JP2017069200A - Manufacturing method of functional layer-attached polyimide film - Google Patents

Manufacturing method of functional layer-attached polyimide film Download PDF

Info

Publication number
JP2017069200A
JP2017069200A JP2016191704A JP2016191704A JP2017069200A JP 2017069200 A JP2017069200 A JP 2017069200A JP 2016191704 A JP2016191704 A JP 2016191704A JP 2016191704 A JP2016191704 A JP 2016191704A JP 2017069200 A JP2017069200 A JP 2017069200A
Authority
JP
Japan
Prior art keywords
polyimide film
functional layer
film
polyimide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016191704A
Other languages
Japanese (ja)
Inventor
王 宏遠
Hongyuan Wang
宏遠 王
平石 克文
Katsufumi Hiraishi
克文 平石
林 信行
Nobuyuki Hayashi
信行 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Publication of JP2017069200A publication Critical patent/JP2017069200A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to obtain a functional layer-attached polyimide film by using a polyimide film which is low in linear expansion, superior in flatness, and which is less in outgassing even at a high temperature and superior in heat resistance.SOLUTION: A method for manufacturing a functional layer-attached polyimide film comprises the steps of: forming a functional layer on a polyimide film of a polyimide laminate arranged by laminating a base material and the polyimide film; and peeling the polyimide film together with the functional layer from the base material. In the method, the polyimide film is formed by performing a thermal treatment of polyamic acid within 60 minutes, and it has a glass transition temperature higher than 400°C, of which the temperature when the weight decrease rate is 0.3 mass% in a nitrogen atmosphere is 500°C or higher.SELECTED DRAWING: None

Description

本発明は、表示装置等の機能層を形成する支持基材として用いるポリイミドフィルムを用いた機能層付ポリイミドフィルムの製造方法に関するものである。   The present invention relates to a method for producing a polyimide film with a functional layer using a polyimide film used as a support substrate for forming a functional layer of a display device or the like.

テレビのような大型ディスプレイや、携帯電話、パソコン、スマートフォンなどの小型ディスプレイをはじめ、各種のディスプレイ用途に使用される有機EL装置は、一般に支持基材であるガラス基板上に薄膜トランジスタ(以下、TFT)を形成し、さらにその上に電極、発光層及び電極を順次形成し、これらをガラス基板や多層薄膜等で気密封止して作られる。有機EL装置の構造には、支持基材であるガラス基板側から光を取り出すボトムエミッション構造と、支持基材であるガラス基板とは逆側から光を取り出すトップエミッション構造とが有り、用途により使い分けられている。ボトムエミッションTFT基板には透明材料が要求されるが、トップエミッションTFT基板には非透明材料でも良い。   Organic EL devices used for various displays, including large displays such as televisions and small displays such as mobile phones, personal computers, and smartphones, are generally thin film transistors (hereinafter TFT) on a glass substrate that is a supporting substrate. Further, an electrode, a light emitting layer, and an electrode are sequentially formed thereon, and these are hermetically sealed with a glass substrate, a multilayer thin film, or the like. The structure of the organic EL device includes a bottom emission structure that extracts light from the glass substrate side that is the support base material, and a top emission structure that extracts light from the opposite side of the glass substrate that is the support base material. It has been. A transparent material is required for the bottom emission TFT substrate, but a non-transparent material may be used for the top emission TFT substrate.

このような有機EL装置の支持基材を従来のガラス基板から樹脂へと置き換えることにより、薄型・軽量・フレキシブル化でき、有機EL装置の用途を更に広げることができる。しかしながら、樹脂は一般にガラスと比較して寸法安定性、透明性、耐熱性、耐湿性、フィルムの強さ等に劣るため、種々の検討がなされている。   By replacing the supporting base material of such an organic EL device with a resin from a conventional glass substrate, the organic EL device can be made thin, light and flexible, and the application of the organic EL device can be further expanded. However, since resin is generally inferior in dimensional stability, transparency, heat resistance, moisture resistance, film strength and the like as compared with glass, various studies have been made.

例えば、特許文献1は、フレキシブルディスプレー用プラスチック基板として有用なポリイミド、及びその前駆体に係る発明に関し、特定構造のポリイミド前駆体溶液を無機基板上に流延し、乾燥およびイミド化して得られるポリイミドフィルムと無機基板とからなる積層体を開示しており、光透過率が高いことと、アウトガスが少ないことを報告している。しかしながら、ここで得られるポリイミドの熱膨張係数(CTE)は、いずれも40ppm/Kを超えるため、ガラス基板の熱膨張係数との差が大きいため、有機EL基板は反りが発生し、デバイス形成後、剥離やクラックが発生するなど、形状安定性に優れた有機EL装置を得るのが難しくなる。   For example, Patent Document 1 relates to a polyimide useful as a plastic substrate for flexible display and an invention relating to the precursor thereof, and a polyimide obtained by casting a polyimide precursor solution having a specific structure on an inorganic substrate, drying and imidizing. It discloses a laminate composed of a film and an inorganic substrate, and reports high light transmittance and low outgassing. However, since the thermal expansion coefficient (CTE) of the polyimide obtained here exceeds 40 ppm / K, the difference from the thermal expansion coefficient of the glass substrate is large. It becomes difficult to obtain an organic EL device having excellent shape stability, such as peeling and cracking.

また、特許文献2、特許文献5は、キャリア基板から剥離して製造する表示デバイス、受光デバイスなどのフレキシブルデバイス基板形成用のポリイミド前駆体樹脂組成物に係る発明に関し、300℃以上のガラス転移温度と20ppm/K以下の熱膨張係数を示すことが記載されている。しかしながら、熱処理時間が1時間以上と長くかかり、生産性が低い問題がある。   Patent Document 2 and Patent Document 5 relate to an invention relating to a polyimide precursor resin composition for forming a flexible device substrate such as a display device and a light receiving device that are peeled from a carrier substrate, and have a glass transition temperature of 300 ° C. or higher. And exhibiting a coefficient of thermal expansion of 20 ppm / K or less. However, there is a problem that the heat treatment time is as long as 1 hour or more and the productivity is low.

有機EL生産LTPS工程では、一般的に450℃の高温をかける必要がある。材料が熱分解すると、素子が汚染され、使えなくなる。プロセス上では、アウトガスの放出がないことは非常に重要である。   In the organic EL production LTPS process, it is generally necessary to apply a high temperature of 450 ° C. If the material is pyrolyzed, the device becomes contaminated and unusable. In the process, it is very important that there is no outgassing.

有機EL装置は、水分に対する耐性が弱く、水分により発光層であるEL素子の特性が低下する。そこで、支持基材として樹脂を用いる場合には、有機EL装置内への水分や酸素の侵入を防ぐため、吸湿率が低い樹脂が好まれる。一般に、有機EL基板としては、酸化珪素や窒化珪素に代表される無機系材料が使用されており、これらの熱膨張係数(CTE)は、通常、0〜10ppm/Kである。これに対して、一般的なポリイミドは、CTEが10ppm/Kより大きいため、単にポリイミドを有機EL装置の支持基材に適用しようとすると、熱応力によって反りやクラックが生じたり、剥離したりするなどの問題が発生してしまうことがある。特許文献6は、ナフタレンテトラカルボン酸二無水物(NTCDA)を使っているが、熱膨張係数は20ppm/Kよりも大きく、反りを発生してしまう可能性がある。   The organic EL device has low resistance to moisture, and the characteristics of the EL element that is the light emitting layer are degraded by moisture. Therefore, when a resin is used as the supporting base material, a resin having a low moisture absorption rate is preferred in order to prevent moisture and oxygen from entering the organic EL device. In general, an inorganic material typified by silicon oxide or silicon nitride is used as the organic EL substrate, and their thermal expansion coefficient (CTE) is usually 0 to 10 ppm / K. On the other hand, since a general polyimide has a CTE of greater than 10 ppm / K, if the polyimide is simply applied to a support substrate of an organic EL device, warping or cracking occurs due to thermal stress, or the polyimide peels off. Problems may occur. Patent Document 6 uses naphthalene tetracarboxylic dianhydride (NTCDA), but its thermal expansion coefficient is larger than 20 ppm / K, and warping may occur.

かかるプロセスにおいて積層体には、蒸着、スパッタ等の工程に耐え得る高い耐熱性、良好なハンドリングのための平滑性や低反りが求められる。すなわち、積層体のポリイミドフィルムは、高い耐熱性と、ガラスと同程度の線膨張係数を有する必要がある。尚、ガラス基板として一般的に使用されるソーダライムガラスや無アルカリガラスの線膨張係数はそれぞれ8〜9ppm/℃、3〜5ppm/℃程度である。   In such a process, the laminate is required to have high heat resistance that can withstand steps such as vapor deposition and sputtering, and smoothness and low warpage for good handling. That is, the polyimide film of the laminate needs to have high heat resistance and a linear expansion coefficient comparable to that of glass. In addition, the linear expansion coefficients of soda-lime glass and alkali-free glass generally used as a glass substrate are about 8 to 9 ppm / ° C. and about 3 to 5 ppm / ° C., respectively.

一方、無機基板上に、ポリイミド前駆体の溶液を流延し、熱イミド化して積層体を得る方法が知られている(特許文献3)。また、低線膨張係数のポリイミドフィルムを無機基板上に、直接積層させることも報告されている(特許文献4)が、工程は1時間以上かかるので、コストが高くなる。   On the other hand, a method is known in which a polyimide precursor solution is cast on an inorganic substrate and thermal imidization is performed to obtain a laminate (Patent Document 3). In addition, it has been reported that a polyimide film having a low linear expansion coefficient is directly laminated on an inorganic substrate (Patent Document 4), but the process takes one hour or more, which increases the cost.

