JP2017070963A - Bonded joint of dissimilar materials and bonding method by welding - Google Patents

Bonded joint of dissimilar materials and bonding method by welding Download PDF

Info

Publication number
JP2017070963A
JP2017070963A JP2015197680A JP2015197680A JP2017070963A JP 2017070963 A JP2017070963 A JP 2017070963A JP 2015197680 A JP2015197680 A JP 2015197680A JP 2015197680 A JP2015197680 A JP 2015197680A JP 2017070963 A JP2017070963 A JP 2017070963A
Authority
JP
Japan
Prior art keywords
welding
holes
hole
joint
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197680A
Other languages
Japanese (ja)
Other versions
JP6606960B2 (en
Inventor
洋志 溝端
Hiroshi Mizobata
洋志 溝端
赤池 文敏
Fumitoshi Akaike
文敏 赤池
服部 剛
Takeshi Hattori
剛 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2015197680A priority Critical patent/JP6606960B2/en
Priority to US15/283,754 priority patent/US10625363B2/en
Publication of JP2017070963A publication Critical patent/JP2017070963A/en
Application granted granted Critical
Publication of JP6606960B2 publication Critical patent/JP6606960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/008Filling of continuous seams for automotive applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Theoretical Computer Science (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the heat capacity of a steel material and suppress a temperature rise of the steel material due to heat generated as a result of welding so that fluctuation of a weld quality between a region of the welding start side and a region of the welding end side can be suppressed, when the steel material and an aluminium material are welded and joined together by making a plurality of penetration holes in the steel material at a joined part of the steel material and the aluminium material and filling the penetration holes with an aluminium-based filler material.SOLUTION: Intervals between penetration holes 1a in a welded part are made wider on the welding end side in the process of welding than on the welding start side, and/or an area of the penetration hole 1a in the welded part is made smaller.SELECTED DRAWING: Figure 1

Description

本発明は、自動車、飛行機、船、電車等の乗物、若しくは機械部品、建築構造物等に使用される鉄系材料とアルミニウム系材料のような融点の異なる材料同士間の異材接合継手及び溶接接合方法に関する。   The present invention relates to a dissimilar joint and weld joint between materials having different melting points such as an iron-based material and an aluminum-based material used in vehicles such as automobiles, airplanes, ships, trains, etc., or machine parts, building structures, etc. Regarding the method.

互いに融点の異なる材料である鉄系材料(以下、単に鋼材という)とアルミニウム系材料(純アルミニウム及びアルミニウム合金を総称したもので、以下、単にアルミニウム材という)とを接合する異材接合継手及び溶接接合方法は、下記特許文献1にて公開されている。この技術は、鋼材とアルミニウム材の接合箇所において鋼材に複数の貫通孔を開け、これらの貫通孔内にアルミニウム系材料の溶加材を充填して溶接を行うものである。この技術によれば、アルミニウム系材料の溶加材が母材としてのアルミニウム材と溶着すると共に、溶接時に貫通孔から鋼材表面上にあふれ出た溶加材が冷却された後に溶接ビードとなって貫通孔周りの鋼材に被せられた状態となることによって、異材である鋼材とアルミニウム材との接合が行われる。   Dissimilar joints and welded joints that join iron-based materials (hereinafter simply referred to as steel materials) and aluminum-based materials (generally referred to as pure aluminum and aluminum alloys; hereinafter simply referred to as aluminum materials), which have different melting points. The method is disclosed in Patent Document 1 below. In this technique, a plurality of through holes are formed in a steel material at a joint portion between the steel material and the aluminum material, and welding is performed by filling a filler material of an aluminum-based material into these through holes. According to this technique, the filler material of the aluminum-based material is welded to the aluminum material as a base material, and the weld material overflowing from the through hole onto the steel surface at the time of welding is cooled to become a weld bead. By being put on the steel material around the through-hole, the different steel material and the aluminum material are joined.

特許第4438691号公報Japanese Patent No. 4438691

しかし、上記従来技術の場合、溶接の進行とともに溶接部位への入熱量が多くなって、溶加材の溶融量が溶接の進行とともに増大し、極端な場合は母材としてのアルミニウム材までが溶融する恐れがある。即ち、溶接開始側領域と溶接終了側領域とでは溶接品質にばらつきが生ずる問題がある。なぜなら、上記従来技術では、複数の貫通孔の各中心線を溶接線が通るように連続して溶接を行うため、鋼材及びアルミニウム材に溶接の進行とともに溶接熱の蓄積が生じる。   However, in the case of the above prior art, the amount of heat input to the welded portion increases with the progress of welding, and the melting amount of the filler material increases with the progress of welding. In extreme cases, the aluminum material as the base material melts. There is a fear. That is, there is a problem that the welding quality varies between the welding start side region and the welding end side region. This is because, in the above-described conventional technique, welding is continuously performed so that the weld line passes through each center line of the plurality of through-holes, so that welding heat accumulates in the steel material and the aluminum material as welding progresses.

このような問題に鑑み本発明の課題は、第1の材料から成る第1部材と第1の材料より融点の低い第2の材料から成る第2部材との接合箇所において第1部材に複数の貫通孔を開け、これらの貫通孔内に第2の材料から成る溶加材を充填することにより第1部材と第2部材とを溶接接合するものにおいて、第1部材の熱容量を大きくすることにより、溶接に伴って発生する熱による第1部材の温度上昇を抑制して、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することにある。   In view of such a problem, an object of the present invention is to provide a plurality of first members with a plurality of joints between the first member made of the first material and the second member made of the second material having a melting point lower than that of the first material. In the case where the first member and the second member are welded and joined by opening the through holes and filling the through holes with a filler material made of the second material, by increasing the heat capacity of the first member An object of the present invention is to suppress the variation in the welding quality between the welding start side region and the welding end side region by suppressing the temperature rise of the first member due to the heat generated with the welding.

第1発明は、第1の材料から成る第1部材と前記第1の材料に比べて融点の低い第2の材料から成る第2部材とが溶接部によって接合されて成る異材接合継手であって、前記接合箇所において前記第1部材に複数の貫通孔が開けられており、これらの貫通孔内に前記第2の材料から成る溶加材が充填されており、溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くされている、及び/又は前記貫通孔の面積を小さくされている。   A first invention is a dissimilar joint joint in which a first member made of a first material and a second member made of a second material having a melting point lower than that of the first material are joined by a welded portion. A plurality of through holes are formed in the first member at the joining location, and a filler material made of the second material is filled in the through holes, and a welding end side in the progress of welding is Compared with the welding start side, the space | interval of the said through-hole is made wide, and / or the area of the said through-hole is made small.

第1発明において、第1部材には、普通鋼、高張力鋼(ハイテン)などの鋼材を含む。また、第2部材には、純アルミニウム系材、アルミニウム合金系材などのアルミニウム材、並びにマグネシウム材を含む。更に、貫通孔の形状は、円、楕円、多角形などを採用することができる。   In the first invention, the first member includes steel materials such as ordinary steel and high-tensile steel (high tensile). The second member includes an aluminum material such as a pure aluminum material and an aluminum alloy material, and a magnesium material. Furthermore, a circle, an ellipse, a polygon, or the like can be adopted as the shape of the through hole.

また、貫通孔同士の間隔の変化、又は貫通孔の面積の変化は、溶接の進行に応じて順次変化するように連続的に変化させてもよいし、溶接箇所を複数のグループに分け、そのグループ毎に変えるように段階的に行ってもよい。また、変化の大きさは適宜設定することができる。   Moreover, the change of the space | interval of through-holes, or the change of the area of a through-hole may be changed continuously so that it may change sequentially according to progress of welding, or a welding location is divided into a plurality of groups, You may carry out in steps so that it may change for every group. The magnitude of change can be set as appropriate.

第1発明によれば、溶接開始側は、貫通孔同士の間隔が狭くされているため、単位体積当りの第1部材としての熱容量が比較的小さく、溶接開始後速やかに第1部材の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて貫通孔同士の間隔が広いため、単位体積当りの第1部材の熱容量が比較的大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。又は、溶接終了側は、溶接開始側に比べて貫通孔の面積を小さくして、単位体積当りの第1部材の熱容量が比較的大きくされるため、各溶接箇所における溶接に伴う温度上昇を抑制する。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the first invention, since the interval between the through holes is narrowed on the welding start side, the heat capacity as the first member per unit volume is relatively small, and the temperature of the first member is quickly increased after the start of welding. It can be raised to stabilize the weld. On the other hand, since the distance between the through holes is wider on the welding end side than on the welding start side, the heat capacity of the first member per unit volume is made relatively large, and the temperature rise accompanying welding at each welding location is suppressed. Can do. Or, on the welding end side, the area of the through hole is made smaller than that on the welding start side, and the heat capacity of the first member per unit volume is made relatively large. To do. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

第2発明は、鋼材とアルミニウム材の接合箇所において鋼材に複数の貫通孔を開けられており、これらの貫通孔内にアルミニウム系材料の溶加材を充填された部位を溶接部として、鋼材とアルミニウム材とが接合されて成る異材接合継手であって、溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くされている、及び/又は前記貫通孔の面積を小さくされている。   According to a second aspect of the present invention, a plurality of through holes are formed in a steel material at a joint portion between the steel material and the aluminum material, and a portion filled with an aluminum-based filler material in these through holes is used as a welded portion. It is a dissimilar joint joint formed by joining an aluminum material, and the welding end side in the progress of welding has a larger interval between the through holes than the welding start side, and / or the area of the through hole It has been made smaller.

第2発明において、鋼材には、普通鋼、高張力鋼(ハイテン)などを含む。また、アルミニウム材には、純アルミニウム系材、アルミニウム合金系材などを含む。   In the second invention, the steel material includes ordinary steel, high-tensile steel (high tensile), and the like. The aluminum material includes a pure aluminum material, an aluminum alloy material, and the like.

第2発明によれば、溶接開始側は、貫通孔同士の間隔が狭くされているため、単位体積当りの鋼材としての熱容量が比較的小さく、溶接開始後速やかに鋼材の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて貫通孔同士の間隔が広いため、単位体積当りの鋼材の熱容量が比較的大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。又は、溶接終了側は、溶接開始側に比べて貫通孔の面積を小さくして、単位体積当りの鋼材の熱容量が比較的大きくされるため、各溶接箇所における溶接に伴う温度上昇を抑制する。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the second invention, since the interval between the through holes is narrowed on the welding start side, the heat capacity as a steel material per unit volume is relatively small, and the temperature of the steel material is increased immediately after the start of welding. Can be stabilized. On the other hand, since the distance between the through holes is wider on the welding end side than on the welding start side, the heat capacity of the steel material per unit volume is made relatively large, and the temperature rise accompanying welding at each welding point can be suppressed. . Alternatively, the welding end side reduces the area of the through hole as compared with the welding start side, and the heat capacity of the steel material per unit volume is relatively increased, so that the temperature rise due to welding at each welding point is suppressed. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

第3発明は、上記第1又は第2発明において、溶接の進行における溶接開始側は溶接終了側に比べて前記貫通孔を形成する壁面が傾斜して形成されている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the wall surface forming the through hole is inclined on the welding start side in the progress of welding compared to the welding end side.

第3発明において、貫通孔を形成する壁面の傾斜は、壁面を連続的に傾斜してもよいし、壁面を階段状に形成して全体として傾斜させてもよい。また、傾斜の角度や方向は適宜設定することができる。更に、傾斜は、溶接の進行における溶接開始側から溶接終了側に向けて、傾斜の程度を連続的に変化させてもよいし、溶接箇所を複数のグループに分け、そのグループ毎に変化させてもよい。   In the third invention, the inclination of the wall surface forming the through hole may be continuously inclined, or may be inclined as a whole by forming the wall surface in a stepped shape. Further, the angle and direction of the inclination can be set as appropriate. Further, the inclination may be changed continuously from the welding start side to the welding end side in the progress of welding, or the welding location may be divided into a plurality of groups and changed for each group. Also good.

第3発明によれば、溶接開始側は、溶接終了側に比べて貫通孔を形成する壁面が傾斜して形成されているので、貫通孔の内部に充填される溶加材の量は、溶接開始側は多く、溶接終了側は少なくされる。そのため、溶接開始側は、その入熱量を多めにして溶接を安定させ、溶接終了側は熱の蓄積量を考慮して溶接部位への入熱量を抑制して、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the third invention, since the wall on which the through hole is formed is inclined on the welding start side as compared with the welding end side, the amount of filler material filled in the through hole is determined by welding. The start side is large and the welding end side is small. Therefore, the welding start side stabilizes welding by increasing the amount of heat input, and the welding end side suppresses the heat input amount to the welding site in consideration of the accumulated amount of heat, and the welding start side region and the welding end side Variation in welding quality with the region can be suppressed.

第4発明は、第1の材料から成る第1部材と、前記第1の材料に比べて融点の低い第2の材料から成る第2部材との接合箇所において前記第1部材に複数の貫通孔を開け、これらの貫通孔内に前記第2の材料から成る溶加材を充填することにより前記第1部材と前記第2部材とを溶接接合する溶接接合方法であって、溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くする、及び/又は前記貫通孔の面積を小さくする。   According to a fourth aspect of the present invention, a plurality of through holes are formed in the first member at a joint portion between the first member made of the first material and the second member made of the second material having a lower melting point than the first material. In which the first member and the second member are welded together by filling the through holes with the filler material made of the second material, and welding in the progress of welding. The end side widens the interval between the through holes and / or reduces the area of the through holes compared to the welding start side.

第4発明において、第1部材には、普通鋼、高張力鋼(ハイテン)などの鋼材を含む。また、第2部材には、純アルミニウム系材、アルミニウム合金系材などのアルミニウム材、並びにマグネシウム材を含む。更に、貫通孔の形状は、円、楕円、多角形などを採用することができる。   In the fourth invention, the first member includes steel materials such as ordinary steel and high-tensile steel (high tensile). The second member includes an aluminum material such as a pure aluminum material and an aluminum alloy material, and a magnesium material. Furthermore, a circle, an ellipse, a polygon, or the like can be adopted as the shape of the through hole.

また、貫通孔同士の間隔の変化、又は貫通孔の面積の変化は、溶接の進行に応じて順次変化するように連続的に変化させてもよいし、溶接箇所を複数のグループに分け、そのグループ毎に変えるように段階的に行ってもよい。また、変化の大きさは適宜設定することができる。   Moreover, the change of the space | interval of through-holes, or the change of the area of a through-hole may be changed continuously so that it may change sequentially according to progress of welding, or a welding location is divided into a plurality of groups, You may carry out in steps so that it may change for every group. The magnitude of change can be set as appropriate.

第4発明によれば、溶接開始側は、貫通孔同士の間隔が狭くされているため、単位体積当りの第1部材としての熱容量が比較的小さく、溶接開始後速やかに第1部材の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて貫通孔同士の間隔が広いため、単位体積当りの第1部材の熱容量が比較的大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。又は、溶接終了側は、溶接開始側に比べて貫通孔の面積を小さくして、単位体積当りの第1部材の熱容量が比較的大きくされるため、各溶接箇所における溶接に伴う温度上昇を抑制する。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the fourth invention, since the interval between the through holes is narrowed on the welding start side, the heat capacity as the first member per unit volume is relatively small, and the temperature of the first member is quickly increased after the start of welding. It can be raised to stabilize the weld. On the other hand, since the distance between the through holes is wider on the welding end side than on the welding start side, the heat capacity of the first member per unit volume is made relatively large, and the temperature rise accompanying welding at each welding location is suppressed. Can do. Or, on the welding end side, the area of the through hole is made smaller than that on the welding start side, and the heat capacity of the first member per unit volume is made relatively large. To do. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

第5発明は、鋼材とアルミニウム材の接合箇所において鋼材に複数の貫通孔を開け、これらの貫通孔内にアルミニウム系材料の溶加材を充填することにより鋼材とアルミニウム材とを溶接接合する溶接接合方法であって、溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くする、及び/又は前記貫通孔の面積を小さくする。   According to a fifth aspect of the present invention, welding is performed by welding a steel material and an aluminum material by opening a plurality of through holes in the steel material at a joining portion of the steel material and the aluminum material, and filling the through hole with a filler material of an aluminum-based material. In the joining method, the welding end side in the progress of welding increases the interval between the through holes and / or reduces the area of the through holes compared to the welding start side.

第5発明において、鋼材には、普通鋼、高張力鋼(ハイテン)などを含む。また、アルミニウム材には、純アルミニウム系材、アルミニウム合金系材などを含む。   In the fifth invention, the steel material includes ordinary steel, high-tensile steel (high tensile) and the like. The aluminum material includes a pure aluminum material, an aluminum alloy material, and the like.

第5発明によれば、溶接開始側は、貫通孔同士の間隔が狭くされているため、単位体積当りの鋼材としての熱容量が比較的小さく、溶接開始後速やかに鋼材の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて貫通孔同士の間隔が広いため、単位体積当りの鋼材の熱容量が比較的大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。又は、溶接終了側は、溶接開始側に比べて貫通孔の面積を小さくして、単位体積当りの鋼材の熱容量が比較的大きくされるため、各溶接箇所における溶接に伴う温度上昇を抑制する。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the fifth invention, since the interval between the through holes is narrowed on the welding start side, the heat capacity as a steel material per unit volume is relatively small, and the temperature of the steel material is increased immediately after the start of welding. Can be stabilized. On the other hand, since the distance between the through holes is wider on the welding end side than on the welding start side, the heat capacity of the steel material per unit volume is made relatively large, and the temperature rise accompanying welding at each welding point can be suppressed. . Alternatively, the welding end side reduces the area of the through hole as compared with the welding start side, and the heat capacity of the steel material per unit volume is relatively increased, so that the temperature rise due to welding at each welding point is suppressed. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

第6発明は、上記第4又は第5発明において、各貫通孔に対応した溶接箇所毎に行う溶接を、溶接熱の蓄積を抑制するように時間を空けて行う。   According to a sixth aspect of the present invention, in the fourth or fifth aspect of the present invention, welding is performed for each welding location corresponding to each through hole with a time interval so as to suppress accumulation of welding heat.

第6発明によれば、一つの溶接箇所の溶接後に、次の溶接箇所の溶接が行われるまでに時間を空けるため、溶接熱の蓄積が抑制される。そのため、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the sixth aspect of the present invention, since it takes time to weld the next welded part after welding one welded part, accumulation of welding heat is suppressed. Therefore, the unbalance of the heat input amount to the welded part at each welded part is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

第7発明は、上記第6発明において、複数の溶接箇所のうち、今溶接を行う溶接箇所と、次に溶接を行う溶接箇所との間に、他の溶接箇所を挟む順序で溶接を行う。   7th invention is welding in the order which pinches | interposes another welding location between the welding location which welds now, and the welding location which welds next among several welding locations in the said 6th invention.

第7発明において、他の溶接箇所とは、今行う溶接よりも前に溶接が終了した溶接箇所でもよいし、これから溶接を行う溶接箇所でもよい。   In the seventh invention, the other welding location may be a welding location where welding has been completed before the welding to be performed now, or a welding location where welding will be performed from now on.

第7発明によれば、次の溶接箇所は、今の溶接箇所からは離間した位置にあるため、次の溶接箇所の溶接に対する今の溶接による熱の蓄積の影響は抑制される。そのため、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the seventh aspect, since the next welding location is located away from the current welding location, the influence of the heat accumulation due to the current welding on the welding of the next welding location is suppressed. Therefore, the unbalance of the heat input amount to the welded part at each welded part is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

第8発明は、上記第4ないし第7発明のいずれかにおいて、各溶接箇所における溶接は、前記貫通孔の壁面に沿って行う。   In an eighth invention according to any one of the fourth to seventh inventions, the welding at each welding point is performed along the wall surface of the through hole.

溶接により第1部材又は鋼材と第2部材又はアルミニウム材とが接合されるためには、溶加材が第2部材又はアルミニウム材と溶着することと、溶接ビードが貫通孔周りの第1部材又は鋼材に被せられることが重要で、貫通孔の中心付近に溶接ビードが厚く形成されることは重要ではない。第8発明によれば、接合のために重要な溶加材を形成すべく、貫通孔の壁面に沿う溶接を重点的に行うことにより溶接時間を短縮し、溶接による熱の蓄積を抑制することができる。従って、熱の蓄積の影響による各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   In order for the first member or steel material and the second member or aluminum material to be joined by welding, the filler material is welded to the second member or aluminum material, and the weld bead is the first member around the through-hole or It is important to cover the steel material, and it is not important that the weld bead is formed thick near the center of the through hole. According to the eighth invention, in order to form a filler material important for joining, welding along the wall surface of the through hole is focused on, thereby shortening the welding time and suppressing heat accumulation due to welding. Can do. Therefore, the imbalance of the heat input to the welded part at each welded part due to the effect of heat accumulation is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

第9発明は、上記第4ないし第8発明のいずれかにおいて、溶接の進行における溶接終了側は溶接開始側に比べて溶接に伴って新たに加えられる入熱量を少なくするように溶接電流及び/又は溶接速度を制御する。   According to a ninth invention, in any one of the fourth to eighth inventions, the welding end and / or the welding end and the welding end in the progress of welding are less than the welding start side so that the amount of heat input newly applied during welding is reduced. Alternatively, the welding speed is controlled.

第9発明において、入熱量を少なくする制御は、溶接電流量を小さくする、及び/又は溶接速度を速くすることによって行うことができる。なお、溶接の制御は、オープンループ制御でも、フィードバック制御でもよい。また、入熱量を少なくする制御は、溶接の進行に応じて順次変化するように連続的に行ってもよいし、溶接箇所を複数のグループに分け、そのグループ毎に変えるように段階的に行ってもよい。   In the ninth aspect of the invention, the control for reducing the heat input can be performed by reducing the welding current amount and / or increasing the welding speed. The welding control may be open loop control or feedback control. Also, the control to reduce the heat input may be performed continuously so as to change sequentially according to the progress of welding, or it is performed step by step so that the welding points are divided into a plurality of groups and changed for each group. May be.

第9発明によれば、溶接の進行に伴って各溶接箇所に新たに加えられる入熱量が少なくされるため、溶接の進行に伴って溶接による熱の蓄積量が増大しても、熱の蓄積の影響で溶接箇所における溶接部位への入熱量が増大するのを抑制することができる。そのため、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、各溶接箇所における溶接は適切に行われて、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the ninth aspect of the present invention, since the amount of heat input newly applied to each welding location is reduced with the progress of welding, even if the amount of heat accumulation due to welding increases with the progress of welding, the heat is accumulated. It is possible to suppress an increase in the amount of heat input to the welded part at the welded part due to the influence of. Therefore, the unbalance of the heat input to the welded part at each welded part is suppressed, and welding at each welded part is appropriately performed to suppress variations in weld quality between the weld start side area and the weld end side area. Can do.

第10発明は、上記第4ないし第9発明のいずれかにおいて、溶接の進行における溶接開始側は溶接終了側に比べて前記貫通孔を形成する壁面が傾斜して形成されている。   According to a tenth aspect of the present invention, in any one of the fourth to ninth aspects, the wall surface forming the through hole is inclined on the welding start side in the progress of welding compared to the welding end side.

第10発明によれば、溶接開始側は、溶接終了側に比べて貫通孔を形成する壁面が傾斜して形成されているので、貫通孔の内部に充填される溶加材の量は、溶接開始側は多く、溶接終了側は少なくされる。そのため、溶接開始側は、その入熱量を多めにして溶接を安定させ、溶接終了側は熱の蓄積量を考慮して溶接部位への入熱量を抑制して、溶接開始側溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the tenth aspect of the invention, since the wall on which the through hole is formed is inclined on the welding start side compared to the welding end side, the amount of filler material filled in the through hole is determined by welding. The start side is large and the welding end side is small. For this reason, the welding start side stabilizes the welding by increasing the amount of heat input, and the welding end side suppresses the heat input amount to the welding site in consideration of the accumulated amount of heat, and the welding start side welding start side region and Variation in welding quality with the welding end side region can be suppressed.

本発明の異材接合継手及び溶接接合方法の第1実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the dissimilar material joint and welding joint method of this invention. 図1におけるII−II線断面矢視拡大図である。It is the II-II sectional view arrow enlarged view in FIG. 図1におけるIII−III線断面矢視図である。It is the III-III sectional view taken on the line in FIG. 第1実施形態における鋼材とアルミニウム材とを重ね合わせた状態の平面図である。It is a top view of the state which piled up the steel material and aluminum material in 1st Embodiment. 図4におけるV−V線断面矢視拡大図である。It is the VV sectional view arrow enlarged view in FIG. 第1実施形態における溶接制御システムのブロック図である。It is a block diagram of the welding control system in a 1st embodiment. 第1実施形態における溶接電流の変化を示すグラフである。It is a graph which shows the change of the welding current in 1st Embodiment. 第1実施形態における溶接作業の様子を説明する部分断面斜視図である。It is a fragmentary sectional perspective view explaining the mode of welding work in a 1st embodiment. 本発明の異材接合継手及び溶接接合方法の第2実施形態における鋼材とアルミニウム材とを重ね合わせた状態の平面図である。It is a top view of the state which piled up the steel material and aluminum material in 2nd Embodiment of the dissimilar material joining joint and welding joining method of this invention. 本発明の異材接合継手及び溶接接合方法の第3実施形態における溶接電流の変化を示すグラフである。It is a graph which shows the change of the welding current in 3rd Embodiment of the dissimilar material joint and welding joint method of this invention. 第3実施形態を示す平面図である。It is a top view which shows 3rd Embodiment. 図11におけるXII−XII線断面矢視拡大図である。It is the XII-XII line cross-sectional arrow enlarged view in FIG. 図11におけるXIII−XIII線断面矢視図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 11. 本発明の異材接合継手及び溶接接合方法の第4実施形態における溶接作業の様子を説明する説明図である。It is explanatory drawing explaining the mode of the welding operation in 4th Embodiment of the dissimilar material joint and welding joint method of this invention. 本発明の異材接合継手及び溶接接合方法の第5実施形態を説明する説明図である。It is explanatory drawing explaining 5th Embodiment of the dissimilar material joint and welding method of this invention. 本発明の異材接合継手及び溶接接合方法の第6実施形態における溶接電流の制御マップ内容を示すグラフである。It is a graph which shows the control map content of the welding current in 6th Embodiment of the dissimilar material joint and welding joint method of this invention. 本発明の異材接合継手及び溶接接合方法の第7実施形態における溶接速度の制御マップ内容を示すグラフである。It is a graph which shows the control map content of the welding speed in 7th Embodiment of the dissimilar material joint and welding joint method of this invention. 本発明の異材接合継手及び溶接接合方法の第8実施形態における図2と同様の断面図である。It is sectional drawing similar to FIG. 2 in 8th Embodiment of the dissimilar material joint and welding joint method of this invention. 第8実施形態における図3と同様の断面図である。It is sectional drawing similar to FIG. 3 in 8th Embodiment.

図1は、本発明の第1実施形態を示す。第1実施形態は、平板状の鋼材1と平板状のアルミニウム材2を溶接接合して成る異材接合継手及び溶接接合方法である。溶接を行う前は、図4、5に示されるように、鋼材1とアルミニウム材2との接合部位が互いに重ね合わされ、その重ね合わされた部位において、鋼材1に複数(ここでは6個)の貫通孔1aが開けられている。従って、この状態では、貫通孔1aを通してアルミニウム材2の貫通孔1aに対応部分が外部に露出している。ここでは、各貫通孔1aは、一つの直線上に沿って形成されている。なお、貫通孔1aの数、大きさ、形状、並べ方などは、適宜変更可能である。また、鋼材1は、普通鋼、高張力鋼(ハイテン)などを含み、アルミニウム材2は、純アルミニウム系材、アルミニウム合金系材などを含む。鋼材1は、本発明における第1部材に相当し、アルミニウム材2は、本発明における第2部材に相当する。   FIG. 1 shows a first embodiment of the present invention. The first embodiment is a dissimilar material joint and weld joint method in which a flat steel material 1 and a flat aluminum material 2 are welded. Before welding, as shown in FIGS. 4 and 5, the joining portions of the steel material 1 and the aluminum material 2 are overlapped with each other, and a plurality of (here, six) penetrations are made in the steel material 1 in the overlapped portions. A hole 1a is opened. Therefore, in this state, a corresponding portion is exposed to the outside through the through hole 1a and through the through hole 1a of the aluminum material 2. Here, each through-hole 1a is formed along one straight line. The number, size, shape, arrangement, etc. of the through holes 1a can be changed as appropriate. The steel material 1 includes ordinary steel, high-tensile steel (high tensile), and the like, and the aluminum material 2 includes pure aluminum-based material, aluminum alloy-based material, and the like. The steel material 1 corresponds to the first member in the present invention, and the aluminum material 2 corresponds to the second member in the present invention.

図4のように、各貫通孔1aは、溶接の進行における溶接終了側は溶接開始側に比べて各貫通孔1a同士の間隔を広くされている。即ち、溶接開始点である図4にて左端の貫通孔1aから右側に進む程、貫通孔1a同士の間隔が広くされている。図4にて左端の貫通孔1aと左から2番目の貫通孔1aとの距離がL1、左から2番目の貫通孔1aと左から3番目の貫通孔1aとの距離がL2、以降それぞれ右側の貫通孔1aとの距離がL3、L4、L5とされている。そして、各距離の大きさは、L1<L2<L3<L4<L5とされている。ここでは、各貫通孔1aは、その大きさが互いに等しくされ、直径D0の円形とされている。   As shown in FIG. 4, in each through hole 1 a, the interval between the through holes 1 a is wider on the welding end side in the progress of welding than on the welding start side. That is, the distance between the through holes 1a is increased as the welding progresses from the left end through hole 1a to the right side in FIG. In FIG. 4, the distance between the leftmost through-hole 1a and the second through-hole 1a from the left is L1, the distance between the second through-hole 1a from the left and the third through-hole 1a from the left is L2, and the right side thereafter. The distance from the through-hole 1a is L3, L4, and L5. The magnitude of each distance is L1 <L2 <L3 <L4 <L5. Here, the through holes 1a have the same size and are circular with a diameter D0.

この場合、溶接はアーク溶接によって行われ、図8のように、溶接トーチ11を溶接を施すべき貫通孔1a上に位置させてアーク溶接を行う。その結果、溶接トーチ11の溶接棒11aが溶けて、溶けた溶加材が貫通孔1a内に充填される。ここで、溶接棒11aはアルミニウム系材料にて構成されており、溶加材は、貫通孔1aから露出している部位のアルミニウム材2と溶着される。溶接は、図1〜3、8のように、溶加材が貫通孔1aから鋼材1の表面上にあふれ出るように行われる。鋼材1表面上にあふれ出た溶加材は、冷却された後に溶接ビード3となって貫通孔1a周りの鋼材1に被せられる。このように、アルミニウム材2は溶接ビード3と溶着され、鋼材1は溶接ビード3と機械結合される。その結果、異材である鋼材1とアルミニウム材2との接合が行われる。溶接ビード3が本発明における溶接部となる。   In this case, welding is performed by arc welding, and arc welding is performed by positioning the welding torch 11 on the through hole 1a to be welded as shown in FIG. As a result, the welding rod 11a of the welding torch 11 is melted, and the melted filler material is filled in the through hole 1a. Here, the welding rod 11a is comprised with the aluminum-type material, and the filler material is welded with the aluminum material 2 of the site | part exposed from the through-hole 1a. As shown in FIGS. 1 to 3 and 8, welding is performed so that the filler material overflows from the through hole 1 a onto the surface of the steel material 1. The filler material overflowing on the surface of the steel material 1 is cooled and then covered with the steel material 1 around the through hole 1a as a weld bead 3. Thus, the aluminum material 2 is welded to the weld bead 3, and the steel material 1 is mechanically coupled to the weld bead 3. As a result, the steel material 1 and the aluminum material 2 which are different materials are joined. The weld bead 3 is a welded portion in the present invention.

図6は、溶接トーチ11に通電されるアーク溶接のための電流、及び溶接トーチ11の各溶接箇所への移動を制御する制御システムを示す。溶接トーチ11には、溶接システム13により所定の溶接電流が供給され、溶接トーチ11を各溶接箇所へ移動させるための駆動モータ12にも、溶接システム13により所定の駆動電流が供給される。それらの溶接電流及び駆動電流は、溶接システム13に接続されたコンピュータ14によって制御される。コンピュータ14は、溶接電流を予め設定された電流に制御すべく溶接システム13から実際に溶接トーチ11に供給されている溶接電流値を入力している。また、コンピュータ14は、溶接トーチ11の位置を制御すべく溶接システム13から溶接トーチ11の現位置信号を入力している。更に、コンピュータ14は、溶接トーチ11の溶接時の移動速度(溶接速度)を制御すべく溶接システム13から溶接トーチ11の現在の移動速度(溶接速度)信号を入力している。   FIG. 6 shows a control system for controlling the current for arc welding energized in the welding torch 11 and the movement of the welding torch 11 to each welding location. A predetermined welding current is supplied to the welding torch 11 by the welding system 13, and a predetermined driving current is also supplied by the welding system 13 to the drive motor 12 for moving the welding torch 11 to each welding location. These welding currents and drive currents are controlled by a computer 14 connected to the welding system 13. The computer 14 inputs the welding current value actually supplied from the welding system 13 to the welding torch 11 in order to control the welding current to a preset current. Further, the computer 14 inputs a current position signal of the welding torch 11 from the welding system 13 in order to control the position of the welding torch 11. Further, the computer 14 inputs a current moving speed (welding speed) signal of the welding torch 11 from the welding system 13 to control the moving speed (welding speed) of the welding torch 11 during welding.

図7は、溶接システム13から溶接トーチ11に供給される溶接電流を示す。溶接電流は、溶接開始点である図4にて左端の貫通孔1aの上から供給開始され、溶接終了点である図4にて右端の貫通孔1aの上で供給終了する。その間、一定の電流が溶接トーチ11に供給される。このとき、駆動モータ12による溶接速度も一定速度とされる。   FIG. 7 shows the welding current supplied from the welding system 13 to the welding torch 11. The welding current starts to be supplied from above the left end through-hole 1a in FIG. 4 which is a welding start point, and finishes supplying on the right end through-hole 1a in FIG. 4 which is a welding end point. Meanwhile, a constant current is supplied to the welding torch 11. At this time, the welding speed by the drive motor 12 is also constant.

このように溶接されることにより、溶接開始側は、貫通孔1a同士の間隔が狭くされているため、単位体積当りの鋼材1としての熱容量が比較的小さく、溶接開始後速やかに鋼材1の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて各溶接箇所における貫通孔1a同士の間隔が広いため、単位体積当りの鋼材1の熱容量が比較的大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   By welding in this way, since the interval between the through holes 1a is narrowed on the welding start side, the heat capacity as the steel material 1 per unit volume is relatively small, and the temperature of the steel material 1 immediately after the start of welding. Can be raised to stabilize the welding. On the other hand, since the distance between the through holes 1a at each welding location is wider on the welding end side than at the welding start side, the heat capacity of the steel material 1 per unit volume is made relatively large, and the temperature rise accompanying welding at each welding location. Can be suppressed. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

溶接開始点から溶接終了点まで各貫通孔1aに対して連続して溶接が行われるため、溶接ビード3は、図1〜3に示すように、ピーク位置の連なった山脈状の形状に形成される。   Since welding is continuously performed on each through hole 1a from the welding start point to the welding end point, the weld bead 3 is formed in a mountain-like shape with continuous peak positions as shown in FIGS. The

図9は、本発明の第2実施形態を示す。第2実施形態が第1実施形態に対して特徴とする点は、各貫通孔1a同士の間隔は互いに等しくする一方、溶接の進行における溶接終了側は溶接開始側に比べて各溶接箇所における貫通孔1aの面積を小さくした点である。その他の構成は第1実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 9 shows a second embodiment of the present invention. The feature of the second embodiment over the first embodiment is that the intervals between the through holes 1a are equal to each other, while the welding end side in the progress of welding penetrates at each welding point compared to the welding start side. The point is that the area of the hole 1a is reduced. Other configurations are the same as those of the first embodiment, and the repetitive description of the same portions is omitted.

第2実施形態では、溶接開始点である図9にて左端の貫通孔1aから右側に進む程、貫通孔1aの大きさが小さくされている。各貫通孔1aは円形とされており、その直径が図9にて左端の貫通孔1aではD1、左から2番目の貫通孔1aではD2とされ、以降右側に続く貫通孔1aの直径がD3、D4、D5、D6とされている。そして、各直径の大きさは、D1>D2>D3>D4>D5>D6とされている。ここでは、各貫通孔1a同士の間隔は、互いに等しくされ、L0とされている。   In 2nd Embodiment, the magnitude | size of the through-hole 1a is made small, so that it progresses to the right side from the through-hole 1a of the left end in FIG. 9 which is a welding start point. Each through-hole 1a is circular, and the diameter is D1 in the leftmost through-hole 1a in FIG. 9, D2 in the second through-hole 1a from the left, and the diameter of the through-hole 1a that continues to the right is D3. , D4, D5, and D6. And the magnitude | size of each diameter is made into D1> D2> D3> D4> D5> D6. Here, the intervals between the through holes 1a are equal to each other and set to L0.

第2実施形態によれば、溶接開始側は、貫通孔1aの面積が大きくされているため、単位体積当りの鋼材1としての熱容量が比較的小さく、溶接開始後速やかに鋼材1の温度を上昇させて溶接を安定させることができる。一方、溶接終了側は、溶接開始側に比べて各溶接箇所における貫通孔1aの大きさが次第に小さくされているため、単位体積当りの鋼材1の熱容量が溶接終了側ほど大きくされ、各溶接箇所における溶接に伴う温度上昇を抑制することができる。そのため、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the second embodiment, since the area of the through hole 1a is increased on the welding start side, the heat capacity as the steel material 1 per unit volume is relatively small, and the temperature of the steel material 1 is quickly increased after the start of welding. To stabilize the welding. On the other hand, on the welding end side, since the size of the through-hole 1a at each welding location is gradually reduced as compared with the welding start side, the heat capacity of the steel material 1 per unit volume is increased toward the welding end side. The temperature rise accompanying welding in can be suppressed. Therefore, the dispersion | variation in the welding quality of a welding start side area | region and a welding end side area | region can be suppressed.

図10は、本発明の第3実施形態を示す。第3実施形態が第1実施形態に対して特徴とする点は、各貫通孔1aに対応して行われる溶接時の溶接電流が溶接位置毎に断続する矩形波とされている点である。その他の構成は第1実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 10 shows a third embodiment of the present invention. The feature of the third embodiment with respect to the first embodiment is that the welding current at the time of welding performed corresponding to each through hole 1a is a rectangular wave intermittent at each welding position. Other configurations are the same as those of the first embodiment, and the repetitive description of the same portions is omitted.

第3実施形態では、溶接トーチ11が各貫通孔1aに沿って一定速度で移動する間、各貫通孔1aの上に位置する間は溶接トーチ11に所定値に制御された溶接電流が供給され、各貫通孔1a間を移動する間は溶接トーチ11に供給される溶接電流はゼロとされている。   In the third embodiment, a welding current controlled to a predetermined value is supplied to the welding torch 11 while the welding torch 11 moves at a constant speed along each through hole 1a and is positioned on each through hole 1a. During the movement between the through holes 1a, the welding current supplied to the welding torch 11 is zero.

このように溶接電流が制御されることにより、溶接は溶接トーチ11が貫通孔1a上に位置している間のみ行われ、貫通孔1a間を移動するときは溶接電流が遮断される。そのため、溶接に伴って発生する熱は溶接電流が遮断される分だけ抑制され、鋼材1及びアルミニウム材2に蓄積される熱量は抑制される。即ち、溶接の進行に伴って蓄積される熱量の増加が抑制される。各貫通孔1aにおける溶接時には一定の溶接熱が発生するが、それ以前に蓄積されている熱量が溶接の進行とともに増加しないため、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   By controlling the welding current in this way, welding is performed only while the welding torch 11 is positioned on the through hole 1a, and the welding current is interrupted when moving between the through holes 1a. Therefore, the heat generated with welding is suppressed by the amount by which the welding current is interrupted, and the amount of heat accumulated in the steel material 1 and the aluminum material 2 is suppressed. That is, an increase in the amount of heat accumulated with the progress of welding is suppressed. Although constant welding heat is generated at the time of welding in each through-hole 1a, since the amount of heat accumulated before that does not increase with the progress of welding, the unbalance of the heat input to the welded part at each welding point is suppressed, Variation in welding quality between the welding start side region and the welding end side region can be suppressed.

このように各貫通孔1aに対応する各溶接箇所を連続して溶接せず、各溶接箇所毎に独立して溶接を行うことにより、図11〜13のように各溶接箇所に対応する溶接ビード3は互いに独立して形成される。即ち、各溶接ビード3のアルミニウム材2からの厚さの頂点Pは、各溶接箇所毎に形成される。   In this way, the welding bead corresponding to each welding location as shown in FIGS. 11 to 13 is not performed by continuously welding each welding location corresponding to each through-hole 1a, but independently for each welding location. 3 are formed independently of each other. That is, the apex P of the thickness of each weld bead 3 from the aluminum material 2 is formed for each weld location.

図14は、本発明の第4実施形態を示す。第4実施形態が第3実施形態(図10参照)に対して特徴とする点は、各溶接箇所に対する溶接順序を変更した点である。その他の構成は第3実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 14 shows a fourth embodiment of the present invention. The feature of the fourth embodiment with respect to the third embodiment (see FIG. 10) is that the welding order for each welding location is changed. Other configurations are the same as those of the third embodiment, and the repetitive description of the same portions is omitted.

図14は、各貫通孔1aに対して行われる溶接の順序を示す。図14において、「A」で示すパターンでは、直列に並んだ複数の貫通孔1aに対して、外側、内側、外側、内側の順で溶接する場合を示す。図中、数字は溶接順序を示す。従って、この場合、最初に「1」で示す図14にて左端の貫通孔1aに対して溶接が行われ、次に「2」で示す真中付近の貫通孔1aに対して溶接が行われる。以後、数字の順序で溶接が行われる。   FIG. 14 shows the order of welding performed on each through-hole 1a. In FIG. 14, the pattern indicated by “A” indicates a case where a plurality of through holes 1 a arranged in series are welded in the order of outer side, inner side, outer side, and inner side. In the figure, the numbers indicate the welding order. Therefore, in this case, first, welding is performed on the leftmost through hole 1a in FIG. 14 indicated by "1", and then welding is performed on the through hole 1a near the center indicated by "2". Thereafter, welding is performed in numerical order.

比較例としての「D」で示すパターンでは、直列に並んだ複数の貫通孔1aの内、図14にて左端の貫通孔1aから右端の貫通孔1aに向けて順番に溶接が行われる。数字が溶接の順序を示す。   In the pattern indicated by “D” as a comparative example, among the plurality of through holes 1a arranged in series, welding is performed in order from the left end through hole 1a to the right end through hole 1a in FIG. Numbers indicate welding sequence.

「A」で示すパターンで溶接を行う場合は、溶接が行われる箇所間に他の溶接箇所を挟んで溶接箇所間が互いに離間した位置となる。そのため、先に行われた溶接熱の影響が次に行われる溶接に与える影響は、「D」で示すパターンで溶接を行う場合に比べて抑制される。従って、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   When welding is performed using the pattern indicated by “A”, the welding locations are spaced apart from each other with the other welding locations sandwiched between the locations where the welding is performed. For this reason, the influence of the previously performed welding heat on the next welding is suppressed as compared with the case of performing welding with the pattern indicated by “D”. Therefore, the imbalance of the heat input to the welded part at each welded part is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

「B」で示すパターンは、直列に並んだ複数の貫通孔1aに対して、図14にて左端の貫通孔1aから右端の貫通孔1aに向けて一つ飛ばしで繰り返し溶接が行われる。図中、数字が溶接の順序を示す。また、「C」で示すパターンは、直列に並んだ複数の貫通孔1aに対して、内側、外側、内側、外側の順で溶接する場合を示す。図中、数字は溶接順序を示す。従って、この場合、最初に「1」で示す図14にて真中付近の貫通孔1aに対して溶接が行われ、次に「2」で示す右端の貫通孔1aに対して溶接が行われる。以後、数字の順序で溶接が行われる。   In the pattern indicated by “B”, welding is repeatedly performed on a plurality of through holes 1 a arranged in series, one by one from the left end through hole 1 a toward the right end through hole 1 a in FIG. 14. In the figure, the numbers indicate the welding order. Moreover, the pattern shown by "C" shows the case where it welds in order of an inner side, an outer side, an inner side, and the outer side with respect to the several through-hole 1a arranged in series. In the figure, the numbers indicate the welding order. Therefore, in this case, first, welding is performed on the through hole 1a near the middle in FIG. 14 indicated by "1", and then welding is performed on the rightmost through hole 1a indicated by "2". Thereafter, welding is performed in numerical order.

「B」及び「C」で示すパターンで溶接を行う場合も、「A」で示すパターンの場合と同様、溶接が行われる箇所間に他の溶接箇所を挟んで溶接箇所間が互いに離間した位置となる。そのため、先に行われた溶接熱の影響が次に行われる溶接に与える影響は、「D」で示すパターンで溶接を行う場合に比べて抑制される。従って、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   In the case of performing welding with the patterns indicated by “B” and “C”, as in the case of the pattern indicated by “A”, the positions where the welding locations are separated from each other with the other welding locations sandwiched between the locations where the welding is performed. It becomes. For this reason, the influence of the previously performed welding heat on the next welding is suppressed as compared with the case of performing welding with the pattern indicated by “D”. Therefore, the imbalance of the heat input to the welded part at each welded part is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

図15は、本発明の第5実施形態を示す。第5実施形態が第1実施形態に対して特徴とする点は、各溶接箇所における溶接を貫通孔1aの壁面に沿って行うようにした点である。その他の構成は第1実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 15 shows a fifth embodiment of the present invention. The feature of the fifth embodiment with respect to the first embodiment is that welding at each welding point is performed along the wall surface of the through hole 1a. Other configurations are the same as those of the first embodiment, and the repetitive description of the same portions is omitted.

第5実施形態では、溶接トーチ11における溶接棒11aの溶接時の移動軌跡を、図15の矢印で示すように、貫通孔1aの壁面の内側に沿わせている。そのため、溶接に伴う溶加材は貫通孔1aの壁面に沿って充填され、貫通孔1aの中心部に充填される溶加材の量が抑制されて溶接ビード3の厚さは抑制される。   In 5th Embodiment, the movement locus | trajectory at the time of welding of the welding rod 11a in the welding torch 11 is made to follow the inner side of the wall surface of the through-hole 1a, as shown by the arrow of FIG. Therefore, the filler material accompanying welding is filled along the wall surface of the through hole 1a, the amount of the filler material filled in the central portion of the through hole 1a is suppressed, and the thickness of the weld bead 3 is suppressed.

溶接により鋼材1とアルミニウム材2とが接合されるためには、溶加材がアルミニウム材2と溶着することと溶接ビード3が貫通孔1a周りの鋼材1に被せられることが重要で、貫通孔1aの中心付近に溶接ビード3が厚く形成されることは重要ではない。第5実施形態によれば、接合のために重要な溶加材を形成すべく、貫通孔1aの壁面に沿う溶接を重点的に行うことにより溶接時間を短縮し、溶接による熱の蓄積を抑制することができる。従って、熱の蓄積の影響による各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   In order to join the steel material 1 and the aluminum material 2 by welding, it is important that the filler material is welded to the aluminum material 2 and that the weld bead 3 is placed on the steel material 1 around the through hole 1a. It is not important that the weld bead 3 is formed thick near the center of 1a. According to the fifth embodiment, in order to form an important filler material for joining, welding along the wall surface of the through-hole 1a is focused on shortening welding time and suppressing heat accumulation due to welding. can do. Therefore, the imbalance of the heat input to the welded part at each welded part due to the effect of heat accumulation is suppressed, and variations in welding quality between the welding start side area and the welding end side area can be suppressed.

図16は、本発明の第6実施形態を示す。第6実施形態が第3実施形態(図10参照)に対して特徴とする点は、溶接の進行における溶接終了側は溶接開始側に比べて溶接に伴って新たに加えられる入熱量を少なくするように溶接電流を制御する点である。その他の構成は第3実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 16 shows a sixth embodiment of the present invention. The feature of the sixth embodiment over the third embodiment (see FIG. 10) is that the welding end side in the progress of welding reduces the amount of heat input newly added with welding compared to the welding start side. In this way, the welding current is controlled. Other configurations are the same as those of the third embodiment, and the repetitive description of the same portions is omitted.

第6実施形態では、溶接の進行と共に、溶接電流が漸次小さくされている。係る溶接電流の制御は、溶接位置と関係付けして、図16のように、コンピュータ14のメモリに予めマップとして記憶されている。コンピュータ14は、そのマップによって設定された溶接電流となるように溶接システム13を介してフィードバック制御する。なお、このとき、溶接電圧及び溶接速度は、溶接の進行と共に変化させず、一定とされている。   In the sixth embodiment, the welding current is gradually reduced with the progress of welding. Such control of the welding current is stored in advance as a map in the memory of the computer 14 as shown in FIG. The computer 14 performs feedback control via the welding system 13 so that the welding current set by the map is obtained. At this time, the welding voltage and the welding speed are not changed with the progress of welding, and are constant.

第6実施形態によれば、各溶接箇所に新たに加えられる入熱量が、溶接の進行に伴って少なくされるため、溶接の進行に伴って溶接による熱の蓄積量が増大しても、熱の蓄積の影響で溶接箇所における溶接部位への入熱量が増大するのを抑制することができる。そのため、各溶接箇所における溶接部位への入熱量のアンバランスが抑制され、各溶接箇所における溶接は適切に行われて、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。   According to the sixth embodiment, the amount of heat input newly applied to each welding location is reduced as the welding progresses. Therefore, even if the amount of heat accumulated by welding increases as the welding progresses, It is possible to suppress an increase in the amount of heat input to the welded part at the welded part due to the influence of the accumulation of the heat. Therefore, the unbalance of the heat input to the welded part at each welded part is suppressed, and welding at each welded part is appropriately performed to suppress variations in weld quality between the weld start side area and the weld end side area. Can do.

図17は、本発明の第7実施形態を示す。第7実施形態が第1実施形態に対して特徴とする点は、溶接の進行における溶接終了側は溶接開始側に比べて溶接に伴って新たに加えられる入熱量を少なくするように溶接速度を制御する点である。その他の構成は第1実施形態と同一であり、同一部分の再度の説明は省略する。   FIG. 17 shows a seventh embodiment of the present invention. The feature of the seventh embodiment over the first embodiment is that the welding speed on the welding end side in the progress of welding is set so as to reduce the amount of heat input newly added with welding compared to the welding start side. It is a point to control. Other configurations are the same as those of the first embodiment, and the repetitive description of the same portions is omitted.

第7実施形態では、溶接の進行と共に、溶接速度が漸次速くされている。係る溶接速度の制御は、溶接位置と関係付けして、図17のように、コンピュータ14のメモリに予めマップとして記憶されている。コンピュータ14は、そのマップによって設定された溶接速度となるように溶接システム13を介してフィードバック制御する。この場合、溶接速度の切換は、各貫通孔1aに対応して行われるようにされている。なお、このとき、溶接電流は、溶接の進行と共に変化させず、一定とされている。   In the seventh embodiment, the welding speed is gradually increased as welding progresses. Such welding speed control is stored in advance as a map in the memory of the computer 14 as shown in FIG. 17 in relation to the welding position. The computer 14 performs feedback control via the welding system 13 so that the welding speed set by the map is obtained. In this case, the switching of the welding speed is performed corresponding to each through hole 1a. At this time, the welding current is constant without changing with the progress of welding.

第7実施形態においても、上述の第6実施形態と同様の作用効果を達成することができる。   Also in the seventh embodiment, it is possible to achieve the same function and effect as those of the sixth embodiment described above.

図18、19は、本発明の第8実施形態を示す。第8実施形態が第1実施形態に対して特徴とする点は、溶接の進行における溶接開始側は溶接終了側に比べて溶接箇所の貫通孔を形成する壁面が傾斜して形成されている点である。その他の構成は第1実施形態と同一であり、同一部分の再度の説明は省略する。   18 and 19 show an eighth embodiment of the present invention. The feature of the eighth embodiment over the first embodiment is that the welding start side in the progress of welding is formed with an inclined wall surface that forms a through-hole in the welded portion compared to the welding end side. It is. Other configurations are the same as those of the first embodiment, and the repetitive description of the same portions is omitted.

第8実施形態では、図19のように、溶接が開始される図にて左端の貫通孔1aの壁面は大きく傾斜して形成され、溶接が終了される図にて右端の貫通孔1aの壁面は傾斜されていない。そして、図にて左右両端の貫通孔1aの間にある貫通孔1aは、図にて左側から右側に移るにつれて、その壁面の傾斜が漸次少なくなるようにされている。   In the eighth embodiment, as shown in FIG. 19, the wall surface of the left end through-hole 1a is formed to be greatly inclined in the view in which welding is started, and the wall surface of the right end through-hole 1a in FIG. Is not inclined. And the through-hole 1a between the through-holes 1a at the left and right ends in the figure is such that the inclination of the wall surface gradually decreases as it moves from the left side to the right side in the figure.

このように形成されたため、貫通孔1aの内部に充填される溶加材の量は、溶接が開始される溶接開始側は多く、溶接が終了される溶接終了側は少なくされる。そのため、溶接開始側の入熱量を多めにして溶接を安定させ、溶接終了側は熱の蓄積量を考慮して溶接部位への入熱量を抑制して、溶接開始側領域と溶接終了側領域との溶接品質のばらつきを抑制することができる。なお、図18、19では、壁面の傾斜を壁面が上側を向くようにしたが、壁面が下側を向くようにしてもよい。後者のように下向きとした場合は、溶加材の量を変えないで、溶加材と母材であるアルミニウム材2との溶着面を大きくすることができ、鋼材1とアルミニウム材2との接合強度を強くすることができる。   Since it formed in this way, the quantity of the filler material with which the inside of the through-hole 1a is filled is large on the welding start side where welding is started, and is reduced on the welding end side where welding is completed. Therefore, welding is stabilized by increasing the amount of heat input on the welding start side, and the welding end side suppresses the heat input to the welding site in consideration of the accumulated amount of heat, and the welding start side region and the welding end side region Variation in welding quality can be suppressed. In FIGS. 18 and 19, the wall surface is inclined so that the wall surface faces upward, but the wall surface may face downward. When facing downward as in the latter case, the welding surface between the filler metal and the aluminum material 2 as the base material can be increased without changing the amount of the filler material. Bonding strength can be increased.

以上、特定の実施形態について説明したが、本発明は、それらの外観、構成に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、上記実施形態では、溶接をアーク溶接によって行うものとしたが、貫通孔1a内に溶加材を充填でき、溶接ビード3が形成できるものであれば、レーザ溶接などでもよい。   As mentioned above, although specific embodiment was described, this invention is not limited to those external appearances and structures, A various change, addition, and deletion are possible in the range which does not change the summary of this invention. For example, in the above embodiment, welding is performed by arc welding, but laser welding or the like may be used as long as the filler material can be filled in the through hole 1a and the weld bead 3 can be formed.

1 鋼材(第1部材)
1a 貫通孔
2 アルミニウム材(第2部材)
3 溶接ビード(溶接部)
11 溶接トーチ
11a 溶接棒
12 駆動モータ
13 溶接システム
14 コンピュータ
1 Steel (first member)
1a Through hole 2 Aluminum material (second member)
3 Weld beads (welded part)
11 welding torch 11a welding rod 12 drive motor 13 welding system 14 computer

Claims (10)

第1の材料から成る第1部材と前記第1の材料に比べて融点の低い第2の材料から成る第2部材とが溶接部によって接合されて成る異材接合継手であって、
前記接合箇所において前記第1部材に複数の貫通孔が開けられており、これらの貫通孔内に前記第2の材料から成る溶加材が充填されており、
溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くされている、及び/又は前記貫通孔の面積を小さくされている異材接合継手。
A dissimilar joint joint formed by joining a first member made of a first material and a second member made of a second material having a melting point lower than that of the first material by a welded portion,
A plurality of through holes are opened in the first member at the joint location, and the filler material made of the second material is filled in the through holes,
A dissimilar joint joint in which the interval between the through holes is wider on the welding end side in the progress of the welding and / or the area of the through holes is smaller than the welding start side.
鋼材とアルミニウム材の接合箇所において鋼材に複数の貫通孔を開けられており、これらの貫通孔内にアルミニウム系材料の溶加材を充填された部位を溶接部として、鋼材とアルミニウム材とが接合されて成る異材接合継手であって、
溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くされている、及び/又は前記貫通孔の面積を小さくされている異材接合継手。
A plurality of through holes are formed in the steel material at the joint between the steel material and the aluminum material, and the steel material and the aluminum material are joined using a portion filled with the filler material of the aluminum-based material in these through holes as a welded portion. A dissimilar material joint,
A dissimilar joint joint in which the interval between the through holes is wider on the welding end side in the progress of the welding and / or the area of the through holes is smaller than the welding start side.
請求項1又は2において、
溶接の進行における溶接開始側は溶接終了側に比べて前記貫通孔を形成する壁面が傾斜して形成されている異材接合継手。
In claim 1 or 2,
The dissimilar joint joint in which the wall surface which forms the said through-hole inclines in the welding start side in the progress of welding compared with the welding end side.
第1の材料から成る第1部材と、前記第1の材料に比べて融点の低い第2の材料から成る第2部材との接合箇所において前記第1部材に複数の貫通孔を開け、これらの貫通孔内に前記第2の材料から成る溶加材を充填することにより前記第1部材と前記第2部材とを溶接接合する溶接接合方法であって、
溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くする、及び/又は前記貫通孔の面積を小さくする溶接接合方法。
A plurality of through holes are formed in the first member at a joint portion between the first member made of the first material and the second member made of the second material having a lower melting point than the first material. A welding joining method of welding the first member and the second member by filling a filler material made of the second material into a through hole,
A welding joining method in which a welding end side in the progress of welding widens the interval between the through holes and / or reduces an area of the through holes compared to a welding start side.
鋼材とアルミニウム材の接合箇所において鋼材に複数の貫通孔を開け、これらの貫通孔内にアルミニウム系材料の溶加材を充填することにより鋼材とアルミニウム材とを溶接接合する溶接接合方法であって、
溶接の進行における溶接終了側は溶接開始側に比べて前記貫通孔同士の間隔を広くする、及び/又は前記貫通孔の面積を小さくする溶接接合方法。
A welding joining method in which a plurality of through holes are formed in a steel material at a joining portion of the steel material and the aluminum material, and the steel material and the aluminum material are welded and joined by filling a filler material of an aluminum-based material in the through holes. ,
A welding joining method in which a welding end side in the progress of welding widens the interval between the through holes and / or reduces an area of the through holes compared to a welding start side.
請求項4又は5において、
各貫通孔に対応した溶接箇所毎に行う溶接を、溶接熱の蓄積を抑制するように時間を空けて行う溶接接合方法。
In claim 4 or 5,
A welding joining method in which welding is performed at each welding location corresponding to each through hole with a time interval so as to suppress accumulation of welding heat.
請求項6において、
複数の溶接箇所のうち、今溶接を行う溶接箇所と、次に溶接を行う溶接箇所との間に、他の溶接箇所を挟む順序で溶接を行う溶接接合方法。
In claim 6,
A welding joining method in which welding is performed in an order in which another welding location is sandwiched between a welding location where welding is performed now and a welding location where welding is performed next among a plurality of welding locations.
請求項4ないし7のいずれかにおいて、
各溶接箇所における溶接は、前記貫通孔の壁面に沿って行う溶接接合方法。
In any of claims 4 to 7,
The welding in each welding location is a welding joining method performed along the wall surface of the through hole.
請求項4ないし8のいずれかにおいて、
溶接の進行における溶接終了側は溶接開始側に比べて溶接に伴って新たに加えられる入熱量を少なくするように溶接電流及び/又は溶接速度を制御する溶接接合方法。
In any one of claims 4 to 8,
A welding joining method for controlling the welding current and / or the welding speed so that the welding end side in the progress of welding is less than the welding start side, and the amount of heat input newly added with welding is reduced.
請求項4ないし9のいずれかにおいて、
溶接の進行における溶接開始側は溶接終了側に比べて前記貫通孔を形成する壁面が傾斜して形成されている溶接接合方法。
In any of claims 4 to 9,
The welding joining method in which the wall surface forming the through-hole is formed on the welding start side in the progress of welding in an inclined manner as compared with the welding end side.
JP2015197680A 2015-10-05 2015-10-05 Dissimilar material joint and welding method Expired - Fee Related JP6606960B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015197680A JP6606960B2 (en) 2015-10-05 2015-10-05 Dissimilar material joint and welding method
US15/283,754 US10625363B2 (en) 2015-10-05 2016-10-03 Different material welded joint and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197680A JP6606960B2 (en) 2015-10-05 2015-10-05 Dissimilar material joint and welding method

Publications (2)

Publication Number Publication Date
JP2017070963A true JP2017070963A (en) 2017-04-13
JP6606960B2 JP6606960B2 (en) 2019-11-20

Family

ID=58446577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197680A Expired - Fee Related JP6606960B2 (en) 2015-10-05 2015-10-05 Dissimilar material joint and welding method

Country Status (2)

Country Link
US (1) US10625363B2 (en)
JP (1) JP6606960B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190126561A1 (en) * 2017-10-26 2019-05-02 Battelle Memorial Institute Friction stirring interlocking of dissimilar materials
WO2022239795A1 (en) * 2021-05-14 2022-11-17 川崎重工業株式会社 Joining method and joined body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101744A (en) * 1975-03-05 1976-09-08 Taisei Corp YOSETSUKO ZOBUZAINOMUHIZUMISEISAKUHO
JPS53106351A (en) * 1977-02-26 1978-09-16 Nippon Kokan Kk <Nkk> Forming method for reverse stain for in welding steel plate
JPH05104246A (en) * 1991-10-08 1993-04-27 Nkk Corp Plug welding method
JP2008221322A (en) * 2007-03-15 2008-09-25 Kobe Steel Ltd Method of joining dissimilar material
JP2009154206A (en) * 2007-12-03 2009-07-16 Daihen Corp Stitch pulse welding method
JP2011125899A (en) * 2009-12-17 2011-06-30 Daihen Corp Stitch pulse welding controller and stitch pulse welding equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438691B2 (en) 2004-06-11 2010-03-24 株式会社神戸製鋼所 Dissimilar material joint and weld joint method in which iron material and aluminum material are joined

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101744A (en) * 1975-03-05 1976-09-08 Taisei Corp YOSETSUKO ZOBUZAINOMUHIZUMISEISAKUHO
JPS53106351A (en) * 1977-02-26 1978-09-16 Nippon Kokan Kk <Nkk> Forming method for reverse stain for in welding steel plate
JPH05104246A (en) * 1991-10-08 1993-04-27 Nkk Corp Plug welding method
JP2008221322A (en) * 2007-03-15 2008-09-25 Kobe Steel Ltd Method of joining dissimilar material
JP2009154206A (en) * 2007-12-03 2009-07-16 Daihen Corp Stitch pulse welding method
JP2011125899A (en) * 2009-12-17 2011-06-30 Daihen Corp Stitch pulse welding controller and stitch pulse welding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190126561A1 (en) * 2017-10-26 2019-05-02 Battelle Memorial Institute Friction stirring interlocking of dissimilar materials
US10369748B2 (en) * 2017-10-26 2019-08-06 Battelle Memorial Institute Friction stirring interlocking of dissimilar materials
WO2022239795A1 (en) * 2021-05-14 2022-11-17 川崎重工業株式会社 Joining method and joined body

Also Published As

Publication number Publication date
US10625363B2 (en) 2020-04-21
US20170095876A1 (en) 2017-04-06
JP6606960B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6561749B2 (en) Dissimilar material joint and welding method
JP3219413B2 (en) Lateral welding method and welding equipment
JP7038279B2 (en) Joining structure and its arc welding method
CN105008079B (en) Just connecing pulse welding system and method
Dilthey et al. Multimaterial car body design: challenge for welding and joining
US20040200813A1 (en) Method and device for overlapping welding of two coated metal sheets with a beam of high energy density
US20050121426A1 (en) Method of improving weld quality
CN203197472U (en) Oscillatory scanning laser beam-electric arc hybrid welding system
US11040413B2 (en) Spot welding apparatus, spot welding method, and joint structure
US11628516B2 (en) Welding method
CN103415369A (en) Method for bonding dissimilar metals to each other
JP6606960B2 (en) Dissimilar material joint and welding method
JP5222105B2 (en) Narrow groove welding method and narrow groove welding apparatus
US20200009686A1 (en) Laser welding method
CN109865942B (en) Laser welding method and system
JP7376458B2 (en) Resistance spot welding method
JP6620683B2 (en) Welding method
KR101279647B1 (en) Welding method for securing deep penetration on fillet joint
JP2016007620A (en) Welding method and welding structure
JP7238362B2 (en) welding robot
JP2008200750A (en) One side arc spot welding method
JP6829180B2 (en) Structure and method of manufacturing the structure
US20220152736A1 (en) Laser welding device and laser welding method
CN103317214A (en) Welding method
US11305381B2 (en) Welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R151 Written notification of patent or utility model registration

Ref document number: 6606960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees