JP2017072479A - Temperature measurement apparatus and temperature measurement method - Google Patents

Temperature measurement apparatus and temperature measurement method Download PDF

Info

Publication number
JP2017072479A
JP2017072479A JP2015199498A JP2015199498A JP2017072479A JP 2017072479 A JP2017072479 A JP 2017072479A JP 2015199498 A JP2015199498 A JP 2015199498A JP 2015199498 A JP2015199498 A JP 2015199498A JP 2017072479 A JP2017072479 A JP 2017072479A
Authority
JP
Japan
Prior art keywords
temperature
correction
thermocouples
average value
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015199498A
Other languages
Japanese (ja)
Other versions
JP6112518B1 (en
Inventor
篤志 丸山
Atsushi Maruyama
篤志 丸山
博視 中川
Hiroshi Nakagawa
博視 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2015199498A priority Critical patent/JP6112518B1/en
Application granted granted Critical
Publication of JP6112518B1 publication Critical patent/JP6112518B1/en
Publication of JP2017072479A publication Critical patent/JP2017072479A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a temperature sensor, a temperature measurement apparatus and a temperature measurement method which have a simple structure, can reduce an apparatus cost, can improve measurement accuracy, and are suitable for measurement air temperature in the outdoor.SOLUTION: A temperature sensor 1 has a plurality of thermocouples 2, 3 and 4 having spheres 2a, 3a and 4a as temperature sensitive portions, and the respective temperature sensitive portions of the thermocouples are spheres having different volumes, and are arranged at predetermined intervals. A temperature measurement apparatus 10 includes temperature calculation means 11 which converts each of electromotive forces of the plurality of thermocouples 2, 3 and 4 and calculates each of the temperatures, and correction temperature calculation means 12 which calculates a correction temperature 12a based on each of the temperatures calculated by the temperature calculation means, and the correction temperature calculation means 12 calculates the correction temperature 12a based on temperature gradients of each of the temperatures calculated based on the diameter of the spheres of the temperature sensitive portions by the temperature calculation means 11, and displays the calculated correction temperature on temperature display means 13.SELECTED DRAWING: Figure 2

Description

本発明は、気温などを計測する温度センサ、温度測定装置及び温度測定方法に係り、特に、複数の熱電対を備える温度センサ、該温度センサを用いて測定精度を向上させた温度測定装置及び温度測定方法に関する。   The present invention relates to a temperature sensor, a temperature measuring device, and a temperature measuring method for measuring air temperature and the like, and in particular, a temperature sensor having a plurality of thermocouples, a temperature measuring device and a temperature with improved measurement accuracy using the temperature sensor. It relates to a measurement method.

一般の温度測定装置は、種々の用途において、かつ各種の環境状態のもとで測定を行っているので、計測されたデータは様々な環境の影響を受けて変動する虞がある。例えば屋外の気温の計測では、一般に温度計の感温部が日射の影響を受けて加熱されることから日射を遮るためのシェルターを取り付けた計測が行われている。しかしながら、日中には放射除けのシェルター自体も温まるため、シェルターから温度計の感温部に入射する赤外放射の影響があり、自然通風では気温の計測値が最大で3〜4℃高くなることが知られている。また、夜間は逆に放射冷却によりシェルターが冷えるため、気温の計測値が過小評価となることが知られている。   Since a general temperature measurement apparatus performs measurement in various applications and under various environmental conditions, the measured data may vary under the influence of various environments. For example, in outdoor temperature measurement, since a thermosensitive part of a thermometer is generally heated by the influence of solar radiation, measurement with a shelter for shielding solar radiation is performed. However, since the shelter of the radiation shield itself warms up during the day, there is an influence of infrared radiation incident on the thermosensitive part of the thermometer from the shelter, and the measured value of the temperature increases by 3 to 4 ° C at maximum in natural ventilation. It is known. On the other hand, it is known that the measured value of the temperature is underestimated because the shelter is cooled by radiation cooling at night.

この誤差は、一般に計測される最高気温や最低気温が不正確になるという問題に加え、農業分野では植物生理や生育解析等で用いられる積算温度を求める際に誤差が累積されるため、不正確さが増幅するという問題が生じる。そのため、屋外での精度の高い気温測定には、シェルター内をファン、ブロアー等により通風することで放射の影響を少なくする強制通風筒を取り付けた計測が必要となる。そして、強制通風筒の中心部に温度計を配備することで、放射の影響を抑えている。   This error is generally inaccurate because the accumulated maximum temperature used in plant physiology, growth analysis, etc. is accumulated in the agricultural field in addition to the problem that the maximum and minimum temperatures measured are generally inaccurate. Problem arises. For this reason, high-precision outdoor temperature measurement requires measurement with a forced draft tube that reduces the influence of radiation by ventilating the shelter with a fan, blower, or the like. And the influence of radiation is suppressed by arranging a thermometer in the center of the forced draft tube.

しかしながら、これらの温度測定装置では、ファン、ブロアー等の駆動に電力が必要なため気温観測のために電源が必要となっている。山間地域などの商用電源の確保ができない場合には、ファンを常時駆動するためにソーラーパネルやバッテリの設置が必要となっている。このため、必要機材の設置スペースが問題となり、構成が複雑となると共にコストの高いものとなっており、園芸施設や栽培研究などの農業用の気温計測の場面では十分普及しているとはいえない。さらに、従来の温度計では、感部の形状が円柱又は扁平楕円体や平板となっており、風向きの変化によって感部周辺の空気流の特性が変化するため、自然通風では安定した計測値を得ることが難しい。   However, since these temperature measuring devices require electric power for driving a fan, a blower or the like, a power source is required for temperature observation. When commercial power sources such as mountainous areas cannot be secured, it is necessary to install solar panels and batteries in order to drive the fans at all times. For this reason, the installation space of the necessary equipment becomes a problem, the configuration is complicated and the cost is high, and it can be said that it is sufficiently popular in the field of temperature measurement for agriculture such as horticultural facilities and cultivation research. Absent. Furthermore, in the conventional thermometer, the shape of the sensitive part is a cylinder, a flat ellipsoid, or a flat plate, and the characteristics of the air flow around the sensitive part change due to changes in the wind direction. Difficult to get.

また、従来のこの種の気温を測定する気温測定装置としては、湿度長期計測用フィールドサーバがあり、この装置は、測定室、外気吸込室、外気取込予備室、吸湿性の少ないフィルタ部を備えており、外気吸込室内の電動ファンが回転すると、外気取込予備室の2個所の外気取込孔から外気が吸込まれ、フィルタ部を通過し、外気は測定室内に導入され、内部湿度センサ、内部温度センサを通過して上蓋の外周隙間より外部に排出され、空気流が下方から上方に流れる構成となっている(例えば、特許文献1参照)。   In addition, as a conventional temperature measuring device for measuring this type of temperature, there is a field server for long-term humidity measurement, and this device includes a measurement chamber, an outside air suction chamber, an outside air intake preparatory chamber, and a filter portion with low hygroscopicity. When the electric fan in the outside air intake chamber rotates, outside air is sucked in from the two outside air intake holes of the outside air intake preparatory chamber, passes through the filter section, and the outside air is introduced into the measurement chamber, and the internal humidity sensor Then, it passes through the internal temperature sensor and is discharged to the outside through the outer peripheral gap of the upper lid, so that the air flow flows upward from below (see, for example, Patent Document 1).

さらに、従来のこの種の温度を測定する装置としては、物理量を検出する物理量センサ装置があり、この装置は、センサチップの温度を検出するための複数の温度センサを備え、複数の温度センサにて検出した温度に基づいて物理量を補正する回路部を備え、温度補正の精度を向上させるものである(例えば、特許文献2参照)。   Furthermore, as a conventional device for measuring this kind of temperature, there is a physical quantity sensor device that detects a physical quantity, and this device includes a plurality of temperature sensors for detecting the temperature of a sensor chip, The circuit unit for correcting the physical quantity based on the detected temperature is provided to improve the accuracy of temperature correction (see, for example, Patent Document 2).

特開2008−64591号公報JP 2008-64591 A 特開2005−257623号公報JP 2005-257623 A

ところで、前記構造の気温測定装置では、電動ファンで導入された外気は外気取込予備室からフィルタ部、外気吸込室、測定室を通過して外部に排出されるため、構成が複雑となり、装置コストが高くなる問題点があった。また、外気取込予備室に取込まれる外気は、2個の外気取込孔から広い空間に取込まれるため、空間内部の空気が滞留して温度分布が一定とならず、外気流が安定しないという問題点があり、気温や湿度の測定精度に影響を与える可能性がある。さらに、外気の導入経路が複雑であり、電動ファンは高出力のものが必要であった。   By the way, in the temperature measuring device having the above structure, the outside air introduced by the electric fan passes through the filter portion, the outside air suction chamber, and the measurement chamber from the outside air intake preliminary chamber and is discharged to the outside. There was a problem of high costs. Also, since the outside air taken into the outside air taking-in chamber is taken into a wide space from the two outside air taking holes, the air inside the space stays and the temperature distribution is not constant, and the outside air flow is stable. There is a problem that the measurement accuracy of temperature and humidity may be affected. Furthermore, the introduction path of the outside air is complicated, and the electric fan must have a high output.

また、前記の物理量センサ装置は、各温度センサ9a〜9dで検出した温度の平均値をセンサチップ5における中央付近の温度と推定し、あるいは各温度センサ9a〜9dで検出した温度に所定の重み付けをして算出するものである。このため、この物理量センサ装置では、推定された温度又は算出された温度と真の温度との間の差が大きくなり、また、屋外での気温の測定には適していない。   Further, the physical quantity sensor device estimates the average value of the temperatures detected by the temperature sensors 9a to 9d as the temperature near the center of the sensor chip 5, or gives a predetermined weight to the temperatures detected by the temperature sensors 9a to 9d. It is calculated by doing. For this reason, this physical quantity sensor device has a large difference between the estimated temperature or the calculated temperature and the true temperature, and is not suitable for outdoor temperature measurement.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、構成が簡単であり、装置コストを低減でき、測定精度を向上させることができると共に、一般の温度計測装置として各種の用途に使用でき、かつ環境の影響を受けにくい温度センサ、温度測定装置及び温度測定方法を提供することにある。
また、日射や風等の影響を受け易い水田、畑地等の屋外での気温の測定に適した温度センサ、温度測定装置及び温度測定方法を提供することにある。
The present invention has been made in view of such problems, and the object of the present invention is to simplify the configuration, reduce the device cost, improve the measurement accuracy, and improve the general temperature. An object of the present invention is to provide a temperature sensor, a temperature measuring device, and a temperature measuring method that can be used for various applications as a measuring device and are not easily affected by the environment.
It is another object of the present invention to provide a temperature sensor, a temperature measuring device, and a temperature measuring method suitable for measuring an outdoor temperature such as paddy fields and field fields that are easily affected by solar radiation and wind.

前記目的を達成すべく、本発明に係る温度センサは、感温部を有する熱電対を複数本備え、前記熱電対の各々の前記感温部は、体積が異なることを特徴する。また、前記感温部は、球体であることを特徴とする。さらに、前記複数本の熱電対は、前記感温部の各々が所定の間隔を置いて配置されると共に、前記感温部とは反対側の前記熱電対の端部が集められて一体に形成されていることを特徴とし、前記複数本の熱電対は、一つの仮想円周上に等間隔に配置されていることが好ましい。   In order to achieve the above object, the temperature sensor according to the present invention includes a plurality of thermocouples each having a temperature sensing portion, and each temperature sensing portion of the thermocouple has a different volume. The temperature sensing unit is a sphere. Further, the plurality of thermocouples are formed integrally with each of the temperature sensing portions being arranged at a predetermined interval and by collecting the end portions of the thermocouple on the side opposite to the temperature sensing portion. The plurality of thermocouples are preferably arranged at equal intervals on one virtual circumference.

