部分21のみを交換することが可能となるため、高価な超微粒子超硬合金等の硬質材料の使用量を抑えることができ、安価に工具を製作することができるという効果が得られる。なお、切れ刃部分21の構成は実施の形態2または3と同様のものとしても差し支えないことは言うまでもない。   In the fourth embodiment configured as described above, the shank portion 22 is used by being attached to a spindle of a machine tool such as a machining center via a holder or the like, and the cutting blade portion 21 is formed by the male screw portion 21a and the female screw portion 22a. The rotation is transmitted to and processing is performed. When configured in this way, it becomes possible to replace only the cutting edge portion 21 related to cutting, so that the amount of hard material such as expensive ultrafine particle cemented carbide can be suppressed, and a tool can be manufactured at low cost. The effect that it can do is acquired. Needless to say, the configuration of the cutting edge portion 21 may be the same as that of the second or third embodiment.

実施の形態5.
この実施の形態5は、図1〜図3に示す実施の形態1と同様の切れ刃、即ち、外周切れ刃3と底刃4を有し、底刃4のすくい面5が外周切れ刃3まで達しているいわゆるギャッシュランド付きの形状となっており、底刃4のすかしが外周切れ刃3のコーナー側の一次切れ刃41と、一次切れ刃41から連続して形成された二次切れ刃42から構成される。外周切れ刃3のねじれ角γは30°〜60°とし、底刃のすくい面5のすくい角θは前記ねじれ角γよりも小さい角度で30°〜45°の範囲とする。また、一次切れ刃41のすかし角αは0′〜30′、二次切れ刃42のすかし角βは1°〜6°とし、かつ一次切れ刃41の幅Bを外周切れ刃の直径Dの2%〜4%としたエンドミルにおいて、切れ刃部分の表面にDLC(ダイヤモンドライクカーボン)などの硬質膜のコーティングを施したものである(図示省略)。なお、切れ刃の部分は実施の形態2から4に示した構成であってもよい。
実施の形態5においては、上記のように構成することによって、被削材であるアルミニウム合金との親和性を下げることができ、切れ刃部への溶着の防止や耐摩耗性の向上などの効果を得ることができる。
Embodiment 5. FIG.
The fifth embodiment has the same cutting edge as that of the first embodiment shown in FIGS. 1 to 3, that is, the outer peripheral cutting edge 3 and the bottom cutting edge 4, and the rake face 5 of the bottom cutting edge 4 is the outer peripheral cutting edge 3. The bottom edge 4 has a shape with a so-called gash land, and the secondary edge is formed by the primary edge 41 on the corner side of the outer peripheral edge 3 and the primary edge 41 continuously. The blade 42 is constituted. The twist angle γ of the outer peripheral cutting edge 3 is set to 30 ° to 60 °, and the rake angle θ of the rake face 5 of the bottom blade is set to a range of 30 ° to 45 ° which is smaller than the twist angle γ. The primary cutting edge 41 has a watermark angle α of 0 ′ to 30 ′, the secondary cutting edge 42 has a watermark angle β of 1 ° to 6 °, and the width B of the primary cutting edge 41 is the diameter of the outer peripheral cutting edge. In the end mill having 2% to 4% of D, the surface of the cutting edge portion is coated with a hard film such as DLC (diamond-like carbon) (not shown). In addition, the structure shown in Embodiment 2 to 4 may be sufficient as the part of a cutting blade.
In the fifth embodiment, by configuring as described above, the affinity with the aluminum alloy that is the work material can be lowered, and effects such as prevention of welding to the cutting edge portion and improvement of wear resistance can be achieved. Can be obtained.

実施の形態6.
この実施の形態5は、図1〜図3に示す実施の形態1と同様の切れ刃、即ち、外周切れ刃3と底刃4を有し、底刃4のすくい面5が外周切れ刃3まで達しているいわゆるギャッシュランド付きの形状となっており、底刃4のすかしが外周切れ刃3のコーナー側の一次切れ刃41と、一次切れ刃41から連続して形成された二次切れ刃42から構成される。外周切れ刃3のねじれ角γは30°〜60°とし、底刃のすくい面5のすくい角θは30°〜45°の範囲で前記ねじれ角よりも小さい角度とする。また、一次切れ刃41のすかし角αは0′〜30′、二次切れ刃42のすかし角βは1°〜6°とし、かつ一次切れ刃41の幅Bを外周切れ刃の直径Dの2%〜4%としたエンドミルにおいて、切れ刃の数を1枚だけとしたものである。
このように切れ刃の数を1枚だけにした構成とすることによって、切れ刃の数を複数にした場合における切れ刃毎の製造誤差がなくなり、工具の製作が容易となる。
Embodiment 6 FIG.
The fifth embodiment has the same cutting edge as that of the first embodiment shown in FIGS. 1 to 3, that is, the outer peripheral cutting edge 3 and the bottom cutting edge 4, and the rake face 5 of the bottom cutting edge 4 is the outer peripheral cutting edge 3. The bottom edge 4 has a shape with a so-called gash land, and the secondary edge is formed by the primary edge 41 on the corner side of the outer peripheral edge 3 and the primary edge 41 continuously. The blade 42 is constituted. The torsion angle γ of the outer peripheral cutting edge 3 is set to 30 ° to 60 °, and the rake angle θ of the rake face 5 of the bottom blade is set to an angle smaller than the torsion angle in the range of 30 ° to 45 °. The primary cutting edge 41 has a watermark angle α of 0 ′ to 30 ′, the secondary cutting edge 42 has a watermark angle β of 1 ° to 6 °, and the width B of the primary cutting edge 41 is the diameter of the outer peripheral cutting edge. In the end mill having 2% to 4% of D, the number of cutting edges is only one.
By adopting a configuration in which the number of cutting edges is only one, the manufacturing error for each cutting edge when the number of cutting edges is plural is eliminated, and the manufacture of the tool is facilitated.

なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1、1A エンドミル、2 ボディ、2a 先端部、21 切れ刃部分、21a おネジ部、22 シャンク部分、22a めネジ部、3 外周切れ刃、4 底刃、4A 底刃(ピンカド形状)、41 一次切れ刃、42 二次切れ刃、5 すくい面、5A すくい面(ピンカド形状)、B 一次切れ刃の幅、D 外周切れ刃の直径、O 軸線、R 表面粗さ、fz 一刃送り量、w 変形量、α 一次切れ刃のすかし角、α2 底刃の実質的なすかし角(ピンカド形状)、β 二次切れ刃のすかし角、γ ねじれ角、γ2 ねじれ角(ピンカド形状)、θ 底刃のすくい角、θ2 底刃のすくい角(ピンカド形状)。   1, 1A end mill, 2 body, 2a tip, 21 cutting edge, 21a male thread, 22 shank, 22a female thread, 3 outer cutting edge, 4 bottom cutting edge, 4A bottom cutting edge (pin caddy shape), 41 primary Cutting edge, 42 Secondary cutting edge, 5 Rake face, 5A Rake face (pin caddy shape), B Primary cutting edge width, D Outer peripheral cutting edge diameter, O axis, R Surface roughness, fz Single cutting edge feed amount, w Deformation amount, α Primary cutting edge angle, α2 Substantial cutting edge angle (pin cadence shape), β Secondary cutting edge angle, γ helix angle, γ2 helix angle (pin cadence shape), θ Bottom edge rake angle, θ2 Bottom edge rake angle (pin caddy shape).

Claims (7)

底刃のすかしが外周切れ刃のコーナー側の一次切れ刃とその一次切れ刃から連続して形成された二次切れ刃からなり、前記一次切れ刃のすかし角αを0′〜30′としたギャッシュランドを有する少なくとも1つの切れ刃を備えたエンドミルであって、前記外周切れ刃のねじれ角γを30°〜60°、前記底刃のすくい面のすくい角θを前記ねじれ角γよりも小さい角度で30°〜45°の範囲としたことを特徴とするエンドミル。   The watermark of the bottom edge is composed of a primary cutting edge on the corner side of the outer peripheral cutting edge and a secondary cutting edge formed continuously from the primary cutting edge, and the watermark angle α of the primary cutting edge is set to 0 ′ to 30 ′. An end mill having at least one cutting edge having a gash land as described above, wherein a twist angle γ of the outer peripheral cutting edge is 30 ° to 60 °, and a rake angle θ of a rake face of the bottom blade is determined from the twist angle γ. An end mill characterized by having a small angle in a range of 30 ° to 45 °. 前記二次切れ刃のすかし角βを1°〜6°に形成して、前記一次切れ刃の幅Bを前記外周切れ刃の直径Dの2%〜4%にしたことを特徴とする請求項1記載のエンドミル。   The secondary cutting edge has a watermark angle β of 1 ° to 6 °, and the width B of the primary cutting edge is 2% to 4% of the diameter D of the outer peripheral cutting edge. Item 1. The end mill according to Item 1. 外周切れ刃のねじれ角γ2が底刃のすくい面のすくい角θ2と同一である少なくとも1つのピンカド形状の切れ刃を、ギャッシュランドを有する少なくとも1つの前記切れ刃と共に設けたことを特徴とする請求項1または請求項2記載のエンドミル。   The edge cutting edge γ2 of the peripheral cutting edge is the same as the rake angle θ2 of the rake face of the bottom cutting edge, and is provided with at least one cutting edge having a pinch shape together with at least one cutting edge having a gash land. The end mill according to claim 1 or 2. 複数の前記切れ刃における前記底刃のピッチ角φを一定としたことを特徴とする請求項3記載のエンドミル。   The end mill according to claim 3, wherein a pitch angle φ of the bottom edge of the plurality of cutting edges is constant. 前記切れ刃の枚数を1枚としたことを特徴とする請求項1または請求項2記載のエンドミル。   The end mill according to claim 1 or 2, wherein the number of cutting edges is one. 前記切れ刃が設けられている部分が、シャンク部分に対して着脱可能に結合されていることを特徴とする請求項1から請求項5の何れかに記載のエンドミル。   The end mill according to any one of claims 1 to 5, wherein the portion provided with the cutting edge is detachably coupled to the shank portion. 前記切れ刃の表面に硬質皮膜を施したことを特徴とする請求項1から請求項6までの何れかに記載のエンドミル。   The end mill according to any one of claims 1 to 6, wherein a hard coating is applied to a surface of the cutting edge.
JP2015204142A 2015-10-16 2015-10-16 End mill Expired - Fee Related JP6602148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204142A JP6602148B2 (en) 2015-10-16 2015-10-16 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204142A JP6602148B2 (en) 2015-10-16 2015-10-16 End mill

Publications (2)

Publication Number Publication Date
JP2017074650A true JP2017074650A (en) 2017-04-20
JP6602148B2 JP6602148B2 (en) 2019-11-06

Family

ID=58550645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204142A Expired - Fee Related JP6602148B2 (en) 2015-10-16 2015-10-16 End mill

Country Status (1)

Country Link
JP (1) JP6602148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210000808U (en) * 2019-10-04 2021-04-14 송태범 Thread mill for the sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111618665B (en) * 2020-05-19 2022-03-29 南方科技大学 High-efficiency low-damage processing method and processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049009A (en) * 1990-08-21 1991-09-17 The Weldon Tool Company Improved cutting tool
JP2000042822A (en) * 1998-07-28 2000-02-15 Nachi Fujikoshi Corp Coating end mill
JP2000210808A (en) * 1999-01-25 2000-08-02 Toshiba Tungaloy Co Ltd End mill
JP2003025134A (en) * 2001-07-11 2003-01-29 Nachi Fujikoshi Corp Aluminum coating end mill
JP2012171028A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Square end mill
JP2015166119A (en) * 2014-03-04 2015-09-24 三菱電機株式会社 end mill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049009A (en) * 1990-08-21 1991-09-17 The Weldon Tool Company Improved cutting tool
JP2000042822A (en) * 1998-07-28 2000-02-15 Nachi Fujikoshi Corp Coating end mill
JP2000210808A (en) * 1999-01-25 2000-08-02 Toshiba Tungaloy Co Ltd End mill
JP2003025134A (en) * 2001-07-11 2003-01-29 Nachi Fujikoshi Corp Aluminum coating end mill
JP2012171028A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Square end mill
JP2015166119A (en) * 2014-03-04 2015-09-24 三菱電機株式会社 end mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210000808U (en) * 2019-10-04 2021-04-14 송태범 Thread mill for the sheet
KR200493892Y1 (en) 2019-10-04 2021-06-22 송태범 Thread mill for the sheet

Also Published As

Publication number Publication date
JP6602148B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP5764181B2 (en) Hard film coated cutting tool
CN110418690B (en) Ceramic face milling cutter with circular arc profile for machining inconel
JP2003334716A (en) Throw away chip and cutting tool
JP5088678B2 (en) Long neck radius end mill
JP5614511B2 (en) Ball end mill and insert
JP2012518549A (en) Rotating tools and cutting inserts for cutting
JP7063403B2 (en) Small diameter drill
EP3100810A1 (en) End mill and manufacturing method for cut product
JP6413037B1 (en) Cutting tool for sputtering target, sputtering target processing method, and sputtering target product manufacturing method
CN107755770A (en) A kind of hard alloy processes rose cutter
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JP6602148B2 (en) End mill
JP7020162B2 (en) Square end mill
JP2014018883A (en) Drill and method for manufacturing drill bit part
JP6999031B2 (en) Taper end mill
KR102466297B1 (en) ball end mill
JP6604437B2 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP6179165B2 (en) Radius end mill
JP2006263870A (en) Radius end mill and manufacturing method of radius end mill
JP2006088232A (en) Ball end mill
WO2019151169A1 (en) End mill and machining method
JP6212863B2 (en) Radius end mill
JPWO2019244711A1 (en) End mill
JP2020040179A (en) Method of machining wall surface of rib groove and tapered end mill
JP2013013962A (en) Cbn end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6602148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees