JP2017072054A - Power generator and control method for the same - Google Patents

Power generator and control method for the same Download PDF

Info

Publication number
JP2017072054A
JP2017072054A JP2015199067A JP2015199067A JP2017072054A JP 2017072054 A JP2017072054 A JP 2017072054A JP 2015199067 A JP2015199067 A JP 2015199067A JP 2015199067 A JP2015199067 A JP 2015199067A JP 2017072054 A JP2017072054 A JP 2017072054A
Authority
JP
Japan
Prior art keywords
working fluid
temperature
condenser
expander
rankine cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015199067A
Other languages
Japanese (ja)
Other versions
JP6610145B2 (en
Inventor
朋冬 松浮
Tomofuyu Matsuuki
朋冬 松浮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015199067A priority Critical patent/JP6610145B2/en
Priority to PCT/JP2016/079476 priority patent/WO2017061421A1/en
Publication of JP2017072054A publication Critical patent/JP2017072054A/en
Application granted granted Critical
Publication of JP6610145B2 publication Critical patent/JP6610145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To appropriately start up a Rankine cycle even when a temperature of a cooling source is reduced.SOLUTION: A power generator comprises a Rankine cycle 2 which has the following devices in a circulation passage 10 in an order of: an evaporator 30 to evaporate working fluid with a heat source; an expander 40 to expand the working fluid; a condenser 50 to condense the working fluid with a cooling source; and a pump 20 to circulate the working fluid in the circulation passage 10. The power generator 1 is mounted on a vehicle. The power generator 1 also has: a control section 80 which starts up the Rankine cycle 2 by allowing the working fluid to flow into the expander 40 when pressure of the working fluid after the same flows through the condenser 50 becomes larger than a set pressure value; and a temperature detection section 62 which detects a temperature of the working fluid after the same flows through the condenser 50. The control section 80 changes the set pressure value in accordance with a detected temperature detected by the temperature detection section 62.SELECTED DRAWING: Figure 1

Description

本発明は、ランキンサイクルを有する発電装置及び発電装置の制御方法に関する。   The present invention relates to a power generation apparatus having a Rankine cycle and a method for controlling the power generation apparatus.

近年、車両で発生する廃熱を利用して動力に回生するために、ランキンサイクルを有する発電装置の車両への搭載が検討されている。ランキンサイクルとは、循環流路内に、熱源によって作動流体を蒸発させる蒸発器、作動流体を膨張させる膨張器、冷却源によって作動流体を凝縮させる凝縮器、作動流体を循環流路内で循環させる循環器の順に配置したものである(特許文献1参照)。なお、熱源としては、エンジンの排気が利用され、冷却源としては、外気や冷却水が利用される。   In recent years, in order to regenerate power using waste heat generated in a vehicle, mounting of a power generation device having a Rankine cycle on a vehicle has been studied. The Rankine cycle is an evaporator that evaporates the working fluid with a heat source, an expander that expands the working fluid, a condenser that condenses the working fluid with a cooling source, and circulates the working fluid in the circulation channel. They are arranged in the order of the circulator (see Patent Document 1). In addition, engine exhaust is used as the heat source, and outside air or cooling water is used as the cooling source.

特開2012−202374号公報JP 2012-202374 A

上記の発電装置は、通常、ランキンサイクルの始動と停止とを繰り返す。例えば、発電装置は、蒸発器の熱源の温度が所定の温度よりも大きくなると、循環器を動作させ、凝縮器を通過後の作動流体の圧力が設定値よりも大きくなると、膨張器に作動流体を流入させて、ランキンサイクルを始動させる。   The above power generator normally repeats starting and stopping of the Rankine cycle. For example, the power generation device operates the circulator when the temperature of the heat source of the evaporator becomes higher than a predetermined temperature, and when the pressure of the working fluid after passing through the condenser becomes higher than a set value, To start the Rankine cycle.

しかし、発電装置が車両に搭載された場合には、車両の運転状況や周囲環境によって、冷却源の温度が想定の温度よりも小さくなることがある。そして、冷却源の温度が想定よりも小さい場合には、凝縮器を通過後の作動流体の圧力が設定値よりも大きくならないため、ランキンサイクルを始動させることができない恐れがある。   However, when the power generation device is mounted on a vehicle, the temperature of the cooling source may be lower than the assumed temperature depending on the driving situation of the vehicle and the surrounding environment. If the temperature of the cooling source is lower than expected, the pressure of the working fluid after passing through the condenser does not become higher than the set value, so that the Rankine cycle may not be started.

そこで、本発明はこれらの点に鑑みてなされたものであり、冷却源の温度が低下してもランキンサイクルを適切に始動させることを目的とする。   Therefore, the present invention has been made in view of these points, and an object thereof is to appropriately start a Rankine cycle even when the temperature of a cooling source decreases.