前記のごとく構成された本発明の温度センサは、熱電対の感温部がその体積が異なると環境の違いによってその発生する起電力(温度)も異なる現象があること及び該複数の異なる温度を補正することで一つの真の温度に近い補正温度を算出できるとの新たな知見に基づいてなされたものであり、感温部の体積が異なる複数の熱電対を一つの温度センサとすることで、発生起電力が異なる複数の温度データをより正確かつ容易に得ることができると共に、該複数の温度データから真の気温に近い補正温度を、その後のデータ処理により容易に導きだせるような構成としたものである。
また、本発明の温度センサは、部品点数を少なくすることができるとともに、装置の組立、屋外での設置が容易となる。
The temperature sensor of the present invention configured as described above has a phenomenon that when the thermosensitive part of the thermocouple has a different volume, there is a phenomenon that the electromotive force (temperature) generated varies depending on the environment and the plurality of different temperatures. It was made based on the new knowledge that it is possible to calculate a correction temperature close to one true temperature by correcting, and by making a plurality of thermocouples with different volumes of the temperature sensing part into one temperature sensor A configuration capable of more accurately and easily obtaining a plurality of temperature data having different generated electromotive forces, and easily obtaining a correction temperature close to the true temperature from the plurality of temperature data by subsequent data processing; It is a thing.
In addition, the temperature sensor of the present invention can reduce the number of parts and facilitate assembly of the apparatus and installation outdoors.

本発明に係る温度センサの好ましい具体的な態様としては、前記複数本の熱電対は、3本〜5本であることが好ましい。さらに、前記複数本の熱電対は、ステンレス鋼管で前記感温部を残して被覆されていると好ましい。この構成によれば、3本〜5本の熱電対を一つの仮想円周上に等間隔に配置し、自然風の影響を抑えることができ、複数本の熱電対をステンレス鋼管で前記感温部を残して被覆すると、風雨等に対して耐久性を上げることができる。   As a preferable specific aspect of the temperature sensor according to the present invention, it is preferable that the plurality of thermocouples is three to five. Furthermore, it is preferable that the plurality of thermocouples are covered with a stainless steel pipe leaving the temperature sensitive part. According to this configuration, three to five thermocouples can be arranged at equal intervals on one virtual circumference, and the influence of natural wind can be suppressed. If the coating is made while leaving the portion, durability against wind and rain can be improved.

本発明に係る温度測定装置は、前記したいずれかに記載の温度センサを備え、前記複数本の熱電対の各起電力を変換して各温度を算出する温度算出手段と、該温度算出手段で算出した前記各温度に基づいて一つの補正温度を算出する補正温度算出手段と、を備えていることを特徴とする。この構成によれば、温度センサの複数本の熱電対を用いて温度算出手段で複数の温度を算出することができ、補正温度算出手段で算出された各温度に基づいて一つの補正温度を算出するため、各熱電対に加わる放射の影響を抑えた真の温度に近い補正温度を算出することができる。   A temperature measurement device according to the present invention includes any one of the temperature sensors described above, and includes a temperature calculation unit that converts each electromotive force of the plurality of thermocouples to calculate each temperature, and the temperature calculation unit. Correction temperature calculation means for calculating one correction temperature based on each of the calculated temperatures. According to this configuration, a plurality of temperatures can be calculated by the temperature calculation means using a plurality of thermocouples of the temperature sensor, and one correction temperature is calculated based on each temperature calculated by the correction temperature calculation means. Therefore, it is possible to calculate a correction temperature close to the true temperature while suppressing the influence of radiation applied to each thermocouple.

本発明に係る温度測定装置の他の態様としては、前記感温部が球体である温度センサを備え、前記複数本の熱電対の各起電力を変換して各温度を算出する温度算出手段と、該温度算出手段で算出した前記各温度に基づいて一つの補正温度を算出する補正温度算出手段と、を備え、前記補正温度算出手段は、前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配を計算する計算部を備えていることを特徴としており、前記補正温度算出手段は、前記温度平均値と前記直径累乗平均値と前記温度勾配とに基づいて前記補正温度を算出する補正温度計算部を備えていることを特徴としている。
この構成によれば、補正温度算出手段は、温度センサの感温部の各球体の直径が異なる複数本の熱電対に基づいて算出した各温度の温度勾配に基づいて補正温度を算出するため、放射の影響を抑えた真の温度に近い補正温度を算出することができる。
As another aspect of the temperature measuring device according to the present invention, a temperature calculating unit that includes a temperature sensor in which the temperature sensing unit is a sphere, converts each electromotive force of the plurality of thermocouples, and calculates each temperature; Correction temperature calculation means for calculating one correction temperature based on each temperature calculated by the temperature calculation means, and the correction temperature calculation means has a diameter based on the diameter of each sphere of the temperature sensing unit. A power average value, a temperature average value of each temperature of the temperature sensing unit, and a calculation unit that calculates a temperature gradient based on the diameter of each sphere, the power average value of the diameter, the temperature, and the temperature average value. The correction temperature calculation means includes a correction temperature calculation unit that calculates the correction temperature based on the temperature average value, the diameter power average value, and the temperature gradient. It is said.
According to this configuration, the correction temperature calculation means calculates the correction temperature based on the temperature gradient of each temperature calculated based on a plurality of thermocouples having different diameters of the spheres of the temperature sensor of the temperature sensor. It is possible to calculate a correction temperature close to the true temperature while suppressing the influence of radiation.

また、前記温度測定装置において、前記補正温度計三部は、前記補正温度をTaとし、前記温度算出手段で算出された前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする。
この構成によれば、複数本の熱電対感温部が受ける放射量の違いより、熱電対感温部の計測する各温度の平均値、及び熱電対感温部の前記各球体の直径に基づく直径の累乗平均値から前記温度勾配を算出し、伝熱学の理論に基づいて真の温度に近い補正温度を算出することができる。
Further, in the temperature measuring device, the three parts of the correction thermometer set the correction temperature as Ta, the temperature average value of each temperature calculated by the temperature calculation means is Ts, and each sphere of the temperature sensing part is The correction temperature Ta is calculated from the equation Ts−Ta = B × D, where D is the average power of diameters based on the diameter and B is the temperature gradient.
According to this configuration, based on the difference in the amount of radiation received by the plurality of thermocouple temperature sensing units, based on the average value of each temperature measured by the thermocouple temperature sensing unit and the diameter of each sphere of the thermocouple temperature sensing unit. The temperature gradient can be calculated from the power average value of the diameters, and a corrected temperature close to the true temperature can be calculated based on the theory of heat transfer.

そして、前記温度測定装置は、前記補正温度を表示する表示手段を備えていることが好ましい。この構成によれば、算出された真の温度に近い補正温度を表示手段で表示することができ、温度測定装置が設置された水田、畑地等で、迅速に補正温度を知ることができる。   And it is preferable that the said temperature measurement apparatus is provided with the display means which displays the said correction temperature. According to this configuration, the correction temperature close to the calculated true temperature can be displayed on the display means, and the correction temperature can be quickly known in a paddy field, a field or the like where the temperature measuring device is installed.

本発明に係る温度測定方法は、前記したいずれかに記載の温度センサを用いる温度測定方法であって、前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、該変換した前記各温度に基づいて一つの補正温度を算出することを特徴とする。
また、本発明の温度測定方法の他の態様は、前記感温部が球体である温度センサを備え、前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配に基づいて前記補正温度を算出することを特徴とする。さらに、前記補正温度をTaとし、前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする。
この構成によれば、複数本の熱電対の各起電力から各温度に変換し、変換した前記各温度に基づいて前記補正温度を算出するため、各温度の温度勾配に基づいて真の温度に近い温度を測定することができる。
A temperature measurement method according to the present invention is a temperature measurement method using any one of the temperature sensors described above, and measures each electromotive force of the plurality of thermocouples and converts each electromotive force into each temperature. One correction temperature is calculated based on the converted temperatures.
According to another aspect of the temperature measurement method of the present invention, the temperature sensing unit includes a temperature sensor having a spherical shape, and measures each electromotive force of the plurality of thermocouples to convert each electromotive force into each temperature. A diameter power average value based on a diameter of each sphere of the temperature sensing part, a temperature average value of each temperature of the temperature sensing part, a diameter of each sphere, a diameter power mean value, and each temperature; The correction temperature is calculated based on a temperature gradient based on the temperature average value. Further, when the corrected temperature is Ta, the temperature average value of each temperature is Ts, the diameter power average value based on the diameter of each sphere of the temperature sensing portion is D, and the temperature gradient is B, the equation Ts−Ta The correction temperature Ta is calculated from B × D.
According to this configuration, each electromotive force of a plurality of thermocouples is converted into each temperature, and the correction temperature is calculated based on each converted temperature. Therefore, the true temperature is obtained based on the temperature gradient of each temperature. Close temperature can be measured.

本発明の温度センサ、温度測定装置及び温度測定方法は、感温部の体積が異なる複数本の熱電対で同時に計測した複数の温度を用いて精度のよい温度測定が可能となる。すなわち、体積の異なる複数の感温部に加わる放射の影響を計算上漸近的に取り除くことができ、放射除けを設けることなく精度よく温度を測定することができる。また、屋外での気温の測定に好適であり、電力消費が少なく、商用電源がなくても駆動でき、太陽電池パネル、バッテリ等の設備も必要としない。   The temperature sensor, temperature measuring apparatus, and temperature measuring method of the present invention enable accurate temperature measurement using a plurality of temperatures simultaneously measured by a plurality of thermocouples having different temperature sensing part volumes. That is, the influence of radiation applied to a plurality of temperature sensing parts having different volumes can be asymptotically removed in calculation, and the temperature can be accurately measured without providing radiation shielding. Further, it is suitable for outdoor temperature measurement, consumes less power, can be driven without a commercial power supply, and does not require facilities such as a solar cell panel and a battery.

本発明に係る温度測定装置の一実施形態を水田、畑地等に設置した状態の斜視図。The perspective view of the state which installed one Embodiment of the temperature measuring device which concerns on this invention in a paddy field, a field, etc. FIG. (a)は図1に示す温度測定装置で使用する1本の熱電対の正面図、(b)は3本の熱電対を組み立てた状態の斜視図。(A) is a front view of one thermocouple used with the temperature measuring apparatus shown in FIG. 1, (b) is a perspective view of a state in which three thermocouples are assembled. (a)は本実施形態の温度測定装置の要部構成を示す制御ブロック図、(b)は(a)の詳細を示す制御ブロック図。(A) is a control block diagram which shows the principal part structure of the temperature measuring device of this embodiment, (b) is a control block diagram which shows the detail of (a). 複数本の温度センサを用いた温度測定装置による気温の求め方のイメージ図。The image figure of how to obtain | require the air temperature by the temperature measuring apparatus using several temperature sensors. 伝熱学の理論に基づいた気温の求め方のイメージ図。An image of how to find the temperature based on the theory of heat transfer. 本実施形態の温度測定装置の動作説明を示す制御フロー図。The control flowchart which shows operation | movement description of the temperature measuring device of this embodiment. 伝熱学の理論に基づいて算出した温度データを示すグラフ図。The graph which shows the temperature data calculated based on the theory of heat transfer. 伝熱学の理論に基づいて算出した温度データと標準温度計の計測値との関係を示すグラフ図。The graph which shows the relationship between the temperature data computed based on the theory of heat transfer, and the measured value of a standard thermometer. 本発明に係る温度センサの他の実施形態の要部斜視図。The principal part perspective view of other embodiment of the temperature sensor which concerns on this invention. 図9の温度センサを平面方向から見た模式図。The schematic diagram which looked at the temperature sensor of FIG. 9 from the plane direction. 温度センサの感温部の変形例の要部斜視図。The principal part perspective view of the modification of the temperature sensing part of a temperature sensor.

以下、本発明に係る温度センサを用いた温度測定装置の一実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る温度測定装置を水田、畑地等に設置した状態の斜視図、図2(a)は、図1の温度測定装置で使用する1本の熱電対の正面図、図2(b)は、図2(a)の熱電対を3本組み立てた温度センサの斜視図、図3(a)は、図1,2に示す温度測定装置の要部構成を示す制御ブロック図、(b)は(a)の詳細の制御ブロック図である。   Hereinafter, an embodiment of a temperature measuring device using a temperature sensor according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a state in which the temperature measuring device according to the present embodiment is installed in a paddy field, a field, etc., FIG. 2A is a front view of one thermocouple used in the temperature measuring device of FIG. 2 (b) is a perspective view of a temperature sensor in which three thermocouples of FIG. 2 (a) are assembled, and FIG. 3 (a) is a control block showing the main configuration of the temperature measuring device shown in FIGS. FIG. 4B is a detailed control block diagram of FIG.

図1〜3において、本実施形態に係る温度センサ1は、複数本の感温部を有する熱電対を備えており、この実施形態では3本の熱電対2,3,4を備えている。3本の熱電対2,3,4は、線径が0.1mm程度の細ワイヤで形成され、例えば銅−コンスタンタンの細ワイヤの先端を溶着したものであり、その溶着部には直径の異なるステンレス鋼の球体2a,3a,4aが被された状態で固定されている。   1 to 3, the temperature sensor 1 according to the present embodiment includes a thermocouple having a plurality of temperature sensing units, and in this embodiment, includes three thermocouples 2, 3, and 4. The three thermocouples 2, 3 and 4 are formed of thin wires having a wire diameter of about 0.1 mm, for example, the tips of copper-constantan thin wires are welded, and the weld portions have different diameters. Stainless steel spheres 2a, 3a, 4a are fixed in a covered state.

この実施形態では、直径が0.25mm、1mm、4mmの球体2a,3a,4aが各熱電対2,3,4の先端の溶着部に溶接等で固定されている。これらの球体2a,3a,4aは熱電対2,3,4の感温部を構成しており、感温部の直径及び体積は各々異なっている。このため、3本の熱電対2,3,4は感温部の表面積が異なると共に、熱の放射の影響が異なる構成となっている。なお、熱電対の線径は0.1mmに限らず、さらに細い線径のものや、太いものを用いてもよい。また、球体はステンレス鋼に限らず、黄銅等の他の金属、あるいは熱電対の溶着部を球体に加工したもので構成してもよい。   In this embodiment, spheres 2a, 3a, and 4a having diameters of 0.25 mm, 1 mm, and 4 mm are fixed to the welds at the tips of the thermocouples 2, 3, and 4 by welding or the like. These spheres 2a, 3a and 4a constitute the temperature sensitive parts of the thermocouples 2, 3 and 4, and the diameter and volume of the temperature sensitive parts are different from each other. For this reason, the three thermocouples 2, 3, and 4 are configured to have different surface areas of the temperature sensing portion and different effects of heat radiation. The wire diameter of the thermocouple is not limited to 0.1 mm, and a thinner wire wire or a thick wire may be used. The sphere is not limited to stainless steel, but may be composed of other metals such as brass, or a thermocouple welded portion processed into a sphere.

3本の熱電対2,3,4は、直径が2mm程度で内径が1mm程度のステンレス鋼管で形成され、その垂直部が75mm、水平部が75mm、垂直部が75mm程度となるように屈曲させた3本のサポート管2b,3b,4b内に被覆挿入されている。3本のサポート管2b,3b,4bは、下方の垂直部がグリップ部5により纏められ、水平部がそれぞれ120°の間隔となるように固定され、上方の垂直部がそれぞれ130mm程度離れた等間隔となるように固定され、感温部を構成する球体2a,3a,4aは1つの仮想円周上に等間隔に配置されている。   The three thermocouples 2, 3, and 4 are formed of stainless steel tubes having a diameter of about 2 mm and an inner diameter of about 1 mm, and are bent so that the vertical portion is 75 mm, the horizontal portion is 75 mm, and the vertical portion is about 75 mm. The three support pipes 2b, 3b and 4b are covered and inserted. The three support pipes 2b, 3b, 4b are arranged such that the lower vertical parts are gathered by the grip part 5, the horizontal parts are fixed at intervals of 120 °, the upper vertical parts are separated by about 130 mm, etc. The spheres 2a, 3a, 4a, which are fixed so as to be spaced and constitute the temperature sensing portion, are arranged at equal intervals on one virtual circumference.

3本の熱電対2,3,4は、それぞれ3本のサポート管2b,3b,4b内に感温部を残して被覆挿入され、先端の溶着部に球体2a,3a,4aを被せて固定し、3本のサポート管2b,3b,4bの下端から熱電対の下方の2本のワイヤが突出してそれぞれのワイヤが補償導線2c,3c,4cに連結されている。それぞれの補償導線2c,3c,4cは接続ワイヤ6に接続され、接続ワイヤ6を介して3つの温度データを出力するように構成されている。このように、複数本の熱電対2,3,4は感温部を構成する球体2a,3a,4aがグリップ部5で所定の間隔に配置された一体物として構成されている。   The three thermocouples 2, 3 and 4 are inserted into the three support tubes 2b, 3b and 4b with the temperature sensitive portions covered, and are fixed with the spheres 2a, 3a and 4a covering the welded portions at the ends. Then, two wires below the thermocouple protrude from the lower ends of the three support tubes 2b, 3b, and 4b, and the respective wires are connected to the compensating conductors 2c, 3c, and 4c. Each compensation conducting wire 2c, 3c, 4c is connected to a connection wire 6 and is configured to output three temperature data via the connection wire 6. As described above, the plurality of thermocouples 2, 3, 4 are configured as a single body in which the spheres 2 a, 3 a, 4 a constituting the temperature sensing part are arranged at a predetermined interval by the grip part 5.

このように構成された複数本の熱電対2,3,4を一体化した温度センサ1を有する温度測定装置10は、水田、畑地等の地面Gに設置された観測用ポール7の上部に固定されたアーム8に固定され、複数本の熱電対2,3,4に連結された補償導線2c,3c,4cに接続された接続ワイヤ6はポール7に固定されたデータロガー9に取り込まれる。なお、アーム8は必ずしも必要でなく、ポール7に直接温度センサ1を固定するようにしてもよい。熱電対2,3,4の高さは地面から1.5〜2m程度になるように設置される。   A temperature measuring device 10 having a temperature sensor 1 in which a plurality of thermocouples 2, 3, 4 configured as described above is integrated is fixed to an upper portion of an observation pole 7 installed on the ground G such as a paddy field or a field. The connecting wire 6 connected to the compensating conductors 2c, 3c, 4c fixed to the arm 8 and connected to the plurality of thermocouples 2, 3, 4 is taken into the data logger 9 fixed to the pole 7. The arm 8 is not always necessary, and the temperature sensor 1 may be directly fixed to the pole 7. The thermocouples 2, 3, and 4 are installed so that the height is about 1.5 to 2 m from the ground.

温度測定装置10は基本的には複数本の熱電対2,3,4を備えた温度センサ1と、補償導線2c,3c,4cと、接続ワイヤ6と、データロガー9で構成され、電力消費はデータロガー9だけであり、乾電池等の簡易な電源で長期間の連続観測が可能となっている。このため、気温を測定するために商用電源は必要がなく、太陽電池パネルや蓄電用バッテリも必要がなく、構成が極めて簡単となっている。したがって、温度測定装置10のコストを低減することができる。また、熱電対2,3,4は感温部の体積を小さくできるため、放射の影響を小さくすることができる。さらに、温度センサ1の感温部を構成する3本の熱電対2,3,4の先端の溶着部に球体2a,3a,4aを被せて固定しているため、温度センサ1が風雨にさらされても溶着部の破損を防止できる。   The temperature measuring device 10 is basically composed of a temperature sensor 1 having a plurality of thermocouples 2, 3, 4, compensating conductors 2 c, 3 c, 4 c, connection wires 6, and a data logger 9, and consumes power. Is the data logger 9 only, and can be continuously observed for a long time with a simple power source such as a dry battery. For this reason, a commercial power source is not required to measure the temperature, and a solar cell panel and a battery for power storage are not required, and the configuration is extremely simple. Therefore, the cost of the temperature measuring device 10 can be reduced. In addition, since the thermocouples 2, 3, and 4 can reduce the volume of the temperature sensing portion, the influence of radiation can be reduced. Furthermore, since the spheres 2a, 3a, 4a are covered and fixed to the welded portions at the tips of the three thermocouples 2, 3, 4 constituting the temperature sensing part of the temperature sensor 1, the temperature sensor 1 is exposed to wind and rain. Even if it is done, breakage of the welded portion can be prevented.

温度センサ1の感温部を球体2a,3a,4aとするのは、温度センサ1の感温部が受ける単位表面積あたりの放射量をRとすると、Rの変化を(理論的には相似形であればRの値に違いはないが)最小化するのと、風の突入角度によって流れの特性が変わってしまうのを防ぐのがねらいである。また、3点の配置では、季節や時刻によって変化する風向きに対して、各熱電対による風の遮断が他の熱電対に与える影響をなるべく小さくできるように配置することが好ましい。具体的には、直径の大きい球体を備える熱電対ほど距離が大きくなるように配置し、加工しやすい整数比(例えば3:4:5)の直角三角形の配置とすると好ましい。この実施形態については後述する。   The temperature sensing part of the temperature sensor 1 is the spheres 2a, 3a, 4a. If the radiation amount per unit surface area received by the temperature sensing part of the temperature sensor 1 is R, the change in R (theoretically similar) The aim is to minimize and prevent the flow characteristics from changing due to the wind entry angle (although there is no difference in the value of R). In addition, in the three-point arrangement, it is preferable to arrange such that the influence of wind interception by each thermocouple on other thermocouples can be reduced as much as possible with respect to the wind direction changing according to the season and time. Specifically, it is preferable that the thermocouple having a sphere having a larger diameter is arranged so that the distance becomes larger, and the arrangement is a right triangle having an integer ratio (for example, 3: 4: 5) that is easy to process. This embodiment will be described later.

本実施形態の温度測定装置10は、図3に示すように、感温部を構成する球体2a,3a,4aを有する3本の熱電対2,3,4を備えた温度センサ1と、3本の熱電対の各起電力を変換して各温度を算出する温度算出手段11と、温度算出手段11で算出した3本の熱電対2,3,4の球体(感温部)2a,3a,4aの起電力より算出した各温度に基づいて補正温度を算出する補正温度算出手段12と、補正温度算出手段22で算出された補正温度12aを表示する温度表示手段13とを備えて構成される。感温部直径入力部14から感温部を構成する球体(2a,3a,4a)の直径(d、d・・・)が補正温度算出手段12に入力される構成となっている。なお、球体の直径は補正温度算出手段12に入力されるものに限られず、温度算出手段11等に入力してもよい。 As shown in FIG. 3, the temperature measuring apparatus 10 of the present embodiment includes a temperature sensor 1 including three thermocouples 2, 3, 4 having spheres 2 a, 3 a, 4 a that constitute a temperature sensing unit, and 3 A temperature calculation means 11 for calculating each temperature by converting each electromotive force of the thermocouple of the book, and spheres (temperature sensing parts) 2a and 3a of the three thermocouples 2, 3 and 4 calculated by the temperature calculation means 11 , 4a, a correction temperature calculation unit 12 that calculates a correction temperature based on each temperature calculated from the electromotive force of 4a, and a temperature display unit 13 that displays the correction temperature 12a calculated by the correction temperature calculation unit 22. The The diameters (d 1 , d 2 ...) Of the spheres (2 a, 3 a, 4 a) constituting the temperature sensing part are inputted from the temperature sensing part diameter input part 14 to the corrected temperature calculation means 12. Note that the diameter of the sphere is not limited to that input to the correction temperature calculation unit 12, but may be input to the temperature calculation unit 11 or the like.

温度センサ1の熱電対感温部(球体)2a,3a,4aから出力される各起電力2d,3d,4dは温度算出手段11に入力され、各温度11a,11b,11cに変換される。そして、変換された各温度11a,11b,11cは補正温度算出手段12に入力され、温度センサ1の3本の熱電対2,3,4に加わる放射の影響を抑えた1つの補正温度12aが算出され、温度表示手段13で表示される構成となっている。より詳細には、図3(b)に示すように、補正温度算出手段12は直径累乗平均値(D)、温度平均値(Ts)、温度勾配(B)計算部12Aと補正温度計算部12Bとを備え、直径累乗平均値、温度平均値、温度勾配計算部12Aは球体2a,3a,4aの直径に基づく直径累乗平均値12bを算出し、温度算出手段11から出力された各温度11a,11b,11cより温度平均値12cを算出すると共に、温度勾配12dを算出する。そして、補正温度計算部12Bでは、直径累乗平均値12b、温度平均値12c、温度勾配12dから補正温度12aを算出する。なお、温度算出手段11から出力される各温度11a,11b,11c、及び感温部直径入力部14からの直径データを記憶装置15又は無線LAN等でパソコン16に供給し、補正温度を算出するように構成してもよい。この場合には感温部直径入力部14から、球体の直径がパソコン16に入力される。   The electromotive forces 2d, 3d, and 4d output from the thermocouple temperature sensing parts (spheres) 2a, 3a, and 4a of the temperature sensor 1 are input to the temperature calculation unit 11 and converted into the temperatures 11a, 11b, and 11c. The converted temperatures 11a, 11b, and 11c are input to the correction temperature calculation means 12, and one correction temperature 12a that suppresses the influence of radiation applied to the three thermocouples 2, 3, and 4 of the temperature sensor 1 is obtained. It is calculated and displayed on the temperature display means 13. More specifically, as shown in FIG. 3B, the correction temperature calculation means 12 includes a diameter power average value (D), a temperature average value (Ts), a temperature gradient (B) calculation unit 12A, and a correction temperature calculation unit 12B. The diameter power average value, the temperature average value, and the temperature gradient calculation unit 12A calculate a diameter power average value 12b based on the diameters of the spheres 2a, 3a, and 4a, and output each temperature 11a, A temperature average value 12c is calculated from 11b and 11c, and a temperature gradient 12d is calculated. The corrected temperature calculation unit 12B calculates the corrected temperature 12a from the diameter power average value 12b, the temperature average value 12c, and the temperature gradient 12d. In addition, each temperature 11a, 11b, 11c output from the temperature calculation means 11 and the diameter data from the temperature sensing part diameter input part 14 are supplied to the personal computer 16 by the storage device 15 or wireless LAN etc., and a correction temperature is calculated. You may comprise as follows. In this case, the diameter of the sphere is input to the personal computer 16 from the temperature sensing unit diameter input unit 14.

前記の如く構成された本実施形態の温度センサ1を備えた温度測定装置10の温度測定動作について以下に説明する。この温度測定装置10では、温度センサ1の複数本の熱電対2,3,4を使用し、感温部を構成する先端の球体2a,3a,4aの直径を異なるように構成し、複数本の熱電対で気温を同時計測し、図4のイメージ図で示すように、複数の計測値を用いて複数本の熱電対の放射の影響による計測値の誤差を補正することを特徴とするものであり、具体的には図5のイメージ図に示すように、見かけの計測値から温度勾配Bを求め、求められた温度勾配Bより、各熱電対の計測する温度の違いから感温部に対する放射の影響を見積もり、その影響を計算上取り除くことで漸近的に正しい温度(補正温度)Taを求めることを特徴としている。   The temperature measuring operation of the temperature measuring apparatus 10 including the temperature sensor 1 of the present embodiment configured as described above will be described below. In this temperature measuring apparatus 10, a plurality of thermocouples 2, 3, and 4 of the temperature sensor 1 are used, and the diameters of the spheres 2a, 3a, and 4a at the tip that constitute the temperature sensing unit are configured to be different. The air temperature is measured simultaneously with the thermocouples, and as shown in the image diagram of FIG. 4, the error of the measurement values due to the radiation effects of multiple thermocouples is corrected using multiple measurement values. Yes, specifically, as shown in the image diagram of FIG. 5, the temperature gradient B is obtained from the apparent measured value, and from the obtained temperature gradient B, the radiation of the temperature sensitive part is calculated from the difference in temperature measured by each thermocouple. It is characterized in that the influence is estimated and the correct temperature (corrected temperature) Ta is obtained asymptotically by removing the influence in the calculation.

補正温度Taの求め方として、ここでは感温部の熱収支と伝熱学の方程式(伝熱学の理論)を組み合わせた方法を用いる。大気中の熱電対感温部における熱収支は、内部電流による加熱及び沸騰・凝縮による熱交換を無視すると以下の式(1)で表される。
R−N(λ/d)(Ts−Ta)=0・・・(1)
As a method for obtaining the correction temperature Ta, here, a method in which the heat balance of the temperature sensing portion and the equation of heat transfer (the theory of heat transfer) is combined is used. The heat balance in the thermocouple temperature sensing part in the atmosphere is expressed by the following formula (1) when heating by the internal current and heat exchange by boiling and condensation are ignored.
RN u (λ / d) (Ts−Ta) = 0 (1)

ここで、Taは補正温度(真の気温)、Tsは見かけの気温(計測値)であり、Rは熱電対感温部が受ける放射量、Nはヌセルト数、d(d、d・・・)は熱電対感温部の直径、λは熱伝導率である。 Here, Ta is corrected temperature (true temperature), Ts is the apparent temperature (measured value), the radiation amount R is the thermocouple temperature sensing unit receives, N u is the Nusselt number, d (d 1, d 2 ...) Is the diameter of the thermocouple temperature sensitive part, and λ is the thermal conductivity.

この式(1)を変形すると、次式(2)が得られる。
Ts−Ta=RN −1dλ−1・・・(2)
When this equation (1) is transformed, the following equation (2) is obtained.
Ts−Ta = RN u −1−1 (2)

式(2)に含まれる無次元数N(ヌセルト数)について、他の無次元数との関係(熱伝達における整理式)は強制対流では式(3)、(4)で表すことができる。
=CR ・・・(3)
=(ud/ν)、P=(ν/a)、ν=(μ/ρ)、a=(λ/ρc)・・・(4)
With respect to the dimensionless number N u (Nussert number) included in the expression (2), the relationship with other dimensionless numbers (reduction formula in heat transfer) can be expressed by expressions (3) and (4) in forced convection. .
N u = CR e n P r m ··· (3)
R e = (ud / ν), P r = (ν / a), ν = (μ / ρ), a = (λ / ρc p ) (4)

ここで、R:レイノルズ数、P:プラントル数、u:流速(=風速)、d:熱電対感温部の直径(代表長)、ν:動粘性係数、a:温度伝導率、μ:粘性係数、ρ:密度、c:比熱である。 Here, R e : Reynolds number, P r : Prandtl number, u: Flow velocity (= wind velocity), d: Diameter of thermocouple temperature sensing part (representative length), ν: Kinematic viscosity coefficient, a: Temperature conductivity, μ : Viscosity coefficient, ρ: density, c p : specific heat.

この整理式のうち、C、n、mは実験的に求められる定数であり、ここでは3つの実験値を未知数としておく。この場合、他のパラメータのうち計測時の環境条件によって変化するのはRとuで、感温部の直径dは温度センサの作製時に予め得ることができる値である。   In this simplification formula, C, n, and m are constants obtained experimentally, and here, three experimental values are set as unknowns. In this case, among the other parameters, R and u change depending on the environmental conditions at the time of measurement, and the diameter d of the temperature sensing portion is a value that can be obtained in advance when the temperature sensor is manufactured.

Ts−Taの差について前記式(1)、(3)、(4)を解き、定数をAとすると、以下の関係が得られる。
Ts−Ta=RN −1dλ−1
=Rc−1−n(1−n)ρ−nμ(n−m) −mλ(m−1)・・・(5)
=A×(R/u)×d(1−n)・・・(6)
When the above formulas (1), (3), and (4) are solved for the difference of Ts−Ta and the constant is A, the following relationship is obtained.
Ts−Ta = RN u −1−1
= Rc -1 u -n d (1 -n) ρ -n μ (n-m) c p -m λ (m-1) ··· (5)
= A × (R / u n ) × d (1-n) (6)

この式(6)から、気温の計測値は一般的に、R(感温部が受ける放射)が大きく、u(風速)が小さいときほど誤差が大きくなることが理解できる。一方で、d(感温部の直径)が小さいほど誤差を小さくすることができるが、理論上、誤差をゼロにすることはできない。本実施形態の温度測定装置10は、これまでの温度計のように通風速度を大きくする、あるいは感温部をなるべく小さくして放射の影響を小さくするのではなく、代わりに感温部の体積が異なる複数の熱電対を用いて、同時に計測された複数の計測値を用いることで、計算によって放射の影響を取り除き、正しい気温を求めることができるものである。   From this equation (6), it can be understood that the measured value of the temperature generally has a larger error (radiation received by the temperature sensing unit) and a larger error as u (wind speed) is smaller. On the other hand, the error can be reduced as d (diameter of the temperature sensitive part) is smaller, but in theory, the error cannot be made zero. The temperature measuring device 10 of the present embodiment does not increase the ventilation speed as in the conventional thermometers, or reduce the temperature-sensitive part as much as possible to reduce the influence of radiation, but instead the volume of the temperature-sensitive part. By using a plurality of measured values simultaneously measured using a plurality of thermocouples having different values, the influence of radiation can be removed by calculation and the correct temperature can be obtained.

具体的な解法(補正温度の求め方)は、前記式(6)において、B=A×(R/u)とおくと、気温と感温部温度、感温部直径の3者の関係は以下の式(7)となる。
Ts−Ta=B×d(1−n)・・・(7)
A specific solution method (how to obtain a correction temperature) is B = A × (R / u n ) in the above equation (6), and the relationship between the temperature, temperature sensor temperature, temperature sensor diameter. Becomes the following equation (7).
Ts−Ta = B × d (1-n) (7)

ここで、Tsを計測しているとき未知数はBとTa、nの3つなので、異なる3点のdに対するTsの値から逐次計算によって、真の気温Taを求めることができる。すなわち、感温部直径(体積)の異なる3点の計測値から温度平均値と温度勾配を算出すると共に、複数の直径に基づく直径累乗平均値の関係より、真の気温(補正温度)Taを求めることができる。このうちnについては、様々な形状(円柱、平板、球体など)に対してn=1/2(=0.5)という値が知られており、これを一定の値として、2点の温度計測から直線回帰によって真の気温(補正温度)を求めることができる。但し、実際には個々の計測値に対しても誤差が含まれるので、安全のため3点からの直線回帰で求める方式を用いることもできる。また、測定点数が多いほど近似の精度が高まることが予想されるため、4点、5点と測定点を増やすことも可能である。   Here, since there are three unknowns B, Ta, and n when measuring Ts, the true temperature Ta can be obtained by sequential calculation from Ts values for three different points d. That is, the temperature average value and the temperature gradient are calculated from the measured values of three points having different diameters (volumes) of the temperature sensing portion, and the true temperature (corrected temperature) Ta is calculated based on the relationship between the mean power values of the diameters based on a plurality of diameters. Can be sought. Of these, n is known to have a value of n = 1/2 (= 0.5) for various shapes (cylinder, flat plate, sphere, etc.). The true temperature (corrected temperature) can be obtained from the measurement by linear regression. However, since errors are actually included in individual measured values, a method of obtaining by linear regression from three points can be used for safety. In addition, since the accuracy of approximation is expected to increase as the number of measurement points increases, the number of measurement points can be increased to 4 points and 5 points.

