JP2017071524A - Composite graphite particle and method producing the same - Google Patents

Composite graphite particle and method producing the same Download PDF

Info

Publication number
JP2017071524A
JP2017071524A JP2015198768A JP2015198768A JP2017071524A JP 2017071524 A JP2017071524 A JP 2017071524A JP 2015198768 A JP2015198768 A JP 2015198768A JP 2015198768 A JP2015198768 A JP 2015198768A JP 2017071524 A JP2017071524 A JP 2017071524A
Authority
JP
Japan
Prior art keywords
graphite
particles
composite
containing particles
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015198768A
Other languages
Japanese (ja)
Inventor
山本 浩司
Koji Yamamoto
浩司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Chuo Denki Kogyo Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP2015198768A priority Critical patent/JP2017071524A/en
Publication of JP2017071524A publication Critical patent/JP2017071524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an electrode-forming material capable of enhancing high-temperature storage characteristics without deteriorating the charge-discharge cycle property of an electrode in the electrode formation of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery; and a method for producing the same.SOLUTION: There is provided composite graphite particles 100 comprising graphite-containing particles 110 and a polymer film 120. The graphite-containing particles comprise at least a graphite part 111 and have projections PJ on the surface. The polymer coating film is mainly composed of a polyether-based polymer and partially or wholly coats the graphite-containing particles. Then, the mass ratio of the polymer coating film to the graphite-containing particles is in the range of 0.0001 or more and 0.02 or less.SELECTED DRAWING: Figure 1

Description

本発明は、複合黒鉛質粒子およびその製造方法に関する。   The present invention relates to composite graphite particles and a method for producing the same.

過去に、リチウムイオン二次電池の黒鉛負極の高温保存特性を向上させるために「黒鉛粒子をポリエチレンオキシド被膜で覆うこと」が提案されている(例えば、特開平09−045328号公報等参照)。   In the past, in order to improve the high temperature storage characteristics of a graphite negative electrode of a lithium ion secondary battery, “covering graphite particles with a polyethylene oxide coating” has been proposed (see, for example, JP-A-09-045328).

特開平09−045328号公報JP 09-045328 A

しかし、このように黒鉛粒子をポリエチレンオキシド被膜で覆ってしまうと、黒鉛負極の充放電サイクル特性が低下してしまう問題があった。   However, if the graphite particles are covered with the polyethylene oxide film in this way, there is a problem that the charge / discharge cycle characteristics of the graphite negative electrode are deteriorated.

本発明の課題は、リチウムイオン二次電池等の非水電解質二次電池の電極形成において電極の充放電サイクル特性を低下させることなく高温保存特性を向上させることができる電極形成材料およびその製造方法を提供することにある。   An object of the present invention is to provide an electrode forming material capable of improving high-temperature storage characteristics without deteriorating charge / discharge cycle characteristics of electrodes in electrode formation of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, and a method for producing the same Is to provide.

本発明の一局面に係る複合黒鉛質粒子(電極形成材料)は、黒鉛含有粒子および高分子被膜を備える。黒鉛含有粒子は、少なくとも黒鉛質部を含むと共に表面に突起を有する。高分子被膜は、ポリエーテル系高分子を主成分とし、黒鉛含有粒子を覆っている。高分子被膜は、黒鉛含有粒子を部分的に覆ってもよいし、全体的に覆ってもよい。そして、黒鉛含有粒子に対する高分子被膜の質量比は、0.0001以上0.02以下の範囲内である。   The composite graphite particle (electrode forming material) according to one aspect of the present invention includes graphite-containing particles and a polymer coating. The graphite-containing particles include at least a graphite part and have protrusions on the surface. The polymer coating is composed mainly of a polyether polymer and covers the graphite-containing particles. The polymer coating may partially or entirely cover the graphite-containing particles. The mass ratio of the polymer coating to the graphite-containing particles is in the range of 0.0001 to 0.02.

本願発明者が鋭意検討したところ、上述の黒鉛含有粒子であれば、黒鉛含有粒子が高分子被膜に覆われていても、リチウムイオン二次電池等の非水電解質二次電池の電極形成において電極の充放電サイクル特性を低下させることなく高温保存特性を向上させることができることが明らかとなった。   As a result of intensive studies by the inventor of the present application, in the case of the above-mentioned graphite-containing particles, even if the graphite-containing particles are covered with a polymer film, the electrode is used in forming an electrode for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. It was revealed that the high-temperature storage characteristics can be improved without degrading the charge / discharge cycle characteristics.

上述の複合黒鉛質粒子において、黒鉛含有粒子は、黒鉛粒子および導電性炭素質微粒子を有することが好ましい。黒鉛含有粒子は、黒鉛粒子および導電性炭素質微粒子のみから形成されてもよいし、黒鉛粒子および導電性炭素質微粒子以外の粒子等を含んでいてもよい。導電性炭素質微粒子は、黒鉛粒子の表面に付着している。導電性炭素質微粒子は、間接的に黒鉛粒子に付着していてもよいし、直接的に付着していてもよい。導電性炭素質微粒子は、炭素材料によって黒鉛粒子の表面に接着されていることが好ましい。黒鉛粒子に対する導電性炭素質微粒子の質量比は、0.003以上0.1以下の範囲内であることが好ましい。黒鉛粒子に対する導電性炭素質微粒子の一次粒子の平均粒子径比は、0.0003以上0.1以下の範囲内であることが好ましい。黒鉛粒子と導電性炭素質微粒子との和に対する炭素材料の質量比は、0.01以上0.15以下の範囲内であることが好ましい。   In the composite graphite particles described above, the graphite-containing particles preferably have graphite particles and conductive carbonaceous fine particles. The graphite-containing particles may be formed only from graphite particles and conductive carbonaceous fine particles, or may contain particles other than graphite particles and conductive carbonaceous fine particles. The conductive carbonaceous fine particles are attached to the surface of the graphite particles. The conductive carbonaceous fine particles may be indirectly attached to the graphite particles or may be directly attached. The conductive carbonaceous fine particles are preferably bonded to the surface of the graphite particles with a carbon material. The mass ratio of the conductive carbonaceous fine particles to the graphite particles is preferably in the range of 0.003 to 0.1. The average particle size ratio of the primary particles of the conductive carbonaceous fine particles to the graphite particles is preferably in the range of 0.0003 or more and 0.1 or less. The mass ratio of the carbon material to the sum of the graphite particles and the conductive carbonaceous fine particles is preferably in the range of 0.01 to 0.15.

上述の複合黒鉛質粒子において、ポリエーテル系高分子は、1万以上1000万以下の範囲内の平均分子量を有することが好ましい。なお、この平均分子量は、和光純薬製のポリエチレングリコールのラベル表示値を基準として決定される。   In the composite graphite particles described above, the polyether polymer preferably has an average molecular weight in the range of 10,000 to 10,000,000. This average molecular weight is determined based on the label display value of polyethylene glycol manufactured by Wako Pure Chemical Industries.

本発明の他の局面に係る複合黒鉛質粒子は、黒鉛含有粒子および高分子被膜を備える。黒鉛含有粒子は、少なくとも黒鉛質部を含むと共に表面に突起を有する。高分子被膜は、ポリエーテル系高分子を主成分とし、突起を埋没させないように黒鉛含有粒子の全表面を覆う。   Composite graphite particles according to another aspect of the present invention include graphite-containing particles and a polymer coating. The graphite-containing particles include at least a graphite part and have protrusions on the surface. The polymer coating is composed mainly of a polyether polymer and covers the entire surface of the graphite-containing particles so as not to bury the protrusions.

本願発明者が鋭意検討したところ、上述の黒鉛含有粒子であれば、黒鉛含有粒子が高分子被膜に覆われていても、リチウムイオン二次電池等の非水電解質二次電池の電極形成において電極の充放電サイクル特性を低下させることなく高温保存特性を向上させることができることが明らかとなった。   As a result of intensive studies by the inventor of the present application, in the case of the above-mentioned graphite-containing particles, even if the graphite-containing particles are covered with a polymer film, the electrode is used in forming an electrode for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. It was revealed that the high-temperature storage characteristics can be improved without degrading the charge / discharge cycle characteristics.

本発明の他の局面に係る複合黒鉛質粒子の製造方法は、接触工程および乾燥工程を備える。接触工程では、黒鉛含有粒子に対する高分子被膜の質量比が0.0001以上0.02以下の範囲内となるように、黒鉛含有粒子が、ポリエーテル系高分子を主成分とする高分子の溶液に接触させられる。なお、この黒鉛含有粒子は、少なくとも黒鉛質部を含むと共に表面に突起を有する。乾燥工程では、高分子の溶液に接触させられた黒鉛含有粒子が乾燥される。   The method for producing composite graphite particles according to another aspect of the present invention includes a contact step and a drying step. In the contacting step, the graphite-containing particles are polymer solutions mainly composed of a polyether polymer so that the mass ratio of the polymer coating to the graphite-containing particles is within the range of 0.0001 to 0.02. To be contacted. The graphite-containing particles include at least a graphite part and have protrusions on the surface. In the drying step, the graphite-containing particles brought into contact with the polymer solution are dried.

上述の複合黒鉛質粒子は、この複合黒鉛質粒子の製造方法によって得られる。したがって、この複合黒鉛質粒子の製造方法によって得られた複合黒鉛質粒子は、上述と同様の効果を奏することができる。   The composite graphite particles described above are obtained by this method for producing composite graphite particles. Therefore, the composite graphite particles obtained by this method for producing composite graphite particles can exhibit the same effects as described above.

上述の複合黒鉛質粒子は、電極、特に非水電解質二次電池の電極を構成する活物質として使用することができる。なお、非水電解質二次電池は、リチウムイオン二次電池に代表される。   The composite graphite particles described above can be used as an active material constituting an electrode, particularly an electrode of a nonaqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery is represented by a lithium ion secondary battery.

本発明の実施の形態に係る複合黒鉛質粒子の模式図である。It is a schematic diagram of the composite graphite particle which concerns on embodiment of this invention. 実施例1に係る複合黒鉛質粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of composite graphite particles according to Example 1. FIG.

<複合黒鉛質粒子の構造>
本発明の実施の形態に係る複合黒鉛質粒子100は、図1に示されるように、突起PJを有する粒子であって、主に、黒鉛含有粒子110および高分子被膜120から構成される。このような複合黒鉛質粒子100は、電極、特にリチウムイオン二次電池等に代表される非水電解質二次電池の負極を構成する活物質として使用することができる。以下、これらの構成要素について詳述する。
<Structure of composite graphite particles>
As shown in FIG. 1, composite graphite particle 100 according to the embodiment of the present invention is a particle having protrusions PJ, and is mainly composed of graphite-containing particles 110 and polymer coating 120. Such composite graphite particles 100 can be used as an active material constituting an electrode, particularly a negative electrode of a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery or the like. Hereinafter, these components will be described in detail.

(1)黒鉛含有粒子
黒鉛含有粒子110は、図1に示されるように、突起を有する粒子であって、主に、黒鉛粒子111および導電性炭素質微粒子112から構成される。導電性炭素質微粒子112を黒鉛粒子111の表面に固定化するために、炭素材料(図示せず)で導電性炭素質微粒子112を黒鉛粒子111に接着するようにしてもよい。これらの黒鉛含有粒子110を3000℃以上の温度で部分的に又は全体的に黒鉛化したものを、黒鉛含有粒子として使用してもよい。
(1) Graphite-containing particles As shown in FIG. 1, the graphite-containing particles 110 are particles having protrusions, and are mainly composed of graphite particles 111 and conductive carbonaceous fine particles 112. In order to immobilize the conductive carbonaceous fine particles 112 on the surface of the graphite particles 111, the conductive carbonaceous fine particles 112 may be bonded to the graphite particles 111 with a carbon material (not shown). These graphite-containing particles 110 may be partially or wholly graphitized at a temperature of 3000 ° C. or higher as graphite-containing particles.

(1−1)黒鉛粒子
黒鉛粒子は、天然黒鉛粒子、人造黒鉛粒子のいずれでもよいが、天然黒鉛粒子であることが好ましい。黒鉛粒子として、天然黒鉛粒子と人造黒鉛粒子との混合物が用いられてもかまわない。黒鉛粒子は、複数の鱗片状の黒鉛粒子が集合して形成された球状の黒鉛造粒物であることが好ましい。鱗片状の黒鉛粒子としては、天然黒鉛粒子、人造黒鉛粒子の他、タール・ピッチを原料としたメソフェーズ焼成炭素(メソフェーズカーボンマイクロビーズ、ニードルコークス等のバルクメソフェーズカーボン)等を黒鉛化したもの等が挙げられ、特に、結晶性の高い天然黒鉛粒子を複数用いて造粒されたものが好ましい。なお、1個の黒鉛造粒物は、通常、鱗片状の黒鉛粒子が2〜100個、好ましくは3〜20個集合して形成されるが、1個の黒鉛粒子を折りたたんで球状化することもできる。
(1-1) Graphite particles The graphite particles may be either natural graphite particles or artificial graphite particles, but are preferably natural graphite particles. As the graphite particles, a mixture of natural graphite particles and artificial graphite particles may be used. The graphite particles are preferably spherical graphite granules formed by aggregating a plurality of scaly graphite particles. Examples of the scale-like graphite particles include natural graphite particles, artificial graphite particles, graphitized mesophase calcined carbon (bulk mesophase carbon such as mesophase carbon microbeads, needle coke, etc.) using tar pitch as a raw material, etc. In particular, those granulated using a plurality of highly crystalline natural graphite particles are preferable. One graphite granule is usually formed by agglomerating 2 to 100, preferably 3 to 20, scaly graphite particles, but the graphite particles are folded to be spheroidized. You can also.

黒鉛粒子の平均粒子径は、1μm以上30μm以下の範囲内であることが好ましく、5μm以上20μm以下の範囲内であることがより好ましい。黒鉛粒子の平均粒子径がこの範囲内であれば、高温保存特性および出力特性が良好にバランスするからである。   The average particle diameter of the graphite particles is preferably in the range of 1 μm to 30 μm, and more preferably in the range of 5 μm to 20 μm. This is because if the average particle diameter of the graphite particles is within this range, the high-temperature storage characteristics and the output characteristics are well balanced.

黒鉛粒子の炭素層面間隔(d002)は、高容量化を実現する観点から0.337nm以下であることが好ましい。   The distance between carbon layer surfaces (d002) of the graphite particles is preferably 0.337 nm or less from the viewpoint of realizing high capacity.

(1−2)導電性炭素質微粒子
導電性炭素質微粒子112は、黒鉛粒子111の表面に付着しており、導電助剤としてのみならず、突起形成素材としても機能している(図1参照)。なお、導電性炭素質微粒子112は、黒鉛粒子の表面に間接的に付着していてもよいし、直接的に付着していてもよい。上述の通り、導電性炭素質微粒子112を黒鉛粒子111の表面に固定化するために、炭素材料(図示せず)で導電性炭素質微粒子112を黒鉛粒子111に接着するようにしてもよい。導電性炭素質微粒子は、例えば、ケッチェンブラック、ファーネスブラック、アセチレンブラック、サーマルブラック、ランプブラック、チャンネルブラック等のカーボンブラック(通常、一次粒子径が10nm以上200nm以下の範囲内にある。)、カーボンナノチューブ、カーボンナノファイバー、カーボンナノコイル、黒鉛、コークス、樹脂炭化物の粉砕粒子等である。なお、これらの導電性炭素質微粒子の中でもアセチレンブラックが特に好ましい。導電性炭素質微粒子は、異なる種類のカーボンブラック等の混合物であってもよい。黒鉛粒子に対する導電性炭素質微粒子の質量比は0.003以上0.1以下の範囲内であることが好ましく、0.005以上0.05以下の範囲内であることがより好ましく、0.005以上0.02以下の範囲内であることがさらに好ましい。導電性炭素質微粒子の一次粒子の平均粒子径は、0.01μm以上1μm以下の範囲内であることが好ましく、0.05μm以上0.5μm以下の範囲内であることがより好ましい。黒鉛粒子に対する導電性炭素質微粒子の一次粒子の平均粒子径比は、0.0003以上0.1以下の範囲内であることが好ましい。ここで、黒鉛粒子の平均粒子径は、体積基準のメジアン径である。導電性炭素質微粒子の一次粒子の平均粒子径は、導電性炭素質微粒子100個の一次粒子を電子顕微鏡で観察して求めた算術平均粒子径である。
(1-2) Conductive Carbonaceous Fine Particles The conductive carbonaceous fine particles 112 are attached to the surface of the graphite particles 111 and function not only as a conductive aid but also as a protrusion forming material (see FIG. 1). ). The conductive carbonaceous fine particles 112 may be indirectly attached to the surface of the graphite particles or may be directly attached. As described above, in order to immobilize the conductive carbonaceous fine particles 112 on the surface of the graphite particles 111, the conductive carbonaceous fine particles 112 may be bonded to the graphite particles 111 with a carbon material (not shown). The conductive carbonaceous fine particles are, for example, carbon black such as ketjen black, furnace black, acetylene black, thermal black, lamp black, and channel black (usually having a primary particle diameter in the range of 10 nm to 200 nm). Examples thereof include carbon nanotubes, carbon nanofibers, carbon nanocoils, graphite, coke, and pulverized particles of resin carbide. Of these conductive carbonaceous fine particles, acetylene black is particularly preferred. The conductive carbonaceous fine particles may be a mixture of different types of carbon black or the like. The mass ratio of the conductive carbonaceous fine particles to the graphite particles is preferably in the range of 0.003 to 0.1, more preferably in the range of 0.005 to 0.05, 0.005 More preferably, it is in the range of 0.02 or less. The average primary particle diameter of the conductive carbonaceous fine particles is preferably in the range of 0.01 μm to 1 μm, and more preferably in the range of 0.05 μm to 0.5 μm. The average particle size ratio of the primary particles of the conductive carbonaceous fine particles to the graphite particles is preferably in the range of 0.0003 or more and 0.1 or less. Here, the average particle diameter of the graphite particles is a volume-based median diameter. The average particle diameter of the primary particles of the conductive carbonaceous fine particles is an arithmetic average particle diameter obtained by observing 100 primary particles of the conductive carbonaceous fine particles with an electron microscope.

(1−3)炭素材料
炭素材料は、導電性炭素質微粒子を黒鉛粒子に接着するために用いられ得る。炭素材料は、非黒鉛質炭素および黒鉛質炭素の少なくとも一方から構成される。すなわち、炭素材料は、非黒鉛質炭素のみから構成されていてもよいし、黒鉛質炭素のみから構成されていてもよいし、非黒鉛質炭素および黒鉛質炭素から構成されていてもよい。
(1-3) Carbon Material The carbon material can be used for bonding conductive carbonaceous fine particles to graphite particles. The carbon material is composed of at least one of non-graphitic carbon and graphitic carbon. That is, the carbon material may be composed only of non-graphitic carbon, may be composed only of graphitic carbon, or may be composed of non-graphitic carbon and graphitic carbon.

非黒鉛質炭素は、非晶質炭素および乱層構造炭素の少なくともいずれかである。なお、ここで「非晶質炭素」とは、短距離秩序(数原子〜十数個原子オーダー)を有しても、長距離秩序(数百〜数千個の原子オーダー)を有さない炭素をいう。ここで「乱層構造炭素」とは、六角網平面方向に平行な乱層構造を有するが、三次元方向には結晶学的規則性が見られない炭素原子からなる炭素をいう。X線回折図形では101面、103面に対応するhkl回折線は現れない。ただし、本発明の実施の形態に係る複合黒鉛質粒子100は、基材の回折線が強いため、X線回折によって確認することが難しい。このため、乱層構造炭素は、透過型電子顕微鏡(TEM)等で確認されることが好ましい。   Non-graphitic carbon is at least one of amorphous carbon and turbostratic carbon. Here, “amorphous carbon” has short-range order (several atoms to tens of atoms order), but does not have long-range order (several hundreds to thousands of atoms order). Refers to carbon. Here, “turbulent structure carbon” refers to carbon composed of carbon atoms having a turbulent structure parallel to the hexagonal network plane direction but having no crystallographic regularity in the three-dimensional direction. In the X-ray diffraction pattern, hkl diffraction lines corresponding to the 101 plane and the 103 plane do not appear. However, the composite graphite particles 100 according to the embodiment of the present invention are difficult to confirm by X-ray diffraction because the diffraction lines of the substrate are strong. For this reason, it is preferable that the turbostratic structure carbon is confirmed with a transmission electron microscope (TEM) or the like.

ところで、この炭素材料は、炭素材料の原料(以下、「炭素原料」という。)を焼成することによって得られる。炭素原料とは、例えば、タール、石油系ピッチ粉末、石炭系ピッチ粉末、樹脂粉末等である。炭素原料は、異なる種類のピッチ等の混合物であってもよい。これらの中でも、石炭系ピッチ粉末が特に好ましい。焼成の熱処理条件の一例として熱処理温度を800℃以上3000℃以下の範囲内の温度とすることが挙げられる。この熱処理時間は、熱処理温度および炭素原料の特性等を加味して適宜決定され、典型的には1時間程度である。炭素原料の種類にもよるが、熱処理温度が高いと黒鉛質炭素が得られ易く、熱処理温度が低いと非晶質炭素が得られ易い。炭素原料の種類によっては、熱処理温度が3000℃であっても、非晶質炭素が得られる場合もある。熱処理時の雰囲気は非酸化雰囲気(不活性ガス雰囲気、真空雰囲気)であることが好ましく、経済的観点から窒素雰囲気が好ましい。黒鉛粒子と導電性炭素質微粒子との和に対する炭素材料の質量比は0.01以上0.15以下の範囲内であることが好ましい。   By the way, this carbon material is obtained by firing a carbon material raw material (hereinafter referred to as “carbon raw material”). Examples of the carbon raw material include tar, petroleum-based pitch powder, coal-based pitch powder, and resin powder. The carbon raw material may be a mixture of different types of pitches. Among these, coal-based pitch powder is particularly preferable. As an example of the heat treatment conditions for firing, the heat treatment temperature is set to a temperature in the range of 800 ° C. to 3000 ° C. This heat treatment time is appropriately determined in consideration of the heat treatment temperature and the characteristics of the carbon raw material, and is typically about 1 hour. Although depending on the type of carbon raw material, graphitic carbon is easily obtained when the heat treatment temperature is high, and amorphous carbon is easily obtained when the heat treatment temperature is low. Depending on the type of carbon raw material, amorphous carbon may be obtained even when the heat treatment temperature is 3000 ° C. The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere), and a nitrogen atmosphere is preferred from an economic viewpoint. The mass ratio of the carbon material to the sum of the graphite particles and the conductive carbonaceous fine particles is preferably in the range of 0.01 to 0.15.

(1−4)黒鉛含有粒子の製造方法
この黒鉛含有粒子110は、以下の(1−4−1)から(1−4−6)の例を含む種々の製造方法によって製造することができる。なお、その製造方法は、黒鉛含有粒子110に突起を形成することができる製造方法であればよく、その製造方法が以下の例に限定されることはない。
(1-4) Method for Producing Graphite-Containing Particles The graphite-containing particles 110 can be produced by various production methods including the following examples (1-4-1) to (1-4-6). In addition, the manufacturing method should just be a manufacturing method which can form protrusion on the graphite containing particle 110, and the manufacturing method is not limited to the following examples.

(1−4−1)
黒鉛含有粒子は、機械処理工程を経ることによって製造することができる。機械処理工程では、黒鉛粒子と導電性炭素質微粒子をメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の機械的処理して、黒鉛粒子の表層に導電性炭素質微粒子を埋め込む。この結果、目的の黒鉛含有粒子が得られる。必要に応じて黒鉛含有粒子を800℃以上3000℃以下の範囲内の温度で熱処理してもよい。
(1-4-1)
The graphite-containing particles can be produced through a mechanical treatment process. In the mechanical treatment process, the graphite particles and the conductive carbonaceous fine particles are mechanically treated such as a mechanochemical (registered trademark) treatment and a mechanofusion (registered trademark) treatment to embed the conductive carbonaceous fine particles in the surface layer of the graphite particles. As a result, target graphite-containing particles are obtained. If necessary, the graphite-containing particles may be heat-treated at a temperature in the range of 800 ° C. to 3000 ° C.

(1−4−2)
黒鉛含有粒子は、機械処理工程、炭素原料混合工程および炭素化工程を経ることによっても製造することができる。機械処理工程では、黒鉛粒子と導電性炭素質微粒子をメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の機械的処理して一次複合化粒子を調製する。炭素原料混合工程では、一次複合化粒子と炭素原料粉末とを混合して混合粉末を調製する。炭素化工程では、混合粉末を800℃以上3000℃以下の範囲の温度で加熱して、炭素原料粉末を炭素材料に変換する。この結果、一次複合化粒子に炭素材料が部分的に又は全体的に付着して、導電性炭素質微粒子が炭素材料により黒鉛粒子に固定化される。この結果、目的の黒鉛含有粒子が得られる。
(1-4-2)
The graphite-containing particles can also be produced through a mechanical treatment process, a carbon raw material mixing process, and a carbonization process. In the mechanical treatment step, primary composite particles are prepared by mechanically treating the graphite particles and the conductive carbonaceous fine particles with a mechanochemical (registered trademark) treatment, a mechanofusion (registered trademark) treatment or the like. In the carbon raw material mixing step, the primary composite particles and the carbon raw material powder are mixed to prepare a mixed powder. In the carbonization step, the mixed powder is heated at a temperature in the range of 800 ° C. to 3000 ° C. to convert the carbon raw material powder into a carbon material. As a result, the carbon material adheres partially or entirely to the primary composite particles, and the conductive carbonaceous fine particles are fixed to the graphite particles by the carbon material. As a result, target graphite-containing particles are obtained.

(1−4−3)
黒鉛含有粒子は、機械処理工程および炭素化工程を経ることによっても製造することができる。機械処理工程では、メカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の機械的処理により、黒鉛粒子、導電性炭素質微粒子および固体の炭素原料粉末の混合物に、炭素原料粉末の軟化点以上の温度で圧縮力およびせん断力が付与されて中間体複合粒子が調製される。このとき、圧縮力が作用する状況下で、溶融した炭素原料粉末が接着剤の役割を果たして黒鉛粒子に導電性炭素質微粒子が接着される。なお、このとき、黒鉛粒子、導電性炭素質微粒子および固体の炭素原料粉末の混合物がメカノケミカルシステム、メカノフュージョンシステムに投入されてもよいし、黒鉛粒子、導電性炭素質微粒子および固体の炭素原料粉末それぞれを順にメカノケミカルシステム、メカノフュージョンシステムに投入した後に、それらの粒子を混合しながらメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の機械的処理を行ってもよい。炭素化工程では、非酸化雰囲気下(不活性ガス雰囲気下、真空雰囲気下等)で中間体複合粒子が800℃以上3000℃以下の範囲内の温度で加熱処理される。この結果、炭素原料粉末が炭素材料に変換され、目的の黒鉛含有粒子が得られる。
(1-4-3)
The graphite-containing particles can also be produced through a mechanical treatment process and a carbonization process. In the mechanical processing process, the carbon raw material powder is softened into a mixture of graphite particles, conductive carbonaceous fine particles and solid carbon raw material powder by mechanical processing such as mechanochemical (registered trademark) processing and mechanofusion (registered trademark) processing. An intermediate composite particle is prepared by applying a compressive force and a shearing force at a temperature equal to or higher than the point. At this time, the conductive carbonaceous fine particles are bonded to the graphite particles by the molten carbon raw material powder serving as an adhesive under the condition where the compressive force acts. At this time, a mixture of graphite particles, conductive carbonaceous fine particles, and solid carbon raw material powder may be charged into a mechanochemical system or mechanofusion system, or graphite particles, conductive carbonaceous fine particles, and solid carbon raw material. After each powder is put into a mechanochemical system and a mechanofusion system in order, mechanical processing such as mechanochemical (registered trademark) processing and mechanofusion (registered trademark) processing may be performed while mixing the particles. In the carbonization step, the intermediate composite particles are heat-treated at a temperature in the range of 800 ° C. or higher and 3000 ° C. or lower in a non-oxidizing atmosphere (inert gas atmosphere, vacuum atmosphere, etc.). As a result, the carbon raw material powder is converted into a carbon material, and target graphite-containing particles are obtained.

(1−4−4)
黒鉛含有粒子は、加熱混練工程および炭素化工程を経ることによっても製造することができる。加熱混練工程では、黒鉛粒子、導電性炭素質微粒子および炭素原料を、炭素原料の軟化点以上の温度に加熱しながら混練して黒鉛含有粒子の前駆体を調製する。ここで、炭素原料は、固体の炭素原料粉末であってもよいし、軟化点温度以上で加熱溶融された炭素原料であってもよい。加熱混練する際、溶融した炭素原料が接着剤の役割を果たして黒鉛粒子に導電性炭素質微粒子が接着される。なお、この加熱混練工程では、例えば、通常のニーダーを用い得る。炭素化工程では、黒鉛含有粒子の前駆体を800℃以上3000℃以下の範囲内の温度で加熱して炭素原料を炭素材料に変換する。この結果、目的の黒鉛含有粒子が得られる。
(1-4-4)
The graphite-containing particles can also be produced through a heating and kneading step and a carbonization step. In the heating and kneading step, the graphite particles, the conductive carbonaceous fine particles, and the carbon raw material are kneaded while being heated to a temperature equal to or higher than the softening point of the carbon raw material to prepare a graphite-containing particle precursor. Here, the carbon raw material may be a solid carbon raw material powder or a carbon raw material heated and melted at a softening point temperature or higher. When heating and kneading, the molten carbon raw material serves as an adhesive, and the conductive carbonaceous fine particles are bonded to the graphite particles. In this heating and kneading step, for example, a normal kneader can be used. In the carbonization step, the precursor of the graphite-containing particles is heated at a temperature in the range of 800 ° C. to 3000 ° C. to convert the carbon raw material into a carbon material. As a result, target graphite-containing particles are obtained.

(1−4−5)
黒鉛含有粒子は、混合工程、乾燥工程および炭素化工程を経ることによっても製造することができる。混合工程では、炭素原料としてのタールピッチ類や樹脂類等を溶媒などに溶解した溶液に黒鉛粒子および導電性炭素質微粒子を添加して混合して混合液を調製する。乾燥工程では、混合液から溶媒を除去して残留物を乾燥する。炭素化工程では、得られた乾燥物を熱処理して、炭素原料を炭素化させる。熱処理は一段で行ってもよいし、温度を変えて段階的に行ってもよい。最終的な熱処理温度は、800℃以上3000℃以下の範囲内であることが好ましい。この結果、目的の黒鉛含有粒子が得られる。
(1-4-5)
The graphite-containing particles can also be produced through a mixing process, a drying process, and a carbonization process. In the mixing step, graphite particles and conductive carbonaceous fine particles are added to and mixed with a solution in which tar pitches or resins as carbon raw materials are dissolved in a solvent or the like to prepare a mixed solution. In the drying step, the solvent is removed from the mixed solution to dry the residue. In the carbonization step, the obtained dried product is heat-treated to carbonize the carbon raw material. The heat treatment may be performed in one step, or may be performed stepwise by changing the temperature. The final heat treatment temperature is preferably in the range of 800 ° C. or higher and 3000 ° C. or lower. As a result, target graphite-containing particles are obtained.

なお、熱処理の前後のいずれかの段階で、適宜、粉砕、篩い分け、分級による微粉除去などの粒度調整を行うことが好ましい。   It is preferable to adjust the particle size such as pulverization, sieving, and fine powder removal by classification at any stage before and after the heat treatment.

(1−4−6)
黒鉛含有粒子は、機械処理工程および炭素被覆工程を経ることによっても製造することができる。機械処理工程では、黒鉛粒子と導電性炭素質微粒子をメカノケミカル(登録商標)処理、メカノフュージョン(登録商標)処理等の機械的処理して一次複合化粒子を調製する。炭素被覆工程では、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法等を利用して一次複合化粒子を炭素材料で覆う。この結果、目的の黒鉛含有粒子が得られる。必要に応じて黒鉛含有粒子を800℃以上3000℃以下の範囲内の温度で熱処理してもよい。
(1-4-6)
The graphite-containing particles can also be produced through a mechanical treatment process and a carbon coating process. In the mechanical treatment step, primary composite particles are prepared by mechanically treating the graphite particles and the conductive carbonaceous fine particles with a mechanochemical (registered trademark) treatment, a mechanofusion (registered trademark) treatment or the like. In the carbon coating process, for example, primary using vacuum deposition, sputtering, ion plating, laser ablation, thermal chemical vapor deposition, chemical vapor deposition (CVD), and plasma chemical vapor deposition. The composite particles are covered with a carbon material. As a result, target graphite-containing particles are obtained. If necessary, the graphite-containing particles may be heat-treated at a temperature in the range of 800 ° C. to 3000 ° C.

(1−5)黒鉛含有粒子の特性
黒鉛含有粒子110の平均粒子径は、1μm以上30μm以下の範囲内であることが好ましく、5μm以上20μm以下の範囲内であることがより好ましい。ここで、黒鉛含有粒子の平均粒子径は、体積基準のメジアン径である。黒鉛含有粒子110の比表面積は、1m/g以上10m/g以下の範囲内であることが好ましく、2m/g以上6m/g以下の範囲内であることがより好ましい。黒鉛含有粒子110の比表面積がこの範囲内であると、出力密度を高く維持しながら耐久性を有効に改善することができるからである。
(1-5) Characteristics of Graphite-Containing Particles The average particle size of the graphite-containing particles 110 is preferably in the range of 1 μm to 30 μm, and more preferably in the range of 5 μm to 20 μm. Here, the average particle diameter of the graphite-containing particles is a volume-based median diameter. The specific surface area of the graphite-containing particles 110 is preferably in the range of 1 m 2 / g or more 10 m 2 / g, and more preferably in a range of 2m 2 / g or more 6 m 2 / g. This is because if the specific surface area of the graphite-containing particles 110 is within this range, the durability can be effectively improved while maintaining a high output density.

(2)高分子被膜
高分子被膜120は、図1に示されるように、黒鉛含有粒子110の突起を埋没させないように黒鉛含有粒子110を覆っている。
(2) Polymer Film The polymer film 120 covers the graphite-containing particles 110 so as not to bury the protrusions of the graphite-containing particles 110 as shown in FIG.

この高分子被膜120は、ポリエーテル系高分子を主成分とする高分子から形成されている。ポリエーテル系高分子は、例えば、ポリエチレングリコール(ポリエチレンオキサイド)、ポリプロピレングリコール(ポリプロピレンオキサイド)、エチレングリコールとプロピレングリコールの共重合体等である。ポリエーテル系高分子の平均分子量は、1万以上1000万以下の範囲内であることが好ましく、10万以上200万以下の範囲内であることがより好ましい。ポリエーテル系高分子の平均分子量がこの範囲内であると、ポリエーテル系高分子を黒鉛含有粒子に均一に塗布しやすくすることができると共に高い高温保存特性改善効果を得ることができるからである。なお、この平均分子量は、和光純薬製のポリエチレングリコールのラベル表示値を基準として決定される。黒鉛含有粒子に対する高分子被膜の質量比は、0.0001以上0.02以下の範囲内であることが好ましく、0.001以上0.01以下の範囲内であることがより好ましい。同質量比がこの範囲内であると、電極に対して十分な高温保存特性を付与することができると共に、リチウムイオン伝導の抵抗を低く抑えることができ、延いては出力特性を良好に維持することができるからである。この高分子被膜120には、本発明の主旨を逸脱しない範囲で、ポリエチレングリコールジメチルエーテル等の可塑剤や、他の高分子を添加してもかまわない。   The polymer film 120 is formed of a polymer mainly composed of a polyether polymer. Examples of the polyether polymer include polyethylene glycol (polyethylene oxide), polypropylene glycol (polypropylene oxide), and a copolymer of ethylene glycol and propylene glycol. The average molecular weight of the polyether polymer is preferably in the range of 10,000 to 10,000,000 and more preferably in the range of 100,000 to 2,000,000. When the average molecular weight of the polyether polymer is within this range, the polyether polymer can be easily applied uniformly to the graphite-containing particles, and a high effect of improving high-temperature storage characteristics can be obtained. . This average molecular weight is determined based on the label display value of polyethylene glycol manufactured by Wako Pure Chemical Industries. The mass ratio of the polymer coating to the graphite-containing particles is preferably in the range of 0.0001 or more and 0.02 or less, and more preferably in the range of 0.001 or more and 0.01 or less. When the mass ratio is within this range, sufficient high-temperature storage characteristics can be imparted to the electrode, and the resistance of lithium ion conduction can be kept low, and the output characteristics can be maintained well. Because it can. A plasticizer such as polyethylene glycol dimethyl ether or other polymer may be added to the polymer film 120 without departing from the gist of the present invention.

<複合黒鉛質粒子の製造>
本発明の実施の形態に係る複合黒鉛質粒子は、混合工程および乾燥工程を経て製造される。混合工程では、ポリエーテル系高分子を主成分とする高分子の溶液(以下「高分子溶液」という)に、黒鉛含有粒子110が混合される。乾燥工程では、黒鉛含有粒子入りの高分子溶液が乾燥される。なお、高分子の溶媒としては、環境面およびコスト面から水が好ましい。乾燥工程では、スプレードライ法を用いて黒鉛含有粒子入りの高分子溶液が乾燥処理させてもよい。
<Manufacture of composite graphite particles>
The composite graphite particles according to the embodiment of the present invention are manufactured through a mixing process and a drying process. In the mixing step, the graphite-containing particles 110 are mixed into a polymer solution containing a polyether polymer as a main component (hereinafter referred to as “polymer solution”). In the drying step, the polymer solution containing the graphite-containing particles is dried. The polymer solvent is preferably water from the viewpoint of environment and cost. In the drying step, the polymer solution containing the graphite-containing particles may be dried using a spray drying method.

<複合黒鉛質粒子の特徴>
本発明の実施の形態に係る複合黒鉛質粒子は、リチウムイオン二次電池等の非水電解質二次電池の電極形成において電極の充放電サイクル特性を低下させることなく高温保存特性を向上させることができる電極形成材料として非常に有用である。
<Characteristics of composite graphite particles>
The composite graphite particles according to the embodiment of the present invention can improve the high-temperature storage characteristics without deteriorating the charge / discharge cycle characteristics of the electrodes in forming electrodes of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. It is very useful as a material for forming electrodes.

<実施例および比較例>
以下、実施例および比較例を示して、本発明について詳述する。
<Examples and Comparative Examples>
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

<複合黒鉛質粒子の製造>
(1)球状天然黒鉛粉末とアセチレンブラックとの複合化
球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)とアセチレンブラック(一次粒子径35nm,比表面積68m/g)との質量比が100:1となるように球状天然黒鉛粉末とアセチレンブラックとを混ぜ合わせて600gの混合粉末を調製した。この600gの混合粉体を、ローターとインナーピースとの隙間を5mmとしたメカノフュージョンシステム(ホソカワミクロン製AMS−Lab)内に投入した後、その混合粉末を回転数2600rpmで5分間処理して、球状天然黒鉛粉末とアセチレンブラックとを複合化させた。以下、この複合化物を「一次複合化粉末」と称する。なお、ここで、球状天然黒鉛粉末に対するアセチレンブラックの質量比は0.01であり、球状天然黒鉛粉末に対するアセチレンブラックの一次粒子の平均粒子径比は0.004375であった。
<Manufacture of composite graphite particles>
(1) spherical natural graphite powder and composite spherical natural graphite powder (average particle size 8 [mu] m, a specific surface area of 9.9 m 2 / g) of acetylene black and acetylene black (primary particle diameter 35 nm, specific surface area 68m 2 / g) and The spherical natural graphite powder and acetylene black were mixed so that the mass ratio thereof was 100: 1 to prepare 600 g of mixed powder. The 600 g of the mixed powder was put into a mechanofusion system (AMS-Lab manufactured by Hosokawa Micron) with a gap between the rotor and the inner piece of 5 mm, and then the mixed powder was processed at a rotational speed of 2600 rpm for 5 minutes to form a spherical shape. Natural graphite powder and acetylene black were combined. Hereinafter, this composite is referred to as “primary composite powder”. Here, the mass ratio of acetylene black to spherical natural graphite powder was 0.01, and the average particle diameter ratio of primary particles of acetylene black to spherical natural graphite powder was 0.004375.

(2)一次複合化粉末と非黒鉛質炭素との複合化
一次複合化粉末と石炭系ピッチ粉末(軟化点86℃,平均粒径20μm)との質量比が100:8となるように一次複合化粉末と石炭系ピッチ粉末とを混ぜ合わせた後、その混合粉末を窒素気流下、1300℃で1時間、加熱処理して黒鉛含有粒子を得た。なお、この加熱処理中、石炭系ピッチ粉末は非黒鉛質炭素に変化した。加熱処理前後の質量変化からピッチ残炭率は50%であることを確認した。
(2) Composite of primary composite powder and non-graphitic carbon Primary composite so that the mass ratio of primary composite powder and coal-based pitch powder (softening point 86 ° C., average particle size 20 μm) is 100: 8. After mixing the activated powder and the coal-based pitch powder, the mixed powder was heat-treated at 1300 ° C. for 1 hour in a nitrogen stream to obtain graphite-containing particles. During this heat treatment, the coal-based pitch powder changed to non-graphitic carbon. From the mass change before and after the heat treatment, it was confirmed that the pitch residual carbon ratio was 50%.

(3)ポリエチレングリコールの被覆
上述の黒鉛含有粒子100gを0.1質量%ポリエチレングリコール水溶液100gに投入した後、その混合液を100℃に加熱して乾燥させて、目的の複合黒鉛質粒子を得た(図2の写真図参照)。なお、ポリエチレングリコール水溶液中のポリエチレングリコールは和光純薬株式会社製であって、そのラベルに表示された平均分子量は50万であった。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.001であった。
(3) Polyethylene glycol coating After adding 100 g of the graphite-containing particles described above to 100 g of a 0.1% by mass polyethylene glycol aqueous solution, the mixed solution is heated to 100 ° C. and dried to obtain the desired composite graphite particles. (See the photograph in FIG. 2). The polyethylene glycol in the polyethylene glycol aqueous solution was manufactured by Wako Pure Chemical Industries, Ltd., and the average molecular weight displayed on the label was 500,000. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.001.

<複合黒鉛質粒子の電池特性評価>
(1)負極作製
上述の複合黒鉛質粒子にCMC(カルボキシメチルセルロースナトリウム)粉末を混合し、その混合粉末にSBR(スチレン−ブタジエンゴム)の水性分散液を加えた後、その混合物を攪拌して電極合剤スラリーを得た。なお、ここで、CMC及びSBRは結着剤である。複合黒鉛質粒子、CMC及びSBRの配合比は、質量比で98:1:1であった。そして、この負極合剤スラリーを、厚み17μmの銅箔(集電体)上にドクターブレード法により塗布した(塗布量は7.5mg/cm2であった)。塗布液を乾燥させて塗膜を得た後、その塗膜の密度が1.5g/cm3となるように、プレス成形機により加圧して負極を作製した。
<Evaluation of battery characteristics of composite graphite particles>
(1) Preparation of negative electrode CMC (Carboxymethylcellulose sodium) powder was mixed with the composite graphite particles described above, an aqueous dispersion of SBR (styrene-butadiene rubber) was added to the mixed powder, and the mixture was stirred to form an electrode. A mixture slurry was obtained. Here, CMC and SBR are binders. The compounding ratio of the composite graphite particles, CMC and SBR was 98: 1: 1 by mass ratio. And this negative mix slurry was apply | coated by the doctor blade method on the 17-micrometer-thick copper foil (current collector) (coating amount was 7.5 mg / cm < 2 >). After drying the coating solution to obtain a coating film, a negative electrode was produced by pressurizing with a press molding machine so that the density of the coating film was 1.5 g / cm 3 .

(2)電池作製
ポリオレフィン製セパレーターの両側に上述の負極と正極のLiCoO塗工アルミ箔とを配置して電極組立体を作製した。そして、その電極組立体の内部に電解液を注入してラミネート型の非水試験セルを作製した。なお、電解液は1M LiPF6溶液であった。この電解液の溶媒は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒であって、その質量比は、エチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:3であった。
(2) Battery Preparation The above-described negative electrode and positive electrode LiCoO 2 coated aluminum foil were disposed on both sides of a polyolefin separator to prepare an electrode assembly. And the electrolyte solution was inject | poured into the inside of the electrode assembly, and the laminate type non-aqueous test cell was produced. The electrolytic solution was a 1M LiPF 6 solution. The solvent of this electrolytic solution was a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC), and the mass ratio thereof was ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 3. It was.

(3−1)充放電サイクル特性の評価
23℃の環境温度下、非水試験セルにおいて、先ず、1.4mAの電流値で、電池電圧が4.2Vになるまで定電流充電を行った後、さらに電池電圧を4.2Vに保持したまま、電流値が0.14mAになるまで定電圧で充電した。次に、1.4mAの定電流で、電池電圧が3.0Vになるまで放電した。そして、上記条件で充放電を50回繰り返した。「1サイクル目の放電容量」に対する「50サイクル目の放電容量」の比率(容量維持率)により充放電サイクル特性を評価した。なお、本実施例の非水試験セルの容量維持率は91%であった(表1参照)。
(3-1) Evaluation of charge / discharge cycle characteristics In a non-aqueous test cell at an ambient temperature of 23 ° C., first, constant current charging was performed until the battery voltage reached 4.2 V at a current value of 1.4 mA. Further, while maintaining the battery voltage at 4.2 V, the battery was charged at a constant voltage until the current value reached 0.14 mA. Next, the battery was discharged at a constant current of 1.4 mA until the battery voltage reached 3.0V. And charging / discharging was repeated 50 times on the said conditions. The charge / discharge cycle characteristics were evaluated based on the ratio (capacity maintenance ratio) of the “discharge capacity at the 50th cycle” to the “discharge capacity at the 1st cycle”. The capacity retention rate of the non-aqueous test cell of this example was 91% (see Table 1).

(3−2)高温保存特性の評価
23℃の環境温度下、非水試験セルにおいて、先ず、1.4mAの電流値で、電池電圧が4.2Vになるまで定電流充電を行った後、さらに電池電圧を4.2Vに保持したまま、電流値が0.14mAになるまで定電圧充電した。次に、1.4mAの定電流で、電池電圧が3.0Vになるまで放電した。上記条件で充放電を2回繰り返して2回目の放電容量を測定した。そして、上記条件で再度充電を行ってから、その非水試験セルを60℃で1週間保存した後、23℃の環境温度下、放電を行って、そのときの放電容量を測定した。「2サイクル目の放電容量」に対する「60℃保存後の放電容量」の比率(容量維持率)により、高温保存特性を評価した。なお、本実施例の非水試験セルの高温保存時の容量維持率は71%であった(表1参照)。
(3-2) Evaluation of high-temperature storage characteristics In a non-aqueous test cell at an ambient temperature of 23 ° C., first, constant current charging was performed until the battery voltage reached 4.2 V at a current value of 1.4 mA. Further, constant voltage charging was performed until the current value reached 0.14 mA while maintaining the battery voltage at 4.2V. Next, the battery was discharged at a constant current of 1.4 mA until the battery voltage reached 3.0V. Charging / discharging was repeated twice under the above conditions, and the second discharge capacity was measured. And after charging again on the said conditions, after storing the non-aqueous test cell at 60 degreeC for 1 week, it discharged at the environmental temperature of 23 degreeC, and measured the discharge capacity at that time. The high-temperature storage characteristics were evaluated by the ratio (capacity retention rate) of “discharge capacity after storage at 60 ° C.” to “discharge capacity at the second cycle”. In addition, the capacity | capacitance maintenance factor at the time of high temperature preservation | save of the non-aqueous test cell of a present Example was 71% (refer Table 1).

(3−3)出力抵抗の評価
23℃の環境温度下、非水試験セルにおいて、先ず、1.4mAの電流値で、電池電圧が4.2Vになるまで定電流充電を行った後、さらに電池電圧を4.2Vに保持したまま、電流値が0.14mAになるまで定電圧で充電を続けた。次に、1.4mAの定電流で、電池電圧が3.0Vになるまで放電を行った。上記条件で充放電を2回繰り返した後、1.4mAの電流値で5時間、充電した。その後、14mAで10秒間、非水試験セルをパルス放電させて、そのときの電圧変化を測定した。この電圧変化を14mAで除してその非水試験セルの出力抵抗とした。なお、本実施例の非水試験セルの出力抵抗は4.5Ωであった(表1参照)。
(3-3) Evaluation of output resistance In a non-aqueous test cell at an ambient temperature of 23 ° C., first, constant current charging was performed until the battery voltage reached 4.2 V at a current value of 1.4 mA, and then further While maintaining the battery voltage at 4.2 V, charging was continued at a constant voltage until the current value reached 0.14 mA. Next, discharging was performed at a constant current of 1.4 mA until the battery voltage reached 3.0V. After repeating charging and discharging twice under the above conditions, the battery was charged with a current value of 1.4 mA for 5 hours. Then, the nonaqueous test cell was pulse-discharged at 14 mA for 10 seconds, and the voltage change at that time was measured. This voltage change was divided by 14 mA to obtain the output resistance of the non-aqueous test cell. The output resistance of the non-aqueous test cell of this example was 4.5Ω (see Table 1).

「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を0.5質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.005であった。   Example 1 except that the 0.1 mass% polyethylene glycol aqueous solution in “(3) Polyethylene glycol coating” was replaced with a 0.5 mass% polyethylene glycol aqueous solution (the same polyethylene glycol used in Example 1). Similarly, the target composite graphite particles were obtained, and the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.005.

その結果、非水試験セルの容量維持率は95%であり(表1参照)、高温保存時の容量維持率は79%であり(表1参照)、出力抵抗は4.3Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 95% (see Table 1), the capacity retention rate during high-temperature storage was 79% (see Table 1), and the output resistance was 4.3Ω ( (See Table 1).

「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を1質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.01であった。   Except that the 0.1 mass% polyethylene glycol aqueous solution was replaced with a 1 mass% polyethylene glycol aqueous solution (the same polyethylene glycol used in Example 1) in “(3) Polyethylene glycol coating”, the same as in Example 1. The target composite graphite particles were obtained, and the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.01.

その結果、非水試験セルの容量維持率は94%であり(表1参照)、高温保存時の容量維持率は80%であり(表1参照)、出力抵抗は4.3Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 94% (see Table 1), the capacity retention rate during high-temperature storage was 80% (see Table 1), and the output resistance was 4.3Ω ( (See Table 1).

「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を2質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.02であった。   Except that the 0.1 mass% polyethylene glycol aqueous solution was replaced with a 2 mass% polyethylene glycol aqueous solution (the same polyethylene glycol as in Example 1) in “(3) Polyethylene glycol coating”, the same as in Example 1. The target composite graphite particles were obtained, and the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.02.

その結果、非水試験セルの容量維持率は91%であり(表1参照)、高温保存時の容量維持率は79%であり(表1参照)、出力抵抗は4.5Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 91% (see Table 1), the capacity retention rate during high-temperature storage was 79% (see Table 1), and the output resistance was 4.5Ω ( (See Table 1).

「(1)球状天然黒鉛粉末とアセチレンブラックとの複合化」において球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)とアセチレンブラック(一次粒子径35nm,比表面積68m/g)との質量比を100:0.5とし、「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を1質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、球状天然黒鉛粉末に対するアセチレンブラックの質量比は0.005であり、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.01であった。 In spherical natural graphite powder (average particle size 8 [mu] m, a specific surface area of 9.9 m 2 / g) "(1) spherical natural graphite powder and acetylene black and a composite of" acetylene black (primary particle diameter 35 nm, specific surface area 68m 2 / The mass ratio with respect to g) is 100: 0.5, and in “(3) Polyethylene glycol coating”, a 0.1 mass% polyethylene glycol aqueous solution is a 1 mass% polyethylene glycol aqueous solution (polyethylene glycol is the same as in Example 1. The target composite graphite particles were obtained in the same manner as in Example 1 except that the usage was changed to Use), and the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of acetylene black to spherical natural graphite powder was 0.005, and the mass ratio of polyethylene glycol to graphite-containing particles was 0.01.

その結果、非水試験セルの容量維持率は90%であり(表1参照)、高温保存時の容量維持率は77%であり(表1参照)、出力抵抗は4.5Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 90% (see Table 1), the capacity retention rate during high-temperature storage was 77% (see Table 1), and the output resistance was 4.5Ω ( (See Table 1).

「(2)一次複合化粉末と非黒鉛質炭素との複合化」において一次複合化粉末と石炭系ピッチ粉末(軟化点86℃,平均粒径20μm)との質量比を100:2とし、「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を2質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、球状天然黒鉛粉末に対するアセチレンブラックの質量比は0.01であり、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.01であった。   In “(2) Composite of primary composite powder and non-graphitic carbon”, the mass ratio of primary composite powder and coal-based pitch powder (softening point 86 ° C., average particle size 20 μm) is 100: 2, (3) Polyethylene glycol coating ”, except that the 0.1 mass% polyethylene glycol aqueous solution was replaced with a 2 mass% polyethylene glycol aqueous solution (the same polyethylene glycol used in Example 1). The target composite graphite particles were obtained, and the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of acetylene black to spherical natural graphite powder was 0.01, and the mass ratio of polyethylene glycol to graphite-containing particles was 0.01.

その結果、非水試験セルの容量維持率は90%であり(表1参照)、高温保存時の容量維持率は75%であり(表1参照)、出力抵抗は4.5Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 90% (see Table 1), the capacity retention rate during high-temperature storage was 75% (see Table 1), and the output resistance was 4.5Ω ( (See Table 1).

(比較例1)
<比較試料の製造>
球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)と石炭系ピッチ粉末(軟化点86℃,平均粒径20μm)との質量比が100:8となるように球状天然黒鉛粉末と石炭系ピッチ粉末とを混ぜ合わせた後、その混合粉末を窒素気流下、1300℃で1時間、加熱処理して比較試料を得た。
(Comparative Example 1)
<Manufacture of comparative samples>
Spherical natural graphite so that the mass ratio of spherical natural graphite powder (average particle size 8 μm, specific surface area 9.9 m 2 / g) and coal-based pitch powder (softening point 86 ° C., average particle size 20 μm) is 100: 8. After mixing the powder and the coal-based pitch powder, the mixed powder was heated at 1300 ° C. for 1 hour in a nitrogen stream to obtain a comparative sample.

<比較試料の電池特性評価>
実施例1と同様にして比較試料の電池特性評価を行ったところ、非水試験セルの容量維持率は80%であり(表1参照)、高温保存時の容量維持率は65%であり(表1参照)、出力抵抗は5.0Ωであった(表1参照)。
<Battery characteristics evaluation of comparative sample>
When the battery characteristics of the comparative sample were evaluated in the same manner as in Example 1, the capacity retention rate of the nonaqueous test cell was 80% (see Table 1), and the capacity retention rate during high-temperature storage was 65% ( The output resistance was 5.0Ω (see Table 1).

(比較例2)
<比較試料の製造>
(1)非黒鉛質炭素被覆球状天然黒鉛粉末の調製
球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)と石炭系ピッチ粉末(軟化点86℃,平均粒径20μm)との質量比が100:8となるように球状天然黒鉛粉末と石炭系ピッチ粉末とを混ぜ合わせた後、その混合粉末を窒素気流下、1300℃で1時間、加熱処理して非黒鉛質炭素被覆球状天然黒鉛粉末を得た。
(2)
上述の非黒鉛質炭素被覆球状天然黒鉛粉末100gを1質量%ポリエチレングリコール水溶液100gに投入した後、その混合液を100℃に加熱して乾燥させて、比較試料を得た。なお、ポリエチレングリコール水溶液中のポリエチレングリコールは和光純薬株式会社製であって、そのラベルに表示された平均分子量は50万であった。非黒鉛質炭素被覆球状天然黒鉛粉末に対するポリエチレングリコールの質量比は0.01であった。
(Comparative Example 2)
<Manufacture of comparative samples>
(1) Preparation of non-graphitic carbon-coated spherical natural graphite powder Spherical natural graphite powder (average particle diameter 8 μm, specific surface area 9.9 m 2 / g) and coal-based pitch powder (softening point 86 ° C., average particle diameter 20 μm) The spherical natural graphite powder and the coal-based pitch powder are mixed so that the mass ratio thereof becomes 100: 8, and the mixed powder is heat-treated at 1300 ° C. for 1 hour in a nitrogen stream, thereby coating the non-graphitic carbon Spherical natural graphite powder was obtained.
(2)
After putting 100 g of the above non-graphitic carbon-coated spherical natural graphite powder into 100 g of a 1% by mass polyethylene glycol aqueous solution, the mixed solution was heated to 100 ° C. and dried to obtain a comparative sample. The polyethylene glycol in the polyethylene glycol aqueous solution was manufactured by Wako Pure Chemical Industries, Ltd., and the average molecular weight displayed on the label was 500,000. The mass ratio of polyethylene glycol to non-graphitic carbon-coated spherical natural graphite powder was 0.01.

<比較試料の電池特性評価>
実施例1と同様にして比較試料の電池特性評価を行ったところ、非水試験セルの容量維持率は61%であり(表1参照)、高温保存時の容量維持率は70%であり(表1参照)、出力抵抗は5.2Ωであった(表1参照)。
<Battery characteristics evaluation of comparative sample>
When the battery characteristics of the comparative sample were evaluated in the same manner as in Example 1, the capacity retention rate of the non-aqueous test cell was 61% (see Table 1), and the capacity retention rate during high-temperature storage was 70% ( The output resistance was 5.2Ω (see Table 1).

(比較例3)
比較試料として実施例1の黒鉛含有粒子を用い、実施例1と同様にしてその黒鉛含有粒子の電池特性評価を行った。
(Comparative Example 3)
Using the graphite-containing particles of Example 1 as a comparative sample, the battery characteristics of the graphite-containing particles were evaluated in the same manner as in Example 1.

その結果、非水試験セルの容量維持率は90%であり(表1参照)、高温保存時の容量維持率は61%であり(表1参照)、出力抵抗は4.5Ωであった(表1参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 90% (see Table 1), the capacity retention rate during high-temperature storage was 61% (see Table 1), and the output resistance was 4.5Ω ( (See Table 1).

(比較例4)
<比較試料の製造>
「(3)ポリエチレングリコールの被覆」において0.1質量%ポリエチレングリコール水溶液を3質量%ポリエチレングリコール水溶液(ポリエチレングリコールは実施例1と同じものを使用)に代えた以外は、実施例1と同様にして比較試料を得、実施例1と同様にして比較試料の電池特性評価を行った。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.03であった。
(Comparative Example 4)
<Manufacture of comparative samples>
As in Example 1, except that the 0.1 mass% polyethylene glycol aqueous solution was replaced with a 3 mass% polyethylene glycol aqueous solution (polyethylene glycol used the same as in Example 1) in “(3) Polyethylene glycol coating”. Comparative samples were obtained, and the battery characteristics of the comparative samples were evaluated in the same manner as in Example 1. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.03.

<比較試料の電池特性評価>
実施例1と同様にして比較試料の電池特性評価を行ったところ、非水試験セルの容量維持率は80%であり(表1参照)、高温保存時の容量維持率は70%であり(表1参照)、出力抵抗は5.0Ωであった(表1参照)。
<Battery characteristics evaluation of comparative sample>
When the battery characteristics of the comparative sample were evaluated in the same manner as in Example 1, the capacity retention rate of the non-aqueous test cell was 80% (see Table 1), and the capacity retention rate during high-temperature storage was 70% ( The output resistance was 5.0Ω (see Table 1).

<複合黒鉛質粒子の製造>
(1)球状天然黒鉛粉末、ファーネスブラックおよび石炭系ピッチの複合化
球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)、ファーネスブラック(一次粒子径85nm,比表面積20m/g)および石炭系ピッチ粉末(軟化点86℃,平均粒子径20μm)の質量比が100:9:20となるように球状天然黒鉛粉末、ファーネスブラックおよび石炭系ピッチ粉末を、加熱ニーダーを用いて150℃の温度下で30分間混捏して、球状天然黒鉛粉末、ファーネスブラックおよび石炭系ピッチを複合化させた。以下、この複合化物を「複合化粉末」と称する。なお、ここで、球状天然黒鉛粉末に対するファーネスブラックの質量比は0.09であり、球状天然黒鉛粉末に対するファーネスブラックの一次粒子の平均粒子径比は0.010625であった。
<Manufacture of composite graphite particles>
(1) spherical natural graphite powder, composite spherical natural graphite powder of furnace black and coal-based pitch (average particle size 8 [mu] m, a specific surface area of 9.9 m 2 / g), furnace black (primary particle diameter 85 nm, specific surface area 20 m 2 / g) and coal-based pitch powder (softening point 86 ° C., average particle size 20 μm) so that the mass ratio is 100: 9: 20, using a heating kneader, spherical natural graphite powder, furnace black and coal-based pitch powder. The mixture was kneaded at a temperature of 150 ° C. for 30 minutes to form a composite of spherical natural graphite powder, furnace black and coal-based pitch. Hereinafter, this composite is referred to as “composite powder”. Here, the mass ratio of furnace black to spherical natural graphite powder was 0.09, and the average particle diameter ratio of the primary particles of furnace black to spherical natural graphite powder was 0.010625.

(2)複合化粉末の熱処理
上述の複合化粉末を窒素気流下、1000℃で1時間、加熱処理して黒鉛含有粒子を得た。なお、この加熱処理中、石炭系ピッチ粉末は低結晶炭素に変化した。加熱処理前後の質量変化からピッチ残炭率は50%であることを確認した。
(2) Heat treatment of composite powder The above composite powder was heat-treated at 1000 ° C. for 1 hour in a nitrogen stream to obtain graphite-containing particles. During this heat treatment, the coal-based pitch powder changed to low crystalline carbon. From the mass change before and after the heat treatment, it was confirmed that the pitch residual carbon ratio was 50%.

(3)ポリエチレングリコールの被覆
上述の黒鉛含有粒子100gを1質量%ポリエチレングリコール水溶液100gに投入した後、その混合液を100℃に加熱して乾燥させて、目的の複合黒鉛質粒子を得た。なお、ポリエチレングリコール水溶液中のポリエチレングリコールは和光純薬株式会社製であって、そのラベルに表示された平均分子量は50万であった。なお、ここで、黒鉛含有粒子に対するポリエチレングリコールの質量比は0.01であった。
(3) Coating of polyethylene glycol 100 g of the graphite-containing particles described above were put into 100 g of a 1% by mass polyethylene glycol aqueous solution, and then the mixed solution was heated to 100 ° C. and dried to obtain the desired composite graphite particles. The polyethylene glycol in the polyethylene glycol aqueous solution was manufactured by Wako Pure Chemical Industries, Ltd., and the average molecular weight displayed on the label was 500,000. Here, the mass ratio of polyethylene glycol to graphite-containing particles was 0.01.

実施例1と同様にして複合黒鉛質粒子の電池特性評価を行ったところ、非水試験セルの容量維持率は94%であり(表2参照)、高温保存時の容量維持率は77%であり(表2参照)、出力抵抗は4.4Ωであった(表2参照)。   When the battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1, the capacity retention rate of the non-aqueous test cell was 94% (see Table 2), and the capacity retention rate during high-temperature storage was 77%. Yes (see Table 2), output resistance was 4.4Ω (see Table 2).

「(1)球状天然黒鉛粉末、ファーネスブラックおよび石炭系ピッチの複合化」において球状天然黒鉛粉末(平均粒子径8μm,比表面積9.9m/g)、ファーネスブラック(一次粒子径85nm,比表面積20m/g)および石炭系ピッチ粉末(軟化点86℃,平均粒子径20μm)の質量比を100:15:20とした以外は、実施例7と同様にして目的の複合黒鉛質粒子を得、実施例1と同様にして複合黒鉛質粒子の電池特性評価を行った。なお、ここで、球状天然黒鉛粉末に対するファーネスブラックの質量比は0.15であった。 In “(1) Composite of spherical natural graphite powder, furnace black and coal-based pitch”, spherical natural graphite powder (average particle diameter 8 μm, specific surface area 9.9 m 2 / g), furnace black (primary particle diameter 85 nm, specific surface area) 20 m 2 / g) and coal-based pitch powder (softening point 86 ° C., average particle diameter 20 μm) except that the mass ratio was set to 100: 15: 20. The battery characteristics of the composite graphite particles were evaluated in the same manner as in Example 1. Here, the mass ratio of furnace black to spherical natural graphite powder was 0.15.

その結果、非水試験セルの容量維持率は90%であり(表2参照)、高温保存時の容量維持率は69%であり(表2参照)、出力抵抗は4.6Ωであった(表2参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 90% (see Table 2), the capacity retention rate during high-temperature storage was 69% (see Table 2), and the output resistance was 4.6Ω ( (See Table 2).

(比較例5)
比較試料として実施例7の黒鉛含有粒子を用い、実施例1と同様にしてその黒鉛含有粒子の電池特性評価を行った。
(Comparative Example 5)
Using the graphite-containing particles of Example 7 as a comparative sample, the battery characteristics of the graphite-containing particles were evaluated in the same manner as in Example 1.

その結果、非水試験セルの容量維持率は91%であり(表2参照)、高温保存時の容量維持率は58%であり(表2参照)、出力抵抗は4.5Ωであった(表2参照)。   As a result, the capacity retention rate of the non-aqueous test cell was 91% (see Table 2), the capacity retention rate during high-temperature storage was 58% (see Table 2), and the output resistance was 4.5Ω ( (See Table 2).

上述の結果より、本発明に係る複合黒鉛質粒子は、リチウムイオン二次電池等の非水電解質二次電池の電極形成において電極の充放電サイクル特性を低下させることなく高温保存特性を向上させることができることが明らかとなった。   From the above results, the composite graphite particles according to the present invention improve the high-temperature storage characteristics without degrading the charge / discharge cycle characteristics of the electrodes in the electrode formation of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. It became clear that it was possible.

Claims (10)

少なくとも黒鉛質部を含むと共に表面に突起を有する黒鉛含有粒子と、
ポリエーテル系高分子を主成分とし、前記黒鉛含有粒子を覆う高分子被膜と
を備え、
前記黒鉛含有粒子に対する前記高分子被膜の質量比は、0.0001以上0.02以下の範囲内である
複合黒鉛質粒子。
Graphite-containing particles including at least a graphite part and having protrusions on the surface;
A polyether-based polymer as a main component, and a polymer film covering the graphite-containing particles,
Composite graphite particles in which the mass ratio of the polymer coating to the graphite-containing particles is in the range of 0.0001 to 0.02.
前記黒鉛含有粒子は、黒鉛粒子と、前記黒鉛粒子の表面に付着する導電性炭素質微粒子とを有する
請求項1に記載の複合黒鉛質粒子。
The composite graphite particles according to claim 1, wherein the graphite-containing particles include graphite particles and conductive carbonaceous fine particles attached to the surface of the graphite particles.
前記導電性炭素質微粒子は、炭素材料によって前記黒鉛粒子の表面に接着されている
請求項2に記載の複合黒鉛質粒子。
The composite graphite particles according to claim 2, wherein the conductive carbonaceous fine particles are bonded to the surface of the graphite particles with a carbon material.
前記黒鉛粒子に対する前記導電性炭素質微粒子の質量比は、0.003以上0.1以下の範囲内である
請求項2または3に記載の複合黒鉛質粒子。
4. The composite graphite particle according to claim 2, wherein a mass ratio of the conductive carbonaceous fine particles to the graphite particles is in a range of 0.003 to 0.1.
前記黒鉛粒子に対する前記導電性炭素質微粒子の一次粒子の平均粒子径比は、0.0003以上0.1以下の範囲内である
請求項2から4のいずれかに記載の複合黒鉛質粒子。
5. The composite graphitic particle according to claim 2, wherein an average particle diameter ratio of primary particles of the conductive carbonaceous fine particles to the graphite particles is in a range of 0.0003 to 0.1.
前記ポリエーテル系高分子は、1万以上1000万以下の範囲内の平均分子量を有する
請求項1から5のいずれかに記載の複合黒鉛質粒子。
The composite graphite particles according to any one of claims 1 to 5, wherein the polyether polymer has an average molecular weight within a range of 10,000 to 10,000,000.
少なくとも黒鉛質部を含むと共に表面に突起を有する黒鉛含有粒子と、
ポリエーテル系高分子を主成分とし、前記突起を埋没させないように前記黒鉛含有粒子の全表面を覆う高分子被膜と
を備える、複合黒鉛質粒子。
Graphite-containing particles including at least a graphite part and having protrusions on the surface;
Composite graphite particles comprising a polyether-based polymer as a main component and a polymer film covering the entire surface of the graphite-containing particles so as not to bury the protrusions.
少なくとも黒鉛質部を含むと共に表面に突起を有する黒鉛含有粒子を、前記黒鉛含有粒子に対する高分子被膜の質量比が0.0001以上0.02以下の範囲内となるように、ポリエーテル系高分子を主成分とする高分子の溶液に接触させる接触工程と、
前記高分子の溶液に接触させられた黒鉛含有粒子を乾燥する乾燥工程と
を備える、複合黒鉛質粒子の製造方法。
Polyether-based polymer containing graphite-containing particles containing at least a graphite part and having protrusions on the surface thereof, such that the mass ratio of the polymer coating to the graphite-containing particles is within a range of 0.0001 or more and 0.02 or less. A contact step of contacting with a polymer solution mainly composed of
A drying step of drying the graphite-containing particles brought into contact with the polymer solution.
前記請求項1から7のいずれかに記載の複合黒鉛質粒子を活物質とする電極。   An electrode using the composite graphite particles according to any one of claims 1 to 7 as an active material. 請求項9に記載の電極を備える非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising the electrode according to claim 9.
JP2015198768A 2015-10-06 2015-10-06 Composite graphite particle and method producing the same Pending JP2017071524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015198768A JP2017071524A (en) 2015-10-06 2015-10-06 Composite graphite particle and method producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198768A JP2017071524A (en) 2015-10-06 2015-10-06 Composite graphite particle and method producing the same

Publications (1)

Publication Number Publication Date
JP2017071524A true JP2017071524A (en) 2017-04-13

Family

ID=58538598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198768A Pending JP2017071524A (en) 2015-10-06 2015-10-06 Composite graphite particle and method producing the same

Country Status (1)

Country Link
JP (1) JP2017071524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065930A1 (en) * 2017-09-28 2019-04-04 第一工業製薬株式会社 Negative electrode active material paint, negative electrode and secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065930A1 (en) * 2017-09-28 2019-04-04 第一工業製薬株式会社 Negative electrode active material paint, negative electrode and secondary battery
JP2019061914A (en) * 2017-09-28 2019-04-18 第一工業製薬株式会社 Negative electrode active substance coating material, negative electrode and secondary battery
JP7011916B2 (en) 2017-09-28 2022-02-10 第一工業製薬株式会社 Negative electrode active material paint, negative electrode and secondary battery

Similar Documents

Publication Publication Date Title
JP6528826B2 (en) Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same
JP6432519B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP7192499B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
TWI482734B (en) Composite graphite particle and the use
KR101887952B1 (en) Negative-electrode material for lithium-ion secondary battery
TWI533495B (en) Negative-electrode active material for lithium secondary cell
TWI499119B (en) Graphite based negative-electrode active material for lithium secondary cell
US20190305293A1 (en) All-solid-state lithium ion battery
WO2014092141A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
KR20130056319A (en) Electrode for lithium battery, and lithium battery
JP6476814B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
TWI765100B (en) Negative electrode material for lithium ion secondary battery and production method thereof, paste for negative electrode, negative electrode sheet, and lithium ion secondary battery
JP6619123B2 (en) Anode material for lithium ion secondary battery
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPWO2018110263A1 (en) Composite graphite particles, production method thereof and use thereof
KR101919524B1 (en) Negative electrode active material for rechargeable lithium battery, method of preparing of the same and rechargeable lithium battery including the same
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JPWO2016136524A1 (en) Carbon material, its production method and its use
JPWO2019131862A1 (en) Anode material for lithium ion secondary battery
KR20110138621A (en) Anode active material improved safety and secondary battery employed with the same
KR20160145678A (en) Carbon material, method for manufacturing same, and application of same
CN114902448A (en) Active material for secondary battery negative electrode, and secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
CN117594747A (en) Negative electrode for secondary battery and lithium secondary battery comprising same