本発明の第1の態様においては、循環流路内に、熱源によって作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、冷却源によって前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルを有し、車両に搭載される発電装置であって、前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記膨張器に前記作動流体を流入させて、前記ランキンサイクルを始動させる制御部と、前記凝縮器を通過後の前記作動流体の温度を検出する温度検出部と、を備え、前記制御部は、前記温度検出部が検出した検出温度に応じて、前記設定値の大きさを変更することを特徴とする発電装置を提供する。
かかる発電装置によれば、作動流体の検出温度に応じて圧力設定値の大きさを変更することで、冷却源の温度に適した圧力設定値に再設定できる。これにより、冷却源の温度が低下した場合には、圧力設定値の大きさが小さくなるように変更することで、冷却源の温度の低下に伴い作動流体の圧力が小さくても、ランキンサイクルを始動させることが可能となる。
In the first aspect of the present invention, an evaporator for evaporating the working fluid with a heat source, an expander for expanding the working fluid, a condenser for condensing the working fluid with a cooling source, and the working fluid in the circulation channel The Rankine cycle is arranged in the order of the circulator for circulating in the circulation flow path, and is a power generation device mounted on a vehicle, wherein the pressure of the working fluid after passing through the condenser is lower than a set value. A control unit that starts the Rankine cycle by causing the working fluid to flow into the expander and a temperature detection unit that detects the temperature of the working fluid after passing through the condenser; The unit provides a power generation device that changes the magnitude of the set value in accordance with the detected temperature detected by the temperature detection unit.
According to such a power generator, the pressure set value suitable for the temperature of the cooling source can be reset by changing the pressure set value in accordance with the detected temperature of the working fluid. As a result, when the temperature of the cooling source is lowered, the Rankine cycle is changed even if the pressure of the working fluid is reduced as the temperature of the cooling source is reduced by changing the pressure setting value to be smaller. It is possible to start.

また、前記ランキンサイクルは、前記膨張器を迂回する迂回流路と、前記迂回流路に設けられ、前記膨張器への前記作動流体の流入を調整する調整バルブと、を更に有し、前記制御部は、前記調整バルブが開いた状態で前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記調整バルブを閉じて前記膨張器に前記作動流体を流入させることとしてもよい。   The Rankine cycle further includes a bypass flow path that bypasses the expander, and an adjustment valve that is provided in the bypass flow path and adjusts the inflow of the working fluid to the expander. When the pressure of the working fluid after passing through the condenser becomes larger than a set value in a state where the adjustment valve is open, the adjustment valve is closed and the working fluid is allowed to flow into the expander. Good.

また、前記ランキンサイクルは、前記循環流路において前記凝縮器と前記循環器の間に設けられたタンクを更に有し、前記温度検出部は、前記タンク内に設けられていることとしてもよい。   The Rankine cycle may further include a tank provided between the condenser and the circulator in the circulation flow path, and the temperature detection unit may be provided in the tank.

また、前記制御部は、前記温度検出部が検出した前記検出温度と、前記作動流体の温度及び飽和蒸気圧の関係を示す特性情報とに基づいて、前記設定値の大きさを変更することとしてもよい。   Further, the control unit changes the magnitude of the set value based on the detected temperature detected by the temperature detection unit and characteristic information indicating a relationship between the temperature of the working fluid and a saturated vapor pressure. Also good.

本発明の第2の態様においては、循環流路内に、熱源によって作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、冷却源によって前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルを有し、車両に搭載される発電装置の制御方法であって、前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記膨張器に前記作動流体を流入させて、前記ランキンサイクルを始動させるステップと、前記凝縮器を通過後の前記作動流体の温度を検出するステップと、検出した検出温度に応じて前記設定値の大きさを変更するステップと、を有することを特徴とする発電装置の制御方法を提供する。   In the second aspect of the present invention, an evaporator for evaporating the working fluid with a heat source, an expander for expanding the working fluid, a condenser for condensing the working fluid with a cooling source, and the working fluid in the circulation channel The Rankine cycle is arranged in the order of the circulator for circulating in the circulation flow path, and is a control method for the power generator mounted on the vehicle, wherein the pressure of the working fluid after passing through the condenser is set When the value is larger than the value, the step of causing the working fluid to flow into the expander to start the Rankine cycle, the step of detecting the temperature of the working fluid after passing through the condenser, and the detected temperature to be detected And a step of changing the magnitude of the set value accordingly.

本発明によれば、冷却源の温度が低下してもランキンサイクルを適切に始動させることができるという効果を奏する。   According to the present invention, the Rankine cycle can be appropriately started even when the temperature of the cooling source is lowered.

本発明の一の実施形態に係る発電装置1の構成の一例を示す模式図である。It is a mimetic diagram showing an example of composition of power generator 1 concerning one embodiment of the present invention. ランキンサイクル2のT−s線図である。It is a Ts diagram of Rankine cycle 2. 作動流体の温度及び飽和蒸気圧の関係を示す特性グラフである。It is a characteristic graph which shows the relationship between the temperature of a working fluid, and saturated vapor pressure. ランキンサイクル2の始動処理を説明するためのフローチャートである。6 is a flowchart for explaining a start-up process of Rankine cycle 2; 圧力設定値の再設定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the reset process of a pressure setting value.

<発電装置の構成>
図1及び図2を参照しながら、本発明の一の実施形態に係る発電装置1の構成について説明する。
図1は、一の実施形態に係る発電装置1の構成の一例を示す模式図である。図2は、ランキンサイクル2のT−s線図である。図2の横軸sはエントロピーであり、縦軸Tは温度である。
<Configuration of power generator>
With reference to FIGS. 1 and 2, the configuration of the power generation device 1 according to an embodiment of the present invention will be described.
Drawing 1 is a mimetic diagram showing an example of the composition of power generator 1 concerning one embodiment. FIG. 2 is a Ts diagram of Rankine cycle 2. The horizontal axis s in FIG. 2 is entropy, and the vertical axis T is temperature.