以上の点を考慮すると、表示装置用の支持基材を、ガラス基板から樹脂基板に置き換えるにあたっては、少なくとも低CTE、高耐熱性、アウトガスの少ない特性を同時に満足できる必要があるが、短時間でこれらを全て満たす材料を生産できる樹脂基板は存在していなかった。   Considering the above points, when replacing the support substrate for the display device from the glass substrate to the resin substrate, it is necessary to satisfy at least the characteristics of low CTE, high heat resistance and low outgas at the same time. There has been no resin substrate that can produce a material that satisfies all of these requirements.

特開2012−40836号公報JP2012-40836A 特開2010−202729号公報JP 2010-202729 A 特開昭64−774号公報Japanese Unexamined Patent Publication No. 64-774 特開2012−35583号公報JP 2012-35583 A 特開2015−93915号公報Japanese Patent Laying-Open No. 2015-93915 特許第4642664号Japanese Patent No. 4642664

本発明の目的は、低線膨張で平坦性に優れ、高温でもアウトガスの発生のない耐熱性に優れたポリイミドフィルムを用いて機能層付ポリイミドフィルムを得る方法を提供することを目的とする。   An object of the present invention is to provide a method for obtaining a polyimide film with a functional layer using a polyimide film having low linear expansion, excellent flatness, and excellent heat resistance without generation of outgas even at high temperatures.

本発明者らは、鋭意検討した結果、ポリイミドフィルムがポリアミック酸を60分間以内で熱処理することにより、ガラス転移温度が400℃より高く、窒素雰囲気中0.3質量%重量減少率の温度が500℃以上であるポリイミドフィルムが得られることを見出し、さらに好ましくは特定構造の酸無水物とジアミンの組み合わせを用いることで、本発明を為すに至った。   As a result of intensive studies, the inventors of the present invention have made the polyimide film heat-treat the polyamic acid within 60 minutes, so that the glass transition temperature is higher than 400 ° C., and the temperature of 0.3 mass% weight reduction rate in the nitrogen atmosphere is 500. The present inventors have found that a polyimide film having a temperature of at least ° C. can be obtained, and more preferably using a combination of an acid anhydride having a specific structure and a diamine.

すなわち、本発明の要旨は、次のとおりである。
(1)基材とポリイミドフィルムが積層されたポリイミド積層体のポリイミドフィルムの上に機能層を形成し、基材からポリイミドフィルムを機能層ごと剥離する機能層付ポリイミドフィルムの製造方法であって、ポリイミドフィルムが、ポリアミック酸を60分間以内で熱処理することにより形成されるとともに、ガラス転移温度が400℃より高く、窒素雰囲気中0.3質量%重量減少率の温度が500℃以上であることを特徴とする機能層付ポリイミドフィルムの製造方法。
That is, the gist of the present invention is as follows.
(1) A method for producing a polyimide film with a functional layer, wherein a functional layer is formed on a polyimide film of a polyimide laminate in which a substrate and a polyimide film are laminated, and the polyimide film is peeled off from the substrate together with the functional layer. The polyimide film is formed by heat-treating polyamic acid within 60 minutes, the glass transition temperature is higher than 400 ° C., and the temperature of 0.3 mass% weight reduction rate in the nitrogen atmosphere is 500 ° C. or higher. The manufacturing method of the polyimide film with a functional layer characterized.

(2)ポリイミドフィルムが、下記一般式(1)で表される構造単位を10モル%以上含有する上記(1)の機能層付ポリイミドフィルムの製造方法。

Figure 2017069200
(式中、Arは芳香環を1個以上有する2価の有機基である。) (2) The manufacturing method of the polyimide film with a functional layer of said (1) in which a polyimide film contains 10 mol% or more of structural units represented by following General formula (1).
Figure 2017069200
(In the formula, Ar is a divalent organic group having one or more aromatic rings.)

(3)ポリイミドフィルムが、ナフタレンテトラカルボン酸二無水物及びビフェニルテトラカルボン酸二無水物とフェニレンジアミンとを−20℃〜60℃の温度で反応させて得られることを特徴とする上記(1)又は(2)の機能層付ポリイミドフィルムの製造方法。 (3) The above (1), wherein the polyimide film is obtained by reacting naphthalenetetracarboxylic dianhydride or biphenyltetracarboxylic dianhydride with phenylenediamine at a temperature of -20 ° C to 60 ° C. Or the manufacturing method of the polyimide film with a functional layer of (2).

(4)ポリイミドフィルムが、100℃〜250℃の温度範囲における熱膨張係数が10ppm/Kより小さく、且つ、-O-C=N-官能基を含有しないことを特徴とする上記(1)〜(3)のいずれかの機能層付ポリイミドフィルムの製造方法。 (4) The above (1) to (3), wherein the polyimide film has a thermal expansion coefficient smaller than 10 ppm / K in a temperature range of 100 ° C. to 250 ° C. and does not contain an —OC═N— functional group. ) Any one of the manufacturing method of the polyimide film with a functional layer.

(5)ポリイミドフィルムが、ナフタレンテトラカルボン酸二無水物及びビフェニルテトラカルボン酸二無水物とフェニレンジアミンを有機溶媒の存在下に反応させて得られたポリアミド酸溶液を基材上に塗布、溶媒除去したのち、110℃〜380℃の温度で反応させてイミド化させることで得られることを特徴とする上記(1)〜(4)のいずれかの機能層付ポリイミドフィルムの製造方法。 (5) Polyimide film is coated on a substrate with a polyamic acid solution obtained by reacting naphthalenetetracarboxylic dianhydride and biphenyltetracarboxylic dianhydride with phenylenediamine in the presence of an organic solvent, and the solvent is removed. Then, the method for producing a polyimide film with a functional layer according to any one of the above (1) to (4), which is obtained by reacting at a temperature of 110 ° C. to 380 ° C. and imidizing.

(6)基材が無機基板からなることを特徴とする上記(1)〜(5)のいずれかの機能層付ポリイミドフィルムの製造方法。 (6) The method for producing a polyimide film with a functional layer according to any one of the above (1) to (5), wherein the substrate comprises an inorganic substrate.

(7)機能層が表示素子、発光素子、回路、導電膜、メタルメッシュ、ハードコート膜又はガスバリア膜であることを特徴とする上記(1)〜(6)のいずれかの機能層付ポリイミドフィルムの製造方法。 (7) The functional layer is a display element, a light emitting element, a circuit, a conductive film, a metal mesh, a hard coat film, or a gas barrier film, and the polyimide film with a functional layer according to any one of the above (1) to (6) Manufacturing method.

本発明によれば、製造されるポリイミドフィルムの耐熱性が高く、高温処理工程におけるアウトガスの放出が少ないことから表示装置等の支持基材として適しており、さらに短時間で反応させることができるため生産性に優れたポリイミドフィルムを提供できることから、表示素子、発光素子、回路、導電膜、メタルメッシュ、ハードコート膜又はガスバリア膜などの機能層を形成するフレキシブル基材として好適に使用することができる。   According to the present invention, the manufactured polyimide film has high heat resistance, and since it emits less outgas in the high-temperature treatment process, it is suitable as a support substrate for display devices and the like, and can be reacted in a shorter time. Since a polyimide film excellent in productivity can be provided, it can be suitably used as a flexible substrate for forming a functional layer such as a display element, a light emitting element, a circuit, a conductive film, a metal mesh, a hard coat film, or a gas barrier film. .

本発明で使用するポリイミドフィルムは、ガラス転移温度が400℃より高く、窒素雰囲気中0.3質量%重量減少率の温度が500℃以上であるポリイミドをフィルム化したものである。   The polyimide film used in the present invention is a polyimide film having a glass transition temperature higher than 400 ° C. and a 0.3 mass% weight reduction rate in a nitrogen atmosphere being 500 ° C. or higher.

本発明は、以下の方法によりポリイミドフィルムを得ることができる。すなわち、一般的な製法として知られているテトラカルボン酸二無水物とジアミンとの反応により、ポリイミドの前駆体であるポリアミック酸(ポリアミド酸と呼ばれる場合もある)を熱処理による閉環反応によりポリイミドとする方法を用いることができる。   In the present invention, a polyimide film can be obtained by the following method. That is, a reaction of tetracarboxylic dianhydride and diamine, which is known as a general production method, makes a polyimide polyamic acid (also called polyamic acid) as a polyimide by a ring-closing reaction by heat treatment. The method can be used.

本発明の機能付ポリイミドフィルムを製造するために、好ましくは上記一般式(1)の構造単位を10モル%以上含有するポリイミドを使用する。   In order to produce the polyimide film with a function of the present invention, a polyimide containing 10 mol% or more of the structural unit of the general formula (1) is preferably used.

ここで用いるテトラカルボン酸二無水物としては、耐熱性の観点からナフタレン環を有するテトラカルボン酸二無水物が好適に用いられる。具体的には、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物が挙げられるが、高耐熱性と低熱膨張係数の観点からは前記一般式(1)の構成単位であるナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)が特に好ましい。なお、これらのナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)は、他の芳香族テトラカルボン酸二無水物と併用することも可能であるが、NTCDAを全体の10モル%以上、好ましくは10〜70モル%の範囲で使用することがよい。10モル%未満では耐熱性の効果が十分でなく、70モル%を超えるとフィルムが脆くなりやすい。   As tetracarboxylic dianhydride used here, the tetracarboxylic dianhydride which has a naphthalene ring is used suitably from a heat resistant viewpoint. Specifically, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetra Carboxylic dianhydrides are listed, but from the viewpoint of high heat resistance and low thermal expansion coefficient, naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA), which is a structural unit of the general formula (1). Is particularly preferred. These naphthalene-2,3,6,7-tetracarboxylic dianhydrides (NTCDA) can be used in combination with other aromatic tetracarboxylic dianhydrides. It is good to use in mol% or more, Preferably it is 10-70 mol%. If it is less than 10 mol%, the effect of heat resistance is not sufficient, and if it exceeds 70 mol%, the film tends to be brittle.

本発明の製法においては、ポリイミドフィルムに強度と柔軟性を与えることを目的として他のテトラカルボン酸二無水物と併用することが好ましい。このようなテトラカルボン酸二無水物としては、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、シクロテトラカルボン酸二無水物、フェニレンビス(トリメリット酸モノエステル無水物)、4,4'-オキシジフタル酸二無水物、ベンゾフェノン‐3,4,3',4'‐テトラカルボン酸二無水物、ジフェニルスルホン‐3,4,3',4'-テトラカルボン酸二無水物、4,4'-(2,2'-ヘキサフルオロイソプロポリデン)ジフタル酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等があるが、特に好ましくは低熱膨張係数のポリイミドフィルムが得られることから3,3',4,4'-ビフェニルテトラカルボン酸二無水物である。   In the manufacturing method of this invention, it is preferable to use together with other tetracarboxylic dianhydrides for the purpose of giving a polyimide film strength and flexibility. Examples of such tetracarboxylic dianhydrides include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, cyclotetracarboxylic dianhydride, phenylenebis (trimellitic acid monoester anhydride), 4,4′-oxydiphthalic dianhydride, benzophenone-3,4,3 ′, 4′-tetracarboxylic dianhydride, diphenylsulfone-3,4,3 ′, 4′-tetracarboxylic dianhydride, 4,4 '-(2,2'-hexafluoroisopropolyden) diphthalic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Although there are acid dianhydrides, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable because a polyimide film having a low thermal expansion coefficient can be obtained.

一般式(1)で表される構造単位を有するポリイミドの合成に用いられるジアミンは、芳香環(Ar)を1個以上有する芳香族ジアミンである。芳香族ジアミンは、一般式(1)で表される構造単位を与える芳香族ジアミンであれば、特に限定されるものではない。例を挙げると、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、4,4'-メチレンジ-o-トルイジン、4,4'-メチレンジ-2,6-キシリジン、4,4'-メチレン-2, 6-ジエチルアニリン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4'-ジアミノジフェニルプロパン、3,3'-ジアミノジフェニルプロパン、4,4'-ジアミノジフェニルエタン、3,3'-ジアミノジフェニルエタン、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン4,4'-ジアミノジフェニルスルフィド、3,3'-ジアミノジフェニルスルフィド、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、3,3' -ジアミノビフェニル、3,3' -ジメチル- 4,4'-ジアミノビフェニル、3,3'-ジメトキシベンジジン、4,4'-ジアミノ-p-テルフェニル、3,3'-ジアミノ-p-テルフェニル、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジンなどが挙げられる。   The diamine used for the synthesis of the polyimide having the structural unit represented by the general formula (1) is an aromatic diamine having one or more aromatic rings (Ar). The aromatic diamine is not particularly limited as long as it is an aromatic diamine that gives the structural unit represented by the general formula (1). For example, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4'-methylenedi-o-toluidine, 4,4'- Methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylpropane, 3, 3'-diaminodiphenylpropane, 4,4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,2-bis [4- ( 4-aminophenoxy) phenyl] propane 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diamino Diphenyl ether, 3,3-diaminodiphenyl ether 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, benzidine, 3,3′-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 4,4'-diamino-p-terphenyl, 3,3'-diamino-p-terphenyl, bis (p -β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1- Dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene- 2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5 -Diamino-1,3,4-oxadiazole, piperazine and the like.

これらのうち好ましくは芳香環が1つの4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,4-ジアミノメシチレン、2,4-トルエンジアミン、m-フェニレンジアミン、p-フェニレンジアミンであるが、反応が速く、低熱膨張であるという観点からp-フェニレンジアミンが好適に用いられる。   Of these, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 2,4-toluenediamine, m-phenylenediamine, preferably having one aromatic ring P-phenylenediamine is used, but p-phenylenediamine is preferably used from the viewpoint of fast reaction and low thermal expansion.

本発明の製造方法において、ポリイミドの前駆体であるポリアミック酸は、上記に示した芳香族ジアミン成分とテトラカルボン酸二無水物成分とを0.9〜1.1のモル比で使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。すなわち、窒素気流下N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどの非プロトン性アミド系溶媒に芳香族ジアミンを溶解させた後、テトラカルボン酸二無水物を加えて、室温で3〜4時間程度反応させることにより得られる。この際、分子末端は芳香族モノアミン又は芳香族ジカルボン酸無水物で封止してもよい。溶媒としては、他にジメチルホルムアミド、2-ブタノン、ジグライム、キシレン、γブチルラクトン等が挙げられ、1種若しくは2種以上併用して使用することもできる。   In the production method of the present invention, the polyamic acid, which is a precursor of polyimide, uses the aromatic diamine component and the tetracarboxylic dianhydride component shown above in a molar ratio of 0.9 to 1.1, in an organic polar solvent. It can be produced by a known method of polymerization. That is, after dissolving an aromatic diamine in an aprotic amide solvent such as N, N-dimethylacetamide or N-methyl-2-pyrrolidone under a nitrogen stream, tetracarboxylic dianhydride is added, and the mixture is added at room temperature. It can be obtained by reacting for about 4 hours. At this time, the molecular terminal may be sealed with an aromatic monoamine or an aromatic dicarboxylic acid anhydride. Other examples of the solvent include dimethylformamide, 2-butanone, diglyme, xylene, γ-butyllactone, etc., and these can be used alone or in combination of two or more.

次に、上記のようにして得られたポリアミック酸を熱イミド化法又は化学イミド化法によりイミド化してポリイミドフィルムを得る。熱イミド化は、ガラス、金属、樹脂などの任意の基材上にアプリケーターを用いて塗布し、150℃以下の温度で2〜58分予備乾燥した後、溶剤除去、イミド化のために通常130〜360℃程度の温度で2〜30分程度熱処理することにより行われる。予備加熱処理及び熱処理は、連続して行ってもよい。化学イミド化は、ポリアミド酸に脱水剤と触媒を加え、30〜60℃で化学的に脱水を行う。代表的な脱水剤としては無水酢酸が、触媒としてはピリジンが例示される。   Next, the polyamic acid obtained as described above is imidized by a thermal imidization method or a chemical imidization method to obtain a polyimide film. Thermal imidation is usually performed on an arbitrary substrate such as glass, metal, resin, etc. using an applicator, pre-dried at a temperature of 150 ° C. or lower for 2 to 58 minutes, and then for solvent removal and imidization. The heat treatment is performed at a temperature of about ~ 360 ° C for about 2 to 30 minutes. The preheating treatment and the heat treatment may be performed continuously. In chemical imidization, a dehydrating agent and a catalyst are added to polyamic acid, and chemical dehydration is performed at 30 to 60 ° C. A typical dehydrating agent is acetic anhydride, and a catalyst is pyridine.

ここで、本発明者らは、経験的に溶解性が高いテトラカルボン酸と芳香族ジアミン、さらに溶解性、乾燥性に優れる溶剤の組み合わせを選択することで、イミド化が比較的短時間で終了することを見出しており、予備加熱を含め熱処理は60分間以内、好ましくは30分間以内、より好ましくは10分間以内で行うことができる。   Here, the present inventors have empirically completed imidization in a relatively short time by selecting a combination of tetracarboxylic acid and aromatic diamine, which are highly soluble, and a solvent having excellent solubility and drying properties. It has been found that heat treatment including preheating can be performed within 60 minutes, preferably within 30 minutes, more preferably within 10 minutes.

ポリアミド酸及びポリイミドの重合度は、ポリアミド酸溶液の還元粘度として1〜10であり、好ましくは3〜7の範囲にあることがよい。還元粘度(ηsp/C)は、N,N-ジメルアセトアミド中30℃、濃度0.5g/dLでウベローデ型粘度計を用いて測定し、(t/t0-1)/Cにより算出することができる。また、ポリアミド酸の分子量はGPC法によって求めることができる。ポリアミド酸の好ましい分子量範囲(ポリスチレン換算)は、数平均分子量で15,000〜250,000、重量平均分子量で30,000〜800,000の範囲であることが望ましいが、これらは目安であり、この範囲外のポリイミドすべてが使用できないというわけではない。なお、ポリイミドの分子量も、その前駆体の分子量と同等の範囲にある。   The degree of polymerization of the polyamic acid and the polyimide is 1 to 10 as the reduced viscosity of the polyamic acid solution, and preferably in the range of 3 to 7. The reduced viscosity (ηsp / C) is measured using an Ubbelohde viscometer in N, N-dimethylacetamide at 30 ° C. and a concentration of 0.5 g / dL, and can be calculated by (t / t0-1) / C. it can. The molecular weight of the polyamic acid can be determined by the GPC method. The preferred molecular weight range (polystyrene conversion) of the polyamic acid is preferably in the range of 15,000 to 250,000 in terms of number average molecular weight and 30,000 to 800,000 in terms of weight average molecular weight, but these are guidelines and all polyimides outside this range are used. That doesn't mean you can't. The molecular weight of polyimide is also in the same range as the molecular weight of its precursor.

本発明の製造方法において、ポリイミドフィルムは、100℃〜250℃の温度範囲における熱膨張係数が10ppm/Kより小さく、且つ、−O−C=N−官能基を含有しないことが好ましい。
100℃〜250℃の温度範囲における熱膨張係数が10ppm/Kより小さいことで、熱応力による反りの小さい機能層付ポリイミドフィルムを得ることができる。
また、5−アミノー2−(4−アミノフェニル)ベンゾオキサゾール、4−アミノー2−(4−アミノフェニル)ベンゾオキサゾール等の−O−C=N−官能基を有するモノマーを用いないことで、熱分解が起こりにくく、柔軟な機能層付ポリイミドフィルムを得ることができる。
In the production method of the present invention, the polyimide film preferably has a thermal expansion coefficient smaller than 10 ppm / K in a temperature range of 100 ° C. to 250 ° C. and does not contain a —O—C═N— functional group.
When the coefficient of thermal expansion in the temperature range of 100 ° C. to 250 ° C. is smaller than 10 ppm / K, a functional layer-equipped polyimide film having a small warpage due to thermal stress can be obtained.
Further, by not using a monomer having —O—C═N— functional group such as 5-amino-2- (4-aminophenyl) benzoxazole and 4-amino-2- (4-aminophenyl) benzoxazole, Decomposition hardly occurs, and a flexible polyimide film with a functional layer can be obtained.

また、本発明の製造方法において、ポリイミドフィルムは、本発明の目的を損なわない範囲で必要に応じて各種充填剤や添加剤を配合して使用することもできる。例えば、滑り性の向上、熱伝導性の向上などの目的で、シリカ、アルミナ、窒化ホウ素、窒化アルミニウムなどの無機微粒子を添加しても良い。   Moreover, in the manufacturing method of this invention, a polyimide film can also mix | blend and use various fillers and additives as needed in the range which does not impair the objective of this invention. For example, inorganic fine particles such as silica, alumina, boron nitride, and aluminum nitride may be added for the purpose of improving slipperiness and thermal conductivity.

本発明の製法においては、前記のようにポリアミック酸を基材上に塗布した後、乾燥、熱処理するか、液相中でイミド化まで完了させた樹脂溶液を基材上に塗布乾燥するか、別途作成したポリイミドフィルムを別の基材上に張り付けることで、ポリイミド積層体を得ることができる。生産効率の観点からは、前記のように基材上でイミド化を行い、そのまま積層体とすることが望ましい。   In the production method of the present invention, after applying the polyamic acid on the base material as described above, drying or heat treatment, or applying and drying the resin solution completed until imidization in the liquid phase, A polyimide laminate can be obtained by pasting a separately prepared polyimide film on another substrate. From the viewpoint of production efficiency, it is desirable that imidization is performed on the substrate as described above to obtain a laminate as it is.

また、本発明の製法によって得られる機能付ポリイミドフィルムは、複数層のポリイミドからなるようにしてもよい。単層の場合には、3μm〜50μmの厚みを有するようにするのがよい。一方、複数層の場合においては、主たるポリイミド層が上記の厚みを有するポリイミドフィルムであれば良い。ここで主たるポリイミド層とは、複数層のポリイミドの中で、厚みが最も大きな比率を占めるポリイミド層を指し、好適にはその厚みを3μm〜50μmにするのがよく、さらに好ましくは4μm〜30μmである。   Moreover, you may make it the polyimide film with a function obtained by the manufacturing method of this invention consist of multiple layers of polyimide. In the case of a single layer, it is preferable to have a thickness of 3 μm to 50 μm. On the other hand, in the case of a plurality of layers, the main polyimide layer may be a polyimide film having the above thickness. Here, the main polyimide layer refers to a polyimide layer that occupies the largest proportion of the thickness among a plurality of polyimide layers, preferably 3 μm to 50 μm, more preferably 4 μm to 30 μm. is there.

本発明の製法で得られるポリイミド積層体は、積層体のポリイミドフィルム表面上にさまざまな機能を有する素子、層等を形成することができる。例を挙げると液晶表示装置、有機EL表示装置、電子ペーパーをはじめとする表示装置であって、カラーフィルター等の表示装置の構成部品も含んでいてもよい。また、有機EL照明装置、タッチパネル装置、ITO等が積層された導電性フィルム、水分や酸素等の浸透を防止するガスバリアフィルム、フレキシブル回路基板の構成部品などを含めた、前記表示装置に付随して使用される各種機能装置も包含される。すなわち、本発明で言う機能層とは、液晶表示装置、有機EL表示装置、及びカラーフィルター等の構成部品のみならず、有機EL照明装置、タッチパネル装置、有機EL表示装置の電極層もしくは発光層、ガスバリアフィルム、接着フィルム、薄膜トランジスタ(TFT)、液晶表示装置の配線層もしくは透明導電層等の1種又は2種以上を組み合わせたものも含めている。   The polyimide laminate obtained by the production method of the present invention can form elements, layers and the like having various functions on the polyimide film surface of the laminate. For example, a display device such as a liquid crystal display device, an organic EL display device, and electronic paper, and may include components of the display device such as a color filter. In addition, the display device includes an organic EL lighting device, a touch panel device, a conductive film laminated with ITO, a gas barrier film that prevents permeation of moisture, oxygen, and the like, and components of a flexible circuit board. Various functional devices used are also included. That is, the functional layer referred to in the present invention is not only a component such as a liquid crystal display device, an organic EL display device, and a color filter, but also an organic EL lighting device, a touch panel device, an electrode layer or a light emitting layer of the organic EL display device, A gas barrier film, an adhesive film, a thin film transistor (TFT), a wiring layer of a liquid crystal display device, or a combination of two or more types such as a transparent conductive layer is also included.

また、機能層の形成方法は、目的とするデバイスに応じて、適宜、形成条件が設定されるが、一般的には金属膜、無機膜、有機膜等をポリイミドフィルム上に成膜した後、必要に応じて所定の形状にパターニングしたり、熱処理したりするなど、公知の方法を用いて得ることができる。すなわち、これら表示素子を形成するための手段については特に制限されず、例えば、スパッタリング、蒸着、CVD、印刷、露光、浸漬など、適宜選択されたものであり、必要な場合には真空チャンバー内などでこれらのプロセス処理を行うようにしてもよい。そして、基材とポリイミドフィルムとを分離するのは、各種プロセス処理を経て機能層を形成した直後であってもよく、ある程度の期間で基材と一体にしておき、例えば表示装置として利用する直前に分離して取り除くようにしてもよい。   In addition, the formation method of the functional layer is appropriately set according to the target device, but in general, after forming a metal film, an inorganic film, an organic film, etc. on the polyimide film, It can be obtained by a known method such as patterning into a predetermined shape or heat treatment as required. That is, the means for forming these display elements is not particularly limited, and is appropriately selected, for example, sputtering, vapor deposition, CVD, printing, exposure, immersion, etc. If necessary, in a vacuum chamber, etc. These process processes may be performed. The base material and the polyimide film may be separated immediately after the functional layer is formed through various process treatments. For example, the base material and the polyimide film may be integrated with the base material for a certain period of time, for example, immediately before being used as a display device. It may be separated and removed.

上記機能層を形成した後に、基材からポリイミドフィルムを機能層ごと剥離する。基材からポリイミドフィルムを機能層ごと剥離する際に、ポリイミドフィルムが延伸されると、リタデーションが大きくなる。このため、剥離の際にポリイミドフィルムにかかる応力が小さくなるように剥離する方法が好ましい。   After forming the functional layer, the polyimide film is peeled off from the substrate together with the functional layer. When the polyimide film is peeled from the substrate together with the functional layer, the retardation increases when the polyimide film is stretched. For this reason, the method of peeling so that the stress concerning a polyimide film in the case of peeling becomes small is preferable.

ポリイミドフィルムの延伸を防止するためには、基材上に他の層を形成し、その上にポリイミドフィルムを形成させ、その上に機能層を形成した後に、ポリイミドフィルムを当該他の層及び機能層ごと剥離し、剥離に必要な応力を当該他の層に分散する方法が好ましい。特にポリイミドフィルムが薄い場合に効果的である。この場合、当該他の層を含めて、本発明の製法に係るポリイミドフィルムとみなす。他の層を形成する方法の例としては、粘着剤による樹脂フィルムや金属箔の張り合わせ、塗布、蒸着等が挙げられる。   In order to prevent the stretching of the polyimide film, another layer is formed on the substrate, the polyimide film is formed thereon, the functional layer is formed thereon, and then the polyimide film is bonded to the other layer and the function. A method in which the entire layer is peeled and the stress necessary for peeling is dispersed in the other layers is preferable. This is particularly effective when the polyimide film is thin. In this case, including the other layers, it is regarded as a polyimide film according to the production method of the present invention. Examples of the method for forming the other layer include bonding of a resin film or a metal foil with an adhesive, coating, vapor deposition, and the like.

さらに、基材からのポリイミドフィルムの剥離を容易にし、延伸を防止する方法として、公知の他の方法も適用できる。例えば、特表2007−512568号公報では、ガラス上にポリイミド等の黄色フィルムを形成、次いでこの黄色フィルム上に薄膜電子素子を形成した後、ガラスを通して黄色フィルムの底面にUVレーザー光を照射することにより、ガラスと黄色フィルムを剥離することが可能であることを開示している。この方法によれば、UVレーザー光によりポリイミドフィルムがガラスから分離されるため、剥離の際に応力が全く発生せず、本発明の剥離プロセスとして好ましい方法の一つである。しかしながら、黄色フィルムと異なり、透明プラスチックはUVレーザー光を吸収しないため、アモルファスシリコンのような吸収/剥離層をあらかじめフィルムの下に設ける必要があることも開示されている。   Furthermore, as a method for facilitating peeling of the polyimide film from the substrate and preventing stretching, other known methods can be applied. For example, in Japanese Translation of PCT International Publication No. 2007-512568, a yellow film such as polyimide is formed on glass, then a thin film electronic element is formed on the yellow film, and then the UV laser light is irradiated to the bottom surface of the yellow film through the glass. Discloses that the glass and the yellow film can be peeled off. According to this method, since the polyimide film is separated from the glass by UV laser light, no stress is generated at the time of peeling, which is one of the preferable methods for the peeling process of the present invention. However, it is also disclosed that, unlike a yellow film, a transparent plastic does not absorb UV laser light, and therefore it is necessary to previously provide an absorption / release layer such as amorphous silicon under the film.

また、特表2012―511173号公報では、UVレーザー光の照射によりガラスとポリイミドフィルムの剥離を行なうためには、300〜410nmのスペクトルの範囲内のレーザーを用いることが開示されている。因みに、剥離方法としては、ガラス側からレーザーを照射して、表示部を備えた樹脂基材をガラスから分離する方法、剥離層をガラス基板に塗布して形成した後、剥離層の上にポリイミド樹脂を塗布し、有機EL表示装置の製造工程が完了した後に剥離層からポリイミドフィルムを剥離する方法、無機層の表面のカップリング剤処理を行なった後、UV照射等によりこのカプリング剤のパターン化処理を行ない、剥離強度が異なる良好接着部分と易剥離部分をもつ積層体を形成し、それから剥離する方法などが挙げられる。   Japanese Patent Application Publication No. 2012-511173 discloses the use of a laser having a spectrum in the range of 300 to 410 nm in order to separate the glass and the polyimide film by irradiation with UV laser light. By the way, as a peeling method, after irradiating a laser from the glass side and separating the resin base material provided with the display part from the glass, a release layer is applied to a glass substrate and formed, and then polyimide is formed on the release layer. After the resin is applied and the manufacturing process of the organic EL display device is completed, the polyimide film is peeled from the release layer, the surface of the inorganic layer is treated with a coupling agent, and then the coupling agent is patterned by UV irradiation or the like. Examples of the method include performing a treatment to form a laminate having a good adhesion portion and an easy peel portion having different peel strengths, and then peeling the laminate.

有機EL装置の発光層から出る光の波長が主に440nmから780nmであることから、有機EL装置に用いられる支持基材としては、この波長領域での平均透過率が少なくとも80%以上であることが求められる。一方、上記で述べたUVレーザー光の照射により、ガラスとポリイミドフィルムの剥離を行なう場合、UVレーザー光の波長での透過率が高いと、吸収/剥離層をフィルムの下に設ける必要があり、このことにより生産性が低下する。吸収/剥離層を設けることなく、剥離を行なうためには、ポリイミドフィルム自体がレーザー光を十分に吸収する必要があり、ポリイミドフィルムの400nmでの透過率は、好ましくは60%以下であり、さらに好ましくは40%以下である。   Since the wavelength of light emitted from the light emitting layer of the organic EL device is mainly 440 nm to 780 nm, the average transmittance in this wavelength region is at least 80% or more as a support substrate used in the organic EL device. Is required. On the other hand, when the glass and polyimide film are peeled off by irradiation with the UV laser light described above, if the transmittance at the wavelength of the UV laser light is high, it is necessary to provide an absorption / peeling layer under the film, This reduces productivity. In order to perform peeling without providing an absorption / peeling layer, it is necessary that the polyimide film itself absorbs laser light sufficiently, and the transmittance of the polyimide film at 400 nm is preferably 60% or less, Preferably it is 40% or less.

また、有機EL装置内への水分や酸素の侵入を防ぐため、前記ポリイミドフィルムにガスバリア層を形成しても良い。この場合、ガスバリア層を含めて、本発明の製法に係るポリイミドフィルムとみなす。単体のポリイミドフィルムに形成しても良く、ガラス、金属箔などの基材とポリイミドフィルムの積層体に形成しても良い。ガスバリア層は公知のものを使用できるが、酸素や水蒸気等に対するバリア性を備えたガスバリア層として、酸化珪素、酸化アルミニウム、炭化珪素、酸化炭化珪素、炭化窒化珪素、窒化珪素、窒化酸化珪素等の無機酸化物膜が好適に例示され、1種類の組成のみで構成されてもよいし、2種
類以上の組成を混同させた膜を選択してもよい。
In order to prevent moisture and oxygen from entering the organic EL device, a gas barrier layer may be formed on the polyimide film. In this case, the gas barrier layer and the polyimide film according to the production method of the present invention are considered. You may form in a single-piece | unit polyimide film and may form in the laminated body of base materials, such as glass and metal foil, and a polyimide film. A known gas barrier layer can be used, but as a gas barrier layer having a barrier property against oxygen, water vapor and the like, silicon oxide, aluminum oxide, silicon carbide, silicon oxycarbide, silicon carbonitride, silicon nitride, silicon nitride oxide, etc. An inorganic oxide film is preferably exemplified, and may be composed of only one kind of composition, or a film in which two or more kinds of compositions are confused may be selected.

以下に機能層としてボトムエミッション構造の有機EL表示装置を代表例に、その製造方法の概略を以下説明する。   The outline of the manufacturing method will be described below using a bottom emission organic EL display device as a functional layer as a representative example.

機能層を形成する樹脂基板に対して、ガスバリア層を設けて水分や酸素の透湿を阻止できる構造にする。次に、ガスバリア層の上面に、薄膜トランジスタ(TFT)を含む回路構成層を形成する。この場合、有機EL表示装置においては、薄膜トランジスタとして動作速度が速いLTPS−TFTが主に選択される。この回路構成層には、その上面にマトリックス状に複数配置された画素領域のそれぞれに対して、例えばITO(Indium Tin Oxide)の透明導電膜からなるアノード電極を形成して構成する。更に、アノード電極の上面には有機EL発光層を形成し、この発光層の上面にはカソード電極を形成する。このカソード電極は各画素領域に共通に形成される。そして、このカソード電極の面を被うようにして、再度ガスバリア層を形成し、更に最表面には、表面保護のため封止基板を設置する。この封止基板のカソード電極側の面にも水分や酸素の透湿を阻止するガスバリア層を積層しておくのが信頼性の観点より望ましい。なお、有機EL発光層は、正孔注入層−正孔輸送層−発光層−電子輸送層等の多層膜(アノード電極−発光層−カソード電極)で形成されるが、特に、有機EL発光層は水分や酸素により劣化するため真空蒸着で形成され、電極形成も含めて真空中で連続形成されるのが一般的である。   A gas barrier layer is provided on the resin substrate on which the functional layer is formed so that moisture and oxygen can be prevented from permeating. Next, a circuit configuration layer including a thin film transistor (TFT) is formed on the upper surface of the gas barrier layer. In this case, in the organic EL display device, an LTPS-TFT having a high operation speed is mainly selected as the thin film transistor. In this circuit configuration layer, an anode electrode made of, for example, an ITO (Indium Tin Oxide) transparent conductive film is formed on each of the plurality of pixel regions arranged in a matrix on the upper surface thereof. Further, an organic EL light emitting layer is formed on the upper surface of the anode electrode, and a cathode electrode is formed on the upper surface of the light emitting layer. This cathode electrode is formed in common in each pixel region. Then, a gas barrier layer is formed again so as to cover the surface of the cathode electrode, and a sealing substrate is installed on the outermost surface for surface protection. It is desirable from the viewpoint of reliability that a gas barrier layer for preventing moisture and oxygen from permeating is laminated on the surface of the sealing substrate on the cathode electrode side. The organic EL light-emitting layer is formed of a multilayer film (anode electrode-light-emitting layer-cathode electrode) such as a hole injection layer-hole transport layer-light-emitting layer-electron transport layer. Since it deteriorates due to moisture and oxygen, it is generally formed by vacuum deposition, and it is generally formed continuously in vacuum including electrode formation.

次に、液晶表示装置や有機EL表示装置等の表示装置の入力手段として用いられるタッチパネルの概略を説明する。前述したように表示装置の薄型・軽量化に加え、フレキシブル化の進展が著しいが、表示装置上に設置されるタッチパネルもそれに呼応して薄型化、軽量化、フレキシブル化の検討が活発である。   Next, an outline of a touch panel used as input means of a display device such as a liquid crystal display device or an organic EL display device will be described. As described above, in addition to the reduction in thickness and weight of the display device, the progress of flexibility has been remarkable. However, the touch panel installed on the display device has been actively studied for reduction in thickness, weight, and flexibility.

タッチパネルの主な方式として、光の変化を検出する方式と、電気的な特性の変化を検出する方式とに大別される。電気的な特性の変化を検出する方式としては、抵抗膜方式と静電容量結合方式が知られている。更に、静電容量結合方式には表面型と投影型の2方式があるが、スマートフォン等で欠かせない機能となったマルチタッチ認識(多点認識)への対応に適している観点から投影型が注目を浴びており、その製造方法の概略を以下説明する。   The main methods of touch panels are roughly classified into a method for detecting a change in light and a method for detecting a change in electrical characteristics. As a method for detecting a change in electrical characteristics, a resistance film method and a capacitive coupling method are known. In addition, there are two types of capacitive coupling methods: surface type and projection type, but projection type from the viewpoint of being suitable for multi-touch recognition (multi-point recognition), which has become an indispensable function for smartphones and the like. Has attracted attention, and the outline of the production method will be described below.

投影型容量結合方式のタッチパネルは、縦横に2つの電極列(第1と第2の電極)を設け、指が画面に触れた時の電極の静電容量変化を測定することにより、接触位置を精密に検出できる。具体的構造は、第1の電極が形成された第1の基板と、第2の電極が形成された第2基板とを絶縁層(誘電層)を介して接合した構成となっている。薄型化、軽量化、フレキシブル化のためには、電極を形成する基板を従来のガラス基板から屈曲性のある樹脂基板に置き換えることで実現できる。また、第1の電極と第2の電極を1つの基板上に形成して、更なる薄型化、軽量化も進められている。   The projected capacitive coupling type touch panel is provided with two electrode rows (first and second electrodes) in the vertical and horizontal directions, and by measuring the change in capacitance of the electrode when the finger touches the screen, the touch position can be determined. It can be detected precisely. The specific structure is a structure in which a first substrate on which a first electrode is formed and a second substrate on which a second electrode is formed are joined via an insulating layer (dielectric layer). Thinning, weight reduction, and flexibility can be realized by replacing the substrate on which the electrode is formed with a flexible resin substrate from the conventional glass substrate. In addition, the first electrode and the second electrode are formed on one substrate to further reduce the thickness and weight.

以下、実施例等に基づいて本発明の内容をより具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically based on examples and the like, but the present invention is not limited to the scope of these examples.

先ず、ポリイミドフィルムを製造する際に使用する際のモノマーや溶媒の略語、及び、実施例中の各種物性の測定方法とその条件について以下に示す。   First, the abbreviations of monomers and solvents for use in producing a polyimide film, and various physical property measurement methods and conditions in the examples are shown below.

DMAc:N,N-ジメチルアセトアミド
BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物
NTCDA:2,3,6,7-ナフタレンテトラカルボン酸二無水物
p-PDA:パラフェニレンジアミン
4,4’-DAPE:4,4'-ジアミノジフェニルエーテル
m-TB:2,2'-ジメチル-4,4'-ジアミノビフェニル
基材:ガラス基板(コーニング社製、0.7mm厚)
DMAc: N, N-dimethylacetamide
BPDA: 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
NTCDA: 2,3,6,7-naphthalenetetracarboxylic dianhydride
p-PDA: Paraphenylenediamine
4,4'-DAPE: 4,4'-diaminodiphenyl ether
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl Base material: Glass substrate (Corning, 0.7 mm thickness)

[熱膨張係数(CTE)]
3mm×15mmのサイズのポリイミドフィルムを、SEIKO製の熱機械分析(TMA)装置TMA100にて5.0gの荷重を加えながら一定の昇温速度(20℃/min)で30℃から280℃までに昇温して、それから30℃までに降温して、この温度範囲で引張り試験を行い、250℃から100℃への温度範囲におけるポリイミドフィルムの伸び量の変化から熱膨張係数(ppm/K)を測定した。
[Coefficient of thermal expansion (CTE)]
A polyimide film with a size of 3 mm x 15 mm is heated from 30 ° C to 280 ° C at a constant rate of temperature rise (20 ° C / min) while applying a 5.0 g load with a thermomechanical analysis (TMA) device TMA100 manufactured by SEIKO. The temperature is raised and then lowered to 30 ° C., a tensile test is performed in this temperature range, and the coefficient of thermal expansion (ppm / K) is calculated from the change in the elongation of the polyimide film in the temperature range from 250 ° C. to 100 ° C. It was measured.

[ガラス転移温度Tg]
ポリイミドフィルム(10mm×22.6 mm)をティーエイ・インスツリメント・ジャパン製の動的粘弾性測定(DMA)装置RSA3にて20℃から500℃まで5℃/分で昇温させたときの動的粘弾性を測定し、ガラス転移温度Tg(tanδ極大値)を求めた。
[Glass transition temperature Tg]
Dynamics of polyimide film (10 mm x 22.6 mm) when heated at 5 ° C / min from 20 ° C to 500 ° C with a dynamic viscoelasticity measurement (DMA) device RSA3 manufactured by TI Instruments Japan The viscoelasticity was measured and the glass transition temperature Tg (tan δ maximum value) was determined.

[500℃での重量減少率(wt%)]
窒素雰囲気下で10〜20mgの重さのポリイミドフィルムを、SEIKO製の熱重量分析(TG)装置TG/DTA6200にて一定の速度で30℃から550℃まで昇温させたときの重量変化を測定し、200℃での重量をゼロとし、200℃に対する500℃における重量減少率を算出した。
[Weight reduction rate at 500 ° C (wt%)]
Measure the change in weight of a polyimide film weighing 10 to 20 mg under a nitrogen atmosphere when the temperature is raised from 30 ° C. to 550 ° C. at a constant speed using a thermogravimetric analysis (TG) device TG / DTA6200 manufactured by SEIKO. The weight reduction rate at 500 ° C. with respect to 200 ° C. was calculated with the weight at 200 ° C. being zero.

[剥離性]
ポリイミドフィルムを破断・破れがなく基材から剥離できる場合は○と判断した。また、剥離する過程で、破断・破れが発生し、剥離できなくなる場合は×と判断した。
[Peelability]
When the polyimide film could be peeled off from the substrate without breaking or tearing, it was judged as “good”. Further, in the process of peeling, when breakage / tear occurred and peeling became impossible, it was judged as x.

[製膜性]
ポリアミック酸から熱処理により、発泡なく、外観が綺麗なポリイミドが得られるまでに要した時間が60分間以内は○とし、要した時間が60分間以内であっても外観上発泡が見られたり、強度が不足しているものは△とし、脆すぎてフィルム化できなかったものを×とした。
[Film forming properties]
The time required to obtain a polyimide with good appearance without foaming by heat treatment from polyamic acid is rated as ◯ within 60 minutes, and foaming is visible on the appearance even if it takes less than 60 minutes, and strength In the case where the film was insufficient, the film was marked as Δ, and the film that was too brittle and could not be formed into a film was marked as x.

合成例1
窒素気流下で、100mlのセパラブルフラスコの中で攪拌しながら、p-PDA:8.0567gを溶剤170gのDMAcに溶解させた。次いで、この溶液にBPDA:19.9253gを加えた。10分後、NTCDA:2.0180gを加えた。NTCDAの含有mol%は10%であった。その後、溶液を室温で4時間攪拌を続けて重合反応を行い、一昼夜保持した。そして、粘稠な無色のポリアミド酸溶液が得られて、高重合度のポリアミド酸Aが生成されていることが確認された。
Synthesis example 1
Under a nitrogen stream, 8.0567 g of p-PDA was dissolved in 170 g of DMAc while stirring in a 100 ml separable flask. Subsequently, BPDA: 19.2533g was added to this solution. Ten minutes later, NTCDA: 2.0180 g was added. The mol% content of NTCDA was 10%. Thereafter, the solution was stirred at room temperature for 4 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous colorless polyamic acid solution was obtained, and it was confirmed that polyamic acid A having a high degree of polymerization was produced.

合成例2〜4
表1の合成例2〜4に示すように組成を変更した以外は、合成例1と同じ方法で重合を行い、ポリアミック酸B、C、Dが得られた。
Synthesis Examples 2-4
Polymerization was performed in the same manner as in Synthesis Example 1 except that the composition was changed as shown in Synthesis Examples 2 to 4 in Table 1, and polyamic acids B, C, and D were obtained.

Figure 2017069200
Figure 2017069200

合成例5〜9
表2の合成例5〜9に示すように組成を変更した以外は、合成例1と同じ方法で重合を行い、ポリアミック酸E、F、G、H、Iが得られた。
Synthesis Examples 5-9
Polymerization was performed in the same manner as in Synthesis Example 1 except that the composition was changed as shown in Synthesis Examples 5 to 9 in Table 2, and polyamic acids E, F, G, H, and I were obtained.

Figure 2017069200
Figure 2017069200

実施例1
上記で得られたポリアミド酸A溶液に、DMAcを加えて、粘度が5000cPになるように希釈した。厚み0.5mm、10mm角のガラス基板上にアプリケーターを用いて熱処理後の膜厚が約25μmとなるように塗布し、30分をかけて90℃から400℃まで昇温させ(熱処理時間30分)、ガラス基板上にポリイミドを形成し、積層体Aを得た。次に、ポリイミドフィルムをガラス基板から剥離し、ポリイミドフィルムAを得た。得られたポリイミドフィルムAと積層体Aについて、各種評価を行った結果を表3に示す。
Example 1
DMAc was added to the polyamic acid A solution obtained above, and diluted so that the viscosity became 5000 cP. It was applied on a glass substrate having a thickness of 0.5 mm and 10 mm square using an applicator so that the film thickness after heat treatment was about 25 μm, and the temperature was raised from 90 ° C. to 400 ° C. over 30 minutes (heat treatment time 30 minutes) ), Polyimide was formed on the glass substrate, and a laminate A was obtained. Next, the polyimide film was peeled from the glass substrate to obtain polyimide film A. Table 3 shows the results of various evaluations of the obtained polyimide film A and laminate A.

実施例2〜3
表3の実施例2〜3に示すように樹脂をポリアミック酸B、Cに変更した以外は、実施例1と同じ方法で実施例2〜3に係る積層体B〜C及びポリイミドフィルムB〜Cを作製した。評価結果を同様に表3に示す。
Examples 2-3
Laminated bodies B to C and polyimide films B to C according to Examples 2 to 3 in the same manner as Example 1 except that the resin was changed to polyamic acids B and C as shown in Examples 2 to 3 of Table 3. Was made. The evaluation results are also shown in Table 3.

比較例1
表3に示すように樹脂をポリアミック酸Dに変更した以外は、実施例1と同じ方法で比較例1に係る積層体D及びポリイミドフィルムDを作製した。評価結果を同様に表3に示す。
Comparative Example 1
A laminate D and a polyimide film D according to Comparative Example 1 were produced in the same manner as in Example 1 except that the resin was changed to polyamic acid D as shown in Table 3. The evaluation results are also shown in Table 3.

比較例2〜6
表3に示すように樹脂をポリアミック酸E、F、G、H、Iに変更した以外は、実施例1と同じ方法で比較例2〜6に係る積層体E、F、G、H、I及びポリイミドフィルムE、F、G、H、Iを作製した。評価結果を同様に表3に示す。
Comparative Examples 2-6
As shown in Table 3, laminates E, F, G, H and I according to Comparative Examples 2 to 6 were prepared in the same manner as in Example 1 except that the resin was changed to polyamic acids E, F, G, H and I. And polyimide films E, F, G, H, and I were prepared. The evaluation results are also shown in Table 3.

Figure 2017069200
* PAc酸:ポリアミック酸、PI:ポリイミドフィルム
Figure 2017069200
* PAc acid: Polyamic acid, PI: Polyimide film

実施例4
実施例4は、ポリイミドフィルム上に有機EL表示素子を付けた機能層付ポリイミドフィルムを製造する実施例である。まずは、上記で得られたポリアミド酸A溶液に、実施例1と同様に、DMAcを加えて、粘度が5000cPになるように希釈した。厚み0.5mm、10mm角のガラス基板上にアプリケーターを用いて熱処理後の膜厚が約10μmとなるように塗布し、30分をかけて90℃から400℃まで昇温させ(熱処理時間30分)、ガラス基板上にポリイミドフィルムAを形成し、ポリイミド積層体Aを得た。ポリイミドフィルムAの上に水分と酸素の透湿を阻止できるようにガスバリア層を設けた。次に、ガスバリア層の上面に、薄膜トランジスタ(TFT)を含む回路構成層を形成させた。この場合、有機EL表示装置においては、薄膜トランジスタとして動作速度が速いLTPS−TFTを選択した。この回路構成層には、その上面にマトリックス状に複数配置された画素領域のそれぞれに対して、ITO(Indium Tin Oxide)の透明導電膜からなるアノード電極を形成した。更に、アノード電極の上面には有機EL発光層を形成し、この発光層の上面にはカソード電極を形成した。このカソード電極は各画素領域に共通に形成される。そして、このカソード電極の面を被うようにして、再度ガスバリア層を形成し、更に最表面には、表面保護のため封止基板を設置する。なお、有機EL発光層は、正孔注入層−正孔輸送層−発光層−電子輸送層等の多層膜(アノード電極−発光層−カソード電極)で形成される時に、有機EL発光層は水分や酸素により劣化するため真空蒸着で形成され、電極形成も含めて真空中で連続形成させた。
Example 4
Example 4 is an example for producing a polyimide film with a functional layer in which an organic EL display element is attached on a polyimide film. First, in the same manner as in Example 1, DMAc was added to the polyamic acid A solution obtained above, and diluted so that the viscosity became 5000 cP. It was applied on a glass substrate having a thickness of 0.5 mm and 10 mm square using an applicator so that the film thickness after heat treatment was about 10 μm, and the temperature was raised from 90 ° C. to 400 ° C. over 30 minutes (heat treatment time 30 minutes) ), A polyimide film A was formed on the glass substrate to obtain a polyimide laminate A. A gas barrier layer was provided on the polyimide film A so as to prevent moisture and oxygen from passing through. Next, a circuit configuration layer including a thin film transistor (TFT) was formed on the upper surface of the gas barrier layer. In this case, in the organic EL display device, LTPS-TFT having a high operation speed was selected as the thin film transistor. An anode electrode made of a transparent conductive film made of ITO (Indium Tin Oxide) was formed on each of the circuit constituent layers on each of the plurality of pixel regions arranged in a matrix on the upper surface. Further, an organic EL light emitting layer was formed on the upper surface of the anode electrode, and a cathode electrode was formed on the upper surface of the light emitting layer. This cathode electrode is formed in common in each pixel region. Then, a gas barrier layer is formed again so as to cover the surface of the cathode electrode, and a sealing substrate is installed on the outermost surface for surface protection. The organic EL light emitting layer is formed of a multilayer film (anode electrode-light emitting layer-cathode electrode) such as a hole injection layer-hole transport layer-light emitting layer-electron transport layer, etc. Since it deteriorates due to oxygen and oxygen, it was formed by vacuum deposition, and was continuously formed in a vacuum including electrode formation.

実施例5
実施例5は、ポリイミドフィルム上に投影型容量結合方式のタッチパネルを付けた機能層付ポリイミドフィルムを製造する実施例である。ポリアミド酸Bを使用する以外は実施例4と同様にして、ガラス基板上にポリイミドフィルムBを形成し、ポリイミド積層体Bを得た。ポリイミドフィルムBの上に、縦横に2つの電極列(第1と第2の電極)を設け、指が画面に触れた時の電極の静電容量変化を測定することにより、接触位置を精密に検出できる。具体的構造は、第1の電極が形成された第1の基板と、第2の電極が形成された第2基板とを絶縁層(誘電層)を介して接合した構成となっている。薄型化、軽量化、フレキシブル化のためには、電極を形成する基板を従来のガラス基板から屈曲性のある樹脂基板に置き換えることで実現できる。また、第1の電極と第2の電極を1つの基板上に形成して、更なる薄型化、軽量化も進められている。
Example 5
Example 5 is an example of manufacturing a polyimide film with a functional layer in which a projected capacitive coupling type touch panel is attached on a polyimide film. Except for using polyamic acid B, a polyimide film B was formed on a glass substrate in the same manner as in Example 4 to obtain a polyimide laminate B. On the polyimide film B, two electrode rows (first and second electrodes) are provided vertically and horizontally, and by measuring the change in capacitance of the electrode when the finger touches the screen, the contact position is precisely determined. It can be detected. The specific structure is a structure in which a first substrate on which a first electrode is formed and a second substrate on which a second electrode is formed are joined via an insulating layer (dielectric layer). Thinning, weight reduction, and flexibility can be realized by replacing the substrate on which the electrode is formed with a flexible resin substrate from the conventional glass substrate. In addition, the first electrode and the second electrode are formed on one substrate to further reduce the thickness and weight.

表3に示したとおり、本発明の製造条件を満たした実施例1〜3に係るポリイミドフィルムは、耐熱性を保持したままで、熱膨張係数が10ppm/kより小さく、きれいに支持体基板から剥離でき、短時間製膜できるものであった。従って、このようなポリイミドフィルムは、有機ELディスプレイ、有機EL照明、電子ペーパー、タッチパネル等の表示装置のほか、蒸着マスク、ファンアウトウェハーレベルパッケージ(FOWLP)用基板を形成する支持基材として、好適に使用できる。
一方、表3に示したとおり、本発明の製造条件を満たさない比較例1に係るポリイミドフィルムからなるものは、熱膨張係数が大きくガラスとの積層体は反りが起きる恐れがあり、短時間では発泡のため製膜できずに、表示装置等の機能層を形成するポリイミドフィルムとして適さないものであった。比較例2に係るポリイミドフィルムからなるものは重量減少が大きく、表示装置等の機能層を形成する際にアウトガスによる機能層への汚染の恐れがあるものであった。比較例3〜5に係るポリイミドフィルムからなるものは、脆くフィルムとしての強度が圧倒的に不足しており、一部測定器による物性評価ができないも
のであった。
As shown in Table 3, the polyimide films according to Examples 1 to 3 satisfying the production conditions of the present invention have a thermal expansion coefficient smaller than 10 ppm / k while maintaining heat resistance, and are neatly peeled from the support substrate. The film could be formed for a short time. Therefore, such a polyimide film is suitable as a supporting base material for forming a substrate for a vapor deposition mask and a fan-out wafer level package (FOWLP) in addition to a display device such as an organic EL display, organic EL lighting, electronic paper, and a touch panel. Can be used for
On the other hand, as shown in Table 3, those made of the polyimide film according to Comparative Example 1 that does not satisfy the production conditions of the present invention have a large coefficient of thermal expansion, and the laminate with glass may be warped. The film could not be formed due to foaming and was not suitable as a polyimide film for forming a functional layer of a display device or the like. What consists of the polyimide film which concerns on the comparative example 2 had a large weight reduction | decrease, and when forming functional layers, such as a display apparatus, there was a possibility of a contamination to a functional layer by outgas. Those made of the polyimide film according to Comparative Examples 3 to 5 were brittle and overwhelmingly lacked in strength as a film, and some physical properties could not be evaluated by a measuring instrument.

Claims (7)

基材とポリイミドフィルムが積層されたポリイミド積層体のポリイミドフィルムの上に機能層を形成し、基材からポリイミドフィルムを機能層ごと剥離する機能層付ポリイミドフィルムの製造方法であって、ポリイミドフィルムが、ポリアミック酸を60分間以内で熱処理することにより形成されるとともに、ガラス転移温度が400℃より高く、窒素雰囲気中0.3質量%重量減少率の温度が500℃以上であることを特徴とする機能層付ポリイミドフィルムの製造方法。   It is a manufacturing method of a polyimide film with a functional layer which forms a functional layer on a polyimide film of a polyimide laminate in which a substrate and a polyimide film are laminated, and peels the polyimide film from the substrate together with the functional layer. The polyamic acid is formed by heat treatment within 60 minutes, has a glass transition temperature higher than 400 ° C., and a 0.3 mass% weight loss rate in a nitrogen atmosphere is 500 ° C. or higher. A method for producing a polyimide film with a functional layer. ポリイミドフィルムが、下記一般式(1)で表される構造単位を10モル%以上含有する請求項1記載の機能層付ポリイミドフィルムの製造方法。
Figure 2017069200
(式中、Arは芳香環を1個以上有する2価の有機基である。)
The manufacturing method of the polyimide film with a functional layer of Claim 1 in which a polyimide film contains 10 mol% or more of structural units represented by following General formula (1).
Figure 2017069200
(In the formula, Ar is a divalent organic group having one or more aromatic rings.)
ポリイミドフィルムが、ナフタレンテトラカルボン酸二無水物及びビフェニルテトラカルボン酸二無水物とフェニレンジアミンとを−20℃〜60℃の温度で反応させて得られることを特徴とする請求項1又は2記載の機能層付ポリイミドフィルムの製造方法。   The polyimide film is obtained by reacting naphthalenetetracarboxylic dianhydride or biphenyltetracarboxylic dianhydride with phenylenediamine at a temperature of -20 ° C to 60 ° C. A method for producing a polyimide film with a functional layer. ポリイミドフィルムが、100℃〜250℃の温度範囲における熱膨張係数が10ppm/Kより小さく、且つ、-O-C=N-官能基を含有しないことを特徴とする請求項1〜3のいずれかに記載の機能層付ポリイミドフィルムの製造方法。   The polyimide film has a thermal expansion coefficient smaller than 10 ppm / K in a temperature range of 100 ° C to 250 ° C and does not contain -OC = N-functional group. Manufacturing method of polyimide film with functional layer. ポリイミドフィルムが、ナフタレンテトラカルボン酸二無水物及びビフェニルテトラカルボン酸二無水物とフェニレンジアミンを有機溶媒の存在下に反応させて得られたポリアミド酸溶液を基材上に塗布、溶媒除去したのち、110℃〜380℃の温度で反応させてイミド化させることで得られることを特徴とする請求項1〜4のいずれかに記載の機能層付ポリイミドフィルムの製造方法。   After applying a polyamic acid solution obtained by reacting naphthalenetetracarboxylic dianhydride and biphenyltetracarboxylic dianhydride and phenylenediamine in the presence of an organic solvent on the substrate and removing the solvent, the polyimide film is It obtains by making it react at the temperature of 110 to 380 degreeC, and imidating, The manufacturing method of the polyimide film with a functional layer in any one of Claims 1-4 characterized by the above-mentioned. 基材が無機基板からなることを特徴とする請求項1〜5のいずれかに記載の機能層付ポリイミドフィルムの製造方法。   The method for producing a polyimide film with a functional layer according to any one of claims 1 to 5, wherein the substrate comprises an inorganic substrate. 機能層が表示素子、発光素子、回路、導電膜、メタルメッシュ、ハードコート膜又はガスバリア膜であることを特徴とする請求項1〜6のいずれかに記載の機能層付ポリイミドフィルムの製造方法。   The method for producing a polyimide film with a functional layer according to claim 1, wherein the functional layer is a display element, a light emitting element, a circuit, a conductive film, a metal mesh, a hard coat film, or a gas barrier film.
JP2016191704A 2015-09-30 2016-09-29 Manufacturing method of functional layer-attached polyimide film Pending JP2017069200A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193512 2015-09-30
JP2015193512 2015-09-30

Publications (1)

Publication Number Publication Date
JP2017069200A true JP2017069200A (en) 2017-04-06

Family

ID=58485733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191704A Pending JP2017069200A (en) 2015-09-30 2016-09-29 Manufacturing method of functional layer-attached polyimide film

Country Status (4)

Country Link
JP (1) JP2017069200A (en)
KR (1) KR20170038720A (en)
CN (1) CN106560320A (en)
TW (1) TW201714937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065624A1 (en) * 2017-09-27 2019-04-04 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP2019059927A (en) * 2017-09-27 2019-04-18 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP2019065266A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board
WO2021040004A1 (en) * 2019-08-30 2021-03-04 株式会社カネカ Polyimide film, production method therefor, and polyimide resin composition
CN113130807A (en) * 2021-04-16 2021-07-16 河北工业大学 Light-emitting device and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020097A (en) * 2018-08-20 2021-02-23 도요보 가부시키가이샤 Laminate and manufacturing method of laminate
KR101966958B1 (en) 2018-09-07 2019-04-09 (주)아이피아이테크 Polyimide film for semiconductor packaging
CN110156991A (en) * 2019-06-10 2019-08-23 宜宾天原集团股份有限公司 A kind of preparation method of low thermal expansion coefficient polyimide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102155A (en) * 2010-11-05 2012-05-31 Kaneka Corp Polyimide film, laminate, and flexible device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642664B2 (en) 2006-01-17 2011-03-02 新日鐵化学株式会社 Laminate for wiring board
JP2010202729A (en) 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
JP5410895B2 (en) * 2009-09-11 2014-02-05 新日鉄住金化学株式会社 Method for producing polyimide film
JP5650458B2 (en) 2010-08-11 2015-01-07 株式会社カネカ LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
JP5667392B2 (en) 2010-08-23 2015-02-12 株式会社カネカ Laminated body and use thereof
WO2012090055A1 (en) * 2010-12-29 2012-07-05 Director General, Defence Research & Development Organisation Amino functionalised oligoimides with enhanced storage stability
JP2014009305A (en) * 2012-06-29 2014-01-20 Asahi Kasei E-Materials Corp Resin composition, laminate and method for manufacturing laminate
JP6067419B2 (en) * 2013-02-28 2017-01-25 新日鉄住金化学株式会社 Method for manufacturing laminated member
JP6293457B2 (en) 2013-11-12 2018-03-14 学校法人東邦大学 Polyimide and heat resistant film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102155A (en) * 2010-11-05 2012-05-31 Kaneka Corp Polyimide film, laminate, and flexible device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065624A1 (en) * 2017-09-27 2019-04-04 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP2019059927A (en) * 2017-09-27 2019-04-18 大日本印刷株式会社 Film, polyimide film, laminate, member for display, touch panel member, liquid crystal display, and organic electroluminescence display apparatus
JP7363019B2 (en) 2017-09-27 2023-10-18 大日本印刷株式会社 Display materials, touch panel materials, liquid crystal display devices, and organic electroluminescent display devices
JP2019065266A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate, and circuit board
JP7212480B2 (en) 2017-09-29 2023-01-25 日鉄ケミカル&マテリアル株式会社 Polyimide films, metal-clad laminates and circuit boards
WO2021040004A1 (en) * 2019-08-30 2021-03-04 株式会社カネカ Polyimide film, production method therefor, and polyimide resin composition
CN113130807A (en) * 2021-04-16 2021-07-16 河北工业大学 Light-emitting device and preparation method and application thereof
CN113130807B (en) * 2021-04-16 2024-04-30 河北工业大学 Light-emitting device and preparation method and application thereof

Also Published As

Publication number Publication date
TW201714937A (en) 2017-05-01
KR20170038720A (en) 2017-04-07
CN106560320A (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP2017069200A (en) Manufacturing method of functional layer-attached polyimide film
JP6476278B2 (en) Polyimide precursor resin composition
TWI813543B (en) Method for producing polyimide precursor, polyimide and transparent polyimide film
KR101775197B1 (en) A laminate structure and a device comprising a substrate manufactured by using same
JP6732406B2 (en) Display device, manufacturing method thereof, and polyimide film for display device
JP6963504B2 (en) Polyimide laminate and its manufacturing method
JP2014025059A (en) Polyimide film for supporting base material of display device, laminate of the same and method for manufacturing the same
TWI791056B (en) Polyimide precursor and polyimide, laminate, flexible device
JP7030418B2 (en) Polyimide resin laminate and its manufacturing method
JP6956486B2 (en) Polyimide film for flexible devices, its precursor, and polyimide film with functional layer
JP2018028052A (en) Polyimide precursor and polyimide
JP7217220B2 (en) Polyimide precursor composition, polyimide film and flexible device produced therefrom, method for producing polyimide film
JP2018028053A (en) Method for producing transparent polyimide film
JP7079076B2 (en) Polyimide precursor and the polyimide resulting from it
JP2024015064A (en) Polyimide and flexible device
JP7102191B2 (en) Method of manufacturing polyimide film
JP6846148B2 (en) Polyimide precursor solution and its production method, polyimide film production method and laminate production method
JP7265864B2 (en) Polyimide precursor and polyimide
JP2021107534A (en) Polyimide film, method for producing the same and flexible device
JP2022083786A (en) Polyimide precursor, polyimide, polyimide film, and display device including the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20161128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316