重要なのは、1点の計測値ではなく、複数(多点)の計測値から、それらの傾向(例えば温度勾配)を判断し、真の気温を見積もるということである。また、前記した真の気温を見積もるときに伝熱学の理論に基づくものでなく、経験的な近似式を用いて真の気温を求めることもできる。そして、複数の計測値から真の気温を求める計算は、それほど高度な演算を必要としないので、データロガー9内のプログラム等でも自動計算が可能で、データロガー9の基板に組み込んで設計することも可能である。   What is important is that the trend (for example, temperature gradient) is judged from a plurality of (multi-point) measurement values instead of one measurement value, and the true temperature is estimated. Moreover, when estimating the above-mentioned true temperature, it is not based on the theory of heat transfer, but the true temperature can also be obtained using an empirical approximate expression. And the calculation to find the true temperature from a plurality of measured values does not require so advanced calculation, so it can be automatically calculated by the program in the data logger 9 and designed by incorporating it into the substrate of the data logger 9. Is also possible.

つぎに、具体的な気温の計算手順について図6の制御フロー図を参照して以下に説明する。前記のように、パラメータnの値を0.5とする(S1)と共に、温度センサ1で用いる熱電対2,3,4の感温部の球体の直径を、それぞれ、d=0.25、d=1、d=4とし、球体の直径dの1−n乗(d´)の計算を行い、d´=d 1−n、d´=d 1−n、d´=d 1−nを求める(S2)。そして、これらの直径累乗平均値(D)を次式(8)より求める(S3)。さらに、温度センサ1の3本の熱電対2,3,4の温度計測値Ts、Ts、Tsより、温度平均値(Ts)の計算を次式(9)より求める(S3)。
D=(d´+d´+d´)/3・・・(8)
Ts=(Ts+Ts+Ts)/3・・・(9)
Next, a specific procedure for calculating the temperature will be described below with reference to the control flow chart of FIG. As described above, the value of the parameter n is set to 0.5 (S1), and the diameters of the spheres of the thermosensitive portions of the thermocouples 2, 3, and 4 used in the temperature sensor 1 are d 1 = 0.25, respectively. , D 2 = 1, d 3 = 4, and 1-n power (d ′) of the diameter d of the sphere is calculated, and d 1 ′ = d 1 1-n , d 2 ′ = d 2 1-n , d 3 ′ = d 3 1-n is obtained (S2). Then, the mean value of diameters (D) is obtained from the following equation (8) (S3). Further, the temperature average value (Ts) is calculated from the following equation (9) from the temperature measurement values Ts 1 , Ts 2 , Ts 3 of the three thermocouples 2, 3, 4 of the temperature sensor 1 (S 3).
D = (d 1 '+ d 2 ' + d 3 ') / 3 (8)
Ts = (Ts 1 + Ts 2 + Ts 3 ) / 3 (9)

つぎに、次式(10)より図5に示す傾き(温度勾配)Bの計算を行う(S4)。さらに、算出された温度の傾きBから、次式(11)より切片Taを算出し(S5)、放射の影響を抑えた補正温度Taを算出する(S6)。このように算出された補正温度Taは、測定地点における真の温度データに近い値となる。
B={(d´−D)(Ts1−Ts)+(d´−D)(Ts2−Ts)+(d´−D)(Ts3−Ts)}/{(d´−D)+(d´−D)+(d´−D)}・・・(10)
Next, the gradient (temperature gradient) B shown in FIG. 5 is calculated from the following equation (10) (S4). Further, from the calculated temperature gradient B, an intercept Ta is calculated from the following equation (11) (S5), and a corrected temperature Ta with reduced radiation influence is calculated (S6). The corrected temperature Ta calculated in this way is a value close to the true temperature data at the measurement point.
B = {(d 1 ′ −D) (Ts 1 −Ts) + (d 2 ′ −D) (Ts 2 −Ts) + (d 3 ′ −D) (Ts 3 −Ts)} / {(d 1 '-D) 2 + (d 2 ' -D) 2 + (d 3 '-D) 2 } (10)

そして、次式(11)より、切片Taの計算を行い、真の気温(補正温度)Taを求める。これらの計算は温度算出手段11及び補正温度算出手段12で実行される。また算出された補正温度Taは温度表示手段13で表示され、迅速な気温の測定ができる。
Ta=Ts−B×D・・・(11)
Then, the intercept Ta is calculated from the following equation (11) to determine the true temperature (corrected temperature) Ta. These calculations are executed by the temperature calculation means 11 and the correction temperature calculation means 12. Further, the calculated correction temperature Ta is displayed by the temperature display means 13, and the temperature can be measured quickly.
Ta = Ts−B × D (11)

具体的には、温度センサ1の熱電対2,3,4の感温部を構成する球体2a,3a,4aの直径を、それぞれ0.25mm、1mm、4mmとすると、それぞれの感温部の直径比は1:4:16となり、体積の比は1:64:4096となり、パラメータnの値を「0.5」とすると、球体の直径dのn−1乗(d’)の値は、それぞれ、
(d’)=0.250.5=0.5、(d’)=10.5=1、(d’)=40.5=2となり、これらの直径累乗平均値(D)は、式(8)より1.167となる。
Specifically, when the diameters of the spheres 2a, 3a, and 4a constituting the temperature sensitive parts of the thermocouples 2, 3, and 4 of the temperature sensor 1 are 0.25 mm, 1 mm, and 4 mm, respectively, The diameter ratio is 1: 4: 16, the volume ratio is 1: 64: 4096, and the value of the parameter n is “0.5”. The value of the sphere diameter d to the n-1th power (d ′) is ,Each,
(D ′ 1 ) = 0.25 0.5 = 0.5, (d ′ 2 ) = 1 0.5 = 1, (d ′ 3 ) = 4 0.5 = 2, and these diameter power average values (D) is 1.167 from Equation (8).

そして、温度センサ1の複数の熱電対2,3,4の温度計測値Ts,Ts,Tsを、例えば、25℃、26℃、28℃とすると、温度平均値(Ts)は、式(9)により26.333℃となる。このようにして求めた球体の直径dの1−n乗の直径累乗平均値(D)は1.167であり、温度センサ1の3本の熱電対2,3,4の計測データの温度平均値(Ts)は26.333であり、これらの平均値から、図5に示す傾き(温度勾配)Bを式(10)より求めると、B=1.999≒2となる。そして、図5の切片Taを式(11)から求め、気温の計算値Taを求めると、Ta=23.999≒24℃となる。このようにして求めた計算値(補正温度)Taは、感温部を構成する球体2a,3a,4aに加わる熱の放射の影響を抑えた真の温度に近い温度を示している。 And if the temperature measurement values Ts 1 , Ts 2 , Ts 3 of the plurality of thermocouples 2, 3, 4 of the temperature sensor 1 are, for example, 25 ° C., 26 ° C., and 28 ° C., the temperature average value (Ts) is It becomes 26.333 degreeC by Formula (9). The 1-n power average value (D) of the sphere diameter d thus obtained is 1.167, and the temperature average of the measurement data of the three thermocouples 2, 3, 4 of the temperature sensor 1. The value (Ts) is 26.333, and the slope (temperature gradient) B shown in FIG. 5 is obtained from the average value of these by the formula (10), and B = 1.999≈2. Then, when the intercept Ta in FIG. 5 is obtained from the equation (11) and the calculated value Ta of the air temperature is obtained, Ta = 23.999≈24 ° C. The calculated value (corrected temperature) Ta obtained in this manner indicates a temperature close to the true temperature in which the influence of heat radiation applied to the spheres 2a, 3a, 4a constituting the temperature sensing portion is suppressed.

温度測定装置10を構成する温度センサ1の3本の熱電対2,3,4は、感温部である球体2a,3a,4aが円周上に等間隔で配置されているため、お互いの距離が均等となり、屋外に設置され自然風が流れる場合にお互いの干渉が少なく、放射の影響を小さく抑えることができる。また、温度測定装置10は、温度センサ1の複数本の熱電対2,3,4の計測データから、放射の影響を抑えた真の気温に近い計算値(補正温度)を得ることができる。   The three thermocouples 2, 3 and 4 of the temperature sensor 1 constituting the temperature measuring device 10 are arranged such that the spheres 2a, 3a and 4a which are temperature sensing parts are arranged at equal intervals on the circumference. When the distance is equal, and the outdoor wind is installed outdoors, there is little interference with each other, and the influence of radiation can be kept small. In addition, the temperature measuring device 10 can obtain a calculated value (corrected temperature) close to the true air temperature while suppressing the influence of radiation from the measurement data of the plurality of thermocouples 2, 3, 4 of the temperature sensor 1.

本発明に係る温度測定装置10では、複数本の熱電対2,3,4の計測値に生じる相違を利用して気温を計算するため、強制通風の必要がなくなり、省電力を図りつつ温度測定精度を向上できる。また、放射よけ(シェルター)が必要なくなることで、感温部の構造や配置の自由度が高くなり、測定場を擾乱しないよう、測定装置全体を小型化できる。さらに、感温部を球形にすることで表面の熱交換が風向きの影響を受けにくくなり、安定した計測値を得ることができる。また、温度測定装置10に使用する素材、部材は安価なもので構成でき、装置の小型化と省電力を通じて、コストダウンを達成できる。   In the temperature measuring device 10 according to the present invention, the temperature is calculated by using the difference generated in the measured values of the plurality of thermocouples 2, 3, and 4, so that forced ventilation is not necessary, and temperature measurement is performed while saving power. Accuracy can be improved. In addition, since radiation shielding (shelter) is not required, the structure and arrangement of the temperature sensing unit are increased, and the entire measuring apparatus can be miniaturized so as not to disturb the measurement field. Furthermore, by making the temperature sensing part spherical, heat exchange on the surface is less affected by the wind direction, and a stable measurement value can be obtained. Moreover, the raw material and member used for the temperature measuring apparatus 10 can be comprised with an inexpensive thing, and a cost reduction can be achieved through size reduction of an apparatus and power saving.

本発明の温度測定装置10は、温度センサ1の複数本の熱電対2,3,4をサポート管2b,3b,4bに挿入してグリップ部5で纏めて一体化したものであり、3本のサポート管をグリップ部5で回転可能に支持することにより、多方位に広がる熱電対をコンパクトに折りたたんで、搬送や収納作業を容易にすることができる。また、熱電対2,3,4の補償導線2c,3c,4cの端部が集められて一帯に接続された接続ワイヤ6により、データロガー9への接続が容易となる。   A temperature measuring device 10 according to the present invention is obtained by inserting a plurality of thermocouples 2, 3, 4 of a temperature sensor 1 into support tubes 2 b, 3 b, 4 b and integrating them with a grip part 5. By supporting the support tube in a rotatable manner by the grip portion 5, it is possible to fold the thermocouple extending in multiple directions in a compact manner, and to facilitate the transportation and storage operations. In addition, the connection to the data logger 9 is facilitated by the connection wire 6 in which the ends of the compensating conductors 2c, 3c, 4c of the thermocouples 2, 3, 4 are collected and connected together.

また、感温部の球体2a,3a,4aの体積が異なる複数本の熱電対2,3,4を用い、同時計測された複数のデータを用いて前記の伝熱学の理論に基づいて1つの補正温度を算出した例について図7,8を参照して以下に説明する。この算出例では、温度センサ1の球体の直径が0.28mm、0.5mm、1mm、2mm、4mmの5つの熱電対を用いている。そして、ある1日の朝の4時から1時間ごとに、5時、6時、7時、8時、9時、10時、11時、12時に9個の温度データを同時計測している。   Further, based on the above-mentioned theory of heat transfer using a plurality of thermocouples 2, 3, 4 having different volumes of the spheres 2 a, 3 a, 4 a of the temperature sensing part and using a plurality of data measured simultaneously. An example in which two correction temperatures are calculated will be described below with reference to FIGS. In this calculation example, five thermocouples having a sphere diameter of 0.28 mm, 0.5 mm, 1 mm, 2 mm, and 4 mm are used. Then, every hour from 4 o'clock in the morning of one day, nine temperature data are simultaneously measured at 5 o'clock, 6 o'clock, 7 o'clock, 8 o'clock, 9 o'clock, 10 o'clock, 11 o'clock and 12 o'clock. .

このようにして同時計測した複数の温度データを、横軸が球の直径d(mm)の0.5乗として、縦軸を標準温度計との温度差(℃)とした図7にプロットし、各時刻の温度データに近接する直線をひくと、球の直径が大きくなるほど放射の影響が大きくなり、温度差が大きくなることが分かる。また、4時、5時の温度データを示す直線L1,L2は放射の影響が少なく直線の傾き(温度勾配)が小さくなり、9時、11時の温度データを結ぶ直線L3,L4は放射の影響が大きく直線の傾き(温度勾配)が大きくなっている。しかし、横軸の「0」付近では、各時刻の直線は標準時計との温度差が「0」に近くなっており、補正により真の温度に近い温度データ(補正温度)を算出できることが分かる。   A plurality of temperature data simultaneously measured in this manner is plotted in FIG. 7 where the horizontal axis is the sphere diameter d (mm) to the 0.5th power and the vertical axis is the temperature difference (° C.) from the standard thermometer. When a straight line close to the temperature data at each time is drawn, it can be seen that as the diameter of the sphere increases, the influence of radiation increases and the temperature difference increases. In addition, the straight lines L1 and L2 indicating the temperature data at 4 o'clock and 5 o'clock are less affected by radiation and the slope of the straight line (temperature gradient) is small, and the straight lines L3 and L4 connecting the temperature data at 9 o'clock and 11 o'clock are radiation The influence is large and the slope of the straight line (temperature gradient) is large. However, in the vicinity of “0” on the horizontal axis, the temperature difference between the straight line of each time and the standard clock is close to “0”, and it can be seen that temperature data (corrected temperature) close to the true temperature can be calculated by correction. .

図8は横軸を標準温度計の計測値(℃)で、縦軸を本実施形態の多点式の温度測定装置10の温度データ(℃)としたとき、各温度データに接近する直線L5は45度方向の直線に近い位置にあり、多点式温度計の計測値は標準温度計の計測値と近似し、真の温度データに近い値を算出できることを示している。すなわち、直線L5がy=xになれば、本実施形態の温度測定装置10と標準温度計の計測値とが一致していることを意味するが、直線L5は計算上、y=1.0096x−0.2134となり、ほぼ一致していることとなる。相関係数はR=0.9985と極めて高く、さらに二乗平均平方根誤差RMSE=0.13℃で、実施形態の温度測定装置10は誤差が非常に小さいことが分かる。 FIG. 8 shows a straight line L5 approaching each temperature data when the horizontal axis is the measured value (° C.) of the standard thermometer and the vertical axis is the temperature data (° C.) of the multipoint temperature measuring device 10 of this embodiment. Is close to a straight line in the 45-degree direction, and the measured value of the multipoint thermometer approximates the measured value of the standard thermometer, indicating that a value close to true temperature data can be calculated. That is, if the straight line L5 is y = x, it means that the temperature measurement device 10 of the present embodiment and the measurement value of the standard thermometer match, but the straight line L5 is calculated by y = 1.0096x. -0.2134, which is almost the same. The correlation coefficient is as extremely high as R 2 = 0.9985, and the root mean square error RMSE = 0.13 ° C. It can be seen that the temperature measuring apparatus 10 of the embodiment has a very small error.

このように本実施形態の温度測定装置10では、感温部の体積が異なる複数本の熱電対2,3,4を備える温度センサ1で同時計測した複数の温度データを用いて、伝熱学の理論に基づく式(6)により算出された各温度を補正し、補正温度を算出することで、真の温度に近い1つの補正温度データを算出することができる。   As described above, in the temperature measurement device 10 of the present embodiment, heat transfer studies are performed using a plurality of temperature data simultaneously measured by the temperature sensor 1 including a plurality of thermocouples 2, 3 and 4 having different volumes of the temperature sensing unit. By correcting each temperature calculated by the equation (6) based on the above theory and calculating the corrected temperature, one corrected temperature data close to the true temperature can be calculated.

本発明の他の実施形態を図9,10に基づき詳細に説明する。図9は本発明に係る温度センサの他の実施形態を示す要部斜視図、図10は図9の温度センサを平面方向から見た模式図である。なお、この実施形態は前記した実施形態に対し、温度センサを構成する複数の熱電対の配置が異なることを特徴とする。そして、他の実質的に同等の構成については同じ符号を付して詳細な説明は省略する。   Another embodiment of the present invention will be described in detail with reference to FIGS. FIG. 9 is a perspective view of a main part showing another embodiment of the temperature sensor according to the present invention, and FIG. 10 is a schematic view of the temperature sensor of FIG. This embodiment is characterized in that the arrangement of a plurality of thermocouples constituting the temperature sensor is different from the above-described embodiment. Other substantially equivalent configurations are denoted by the same reference numerals, and detailed description thereof is omitted.

図9,10において、温度センサ21の測温部を構成する複数本の熱電対22,23,24は、前記の実施形態と同様にステンレス鋼で形成した3本のサポート管に熱電対を挿入したものであり、例えば熱電対22はサポート管22bの水平部の長さが8cmに屈曲して設定され、熱電対23はサポート管23bが直線的に形成され、熱電対24はサポート管24bの水平部の長さが6cmに設定されている。そして、各熱電対22,23,24の感温部を構成する球体22a,23a,24aがそれぞれ10cm、8cm、6cmの直角三角形となるように配置され、3つの球体22a,23a,24aの体積は異なるように、それぞれの球体の直径が設定されている。   9 and 10, a plurality of thermocouples 22, 23, and 24 constituting the temperature measuring unit of the temperature sensor 21 are inserted into three support tubes formed of stainless steel as in the above embodiment. For example, the thermocouple 22 is set so that the length of the horizontal portion of the support tube 22b is bent to 8 cm, the support tube 23b is formed linearly in the thermocouple 23, and the thermocouple 24 is formed of the support tube 24b. The length of the horizontal part is set to 6 cm. Then, the spheres 22a, 23a, 24a constituting the temperature sensitive parts of the thermocouples 22, 23, 24 are arranged to form right-angled triangles of 10 cm, 8 cm, 6 cm, respectively, and the volumes of the three spheres 22a, 23a, 24a are arranged. Are different, the diameter of each sphere is set.

この実施形態の温度センサ21は、感温部の体積が異なる複数本の熱電対22,23,24を備える構成であり、複数本の熱電対22,23,24はグリップ部25,25により束ねられ、一体化された一体物である。また、グリップ部25,25を中心に例えば熱電対24を旋回させることで温度センサ21をコンパクトに畳むことができ、搬送や施工が容易となる。   The temperature sensor 21 of this embodiment is configured to include a plurality of thermocouples 22, 23, 24 having different volumes of the temperature sensing portion, and the plurality of thermocouples 22, 23, 24 are bundled by the grip portions 25, 25. It is an integrated unit. Moreover, the temperature sensor 21 can be folded compactly by turning the thermocouple 24 around the grip portions 25 and 25, for example, and transportation and construction are facilitated.

この実施形態においても、温度センサ21の球体の直径の異なる3本の熱電対22,23,24で、それぞれ異なる温度データが得られ、これらのデータから真の温度に近い温度を得ることができるが、この実施形態では、球体22aの直径の大きい熱電対22は、球体24aの直径の中くらいの熱電対24、球体23aの直径の小さい熱電対23より離れて配置され、球体23aの直径の小さい熱電対23は、球体24aの直径の小さい熱電対24と接近しているが、球体の大きさによる風の乱れが異なるため、風向きがW1,W2,W3のどの方向であっても、影響を受け難い配置となっている。すなわち、球体が大きい場合には風の乱れが大きいが離れているため、影響を受け難い配置となっている。このように温度センサ1の熱電対22,23,24を配置することで、より精度のよい気温の測定が可能となる。   Also in this embodiment, different temperature data can be obtained by the three thermocouples 22, 23, 24 having different sphere diameters of the temperature sensor 21, and a temperature close to the true temperature can be obtained from these data. However, in this embodiment, the thermocouple 22 having a large diameter of the sphere 22a is arranged away from the thermocouple 24 having a medium diameter of the sphere 24a and the thermocouple 23 having a small diameter of the sphere 23a. The small thermocouple 23 is close to the thermocouple 24 having a small diameter of the sphere 24a. However, since the turbulence is different depending on the size of the sphere, the influence of the wind direction is any of W1, W2, and W3. It is difficult to receive. That is, when the sphere is large, the turbulence of the wind is large but it is separated, so that it is difficult to be affected. By arranging the thermocouples 22, 23, 24 of the temperature sensor 1 in this way, it is possible to measure the temperature with higher accuracy.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記の実施形態では、気温を測定する熱電対の例について銅−コンスタンタンの例を示したが、アルメル−クロメル等の他の熱電対を用いることができることは勿論である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, in the above-described embodiment, an example of copper-constantan is shown as an example of a thermocouple for measuring the temperature, but it is needless to say that other thermocouples such as alumel-chromel can be used.

感温部を構成する球体としてステンレス鋼の球体の例を示したが、他の金属の球体でもよく、樹脂等の他の材料で形成したものでもよい。また、本発明の温度センサを構成する複数本の熱電対は、その感温部の体積が異なるように構成されることを前提としているものの、感温部は図11(a)に示すような球体に限られるものでなく、図11(b)、(c)に示すような円柱体、平板体等の直方体や他の形状でもよい。温度測定装置は温度表示手段を持たず、温度データを出力するだけの装置でもよい。   Although the example of the stainless steel sphere was shown as a sphere which comprises a temperature sensing part, the sphere of another metal may be sufficient and what was formed with other materials, such as resin, may be sufficient. Moreover, although the several thermocouple which comprises the temperature sensor of this invention presupposes that the volume of the temperature sensing part differs, a temperature sensing part is as shown to Fig.11 (a). The shape is not limited to a sphere, and may be a rectangular parallelepiped such as a cylindrical body or a flat body as shown in FIGS. The temperature measuring device may be a device that does not have temperature display means and only outputs temperature data.

前記した実施の形態では、図11(a)のように、熱電対の感温部を球体とし、球体の直径daを種々設定することで感温部の体積を異なるように構成し、前記直径da基づき補正温度を算出しているが、図11(b)のように熱電対の感温部を円柱体とした場合には、円柱体の直径dbを球体の直径に相当する数値とすることで補正温度の算出のための数値として用いることができる。また、直径dbを変化させると共に、高さを変化させて相似形の円柱体とすることもできる。   In the above-described embodiment, as shown in FIG. 11 (a), the thermocouple temperature sensing part is a sphere, and the diameter da of the sphere is set variously so that the volume of the temperature sensing part is different. The correction temperature is calculated based on da, but when the thermocouple temperature sensing part is a cylinder as shown in FIG. 11B, the diameter db of the cylinder is a numerical value corresponding to the diameter of the sphere. Can be used as a numerical value for calculating the correction temperature. In addition, the diameter db can be changed and the height can be changed to obtain a similar cylindrical body.

さらに、図11(c)のように熱電対の感温部を平板体とした場合には、平板体の対角線の長さdcを同様に補正温度の算出のための数値に用いることができる。また、1つの感温部を平板体とした場合には、他の感温部の平板体は縦、横、高さの比率が、1つの平板と相似形となるように構成してもよい。   Further, when the thermocouple temperature sensing part is a flat plate as shown in FIG. 11C, the length dc of the diagonal line of the flat plate can be used as a numerical value for calculating the correction temperature. When one temperature sensing part is a flat plate, the flat body of the other temperature sensing part may be configured such that the ratio of the vertical, horizontal, and height is similar to that of one flat plate. .

本発明の活用例としては、前記した温度測定装置を用いて気温のほかに各種の気体の温度を測定することができ、混合ガスの温度の測定の用途にも適用できる。また、農地等での使用の他に、多くの公的機関、生産者、農業施設関係者の使用、公園、校庭等の温度管理等にも適用でき、さらには一般の気象観測での利用も可能となる。   As an application example of the present invention, it is possible to measure the temperature of various gases in addition to the air temperature using the above-described temperature measuring device, and it can also be applied to the measurement of the temperature of mixed gas. In addition to use on agricultural land, etc., it can be applied to the use of many public institutions, producers, people related to agricultural facilities, temperature management of parks, schoolyards, etc. It becomes possible.

1,21:温度センサ、2,3,4,22,23,24:熱電対、2a,3a,4a,22a,23a,24a:熱電対の感温部(球体)、2b,3b,4b,22b,23b,24b:熱電対のサポート管、2c,3c,4c:熱電対の補償導線、5,25:グリップ部、6,26:接続ワイヤ、9:データロガー、10:温度測定装置、11:温度算出手段、12:補正温度算出手段、12A:計算部、12B:補正温度計算部、13:温度表示手段、14:感温部直径入力部   1, 2: 1: Temperature sensor, 2, 3, 4, 22, 23, 24: Thermocouple, 2a, 3a, 4a, 22a, 23a, 24a: Thermocouple temperature sensing part (sphere), 2b, 3b, 4b, 22b, 23b, 24b: thermocouple support tube, 2c, 3c, 4c: thermocouple compensation conductor, 5, 25: grip portion, 6, 26: connection wire, 9: data logger, 10: temperature measuring device, 11 : Temperature calculation means, 12: Correction temperature calculation means, 12A: Calculation part, 12B: Correction temperature calculation part, 13: Temperature display means, 14: Temperature sensing part diameter input part

また、前記温度測定装置において、前記補正温度計部は、前記補正温度をTaとし、前記温度算出手段で算出された前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする。
この構成によれば、複数本の熱電対感温部が受ける放射量の違いより、熱電対感温部の計測する各温度の平均値、及び熱電対感温部の前記各球体の直径に基づく直径の累乗平均値から前記温度勾配を算出し、伝熱学の理論に基づいて真の温度に近い補正温度を算出することができる。
Further, in the temperature measuring device, the correction temperature calculations unit, the corrected temperature of Ta, the temperature mean value of the temperature calculated by the temperature calculation section Ts, the each sphere the temperature sensing unit The correction temperature Ta is calculated from the equation Ts−Ta = B × D, where D is the average power of diameters based on the diameter and B is the temperature gradient.
According to this configuration, based on the difference in the amount of radiation received by the plurality of thermocouple temperature sensing units, based on the average value of each temperature measured by the thermocouple temperature sensing unit and the diameter of each sphere of the thermocouple temperature sensing unit. The temperature gradient can be calculated from the power average value of the diameters, and a corrected temperature close to the true temperature can be calculated based on the theory of heat transfer.

本発明は、気温などを計測する温度測定装置及び温度測定方法に係り、特に、複数の熱電対を備える温度センサを用いて測定精度を向上させた温度測定装置及び温度測定方法に関する。 The present invention relates like a to that temperature measuring device and a temperature measuring method measuring temperature, in particular, relates to a temperature measuring device and a temperature measuring method having improved measurement accuracy using a temperature sensor comprising a plurality of thermocouples.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、構成が簡単であり、装置コストを低減でき、測定精度を向上させることができると共に、一般の温度計測装置として各種の用途に使用でき、かつ環境の影響を受けにくい温度測定装置及び温度測定方法を提供することにある。
また、日射や風等の影響を受け易い水田、畑地等の屋外での気温の測定に適した温度測定装置及び温度測定方法を提供することにある。
The present invention has been made in view of such problems, and the object of the present invention is to simplify the configuration, reduce the device cost, improve the measurement accuracy, and improve the general temperature. can be used for various applications as a measuring apparatus, and to provide a difficulty has temperature measuring device and a temperature measuring method affected environment.
Another object is to provide solar radiation affected easily paddy field and wind, etc., the temperature temperature measuring device and a temperature measuring method suitable for the measurement of the outdoor, such as upland field.

前記目的を達成すべく、本発明に係る温度測定装置は、体積が異なる感温部を有する複数本の熱電対からなり、前記複数本の熱電対の各起電力を変換して各温度を算出する温度算出手段と、該温度算出手段で算出した前記各温度に基づいて一つの補正温度を算出する補正温度算出手段と、を備えていることを特徴する。また、前記感温部は、球体であることを特徴とする。さらに、前記複数本の熱電対は、前記感温部の各々が所定の間隔を置いて配置されると共に、前記感温部とは反対側の前記熱電対の端部が集められて一体に形成されていることを特徴とし、前記複数本の熱電対は、一つの仮想円周上に等間隔に配置されていることが好ましい。 To achieve the above object, a temperature measuring device according to the present invention, the volume is made of a plurality of thermocouples having different temperature sensing unit, calculating each temperature converts each electromotive force of the thermocouple of the plurality of And a correction temperature calculation means for calculating one correction temperature based on each temperature calculated by the temperature calculation means . The temperature sensing unit is a sphere. Further, the plurality of thermocouples are formed integrally with each of the temperature sensing portions being arranged at a predetermined interval and by collecting the end portions of the thermocouple on the side opposite to the temperature sensing portion. The plurality of thermocouples are preferably arranged at equal intervals on one virtual circumference.

前記のごとく構成された本発明の温度測定装置は、熱電対の感温部がその体積が異なると環境の違いによってその発生する起電力(温度)も異なる現象があること及び該複数の異なる温度を補正することで一つの真の温度に近い補正温度を算出できるとの新たな知見に基づいてなされたものであり、感温部の体積が異なる複数の熱電対を一つの温度センサとすることで、発生起電力が異なる複数の温度データをより正確かつ容易に得ることができると共に、該複数の温度データから真の気温に近い補正温度を、その後のデータ処理により容易に導きだせるような構成としたものである。
また、本発明の温度センサは、部品点数を少なくすることができるとともに、装置の組立、屋外での設置が容易となる。
The temperature measuring device of the present invention configured as described above has a phenomenon that when the volume of the thermosensitive portion of the thermocouple is different, there is a phenomenon in which the generated electromotive force (temperature) varies depending on the environment and the plurality of different temperatures. It is based on the new knowledge that a correction temperature close to one true temperature can be calculated by correcting the temperature, and a plurality of thermocouples with different volumes of the temperature sensitive part are made one temperature sensor. Thus, a plurality of temperature data with different generated electromotive forces can be obtained more accurately and easily, and a correction temperature close to the true temperature can be easily derived from the plurality of temperature data by subsequent data processing. It is what.
In addition, the temperature sensor of the present invention can reduce the number of parts and facilitate assembly of the apparatus and installation outdoors.

本発明に係る温度測定装置の好ましい具体的な態様としては、前記複数本の熱電対は、3本〜5本であることが好ましい。さらに、前記複数本の熱電対は、ステンレス鋼管からなるサポート管で前記感温部を残して被覆されていると好ましい。また、前記サポート管は、垂直部、水平部、垂直部を連続して屈曲形成されているか、もしくは複数本の熱電対のうちの1本が直線状に形成され、残りの熱電対は垂直部、水平部、垂直部を連続して屈曲形成されていると好適である。この構成によれば、3本〜5本の熱電対を一つの仮想円周上に等間隔に配置し、自然風の影響を抑えることができ、複数本の熱電対をサポート管で前記感温部を残して被覆すると、風雨等に対して耐久性を上げることができる。 As a preferred specific embodiment of the temperature measuring device according to the present invention, the number of the plurality of thermocouples is preferably 3 to 5. Furthermore, it is preferable that the plurality of thermocouples are covered with a support pipe made of a stainless steel pipe , leaving the temperature sensitive portion. The support tube may be formed by bending the vertical portion, the horizontal portion, and the vertical portion continuously, or one of a plurality of thermocouples is formed in a straight line, and the remaining thermocouples are vertical portions. It is preferable that the horizontal portion and the vertical portion are bent continuously. According to this configuration, three to five thermocouples equally spaced on a single virtual circle on, it is possible to suppress the influence of natural wind, the temperature sensing a plurality of thermocouples in support tube If the coating is made while leaving the portion, durability against wind and rain can be improved.

本発明に係る温度測定装置によれば、温度センサの複数本の熱電対を用いて温度算出手段で複数の温度を算出することができ、補正温度算出手段で算出された各温度に基づいて一つの補正温度を算出するため、各熱電対に加わる放射の影響を抑えた真の温度に近い補正温度を算出することができる。 According to the temperature measurement equipment according to the present invention, it is possible to calculate a plurality of temperature at the temperature calculation means using a plurality of thermocouples of the temperature sensor, based on the respective calculated by correcting temperature calculation section Temperature In order to calculate one correction temperature, it is possible to calculate a correction temperature close to the true temperature while suppressing the influence of radiation applied to each thermocouple.

本発明に係る温度測定装置の他の態様としては、前記感温部が球体である温度測定装置において、前記補正温度算出手段は、前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配を計算する計算部を備えていることを特徴としており、前記補正温度算出手段は、前記温度平均値と前記直径累乗平均値と前記温度勾配とに基づいて前記補正温度を算出する補正温度計算部を備えていることを特徴としている。
この構成によれば、補正温度算出手段は、温度センサの感温部の各球体の直径が異なる複数本の熱電対に基づいて算出した各温度の温度勾配に基づいて補正温度を算出するため、放射の影響を抑えた真の温度に近い補正温度を算出することができる。
As another aspect of the temperature measuring device according to the present invention, in the temperature measuring device in which the temperature sensing unit is a sphere, the correction temperature calculation means is a mean power average value based on the diameter of each sphere of the temperature sensing unit. A temperature calculating unit that calculates a temperature average value of each temperature of the temperature sensing unit, a diameter of each sphere, a power average value of the diameters, a temperature gradient based on each temperature, and the temperature average value. The correction temperature calculation means includes a correction temperature calculation unit that calculates the correction temperature based on the temperature average value, the diameter power average value, and the temperature gradient.
According to this configuration, the correction temperature calculation means calculates the correction temperature based on the temperature gradient of each temperature calculated based on a plurality of thermocouples having different diameters of the spheres of the temperature sensor of the temperature sensor. It is possible to calculate a correction temperature close to the true temperature while suppressing the influence of radiation.

本発明に係る温度測定方法は、体積が異なる感温部を有する複数本の熱電対からなる温度センサを用いる温度測定方法であって、前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、該変換した前記各温度に基づいて一つの補正温度を算出することを特徴とする。
また、本発明の温度測定方法の他の態様は、前記感温部球体であり、前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配に基づいて前記補正温度を算出することを特徴とする。さらに、前記補正温度をTaとし、前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする。
この構成によれば、複数本の熱電対の各起電力から各温度に変換し、変換した前記各温度に基づいて前記補正温度を算出するため、各温度の温度勾配に基づいて真の温度に近い温度を測定することができる。
The temperature measurement method according to the present invention is a temperature measurement method using a temperature sensor composed of a plurality of thermocouples having temperature-sensitive parts having different volumes, and measures each electromotive force of the plurality of thermocouples to measure the electromotive force. Each electromotive force is converted into each temperature, and one correction temperature is calculated based on each converted temperature.
Another aspect of the temperature measuring method of the present invention, the temperature sensing unit is a sphere, by measuring the electromotive force of the thermocouple of the plurality of converting the respective electromotive force at each temperature, the feeling The diameter power average value based on the diameter of each sphere of the warm part, the temperature average value of each temperature of the temperature sensing part, and the diameter of each sphere, the diameter power average value, the temperature, and the temperature average value The correction temperature is calculated based on a temperature gradient based on the above. Further, when the corrected temperature is Ta, the temperature average value of each temperature is Ts, the diameter power average value based on the diameter of each sphere of the temperature sensing portion is D, and the temperature gradient is B, the equation Ts−Ta The correction temperature Ta is calculated from B × D.
According to this configuration, each electromotive force of a plurality of thermocouples is converted into each temperature, and the correction temperature is calculated based on each converted temperature. Therefore, the true temperature is obtained based on the temperature gradient of each temperature. Close temperature can be measured.

Claims (14)

感温部を有する熱電対を複数本備えた温度センサであって、
前記熱電対の各々の前記感温部は、体積が異なることを特徴する温度センサ。
A temperature sensor having a plurality of thermocouples having a temperature sensing part,
The temperature sensor, wherein each of the thermosensitive parts of the thermocouple has a different volume.
前記感温部は、球体であることを特徴とする請求項1に記載の温度センサ。   The temperature sensor according to claim 1, wherein the temperature sensing unit is a sphere. 前記複数本の熱電対は、前記感温部の各々が所定の間隔を置いて配置されると共に、前記感温部とは反対側の前記熱電対の端部が集められて一体に形成されていることを特徴とする請求項1又は2に記載の温度センサ。   In the plurality of thermocouples, each of the temperature sensing portions is arranged at a predetermined interval, and ends of the thermocouples on the side opposite to the temperature sensing portion are gathered and formed integrally. The temperature sensor according to claim 1 or 2, wherein 前記複数本の熱電対は、一つの仮想円周上に等間隔に配置されていることを特徴とする請求項1〜3のいずれか一項に記載の温度センサ。   The temperature sensor according to any one of claims 1 to 3, wherein the plurality of thermocouples are arranged at equal intervals on one virtual circumference. 前記複数本の熱電対は、3本〜5本であることを特徴とする請求項1〜4のいずれか一項に記載の温度センサ。   The temperature sensor according to any one of claims 1 to 4, wherein the plurality of thermocouples is three to five. 前記複数本の熱電対は、ステンレス鋼管で前記感温部を残して被覆されていることを特徴とする請求項1〜5のいずれか一項に記載の温度センサ。   The temperature sensor according to any one of claims 1 to 5, wherein the plurality of thermocouples are covered with a stainless steel pipe leaving the temperature sensing portion. 請求項1〜6のいずれか一項に記載の温度センサを備えた温度測定装置であって、
前記複数本の熱電対の各起電力を変換して各温度を算出する温度算出手段と、該温度算出手段で算出した前記各温度に基づいて一つの補正温度を算出する補正温度算出手段と、を備えていることを特徴とする温度測定装置。
A temperature measuring device comprising the temperature sensor according to any one of claims 1 to 6,
A temperature calculation means for calculating each temperature by converting each electromotive force of the plurality of thermocouples; a correction temperature calculation means for calculating one correction temperature based on each temperature calculated by the temperature calculation means; A temperature measuring device comprising:
請求項2に記載の温度センサを備えた温度測定装置であって、
前記複数本の熱電対の各起電力を変換して各温度を算出する温度算出手段と、該温度算出手段で算出した前記各温度に基づいて一つの補正温度を算出する補正温度算出手段と、を備え、
前記補正温度算出手段は、前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配を計算する計算部を備えていることを特徴とする温度測定装置。
A temperature measuring device comprising the temperature sensor according to claim 2,
A temperature calculation means for calculating each temperature by converting each electromotive force of the plurality of thermocouples; a correction temperature calculation means for calculating one correction temperature based on each temperature calculated by the temperature calculation means; With
The correction temperature calculation means includes a diameter power average value based on a diameter of each sphere of the temperature sensing part, a temperature average value of each temperature of the temperature sensing part, and a diameter and a power average value of each sphere. And a temperature measuring device comprising a calculating unit for calculating a temperature gradient based on each temperature and the temperature average value.
前記補正温度算出手段は、前記温度平均値と前記直径累乗平均値と前記温度勾配とに基づいて前記補正温度を算出する補正温度計算部を備えていることを特徴とする請求項8に記載の温度測定装置。   The said correction temperature calculation means is provided with the correction temperature calculation part which calculates the said correction temperature based on the said temperature average value, the said diameter power average value, and the said temperature gradient. Temperature measuring device. 前記補正温度計算部は、前記補正温度をTaとし、前記温度算出手段で算出された前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする請求項9に記載の温度測装置。   The correction temperature calculation unit sets the correction temperature to Ta, sets the temperature average value of each temperature calculated by the temperature calculation means to Ts, and calculates a diameter power average value based on the diameter of each sphere of the temperature sensing unit to D The temperature measuring device according to claim 9, wherein the correction temperature Ta is calculated from the equation Ts−Ta = B × D, where B is the temperature gradient. 前記温度測定装置は、前記補正温度を表示する表示手段を備えていることを特徴とする請求項7〜10のいずれか一項に記載の温度測定装置。   The temperature measuring device according to any one of claims 7 to 10, wherein the temperature measuring device includes display means for displaying the correction temperature. 請求項1〜6のいずれか一項に記載の温度センサを用いる温度測定方法であって、
前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、該変換した前記各温度に基づいて一つの補正温度を算出することを特徴とする温度測定方法。
A temperature measurement method using the temperature sensor according to any one of claims 1 to 6,
A temperature measuring method, wherein each electromotive force of the plurality of thermocouples is measured, each electromotive force is converted into each temperature, and one correction temperature is calculated based on each converted temperature.
請求項2に記載の温度センサを備えた温度測定方法であって、
前記複数本の熱電対の各起電力を測定して該各起電力を各温度に変換し、
前記感温部の前記各球体の直径に基づく直径累乗平均値、前記感温部の前記各温度の温度平均値、及び、前記各球体の直径と前記直径累乗平均値と前記各温度と前記温度平均値に基づく温度勾配に基づいて前記補正温度を算出することを特徴とする温度測定方法。
A temperature measurement method comprising the temperature sensor according to claim 2,
Measuring each electromotive force of the plurality of thermocouples and converting each electromotive force into each temperature;
The diameter power average value based on the diameter of each sphere of the temperature sensing part, the temperature average value of each temperature of the temperature sensing part, and the diameter of each sphere, the diameter power average value, the temperature and the temperature A temperature measurement method, wherein the correction temperature is calculated based on a temperature gradient based on an average value.
前記補正温度をTaとし、前記各温度の温度平均値をTs、前記感温部の前記各球体の直径に基づく直径累乗平均値をD、前記温度勾配をBとすると、式Ts−Ta=B×Dから前記補正温度Taを算出することを特徴とする請求項13に記載の温度測定方法。

Assuming that the correction temperature is Ta, the temperature average value of each temperature is Ts, the diameter power average value based on the diameter of each sphere of the temperature sensing part is D, and the temperature gradient is B, the equation Ts−Ta = B The temperature measuring method according to claim 13, wherein the correction temperature Ta is calculated from × D.

JP2015199498A 2015-10-07 2015-10-07 Temperature measuring apparatus and temperature measuring method Active JP6112518B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199498A JP6112518B1 (en) 2015-10-07 2015-10-07 Temperature measuring apparatus and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199498A JP6112518B1 (en) 2015-10-07 2015-10-07 Temperature measuring apparatus and temperature measuring method

Publications (2)

Publication Number Publication Date
JP6112518B1 JP6112518B1 (en) 2017-04-12
JP2017072479A true JP2017072479A (en) 2017-04-13

Family

ID=58537314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199498A Active JP6112518B1 (en) 2015-10-07 2015-10-07 Temperature measuring apparatus and temperature measuring method

Country Status (1)

Country Link
JP (1) JP6112518B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525764A (en) * 2017-06-28 2020-08-27 アイオートポン エッセエッレエッレ SYSTEM AND METHOD FOR CALCULATION OF AIR TEMPERATURE OF EXTERNAL ENVIRONMENT WITH CORRECTION OF RADIATION ERROR, AND SENSOR DEVICE USABLE IN THE SYSTEM
JP7322332B2 (en) 2019-12-13 2023-08-08 学校法人東京理科大学 measuring equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210807A (en) * 1996-02-01 1997-08-15 Kobe Kotobuki Tekko Kk Device for measuring multi-point temperatures
JP2011059132A (en) * 1999-05-10 2011-03-24 Sensarray Corp Apparatus for sensing temperature on substrate in integrated circuit fabrication tool
JP2013210324A (en) * 2012-03-30 2013-10-10 Citizen Holdings Co Ltd Contact internal thermometer
JP2015059833A (en) * 2013-09-19 2015-03-30 株式会社アンベエスエムティ Thermocouple for surface temperature measurement and surface temperature measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210807A (en) * 1996-02-01 1997-08-15 Kobe Kotobuki Tekko Kk Device for measuring multi-point temperatures
JP2011059132A (en) * 1999-05-10 2011-03-24 Sensarray Corp Apparatus for sensing temperature on substrate in integrated circuit fabrication tool
JP2013210324A (en) * 2012-03-30 2013-10-10 Citizen Holdings Co Ltd Contact internal thermometer
JP2015059833A (en) * 2013-09-19 2015-03-30 株式会社アンベエスエムティ Thermocouple for surface temperature measurement and surface temperature measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525764A (en) * 2017-06-28 2020-08-27 アイオートポン エッセエッレエッレ SYSTEM AND METHOD FOR CALCULATION OF AIR TEMPERATURE OF EXTERNAL ENVIRONMENT WITH CORRECTION OF RADIATION ERROR, AND SENSOR DEVICE USABLE IN THE SYSTEM
JP7322332B2 (en) 2019-12-13 2023-08-08 学校法人東京理科大学 measuring equipment

Also Published As

Publication number Publication date
JP6112518B1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US10533903B2 (en) Heat transfer measurement and calculation method
JP6413179B2 (en) Thermal flow rate / flow rate sensor with flow direction detection function
Suleiman et al. Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures
CN110702274B (en) Space calibration method based on accurate miniature phase-change fixed point blackbody model
CN106197751B (en) A kind of thermometry and device in temperature field
CN105628208B (en) A kind of thermometry based on infrared imaging system
JP6112518B1 (en) Temperature measuring apparatus and temperature measuring method
CN106539567A (en) Body core temperature is measured
Liu et al. Measurements of wind speed and convective coefficient on the external surface of a low-rise building
CN206074130U (en) Standard black body radiation source
CN115452180B (en) High-enthalpy airflow recovery temperature measurement method and measurement device
US8569701B2 (en) Absolute cavity pyrgeometer
CN112595420A (en) Infrared body temperature screening instrument and correction method
Maruyama et al. Multiple-globe thermometer for measuring the air temperature without an aspirated radiation shield
Jovanovic et al. Temperature measurement of photovoltaic modules using non-contact infrared system
CN206847820U (en) A kind of temperature measuring equipment in temperature field
Bower et al. A method for the temperature calibration of an infrared camera using water as a radiative source
Mokhtar et al. A model for improved solar irradiation measurement at low flux
JP7079922B2 (en) Thermal flow velocity / flow rate sensor equipped with a thermal flow velocity / flow rate sensor and its directivity error correction device
Blonquist Jr et al. Air temperature
Gero et al. A blackbody design for SI-traceable radiometry for Earth observation
Ogarev et al. Blackbody radiation sources for the IR spectral range
CN105929870A (en) Novel light chamber constant-temperature system
CN106539566A (en) Body core temperature is measured
Latour et al. Local convective heat transfer identification by infrared thermography from a disc mounted on a cylinder in air crossflow

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6112518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250