発電装置1は、内燃機関であるエンジン(例えば、ディーゼルエンジン)を有する車両に搭載されている。例えば、発電装置1は、トラックやバス等の大型車両に搭載されている。発電装置1は、発電サイクルとしてランキンサイクル2を有し、車両で発生する排気等を利用して動力に回生する。図1に示すように、発電装置1は、循環流路10と、迂回流路12と、調整バルブ14と、ポンプ20と、蒸発器30と、膨張器40と、発電機42と、凝縮器50と、タンク60と、温度検出部62と、センサ群70と、制御部80を有する。   The power generator 1 is mounted on a vehicle having an engine (for example, a diesel engine) that is an internal combustion engine. For example, the power generation device 1 is mounted on a large vehicle such as a truck or a bus. The power generation apparatus 1 has a Rankine cycle 2 as a power generation cycle, and regenerates power by using exhaust generated in a vehicle. As shown in FIG. 1, the power generation device 1 includes a circulation flow path 10, a bypass flow path 12, a regulating valve 14, a pump 20, an evaporator 30, an expander 40, a generator 42, and a condenser. 50, a tank 60, a temperature detector 62, a sensor group 70, and a controller 80.

循環流路10は、作動流体が循環する閉ループ状の流路である。作動流体として、本実施形態ではエタノールが利用されているが、これに限定されない。例えば、作動流体が水等の他の媒体であってもよい。   The circulation channel 10 is a closed loop channel through which the working fluid circulates. As the working fluid, ethanol is used in the present embodiment, but is not limited thereto. For example, the working fluid may be another medium such as water.

迂回流路12は、循環流路10において作動流体が膨張器40を迂回するように設けられた流路である。迂回流路12は、膨張器40の上流側及び下流側にて循環流路10と接続されている。   The bypass channel 12 is a channel provided so that the working fluid bypasses the expander 40 in the circulation channel 10. The bypass channel 12 is connected to the circulation channel 10 on the upstream side and the downstream side of the expander 40.

調整バルブ14は、迂回流路12に設けられ、膨張器40への作動流体の流入を調整する。調整バルブ14は、例えばゲートバルブである。調整バルブ14が開いている際には、作動流体は、迂回流路12を流れ、膨張器40に流入しない。一方で、調整バルブ14が閉じている際には、作動流体は膨張器40に流入する。   The adjustment valve 14 is provided in the bypass channel 12 and adjusts the inflow of the working fluid to the expander 40. The adjustment valve 14 is, for example, a gate valve. When the adjustment valve 14 is open, the working fluid flows through the bypass channel 12 and does not flow into the expander 40. On the other hand, when the adjustment valve 14 is closed, the working fluid flows into the expander 40.

ポンプ20は、作動流体を循環流路10内で循環させる循環器である。ポンプ20は、循環流路10においてタンク60と蒸発器30の間に設けられ、タンク60から液相の作動流体を吸入して、蒸発器30に圧送する。ポンプ20としては、遠心ポンプやギアポンプ等が用いられる。なお、図2のWinは、ポンプ20が作動流体にする仕事を示す。 The pump 20 is a circulator that circulates the working fluid in the circulation flow path 10. The pump 20 is provided between the tank 60 and the evaporator 30 in the circulation channel 10, sucks a liquid-phase working fluid from the tank 60, and pumps it to the evaporator 30. As the pump 20, a centrifugal pump, a gear pump, or the like is used. Incidentally, W in the Figure 2 shows the work pump 20 to the working fluid.

蒸発器30は、循環流路10においてポンプ20の下流側に設けられ、作動流体を蒸発させる。例えば、蒸発器30は、ポンプ20から送られてくる作動流体と、熱源である車両の排気との間で熱交換を行うことにより、作動流体を加熱する。加熱された作動流体は、飽和蒸気(又は過熱蒸気)となって膨張器40に供給される。なお、図2のQinは、蒸発器30の動作時に作動流体が受熱する熱量を示す。 The evaporator 30 is provided on the downstream side of the pump 20 in the circulation channel 10 and evaporates the working fluid. For example, the evaporator 30 heats the working fluid by exchanging heat between the working fluid sent from the pump 20 and the exhaust of the vehicle, which is a heat source. The heated working fluid is supplied to the expander 40 as saturated steam (or superheated steam). Incidentally, Q in FIG. 2 shows the amount of heat the working fluid receives heat during operation of the evaporator 30.

膨張器40は、循環流路10において蒸発器30の下流側に設けられ、蒸発器30で加熱された作動流体を膨張させる。膨張器40は、例えばスクリュ膨張器であり、作動流体の膨張力によって回転するスクリュロータを有する。膨張した作動流体は、凝縮器50に供給される。なお、図2のWoutは、作動流体が膨張器40にする仕事を示す。 The expander 40 is provided on the downstream side of the evaporator 30 in the circulation channel 10 and expands the working fluid heated by the evaporator 30. The expander 40 is, for example, a screw expander, and includes a screw rotor that is rotated by the expansion force of the working fluid. The expanded working fluid is supplied to the condenser 50. In addition, Wout of FIG. 2 shows the work which a working fluid makes the expander 40. FIG.

発電機42は、膨張器40に連結されており、膨張器40によって駆動される。発電機42は、例えばケーシング内に固定子及び回転子を収容した構造となっている。発電機42は、膨張器40のスクリュロータの回転に伴い回転することで、電力を発生させる。発生した電力は、例えば車両のバッテリー等に供給される。   The generator 42 is connected to the expander 40 and is driven by the expander 40. For example, the generator 42 has a structure in which a stator and a rotor are accommodated in a casing. The generator 42 generates electric power by rotating with the rotation of the screw rotor of the expander 40. The generated electric power is supplied to, for example, a vehicle battery.

凝縮器50は、循環流路10において膨張器40の下流側に設けられ、膨張器40が膨張した作動流体を凝縮させる。凝縮器50は、膨張器40から吐出される作動流体と、冷却源である空気との間で熱交換を行うことにより、作動流体を液化する。液化された作流体は、タンク60に供給される。なお、上記においては、冷却源が空気であることとしたが、これに限定されず、例えば冷却源は車両のエンジンの冷却水であってもよい。なお、図2のQoutは、凝縮器50が動作時に作動流体が放熱する熱量を示す。 The condenser 50 is provided on the downstream side of the expander 40 in the circulation channel 10, and condenses the working fluid expanded by the expander 40. The condenser 50 liquefies the working fluid by exchanging heat between the working fluid discharged from the expander 40 and air that is a cooling source. The liquefied working fluid is supplied to the tank 60. In the above description, the cooling source is air. However, the present invention is not limited to this. For example, the cooling source may be cooling water for a vehicle engine. Note that Q out in FIG. 2 indicates the amount of heat released from the working fluid when the condenser 50 is in operation.

タンク60は、循環流路10において凝縮器50とポンプ20の間に設けられ、凝縮器50が液化した作動流体を収容する。タンク60内の作動流体は、ポンプ20によって蒸発器30に再度供給される。   The tank 60 is provided between the condenser 50 and the pump 20 in the circulation channel 10 and stores the working fluid liquefied by the condenser 50. The working fluid in the tank 60 is supplied again to the evaporator 30 by the pump 20.

温度検出部62は、例えば温度センサであり、タンク60内に設けられている。温度検出部62は、凝縮器50を通過後の作動流体の温度を検出する。凝縮器50を通過後の作動流体の温度を検出することで、凝縮器50の冷却源(空気)の温度も推定できる。なお、上記では、温度検出部62がタンク60内に設けられていることとしたが、これに限定されない。例えば、温度検出部62は、ポンプ20の入口に設けられていてもよい。   The temperature detector 62 is a temperature sensor, for example, and is provided in the tank 60. The temperature detector 62 detects the temperature of the working fluid after passing through the condenser 50. By detecting the temperature of the working fluid after passing through the condenser 50, the temperature of the cooling source (air) of the condenser 50 can also be estimated. In the above description, the temperature detector 62 is provided in the tank 60. However, the present invention is not limited to this. For example, the temperature detection unit 62 may be provided at the inlet of the pump 20.

センサ群70は、複数のセンサを有し、ランキンサイクル2に関する様々な状態を検出可能である。例えば、センサ群70は、蒸発器30における排気の温度を検出する。また、センサ群70は、凝縮器50を通過後の作動流体の圧力の大きさを検出する。   The sensor group 70 includes a plurality of sensors and can detect various states related to the Rankine cycle 2. For example, the sensor group 70 detects the temperature of the exhaust gas in the evaporator 30. The sensor group 70 detects the pressure level of the working fluid after passing through the condenser 50.

制御部80は、CPU、ROM、RAM等を有するマイクロコンピュータを備えた電子制御装置(Electric Control Unit)である。制御部80は、ランキンサイクル2の動作を制御する。例えば、制御部80は、ランキンサイクル2の始動や停止時に、ポンプ20及び調整バルブ14の動作を制御する。   The control unit 80 is an electronic control unit (Electric Control Unit) including a microcomputer having a CPU, a ROM, a RAM, and the like. The controller 80 controls the operation of the Rankine cycle 2. For example, the control unit 80 controls the operation of the pump 20 and the adjustment valve 14 when the Rankine cycle 2 is started or stopped.

ところで、上述した発電装置1は、ランキンサイクル2の始動と停止を繰り返す。例えば、車両のエンジンが蒸発器30における熱源である排気を排出している間、ランキンサイクル2が動作を行うため、排気が排出されないとランキンサイクル2が停止し、排気が排出されるとランキンサイクル2が始動することになる。なお、ランキンサイクル2が始動するとは、膨張器40に作動流体が流入して、発電機42が発電可能な状態になることを意味する。   By the way, the power generator 1 described above repeats starting and stopping of the Rankine cycle 2. For example, since the Rankine cycle 2 operates while the vehicle engine is exhausting exhaust gas, which is a heat source in the evaporator 30, the Rankine cycle 2 stops if the exhaust gas is not exhausted, and the Rankine cycle when the exhaust gas is exhausted. 2 will start. In addition, that Rankine cycle 2 starts means that a working fluid will flow into the expander 40, and the generator 42 will be in the state which can generate electric power.

ランキンサイクル2を始動させるタイミングは、凝縮器50を通過後の作動流体の圧力に基づいて決定される。例えば、制御部80は、凝縮器50を通過後の作動流体の圧力が予め設定された圧力設定値よりも大きくなると、膨張器40に作動流体を流入させて、ランキンサイクル2を始動させる。すなわち、制御部80は、作動流体の圧力が基準となる圧力設定値よりも大きいと、ランキンサイクル2を始動させる。具体的には、制御部80は、調整バルブ14が開いた状態で凝縮器50を通過後の作動流体の圧力が設定値よりも大きくなると、調整バルブ14を閉じて膨張器40に作動流体を流入させる。これにより、膨張器40が適切な圧力の作動流体を膨張させることになり、発電機42が安定した発電を行うことが可能となる。   The timing for starting Rankine cycle 2 is determined based on the pressure of the working fluid after passing through condenser 50. For example, when the pressure of the working fluid after passing through the condenser 50 becomes larger than a preset pressure setting value, the control unit 80 causes the working fluid to flow into the expander 40 and starts the Rankine cycle 2. That is, the control unit 80 starts the Rankine cycle 2 when the pressure of the working fluid is larger than a reference pressure set value. Specifically, when the pressure of the working fluid after passing through the condenser 50 becomes larger than a set value with the adjustment valve 14 opened, the control unit 80 closes the adjustment valve 14 and supplies the working fluid to the expander 40. Let it flow. As a result, the expander 40 expands the working fluid having an appropriate pressure, and the generator 42 can perform stable power generation.

一方で、発電装置1が車両に搭載された場合には、車両の運転状況や周囲環境によって、凝縮器50における冷却源(空気や冷却水)の温度が想定温度よりも小さくなることがある。例えば、季節が冬の場合には外気温が低下することで、空気の温度が想定温度よりも小さくなるケースがある。また、冷却水を放熱する車両のラジエータを通過する大気の流量が少ないと、冷却水の温度が想定温度よりも小さくなるケースがある。そして、冷却源の温度が想定温度よりも小さい場合には、凝縮器50を通過後の作動流体の圧力が圧力設定値よりも大きくならないため、ランキンサイクル2を始動させることができない恐れがある。   On the other hand, when the power generation device 1 is mounted on a vehicle, the temperature of the cooling source (air or cooling water) in the condenser 50 may be lower than the assumed temperature depending on the driving condition of the vehicle and the surrounding environment. For example, when the season is winter, the temperature of the air may be lower than the assumed temperature due to a decrease in the outside air temperature. In addition, when the flow rate of the air passing through the radiator of the vehicle that dissipates the cooling water is small, the cooling water temperature may be lower than the assumed temperature. And when the temperature of a cooling source is smaller than assumption temperature, since the pressure of the working fluid after passing through the condenser 50 does not become larger than a pressure setting value, there is a possibility that the Rankine cycle 2 cannot be started.

そこで、本実施形態では、冷却源の温度が低下してもランキンサイクル2を適切に始動できるように、制御部80は以下のような制御を行う。
すなわち、制御部80は、温度検出部62が検出した検出温度に応じて、圧力設定値の大きさを変更する。具体的には、制御部80は、温度検出部62が検出した検出温度と、予め設定された作動流体の温度及び飽和蒸気圧の関係を示す特性情報とに基づいて、圧力設定値の大きさを変更する。これにより、冷却源の温度が低下した場合には、圧力設定値の大きさが小さくなるように変更することで、作動流体の圧力が小さくてもランキンサイクル2を始動させることが可能となる。なお、制御部80は、検出温度が大きくなった場合には、圧力設定値も大きくする。
Therefore, in the present embodiment, the control unit 80 performs the following control so that the Rankine cycle 2 can be appropriately started even if the temperature of the cooling source decreases.
That is, the control unit 80 changes the magnitude of the pressure set value according to the detected temperature detected by the temperature detection unit 62. Specifically, the control unit 80 determines the magnitude of the pressure setting value based on the detected temperature detected by the temperature detecting unit 62 and the characteristic information indicating the relationship between the preset temperature of the working fluid and the saturated vapor pressure. To change. Thereby, when the temperature of the cooling source is lowered, the Rankine cycle 2 can be started even if the pressure of the working fluid is small by changing the pressure setting value so as to be small. The control unit 80 also increases the pressure setting value when the detected temperature increases.

上記の特性情報は、例えば、制御部80のROMに記憶されており、図3に示す特性グラフに対応する情報を含む。
図3は、作動流体の温度及び飽和蒸気圧の関係を示す特性グラフである。グラフの横軸が温度を示し、縦軸が圧力を示す。例えば、制御部80は、温度検出部62による検出温度が60(℃)である場合には、特性グラフから60(℃)に対応する飽和蒸気圧として0.46(bar)を取得し、圧力設定値として再設定する。このような特性情報を用いることで、検出温度に対応した圧力設定値を再設定しやすくなる。
The characteristic information is stored in the ROM of the control unit 80, for example, and includes information corresponding to the characteristic graph shown in FIG.
FIG. 3 is a characteristic graph showing the relationship between the temperature of the working fluid and the saturated vapor pressure. The horizontal axis of the graph indicates temperature, and the vertical axis indicates pressure. For example, when the temperature detected by the temperature detection unit 62 is 60 (° C.), the control unit 80 acquires 0.46 (bar) as the saturated vapor pressure corresponding to 60 (° C.) from the characteristic graph, and the pressure Reset as the setting value. By using such characteristic information, it becomes easy to reset the pressure set value corresponding to the detected temperature.

<ランキンサイクルの始動処理>
図4を参照しながら、発電装置1のランキンサイクル2の始動処理について説明する。
図4は、ランキンサイクル2の始動処理を説明するためのフローチャートである。
<Starting process of Rankine cycle>
The starting process of Rankine cycle 2 of power generator 1 will be described with reference to FIG.
FIG. 4 is a flowchart for explaining the starting process of Rankine cycle 2.

