JP2017069169A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2017069169A
JP2017069169A JP2015197131A JP2015197131A JP2017069169A JP 2017069169 A JP2017069169 A JP 2017069169A JP 2015197131 A JP2015197131 A JP 2015197131A JP 2015197131 A JP2015197131 A JP 2015197131A JP 2017069169 A JP2017069169 A JP 2017069169A
Authority
JP
Japan
Prior art keywords
battery pack
battery
assembled battery
pressure
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015197131A
Other languages
Japanese (ja)
Inventor
基和 長谷川
Motokazu Hasegawa
基和 長谷川
剛 橋谷田
Go Hashiyada
剛 橋谷田
佑紀 岡
Yuki Oka
佑紀 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015197131A priority Critical patent/JP2017069169A/en
Publication of JP2017069169A publication Critical patent/JP2017069169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack in which, even if there are variations in thickness of an assembled battery, applied pressure is adequately adjusted to obtain stable products with no variation (individual difference) between products.SOLUTION: A battery pack includes: an assembled battery in which a plurality of flat-shaped single cells 4 are laminated in a thickness direction, each of the single cells housing a power generating element therein and having a film outer package; a box 1 housing the assembled battery therein and having an opening; a pressing spring 5 arranged above the assembled battery; a lid 2 pressing the assembled battery via the pressing spring 5 to close the opening of the box 1; and a pressurizing force adjustment member 3 provided between the box 1 and the lid 2 and abutting against the lid 2 to adjust a compression amount of the assembled battery by the pressing spring 5.SELECTED DRAWING: Figure 1

Description

本発明は電池パック、より詳しくはフィルム外装体により外装された単電池を複数有する電池パックに関する。   The present invention relates to a battery pack, and more particularly to a battery pack having a plurality of single cells covered by a film outer package.

電池パックは、単電池を複数組み合わせて所定の電圧、容量が得られるように組電池として収容したものである。単電池の外装体には、大別して金属缶、フィルム(ラミネートフィルム)の2種類がある。ラミネートフィルムの外装体を有する電池(以下、ラミネート電池という)は外装体が金属缶より軽量であること、集電体の積層数を増やすことで所定の容量に作り込みやすいことが特徴である。   The battery pack is a combination of a plurality of single cells and is accommodated as an assembled battery so that a predetermined voltage and capacity can be obtained. There are roughly two types of outer casings for single cells: metal cans and films (laminate films). A battery having a laminate film outer package (hereinafter referred to as a laminate battery) is characterized in that the outer package is lighter than a metal can and can be easily built into a predetermined capacity by increasing the number of stacked current collectors.

一方で、ラミネート電池には、外装が柔軟なために生じる課題として、単電池間での厚さのばらつきが大きいこと、適度な加圧により特性を安定させなければならないことがある。
厚さのばらつきについては、ラミネート電池では集電体を積層させて柔軟性を有するラミネートフィルムで覆うため、集電体の厚さのばらつき(部品のばらつき)、積層状態(組立ばらつき)と部品の組立作業要因の二つのばらつきがそのまま厚さのばらつきとして現れ易くなっている。
一方、金属缶パッケージの電池では集電体を所定寸法の金属性剛体に挿入するため形状のばらつきが少ない。
On the other hand, as a problem that arises due to the flexible exterior of the laminated battery, there are cases where the variation in thickness among the single cells is large and the characteristics must be stabilized by appropriate pressure.
Regarding the thickness variation, in the laminated battery, the current collector is laminated and covered with a flexible laminate film, so the thickness variation of the current collector (component variation), the lamination state (assembly variation) and the component Two variations of assembly work factors are likely to appear as thickness variations.
On the other hand, in the battery of the metal can package, since the current collector is inserted into a metal rigid body having a predetermined size, there is little variation in shape.

ところで、ラミネート電池では、適切に加圧することで狙いの電池特性を得ることが一般的である。例えば電池の入出力特性に関わる内部抵抗は、図6に示すように加圧力に応じて低下していく。これは、ラミネート電池では、加圧することで電極間の距離を一定かつ安定に保つことができるためである。   By the way, in a laminated battery, it is common to obtain target battery characteristics by appropriately applying pressure. For example, the internal resistance related to the input / output characteristics of the battery decreases according to the applied pressure as shown in FIG. This is because in a laminated battery, the distance between the electrodes can be kept constant and stable by applying pressure.

ここで、特許文献を見ると、ラミネート電池の加圧方法として、特許文献1(特開2006−339032号公報)には、電池パック内の単電池間で温度のバラツキを低減すると共に、箱体に単電池を収納して蓋体により単電池を加圧した電池パックが記載されている。
ただ、この方法によると、組電池の厚さに個体差が生じた際でも蓋体は同じ位置で取り付けるため、箱体と蓋体間で発生する圧力が電池パックごとにばらつく。そのため製品ばらつきが大きくなるという問題がある。
Here, when the patent document is seen, as a pressurizing method of the laminated battery, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-339032) discloses that the temperature variation between the single cells in the battery pack is reduced and the box body is used. Describes a battery pack in which a unit cell is housed and the unit cell is pressurized with a lid.
However, according to this method, since the lid is attached at the same position even when individual differences occur in the thickness of the assembled battery, the pressure generated between the box and the lid varies for each battery pack. Therefore, there is a problem that the product variation becomes large.

また、加圧力調整手段を備えたラミネート電池も知られている(特許文献2;特開2015−115313号公報)。
この加圧力調整方法は、ガス発生時の圧力を調整するために複数の加圧手段の一部を調整可能とするものである。つまり、この方法によると、加圧力を調整できるのは一部であり、組電池の厚さがばらついた際でも、固定加圧点での加圧力は一定である。そのため、製品としてのばらつきを小さくすることはできないという問題がある。
In addition, a laminate battery provided with a pressure adjusting means is also known (Patent Document 2; JP-A-2015-115313).
This pressurizing pressure adjusting method enables a part of a plurality of pressurizing means to be adjusted in order to adjust the pressure when gas is generated. That is, according to this method, the pressure can be partially adjusted, and the pressure at the fixed pressurization point is constant even when the thickness of the assembled battery varies. Therefore, there is a problem that the variation as a product cannot be reduced.

本発明は、前記従来の課題に鑑みてなされたものであって、その目的は、ラミネート電池の厚さにばらつきがあっても、ラミネート電池に印加する加圧力を適切に調整し、製品間でばらつき(個体差)のない安定した製品が得られるようにすることである。   The present invention has been made in view of the above-described conventional problems, and its purpose is to appropriately adjust the pressure applied to the laminated battery even if the thickness of the laminated battery varies, and between products. The aim is to obtain a stable product without variations (individual differences).

本発明は、発電要素を収容しフィルム外装体を有する単電池を厚さ方向に複数積み重ねた組電池と、前記組電池を収容する開口部を有する箱体と、前記組電池の上に配された加圧部材と、前記加圧部材を介して前記組電池を加圧する前記箱体の開口部を塞ぐ蓋体と、前記箱体と前記蓋体の間に設けられ、前記蓋体に当接して前記加圧部材による前記組電池の圧縮量を調整する加圧力調整部材とを有する電池パックである。   The present invention provides an assembled battery in which a plurality of unit cells that contain a power generation element and have a film outer package are stacked in a thickness direction, a box having an opening that accommodates the assembled battery, and the assembled battery. A pressure member, a lid that closes an opening of the box that pressurizes the assembled battery via the pressure member, and a lid that is provided between the box and the lid, and is in contact with the lid And a pressure adjusting member that adjusts the compression amount of the assembled battery by the pressure member.

本発明によれば、電池パックにおいて、ラミネート電池の厚さにばらつきがあっても、ラミネート電池に印加する加圧力を適切に調整し、製品間でばらつき(個体差)のない安定した製品が得られる。   According to the present invention, even if the thickness of the laminated battery varies in the battery pack, the pressure applied to the laminated battery is appropriately adjusted to obtain a stable product free from variations (individual differences) between products. It is done.

本発明の第1の実施形態に係る電池パックのラミネート組電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the laminated battery pack of the battery pack which concerns on the 1st Embodiment of this invention. 図1に示す組電池の側面図である。It is a side view of the assembled battery shown in FIG. 組電池の図1における線X−Xの矢視方向の断面図である。It is sectional drawing of the assembled battery in FIG. 1 in the arrow direction of the line XX. 図1に示す単電池の側面図である。It is a side view of the cell shown in FIG. 図4に示す発電要素の分解斜視図である。It is a disassembled perspective view of the electric power generation element shown in FIG. ラミネート電池の特性の一つである内部抵抗について、横軸に発電要素の加圧力、縦軸に内部抵抗の関係を示す図である。It is a figure which shows the relationship between the applied pressure of a power generation element on a horizontal axis, and the internal resistance on a vertical axis | shaft about the internal resistance which is one of the characteristics of a laminated battery. 本実施形態の電池パックの効果を説明する、組電池の図1の矢視X−X方向の断面図である。It is sectional drawing of the assembled battery of FIG. 1 in the arrow XX direction explaining the effect of the battery pack of this embodiment. 図7と同様の断面図であって、加圧力調整部材の調整方法を示す図である。It is sectional drawing similar to FIG. 7, Comprising: It is a figure which shows the adjustment method of a pressurization adjustment member. 組電池の組立時における作業手順を示すフロー図である。It is a flowchart which shows the work procedure at the time of the assembly of an assembled battery. 本発明の第2の実施形態に係る組電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the assembled battery which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る組電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the assembled battery which concerns on the 2nd Embodiment of this invention. 第2の実施形態において、組電池の高さのばらつきに対して、加圧力調整部材の厚さを適切に調整することを示す、組電池における図10の矢視X−X線方向の断面図である。In 2nd Embodiment, sectional drawing of the assembled battery in the arrow XX direction of FIG. 10 which shows adjusting the thickness of a pressurization adjustment member appropriately with respect to the dispersion | variation in the height of an assembled battery. It is. 本発明の第3の実施形態を説明する組電池の平面図である。It is a top view of the assembled battery explaining the 3rd Embodiment of this invention. 組電池で用いる加圧力調整部材の拡大図であり、図14Aは加圧力調整部材を斜め上からみた斜視図、及び図14Bは加圧力調整部材の断面形状を示す図である。FIG. 14A is an enlarged view of a pressure adjusting member used in the assembled battery, FIG. 14A is a perspective view of the pressure adjusting member as viewed obliquely, and FIG. 14B is a diagram showing a cross-sectional shape of the pressure adjusting member.

第1の実施形態
本発明の実施形態に係る電池パックのラミネート組電池を、添付図面を参照して説明する。
図1は、本発明の第1の実施形態に係る電池パックのラミネート組電池の外観を示す斜視図である。
第1の実施形態に係る電池パックは、層状に配置されたフィルム外装体、ここではラミネートフィルム外装体で外装された複数の単電池(ラミネート単電池;以下、単電池という)を弾性体、例えば加圧ばねで加圧する方式を採用している。
即ち、図1において、1は上部が開口した下フレーム(箱体)を示し、下フレーム1には単電池4が複数(図示例では3個)積み重ねて収容されている。複数積み重ねた単電池4上には、単電池4とほぼ同じ大きさの板体6が載置されており、その上には加圧部材である複数の例えばコイルばねである加圧ばね5が並べて配置されている。
First Embodiment A laminated battery pack of a battery pack according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view showing an appearance of a laminated battery pack of a battery pack according to the first embodiment of the present invention.
The battery pack according to the first embodiment comprises a plurality of unit cells (laminated unit cells; hereinafter referred to as unit cells) covered with a laminated film outer case, in this case, an elastic body, for example, a laminated film outer case. A method of applying pressure with a pressure spring is adopted.
That is, in FIG. 1, reference numeral 1 denotes a lower frame (box) having an open top, and a plurality of single cells 4 (three in the illustrated example) are stacked and accommodated in the lower frame 1. On the stacked unit cells 4, a plate body 6 having substantially the same size as the unit cells 4 is placed, and a plurality of pressurizing springs 5, for example, coil springs, which are pressurizing members, are placed thereon. They are arranged side by side.

ここで、複数の加圧ばね5上には上フレーム2が載置されるが、上フレーム2(蓋体)と下フレーム(上フレームとの当接部分に開口部を有する箱体)1の間には加圧力調整部材3が介在されている。加圧力調整部材3は、具体的には下フレームの上端部に配置されている。このように構成された組電池を図示しない樹脂ケースに収めて電池パック製品とする。
本実施形態に係る組電池では、下フレーム1を上フレーム2で閉じて、その際に加圧ばね5を所定の長さ圧縮することで単電池4に対して加圧力を発生させる。ここでは、その際、下フレーム1と上フレーム2の間に介在された、例えばワッシャー形状の部材であり、樹脂または金属からなる加圧力調整部材3が加圧ばね5の圧縮量を適切に調整し、単電池4への加圧力、したがってその圧縮量を調整する。
Here, the upper frame 2 is placed on the plurality of pressure springs 5, but the upper frame 2 (lid body) and the lower frame (box body having an opening at an abutting portion between the upper frame) 1. A pressure adjusting member 3 is interposed therebetween. Specifically, the pressure adjusting member 3 is arranged at the upper end of the lower frame. The assembled battery configured as described above is housed in a resin case (not shown) to obtain a battery pack product.
In the assembled battery according to the present embodiment, the lower frame 1 is closed by the upper frame 2, and at that time, the pressure spring 5 is compressed by a predetermined length to generate pressure on the unit cell 4. Here, at this time, for example, a washer-shaped member interposed between the lower frame 1 and the upper frame 2, the pressure adjusting member 3 made of resin or metal appropriately adjusts the compression amount of the pressure spring 5. Then, the pressure applied to the unit cell 4 and, therefore, the amount of compression is adjusted.

図2は、図1に示す組電池の側面図、図3は、組電池の図1における線X−Xの矢視方向の断面図である。
複数の単電池4は、直列または並列に接続することで所定の電圧、容量を得ることができるが、ここでは直列接続した例を示している。
加圧力調整部材3は、下フレーム1の上端部を内側に折り曲げて形成したフランジ状部分に固定されている。また、充放電時の単電池4からの発熱を逃がす目的で、熱伝導性の良いアルミニウムなどの金属でできたセパレータ7が単電池4の間に挟み込まれている。
なお、下フレーム(箱体)1、上フレーム(蓋体)2は、圧力により変形しないように、例えば板金材料により形成することが好ましい。
2 is a side view of the battery pack shown in FIG. 1, and FIG. 3 is a cross-sectional view of the battery pack in the direction of the arrow XX in FIG.
The plurality of single cells 4 can obtain predetermined voltages and capacities by being connected in series or in parallel. Here, an example in which the cells are connected in series is shown.
The pressure adjusting member 3 is fixed to a flange-like portion formed by bending the upper end portion of the lower frame 1 inward. In addition, a separator 7 made of a metal such as aluminum having good thermal conductivity is sandwiched between the single cells 4 for the purpose of releasing heat generated from the single cells 4 during charging and discharging.
The lower frame (box body) 1 and the upper frame (lid body) 2 are preferably formed of, for example, a sheet metal material so as not to be deformed by pressure.

図4は図1に示す単電池4の側面図である。
ここで、単電池4は、例えばリチウムイオン電池などの二次電池であり、図示のように例えば扁平な形状である。単電池4は、発電要素41と、発電要素41の周りを被覆する外装体であるラミネート42と、ラミネート42上に設置された正負電極43と44からなっている。
正負電極43と44は、同一辺面から導出しているが、対抗辺面から導出するものであってもよい。そうすることで電極の幅をより広く取ることができ、電流に対する発熱を軽減できる。
FIG. 4 is a side view of the unit cell 4 shown in FIG.
Here, the cell 4 is a secondary battery such as a lithium ion battery, and has a flat shape as shown in the figure. The unit cell 4 includes a power generation element 41, a laminate 42 that is an exterior body that covers the power generation element 41, and positive and negative electrodes 43 and 44 installed on the laminate 42.
The positive and negative electrodes 43 and 44 are derived from the same side surface, but may be derived from the opposing side surface. By doing so, the width of the electrode can be made wider, and the heat generation with respect to the current can be reduced.

図5は図4に示す発電要素41の分解斜視図である。
発電要素は正極51と、セパレータ52と、負極53をこの順で積層して形成する。積層数は容量など所定の仕様値に合わせて適宜設定される。
積層した発電要素41に図示しない電解液を含めたものをラミネートフィルムにて封止してラミネートタイプの単電池を形成する。ラミネートフィルムには樹脂と金属の複合されたものを用いる。樹脂は、例えばポリプロピレン、ポリエチレンなどからなり、金属層にはアルミニウム、ステンレスなどの金属を用いる。
FIG. 5 is an exploded perspective view of the power generation element 41 shown in FIG.
The power generation element is formed by laminating a positive electrode 51, a separator 52, and a negative electrode 53 in this order. The number of stacked layers is appropriately set according to a predetermined specification value such as a capacity.
The laminated power generation element 41 including an electrolyte solution (not shown) is sealed with a laminate film to form a laminate type single cell. For the laminate film, a composite of resin and metal is used. The resin is made of, for example, polypropylene or polyethylene, and a metal such as aluminum or stainless steel is used for the metal layer.

以上の構造を有する単電池は、外装体となるラミネートフィルムが柔軟であるため、集電体を積層する際のばらつき、正負極材料やセパレータの厚さのばらつきがそのまま電池の厚さになって現れる。
そのため、金属ケースを有する乾電池と比べて製造時の厚さのばらつきが大きくなる。そのため、組電池にする際、これを複数積み重ねるためにばらつきが増幅され、各組電池間で複数の単電池を積み重ねた厚さ(ここでは、高さという)のばらつきが大きくなる。
In the unit cell having the above structure, since the laminate film as the outer package is flexible, the variation in stacking the current collector, the variation in the thickness of the positive and negative electrode materials and the separator becomes the thickness of the battery as it is. appear.
Therefore, the variation in thickness at the time of manufacture is larger than that of a dry battery having a metal case. Therefore, when the battery pack is assembled, the variation is amplified in order to stack a plurality of the batteries, and the variation in the thickness (herein referred to as height) in which the plurality of single cells are stacked between the battery packs increases.

図6は、ラミネート電池の特性の一つである内部抵抗について、横軸に発電要素41の加圧力(Pa)、縦軸に内部抵抗(Ω)の関係を示す図である。
即ち、図6は、ラミネート電池を加圧することで内部抵抗が低下することを示している。これはラミネート電池の外装が柔軟であるため、加圧前においては電極間の距離が広がる、あるいはばらついたものが、加圧されることで単電池間の距離が近くなり、また安定するためである。このようにラミネート電池では所定の圧力を負荷することが必要である。
FIG. 6 is a diagram showing the relationship between the internal pressure (Pa) of the power generation element 41 on the horizontal axis and the internal resistance (Ω) on the vertical axis for the internal resistance which is one of the characteristics of the laminated battery.
That is, FIG. 6 shows that the internal resistance is reduced by pressurizing the laminated battery. This is because the laminated battery has a flexible exterior, so that the distance between the electrodes increases or varies before pressurization, and the distance between the cells becomes closer and more stable by pressurization. is there. As described above, it is necessary to apply a predetermined pressure to the laminated battery.

図7は、本実施形態の電池パックの効果を説明する、組電池の図1の矢視X−X方向の断面図である。
即ち、単電池4を積み重ねた際に上・下限がまとまると、図7で左右に示すように高さが大きく異なる可能性がある。この場合、高さが違うと加圧ばね5の圧縮量が異なるため、上フレーム(蓋体)2で加圧ばね5を単に一様に圧縮したのでは加圧力が異なってしまう。
FIG. 7 is a cross-sectional view of the assembled battery in the direction of arrows XX in FIG. 1 for explaining the effect of the battery pack of the present embodiment.
That is, if the upper and lower limits are gathered when the unit cells 4 are stacked, the heights may be greatly different as shown on the left and right in FIG. In this case, if the height is different, the amount of compression of the pressure spring 5 is different. Therefore, if the pressure spring 5 is simply uniformly compressed by the upper frame (lid body) 2, the applied pressure differs.

図8は、図7と同様の断面図であって、加圧力調整部材3の調整方法を示す図である。
本実施形態では図8に示すように、加圧力調整部材3の厚さ、即ち、下フレームの上端部に固定したときの高さを、積み重ねた単電池4の高さに合わせて決定し、上フレーム(蓋体)2の下降量を調整することで加圧ばね5の圧縮量を調整して適切な加圧力を得る。これによって、組電池の高さがばらついたときでも加圧力が適切なため、組電池の特性がそろった電池パックの供給が可能となる。つまり、組電池を適切な加圧力にて組み立てることで、特性ばらつきの少ない電池パックを提供することができる。
FIG. 8 is a cross-sectional view similar to FIG. 7 and shows a method for adjusting the pressure adjusting member 3.
In this embodiment, as shown in FIG. 8, the thickness of the pressure adjusting member 3, that is, the height when fixed to the upper end of the lower frame is determined according to the height of the stacked unit cells 4, By adjusting the lowering amount of the upper frame (lid body) 2, the compression amount of the pressure spring 5 is adjusted to obtain an appropriate pressing force. Thereby, even when the height of the assembled battery varies, the applied pressure is appropriate, so that it is possible to supply a battery pack having the same characteristics of the assembled battery. That is, a battery pack with little characteristic variation can be provided by assembling the assembled battery with an appropriate pressure.

図9は、組電池の組立時における作業手順を示すフロー図である。
即ち、下フレーム(箱体)1内に単電池4を所定数積み重ね(S101)、積み重ねたところで任意の高さ測定手段により高さ測定を行う(S102)。その結果に応じて適切な加圧力が得られる加圧力調整部材3の厚さを決定する(S103)。ここでは、厚さの異なる加圧力調整部材3を予め複数種類用意しておき、決定した厚さのものを組立時に供給し(S104)、供給された加圧力調整部材3を用いて組電池の組み立てを行う(S105)。
なお、加圧力調整部材3は3D造形によってオンデマンドで造形することも好適である。組電池の高さ測定結果から適切な厚さを算出し、それに合わせた加圧力調整部材3の形状(厚さ)をオンデマンドで造形することで、在庫低減や部品供給ミスをなくすことができる。
FIG. 9 is a flowchart showing an operation procedure when assembling the assembled battery.
That is, a predetermined number of unit cells 4 are stacked in the lower frame (box) 1 (S101), and when they are stacked, the height is measured by an arbitrary height measuring means (S102). According to the result, the thickness of the pressure adjusting member 3 that can obtain an appropriate pressure is determined (S103). Here, a plurality of types of pressure adjusting members 3 having different thicknesses are prepared in advance, and the determined thickness is supplied at the time of assembly (S104). Assembly is performed (S105).
Note that it is also preferable that the pressure adjusting member 3 is formed on demand by 3D modeling. By calculating an appropriate thickness from the height measurement result of the assembled battery and shaping the shape (thickness) of the pressure adjusting member 3 according to the thickness, it is possible to eliminate inventory reduction and component supply errors. .

第2の実施形態
図10、図11は、本発明の第2の実施形態に係る組電池の外観を示す斜視図である。図1と同じ部分には同じ番号を付して説明を省略する。
第1の実施形態の電池パックの組電池では、ラミネート電池を複数の加圧ばね5により加圧するが、本実施形態では加圧ばね5を用いず、つまり、剛性の加圧部材として構成する。加圧部材は、ここでは1部片として構成した、板金を箱状に曲げた箱状部材5a(図10)、或いは樹脂の箱状部材5a(図11)などを用いる。なお、ここで云う箱状部材は、必ずしも厳密に箱体を構成しなくとも、ラミネート電池上に配置したときに、ラミネート電池に当接する平面と、上フレームによる押し込み代を提供できる形状であればよい。
本実施形態によれば、複数の加圧ばね5を用いた加圧手段よりも部品点数を減らすことができるため部品費や組立工数の削減が可能となり、より低コストな電池パックが得られる。
Second Embodiment FIGS. 10 and 11 are perspective views showing the appearance of an assembled battery according to a second embodiment of the present invention. The same parts as those in FIG.
In the battery pack of the battery pack according to the first embodiment, the laminated battery is pressurized by a plurality of pressure springs 5, but in this embodiment, the pressure springs 5 are not used, that is, they are configured as rigid pressure members. As the pressure member, a box-shaped member 5a (FIG. 10) formed by bending a sheet metal into a box shape, a resin box-shaped member 5a (FIG. 11), or the like is used. Note that the box-shaped member referred to here does not necessarily form a box body, but can be provided with a flat surface that comes into contact with the laminated battery and a push-in allowance by the upper frame when arranged on the laminated battery. Good.
According to the present embodiment, since the number of parts can be reduced as compared with the pressurizing means using the plurality of pressurizing springs 5, it is possible to reduce the parts cost and the number of assembling steps, thereby obtaining a lower cost battery pack.

本実施形態では、箱状部材5aを、上フレーム(蓋体)2(図10)が加圧力調整部材3に当接するまで押し付けることで加圧力を得る。
図12は、本実施形態において、組電池の高さのばらつきに対して、加圧力調整部材3の厚さを適切に調整することを示す、組電池における図10の矢視X−X線に沿った断面図である。
本実施形態においても、加圧力調整部材3と箱状部材5aのギャップ(図中の加圧ギャップ)により、上フレーム(蓋体)2を加圧力調整部材3に当接するまで押し込むと、それに伴って組電池に作用する加圧力が発生する。その加圧力を適切に調整するため、ここでも加圧力調整部材3の厚さを調整する。
In the present embodiment, pressure is obtained by pressing the box-shaped member 5 a until the upper frame (lid body) 2 (FIG. 10) contacts the pressure adjusting member 3.
FIG. 12 is a cross-sectional view taken along line XX in FIG. 10 of the assembled battery showing that the thickness of the pressure adjusting member 3 is appropriately adjusted with respect to the variation in the height of the assembled battery in the present embodiment. FIG.
Also in the present embodiment, when the upper frame (lid body) 2 is pushed into contact with the pressure adjusting member 3 by the gap (pressure gap in the drawing) between the pressure adjusting member 3 and the box-shaped member 5a, Pressure is applied to the assembled battery. In order to appropriately adjust the pressing force, the thickness of the pressing force adjusting member 3 is also adjusted here.

第3の実施形態
本実施形態では、高さ測定手段で高さを複数ヶ所で測定し、それぞれの高さに対応した厚さを持った加圧力調整部材3を用いる。
図13は、第3の実施形態を説明する組電池の平面図である。
図13では4点にて高さの測定を行い、その結果からそれぞれの高さに応じた適切な加圧力調整部材3の厚さを算出する。算出した厚さを持った加圧力調整部材3を用いることによって、より細かく単電池の厚さのばらつきに起因する、組電池の高さのばらつきに対応することができる。その結果、電池パックの製品ばらつきをより低減することができる。ここでは高さ測定ヶ所4点、加圧調整8ヶ所で示しているが、当然のことながら組合せはこれに限定されない。
Third Embodiment In the present embodiment, the pressure adjusting member 3 having a thickness corresponding to each height is used by measuring the height at a plurality of locations by the height measuring means.
FIG. 13 is a plan view of an assembled battery for explaining the third embodiment.
In FIG. 13, the height is measured at four points, and the thickness of the appropriate pressure adjusting member 3 corresponding to each height is calculated from the result. By using the pressure adjusting member 3 having the calculated thickness, it is possible to cope with the variation in the height of the assembled battery caused by the variation in the thickness of the single cell more finely. As a result, the product variation of the battery pack can be further reduced. Here, four height measurement points and eight pressure adjustment points are shown, but the combination is naturally not limited to this.

第4の実施形態
本発明の第4の実施形態では、以上で説明した加圧力調整部材3を中空に構成する。
加圧力調整部材3を中空構造にすることで、電池パックの軽量化が可能になる。
Fourth Embodiment In the fourth embodiment of the present invention, the pressure adjusting member 3 described above is configured to be hollow.
By making the pressure adjusting member 3 have a hollow structure, the battery pack can be reduced in weight.

第5の実施形態
図14は、以上で説明した組電池で用いる加圧力調整部材3の拡大図であり、図14Aは加圧力調整部材3を斜め上からみた斜視図、及び図14Bは加圧力調整部材3の断面形状を示す図である。
特に3D造形にて加圧力調整部材3を得る場合、図14に示す内部に格子状構造3aを持つことで強度を上げることができる。また、このように内部を格子状構造3aとすることで、ハニカム形状と比較して、直線パターンのため3Dプリンタのヘッドの移動量が少なくなり造形スピードを上げることができ、組立タクト短縮によるコスト低減が可能となる。
Fifth Embodiment FIG. 14 is an enlarged view of the pressure adjusting member 3 used in the assembled battery described above, FIG. 14A is a perspective view of the pressure adjusting member 3 as viewed obliquely, and FIG. FIG. 3 is a view showing a cross-sectional shape of an adjustment member 3.
In particular, when the pressure adjusting member 3 is obtained by 3D modeling, the strength can be increased by having the lattice-like structure 3a inside as shown in FIG. In addition, by making the inside of the lattice-like structure 3a in this way, the moving amount of the 3D printer head can be reduced and the molding speed can be increased because of the linear pattern compared to the honeycomb shape, and the cost due to shortening the assembly tact time Reduction is possible.

以上、本発明の実施形態について説明したが、これによれば、
(1)組電池の高さに合わせた加圧力が得られることで、特性ばらつきの少ない電池パックを得ることができる。
(2)単電池を平面視扁平形状にしたため積み重ねた高さが均一にならないときでも、加圧力を均一にできる。
(3)加圧力調整部材を中空にすることで部材の軽量化ができ、電池パックの軽量化が可能となる。
(4)加圧力調整部材の断面形状を格子状とすることで、たとえば溶融樹脂積層加工により部品を形成する際のパスが直線的になり加工時間の短縮から加工コストが低減され、電池パックの低コスト化が可能となる。
As mentioned above, although embodiment of this invention was described, according to this,
(1) A battery pack with little variation in characteristics can be obtained by obtaining a pressing force that matches the height of the assembled battery.
(2) Since the unit cells have a flat shape in plan view, the applied pressure can be made uniform even when the stacked height is not uniform.
(3) By making the pressure adjusting member hollow, the weight of the member can be reduced, and the weight of the battery pack can be reduced.
(4) By making the cross-sectional shape of the pressure adjusting member a lattice shape, for example, the path when forming a part by molten resin lamination processing becomes linear, and the processing cost is reduced because the processing time is shortened. Cost reduction is possible.

1・・・下フレーム、2・・・上フレーム、3・・・加圧力調整部材、4・・・単電池、5・・・加圧ばね、5a・・・箱状部材、6・・・板体、7・・・セパレータ。   DESCRIPTION OF SYMBOLS 1 ... Lower frame, 2 ... Upper frame, 3 ... Pressure adjusting member, 4 ... Single cell, 5 ... Pressure spring, 5a ... Box-shaped member, 6 ... Plate, 7 ... separator.

特開2006−339032号公報JP 2006-339032 A 特開2015−115313号公報JP, 2015-115313, A

Claims (9)

発電要素を収容しフィルム外装体を有する単電池を厚さ方向に複数積み重ねた組電池と、
前記組電池を収容する開口部を有する箱体と、
前記組電池の上に配された加圧部材と、
前記加圧部材を介して前記組電池を加圧する前記箱体の開口部を塞ぐ蓋体と、
前記箱体と前記蓋体の間に設けられ、前記蓋体に当接して前記加圧部材による前記組電池の圧縮量を調整する加圧力調整部材と
を有する電池パック。
An assembled battery in which a plurality of unit cells containing a power generation element and having a film exterior body are stacked in the thickness direction;
A box having an opening for accommodating the assembled battery;
A pressure member disposed on the assembled battery;
A lid that closes the opening of the box that pressurizes the assembled battery via the pressure member;
A battery pack comprising: a pressure adjusting member provided between the box and the lid, wherein the pressure adjusting member adjusts a compression amount of the assembled battery by the pressure member in contact with the lid.
請求項1に記載された電池パックにおいて、
前記加圧力調整部材は前記組電池の異なる高さに応じて、前記蓋体を前記箱体に被せたときの前記組電池に作用する加圧力を調整する電池パック。
The battery pack according to claim 1,
The said pressurizing force adjustment member is a battery pack which adjusts the pressurization force which acts on the said assembled battery when the said cover body is covered on the said box according to the different height of the said assembled battery.
請求項1又は2に記載された電池パックにおいて、
前記加圧部材は複数の弾性体で構成されている電池パック。
In the battery pack according to claim 1 or 2,
The pressure member is a battery pack including a plurality of elastic bodies.
請求項1又は2に記載された電池パックにおいて、
前記加圧部材は箱状部材で構成されている電池パック。
In the battery pack according to claim 1 or 2,
The pressure member is a battery pack configured by a box-shaped member.
請求項2又は4に記載された電池パックにおいて、
前記加圧力調整部材は、前記組電池の高さに応じた厚みを有することを特徴とする電池パック。
In the battery pack according to claim 2 or 4,
The battery pack according to claim 1, wherein the pressure adjusting member has a thickness corresponding to a height of the assembled battery.
請求項2又は4に記載された電池パックにおいて、
前記組電池の複数個所における高さの相違に応じた、異なる厚さの前記加圧力調整部材を有する電池パック。
In the battery pack according to claim 2 or 4,
A battery pack having the pressure adjusting member having a different thickness according to a difference in height at a plurality of locations of the assembled battery.
請求項1ないし6のいずれかに記載された電池パックにおいて、
前記加圧力調整部材は中空構造を有する電池パック。
The battery pack according to any one of claims 1 to 6,
The pressure adjusting member is a battery pack having a hollow structure.
請求項7に記載された電池パックにおいて、
前記中空構造は格子状構造を備えている電池パック。
The battery pack according to claim 7, wherein
The hollow structure is a battery pack having a lattice structure.
請求項1ないし8のいずれかに記載された電池パックにおいて、
前記単電池は扁平形状である電池パック。
The battery pack according to any one of claims 1 to 8,
The unit cell is a flat battery pack.
JP2015197131A 2015-10-02 2015-10-02 Battery pack Pending JP2017069169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015197131A JP2017069169A (en) 2015-10-02 2015-10-02 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197131A JP2017069169A (en) 2015-10-02 2015-10-02 Battery pack

Publications (1)

Publication Number Publication Date
JP2017069169A true JP2017069169A (en) 2017-04-06

Family

ID=58492761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197131A Pending JP2017069169A (en) 2015-10-02 2015-10-02 Battery pack

Country Status (1)

Country Link
JP (1) JP2017069169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018211A (en) * 2017-08-14 2019-02-22 주식회사 엘지화학 Manufacturing Process of Battery Separator Having Withstand Voltage Defect Detection
JP2019169453A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Battery pack
JP2019186038A (en) * 2018-04-10 2019-10-24 カルソニックカンセイ株式会社 Battery pack
KR20220063985A (en) * 2020-11-11 2022-05-18 한국철도기술연구원 Cooling device of lithium ion secondary battery for railroad
WO2024087101A1 (en) * 2022-10-27 2024-05-02 宁德时代新能源科技股份有限公司 Battery and electrical device
JP7483302B2 (en) 2020-09-22 2024-05-15 エルジー エナジー ソリューション リミテッド Battery pack with improved battery cell life and device including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190018211A (en) * 2017-08-14 2019-02-22 주식회사 엘지화학 Manufacturing Process of Battery Separator Having Withstand Voltage Defect Detection
KR102378995B1 (en) * 2017-08-14 2022-03-25 주식회사 엘지에너지솔루션 Manufacturing Process of Battery Separator Having Withstand Voltage Defect Detection
JP2019169453A (en) * 2018-03-26 2019-10-03 トヨタ自動車株式会社 Battery pack
JP2019186038A (en) * 2018-04-10 2019-10-24 カルソニックカンセイ株式会社 Battery pack
JP7483302B2 (en) 2020-09-22 2024-05-15 エルジー エナジー ソリューション リミテッド Battery pack with improved battery cell life and device including same
KR20220063985A (en) * 2020-11-11 2022-05-18 한국철도기술연구원 Cooling device of lithium ion secondary battery for railroad
KR102453284B1 (en) * 2020-11-11 2022-10-12 한국철도기술연구원 Cooling device of lithium ion secondary battery for railroad
WO2024087101A1 (en) * 2022-10-27 2024-05-02 宁德时代新能源科技股份有限公司 Battery and electrical device

Similar Documents

Publication Publication Date Title
JP2017069169A (en) Battery pack
JP6644373B2 (en) Stair structure battery cell
JP5196876B2 (en) Assembled battery
US8147997B2 (en) Film-covered electrical device packaging system
WO2015141631A1 (en) Pressurization device for battery cells
US20150140371A1 (en) Curved battery container
JP6306431B2 (en) Battery module
US7862958B2 (en) Retaining apparatus for electrochemical generator
JP6376406B2 (en) Manufacturing method of battery pack
JP2006339032A (en) Battery pack
JP5924522B2 (en) Power storage element, power storage element group
JP2006339031A (en) Battery pack of group of batteries, and fixing method of battery pack
JP2009200051A (en) Method for manufacturing battery pack
JP2015511388A (en) Battery case for secondary battery
KR102500267B1 (en) Pouch Case, Pouch Type Secondary Battery And Manufacturing Method Thereof
KR20160051647A (en) Method of manufacturing secondary battery, and secondary battery
WO2017057207A1 (en) Battery pack
JP2012059364A (en) Battery
KR101801232B1 (en) Secondary battery and method for manufacturing same
JP2013171729A (en) Container for power storage device, power storage device, power storage module, vehicle, manufacturing method of power storage device
JP5585482B2 (en) Power storage device
JP2017010790A (en) Method for manufacturing power storage device
WO2016098893A1 (en) Power storage module production method and power storage module
JP6303729B2 (en) Battery pack and battery pack manufacturing method
JP6926989B2 (en) Battery manufacturing method