図4のフローチャートは、ランキンサイクル2が停止している状態、すなわち、制御部80がポンプ20を停止して状態から開始される(ステップS102)。そして、制御部80は、発電装置1が搭載された車両のエンジンから排出された、蒸発器30の熱源である排気の温度が所定温度(例えば150℃)以上であるか否かを判定する(ステップS104)。   The flowchart of FIG. 4 starts from a state where Rankine cycle 2 is stopped, that is, control unit 80 stops pump 20 (step S102). And the control part 80 determines whether the temperature of the exhaust_gas | exhaustion which was discharged | emitted from the engine of the vehicle in which the electric power generating apparatus 1 is mounted and which is the heat source of the evaporator 30 is more than predetermined temperature (for example, 150 degreeC). Step S104).

ステップS104で排気の温度が所定温度以上でない場合には(No)、制御部80はポンプ20を停止した状態を維持する。一方で、ステップS104で排気の温度が所定温度以上である場合には(Yes)、制御部80は、ポンプ20の動作を開始させ、また調整バルブ14を開状態にする(ステップS106)。これにより、作動流体が循環流路10を循環する。なお、調整バルブ14が開状態であるので、作動流体は、膨張器40に流入せず迂回流路12を流れる。   When the temperature of the exhaust gas is not equal to or higher than the predetermined temperature in step S104 (No), the control unit 80 maintains a state where the pump 20 is stopped. On the other hand, when the temperature of the exhaust gas is equal to or higher than the predetermined temperature in Step S104 (Yes), the control unit 80 starts the operation of the pump 20 and opens the adjustment valve 14 (Step S106). Thereby, the working fluid circulates through the circulation channel 10. Since the adjustment valve 14 is in the open state, the working fluid does not flow into the expander 40 but flows through the bypass channel 12.

次に、制御部80は、循環流路10において凝縮器50を通過後の作動流体の圧力が、圧力設定値よりも大きいか否かを判定する(ステップS108)。圧力設定値は、後述する再設定処理によって、適宜再設定されている。   Next, the control unit 80 determines whether or not the pressure of the working fluid after passing through the condenser 50 in the circulation channel 10 is larger than the pressure set value (step S108). The pressure set value is reset as appropriate by a reset process described later.

ステップS108において作動流体の圧力が圧力設定値よりも小さい場合には(No)、制御部80は、ステップS106の状態を維持する。この場合、膨張器40に作動流体が流入しないので、発電機42が発電を行わない。一方で、ステップS108において作動流体の圧力が圧力設定値よりも大きい場合には(Yes)、制御部80は、調整バルブ14を閉じた状態にする(ステップS110)。これにより、作動流体が膨張器40に流入し、発電機42が発電を行う。   When the pressure of the working fluid is smaller than the pressure set value in Step S108 (No), the control unit 80 maintains the state of Step S106. In this case, since the working fluid does not flow into the expander 40, the generator 42 does not generate power. On the other hand, when the pressure of the working fluid is larger than the pressure set value in Step S108 (Yes), the control unit 80 closes the adjustment valve 14 (Step S110). As a result, the working fluid flows into the expander 40 and the generator 42 generates power.

<圧力設定値の再設定処理>
図5を参照しながら、ランキンサイクル2を始動する判断基準となる圧力設定値の再設定処理について説明する。圧力設定値の再設定処理は、作動流体が循環流路10を循環する際に適宜行われる。例えば、圧力設定値の再設定処理は、図4のステップS106とS108の間に行われてもよい。
<Pressure setpoint resetting process>
With reference to FIG. 5, the pressure setting value resetting process that serves as a criterion for starting Rankine cycle 2 will be described. The resetting process of the pressure set value is appropriately performed when the working fluid circulates through the circulation channel 10. For example, the pressure setting value resetting process may be performed between steps S106 and S108 in FIG.

図5は、圧力設定値の再設定処理を説明するためのフローチャートである。圧力設定値の再設定処理、及び前述したランキンサイクル2の始動処理は、制御部80のCPUがプログラムの実行することで実現される。   FIG. 5 is a flowchart for explaining the pressure setting value resetting process. The resetting process of the pressure set value and the start-up process of the Rankine cycle 2 described above are realized by the CPU of the control unit 80 executing the program.

まず、制御部80は、温度検出部62によって、凝縮器50を通過後の作動流体の温度を検出する(ステップS202)。作動流体の温度を検出することで、凝縮器50の冷却源の温度を推測できる。   First, the control unit 80 detects the temperature of the working fluid after passing through the condenser 50 by the temperature detection unit 62 (step S202). By detecting the temperature of the working fluid, the temperature of the cooling source of the condenser 50 can be estimated.

次に、制御部80は、例えばROMに記憶された、作動流体の温度及び飽和蒸気圧の関係を示す特性情報(具体的には、図3の特性グラフ)を読み出す(ステップS204)。そして、制御部80は、温度検出部62の検出温度と、特性グラフとに基づいて、検出温度に対応する飽和蒸気圧を取得する(ステップS206)。   Next, the control unit 80 reads out characteristic information (specifically, a characteristic graph of FIG. 3) indicating the relationship between the temperature of the working fluid and the saturated vapor pressure, which is stored in the ROM, for example (step S204). And the control part 80 acquires the saturated vapor pressure corresponding to detection temperature based on the detected temperature of the temperature detection part 62, and a characteristic graph (step S206).

次に、制御部80は、取得した飽和蒸気圧を、圧力設定値として再設定する(ステップS208)。例えば、凝縮器50の冷却源の温度が低下した場合には、制御部80は、圧力設定値を小さく再設定する。これにより、凝縮器50の冷却源の温度に適した圧力設定値を設定できる。   Next, the control part 80 resets the acquired saturated vapor pressure as a pressure setting value (step S208). For example, when the temperature of the cooling source of the condenser 50 decreases, the control unit 80 resets the pressure set value to a smaller value. Thereby, the pressure setting value suitable for the temperature of the cooling source of the condenser 50 can be set.

<本実施形態における効果>
上述した発電装置1によれば、制御部80は、温度検出部62により検出された凝縮器50を通過後の作動流体の検出温度に応じて、ランキンサイクル2を始動させる判断基準となる圧力設定値の大きさを変更する。
凝縮器50を通過後の作動流体の検出温度は、凝縮器50における冷却源の温度を反映したものであるため、冷却源の温度を推測できる。このため、作動流体の検出温度に応じて圧力設定値の大きさを変更することで、冷却源の温度に適した圧力設定値に再設定できる。これにより、仮に冷却源の温度が低下した場合には、圧力設定値の大きさが小さくなるように変更することで、冷却源の温度の低下に伴い作動流体の圧力が小さくても、ランキンサイクル2を始動させることが可能となる。
<Effect in this embodiment>
According to the power generation device 1 described above, the control unit 80 sets a pressure as a determination criterion for starting the Rankine cycle 2 according to the detected temperature of the working fluid after passing through the condenser 50 detected by the temperature detection unit 62. Change the magnitude of the value.
Since the detected temperature of the working fluid after passing through the condenser 50 reflects the temperature of the cooling source in the condenser 50, the temperature of the cooling source can be estimated. For this reason, it can reset to the pressure setting value suitable for the temperature of a cooling source by changing the magnitude | size of a pressure setting value according to the detected temperature of a working fluid. As a result, if the temperature of the cooling source is lowered, the pressure setting value is changed so as to be reduced, so that the Rankine cycle can be achieved even if the pressure of the working fluid is small as the temperature of the cooling source is lowered. 2 can be started.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

1 発電装置
2 ランキンサイクル
10 循環流路
12 迂回流路
14 調整バルブ
20 ポンプ
30 蒸発器
40 膨張器
50 凝縮器
60 タンク
62 温度検出部
80 制御部
DESCRIPTION OF SYMBOLS 1 Power generator 2 Rankine cycle 10 Circulation flow path 12 Detour flow path 14 Adjustment valve 20 Pump 30 Evaporator 40 Expander 50 Condenser 60 Tank 62 Temperature detection part 80 Control part

Claims (5)

循環流路内に、熱源によって作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、冷却源によって前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルを有し、車両に搭載される発電装置であって、
前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記膨張器に前記作動流体を流入させて、前記ランキンサイクルを始動させる制御部と、
前記凝縮器を通過後の前記作動流体の温度を検出する温度検出部と、を備え、
前記制御部は、前記温度検出部が検出した検出温度に応じて、前記設定値の大きさを変更することを特徴とする発電装置。
An evaporator that evaporates the working fluid with a heat source, an expander that expands the working fluid, a condenser that condenses the working fluid with a cooling source, and a circulation that circulates the working fluid in the circulation channel. A Rankine cycle arranged in the order of the vessel, and a power generation device mounted on a vehicle,
A controller that starts the Rankine cycle by causing the working fluid to flow into the expander when the pressure of the working fluid after passing through the condenser exceeds a set value;
A temperature detector for detecting the temperature of the working fluid after passing through the condenser,
The said control part changes the magnitude | size of the said setting value according to the detected temperature which the said temperature detection part detected, The electric power generating apparatus characterized by the above-mentioned.
前記ランキンサイクルは、
前記膨張器を迂回する迂回流路と、
前記迂回流路に設けられ、前記膨張器への前記作動流体の流入を調整する調整バルブと、を更に有し、
前記制御部は、前記調整バルブが開いた状態で前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記調整バルブを閉じて前記膨張器に前記作動流体を流入させることを特徴とする、
請求項1に記載の発電装置。
The Rankine cycle is
A bypass flow path that bypasses the expander;
An adjustment valve that is provided in the bypass flow path and adjusts the inflow of the working fluid to the expander;
The control unit closes the adjustment valve and causes the working fluid to flow into the expander when the pressure of the working fluid after passing through the condenser becomes larger than a set value with the adjustment valve opened. Characterized by the
The power generation device according to claim 1.
前記ランキンサイクルは、前記循環流路において前記凝縮器と前記循環器の間に設けられたタンクを更に有し、
前記温度検出部は、前記タンク内に設けられていることを特徴とする、
請求項1又は2に記載の発電装置。
The Rankine cycle further includes a tank provided between the condenser and the circulator in the circulation channel,
The temperature detection unit is provided in the tank,
The power generator according to claim 1 or 2.
前記制御部は、前記温度検出部が検出した前記検出温度と、前記作動流体の温度及び飽和蒸気圧の関係を示す特性情報とに基づいて、前記設定値の大きさを変更することを特徴とする、
請求項1から3のいずれか1項に記載の発電装置。
The control unit changes the magnitude of the set value based on the detected temperature detected by the temperature detection unit and characteristic information indicating a relationship between a temperature of the working fluid and a saturated vapor pressure. To
The power generator according to any one of claims 1 to 3.
循環流路内に、熱源によって作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、冷却源によって前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルを有し、車両に搭載される発電装置の制御方法であって、
前記凝縮器を通過後の前記作動流体の圧力が設定値よりも大きくなると、前記膨張器に前記作動流体を流入させて、前記ランキンサイクルを始動させるステップと、
前記凝縮器を通過後の前記作動流体の温度を検出するステップと、
検出した検出温度に応じて前記設定値の大きさを変更するステップと、
を有することを特徴とする発電装置の制御方法。
An evaporator that evaporates the working fluid with a heat source, an expander that expands the working fluid, a condenser that condenses the working fluid with a cooling source, and a circulation that circulates the working fluid in the circulation channel. It has a Rankine cycle arranged in the order of the vessel, and is a method of controlling a power generation device mounted on a vehicle,
When the pressure of the working fluid after passing through the condenser is greater than a set value, causing the working fluid to flow into the expander and starting the Rankine cycle;
Detecting the temperature of the working fluid after passing through the condenser;
Changing the size of the set value according to the detected temperature detected;
A method for controlling a power generation apparatus, comprising:
JP2015199067A 2015-10-07 2015-10-07 Power generation device and method for controlling power generation device Active JP6610145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015199067A JP6610145B2 (en) 2015-10-07 2015-10-07 Power generation device and method for controlling power generation device
PCT/JP2016/079476 WO2017061421A1 (en) 2015-10-07 2016-10-04 Power generation apparatus and power generation apparatus controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199067A JP6610145B2 (en) 2015-10-07 2015-10-07 Power generation device and method for controlling power generation device

Publications (2)

Publication Number Publication Date
JP2017072054A true JP2017072054A (en) 2017-04-13
JP6610145B2 JP6610145B2 (en) 2019-11-27

Family

ID=58487778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199067A Active JP6610145B2 (en) 2015-10-07 2015-10-07 Power generation device and method for controlling power generation device

Country Status (2)

Country Link
JP (1) JP6610145B2 (en)
WO (1) WO2017061421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015228A (en) * 2017-07-06 2019-01-31 いすゞ自動車株式会社 Rankine cycle system and method for controlling the same
JP2019157734A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Rankine cycle system and control method of rankine cycle system
JP2019157735A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Rankine cycle system and control method of rankine cycle system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302759B2 (en) * 2007-09-14 2009-07-29 株式会社デンソー Waste heat utilization equipment
JP2008038916A (en) * 2007-09-28 2008-02-21 Denso Corp Rankine cycle
JP2012067683A (en) * 2010-09-24 2012-04-05 Toyota Industries Corp Rankine cycle device
JP2013011258A (en) * 2011-06-30 2013-01-17 Toyota Industries Corp Rankine cycle
JP5621721B2 (en) * 2011-06-30 2014-11-12 株式会社豊田自動織機 Rankine cycle
JP2013083240A (en) * 2011-09-26 2013-05-09 Toyota Industries Corp Waste heat recovery device
JP6502014B2 (en) * 2014-01-24 2019-04-17 日立造船株式会社 Waste heat recovery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015228A (en) * 2017-07-06 2019-01-31 いすゞ自動車株式会社 Rankine cycle system and method for controlling the same
JP2019157734A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Rankine cycle system and control method of rankine cycle system
JP2019157735A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Rankine cycle system and control method of rankine cycle system
JP7056253B2 (en) 2018-03-12 2022-04-19 いすゞ自動車株式会社 Rankine cycle system and control method of Rankine cycle system
JP7077680B2 (en) 2018-03-12 2022-05-31 いすゞ自動車株式会社 Rankine cycle system and control method of Rankine cycle system

Also Published As

Publication number Publication date
JP6610145B2 (en) 2019-11-27
WO2017061421A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4935935B2 (en) Waste heat regeneration system
JP5053922B2 (en) Waste heat utilization device for internal combustion engine
JP5163620B2 (en) Waste heat regeneration system
JP2009097434A (en) Waste heat utilization device for internal combustion engine
KR101600687B1 (en) Heat recovery apparatus and operation control method of heat recovery apparatus
WO2016125699A1 (en) Exhaust heat recovery device, exhaust heat recovery-type ship propulsion device, and exhaust heat recovery method
JP6610145B2 (en) Power generation device and method for controlling power generation device
US10550730B2 (en) Waste heat recovery system
JP2011163346A (en) Device for controlling working fluid with low freezing point circulating in closed circuit operating according to rankine cycle and method using the same
KR20150128575A (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP2010203284A (en) Exhaust heat regeneration system
JP2007085195A (en) Waste heat regeneration system
JP2013231377A (en) Waste heat regeneration system
JP6406583B2 (en) Rankine cycle equipment
JP2007046577A (en) Reheat steam-turbine plant
JP2018013046A (en) Rankine cycle system and control method for rankine cycle system
JP6597117B2 (en) Output device and output device control method
JP2017110551A (en) Waste heat recovery device
JP2009203903A (en) External combustion engine
JP2009191625A (en) Waste heat recovery device
US10060298B2 (en) Thermal energy recovery device and start-up method thereof
JP6474973B2 (en) Waste heat recovery device
JP5589981B2 (en) Waste heat recovery device
JP6647922B2 (en) Thermal energy recovery apparatus and start-up method thereof
JP2019094843A (en) Thermal energy recovery system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150