JP2017067986A - Optical waveguide element - Google Patents

Optical waveguide element Download PDF

Info

Publication number
JP2017067986A
JP2017067986A JP2015192708A JP2015192708A JP2017067986A JP 2017067986 A JP2017067986 A JP 2017067986A JP 2015192708 A JP2015192708 A JP 2015192708A JP 2015192708 A JP2015192708 A JP 2015192708A JP 2017067986 A JP2017067986 A JP 2017067986A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
waveguide
absorbing member
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015192708A
Other languages
Japanese (ja)
Other versions
JP6582821B2 (en
Inventor
勝利 近藤
Katsutoshi Kondo
勝利 近藤
市川 潤一郎
Junichiro Ichikawa
潤一郎 市川
中野 清隆
Kiyotaka Nakano
清隆 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2015192708A priority Critical patent/JP6582821B2/en
Publication of JP2017067986A publication Critical patent/JP2017067986A/en
Application granted granted Critical
Publication of JP6582821B2 publication Critical patent/JP6582821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide element capable of suppressing a phenomenon caused by a photorefractive effect of a substrate material.SOLUTION: The optical waveguide element includes a substrate 1 having an electro-optic effect and an optical waveguide 2 formed in the substrate 1, in which a light-absorbing member 3 that generates heat by absorption of light is disposed so as to cover an upper side of a waveguide portion on an input side (an input waveguide portion 21 and a branched portion 22) and a waveguide portion on an output side (a multiplexing portion 24 and an output waveguide portion 25).SELECTED DRAWING: Figure 1

Description

本発明は、電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子に関する。   The present invention relates to an optical waveguide device including a substrate having an electro-optic effect and an optical waveguide formed on the substrate.

近年、光通信や光計測の分野において、ニオブ酸リチウム(LN)などの電気光学効果を有する基板上に光導波路を形成すると共に、光導波路内を伝播する光波を制御するための制御電極を形成した導波路型光変調器などの光導波路素子が多用されている。
長距離伝送のために、光変調器に入射する光の強度を高くした際には、消光比の劣化、光損失の増大、バイアス点の変動などが問題となる。特に、光入力強度が10mW以上になると、このような問題が顕著となる。
In recent years, in the fields of optical communication and optical measurement, an optical waveguide is formed on a substrate having an electro-optic effect such as lithium niobate (LN) and a control electrode for controlling a light wave propagating in the optical waveguide is formed. Optical waveguide elements such as waveguide type optical modulators are widely used.
When the intensity of light incident on the optical modulator is increased for long-distance transmission, the extinction ratio is deteriorated, the optical loss is increased, and the bias point is changed. In particular, when the light input intensity is 10 mW or more, such a problem becomes significant.

これらの問題は、主に、光変調器に光を入力する入力部及び光変調器内の光導波路などからリークした迷光と、光導波路内を伝播する信号光とが相互に干渉することにより、フォトリフラクティブ現象が発生し、これにより光導波路部にグレーティングを形成していることが、大きな原因であることが知られている。
このような光導波路部に形成されたグレーティングは、光導波路内を進行する信号光を、進行方向とは逆方向に戻しリターンロスを悪化させたり、若しくは、光導波路外へ反射させることにより、信号光の消光比の劣化を引き起こすこととなる。
These problems are mainly caused by interference between stray light leaking from the input unit that inputs light into the optical modulator and the optical waveguide in the optical modulator, and the signal light propagating in the optical waveguide, It is known that the photorefractive phenomenon occurs, and thereby the formation of a grating in the optical waveguide portion is a major cause.
The grating formed in such an optical waveguide part returns the signal light traveling in the optical waveguide in the direction opposite to the traveling direction, thereby deteriorating return loss or reflecting the signal light out of the optical waveguide. It will cause deterioration of the extinction ratio of light.

フォトリラクティブ現象とは、光が当たることにより物質の屈折率が変化する現象である。具体的には、光により物質中の電荷移動が発生する特性から、光干渉などにより空間的な光の強度分布が生じると、該光の強度分布に応じて電荷の再分布が起こる。そして、電荷の再分布により生じた電荷の偏在により内部電界が局所的に変化する。内部電場は物質の屈折率を変化させるため、結果として、光の強度分布に対応した物質の屈折率分布が形成される。
しかも、フォトリフラクティブ現象は、物質に光を当て続けると、次第に屈折率が変化し、散乱が時間と共に強くなるという特性を有するため、長時間にわたる光変調器の駆動に際しては、特に、消光比の劣化や光損失の増大など光変調器特性の悪化が顕著となる。
The photo reluctance phenomenon is a phenomenon in which the refractive index of a substance changes when exposed to light. Specifically, when a spatial light intensity distribution occurs due to light interference or the like due to the property of charge transfer in a substance caused by light, charge redistribution occurs according to the light intensity distribution. And an internal electric field changes locally by the uneven distribution of the electric charge produced by the redistribution of an electric charge. Since the internal electric field changes the refractive index of the substance, as a result, a refractive index distribution of the substance corresponding to the light intensity distribution is formed.
In addition, the photorefractive phenomenon has a characteristic that the refractive index gradually changes when the light is continuously applied to the material, and the scattering becomes stronger with time. Deterioration of optical modulator characteristics such as deterioration and increase of optical loss becomes remarkable.

そこで、フォトリラクティブ現象を緩和させるための種々の手法が検討されている。例えば、LN基板に溝を形成して光導波路を迷光から遮蔽する方法や、その溝に光吸収材料を充填する方法が提案されている(特許文献1参照)。しかしながら、LN基板への溝形成(及び光吸収材料の充填)による温度特性の劣化や、不純物拡散に起因するLN基板表面の荒れによる光導波損失の増大が懸念される。   Therefore, various methods for alleviating the photoreductive phenomenon have been studied. For example, a method of forming a groove in an LN substrate to shield the optical waveguide from stray light and a method of filling the groove with a light absorbing material have been proposed (see Patent Document 1). However, there are concerns about deterioration of temperature characteristics due to groove formation (and filling of the light absorbing material) in the LN substrate and increase in optical waveguide loss due to roughness of the LN substrate surface due to impurity diffusion.

また、フォトリラクティブ現象を緩和させるための別の手法として、例えば、Mg、Zn添加LiNbO3の利用や、高い素子温度での使用等が提案されている(特許文献2、3参照)。しかしながら、Mg、Zn添加LiNbO3結晶をLN変調器に用いた場合、分極反転閾値が低くなり、使用可能な印加電圧が小さくなってしまうため、集積化には不向きである。また、LN変調器の素子温度を上げた場合、温度制御の電力が必要であることや、LN変調器固有のDCドリフト現象を増大させてしまうことから、適用が困難である。 In addition, as another method for alleviating the photoreductive phenomenon, for example, utilization of Mg, Zn-added LiNbO 3 , use at a high element temperature, and the like have been proposed (see Patent Documents 2 and 3). However, when an Mg, Zn-added LiNbO 3 crystal is used for an LN modulator, the polarization inversion threshold value becomes low and the applied voltage that can be used becomes small, which is not suitable for integration. In addition, when the element temperature of the LN modulator is increased, it is difficult to apply it because power for temperature control is required and the DC drift phenomenon inherent to the LN modulator is increased.

特開2004−93905号公報JP 2004-93905 A 特許第4067845号公報Japanese Patent No. 4067845 特許第4111075号公報Japanese Patent No. 4111075

本発明が解決しようとする課題は、上記のような問題を解決し、基板材料のフォトリフラクティブ効果に起因する現象を抑制できる光導波路素子を提供することである。   The problem to be solved by the present invention is to provide an optical waveguide device capable of solving the above-described problems and suppressing a phenomenon caused by a photorefractive effect of a substrate material.

上記課題を解決するため、本発明の光導波路素子は以下のような技術的特徴を有する。
(1) 電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子において、該光導波路は、該光導波路素子の外部から光が入力される入力導波路部と、該入力導波路部に入力された光を複数の分岐導波路部に分岐させる分岐部とを有し、該入力導波路部及び該分岐部において、光強度が高くなる部分の上側を少なくとも覆うように、光吸収により発熱する光吸収部材が配置されたことを特徴とする。
In order to solve the above problems, the optical waveguide device of the present invention has the following technical features.
(1) In an optical waveguide device comprising a substrate having an electro-optic effect and an optical waveguide formed on the substrate, the optical waveguide includes an input waveguide portion to which light is input from the outside of the optical waveguide device A branch part that branches the light input to the input waveguide part into a plurality of branch waveguide parts, and covers at least the upper side of the input waveguide part and the part where the light intensity increases in the branch part. As described above, a light absorbing member that generates heat by light absorption is arranged.

(2) 上記(1)に記載の光導波路素子において、該光吸収部材は、該入力導波路部の全体の上側、または、該入力導波路の一部と該分岐部の上側を少なくとも覆うように配置されたことを特徴とする。 (2) In the optical waveguide device according to the above (1), the light absorbing member covers at least the entire upper side of the input waveguide part, or a part of the input waveguide and the upper side of the branch part. It is characterized by being arranged in.

(3) 上記(1)又は(2)に記載の光導波路素子において、該光吸収部材は、該光導波路に沿って延びる所定幅の部材であることを特徴とする。 (3) In the optical waveguide device according to (1) or (2), the light absorbing member is a member having a predetermined width extending along the optical waveguide.

(4) 上記(1)乃至(3)のいずれかに記載の光導波路素子において、該光吸収部材の一部に、該光導波路に沿って貫通孔を設けたことを特徴とする。 (4) The optical waveguide device according to any one of (1) to (3), wherein a through hole is provided along a portion of the light absorbing member along the optical waveguide.

(5) 上記(1)乃至(4)のいずれかに記載の光導波路素子において、該光吸収部材は接地されていることを特徴とする。 (5) The optical waveguide element according to any one of (1) to (4), wherein the light absorbing member is grounded.

(6) 上記(1)乃至(5)のいずれかに記載の光導波路素子において、該光導波路と該光吸収部材の間にスペーサを設けたことを特徴とする。 (6) The optical waveguide device according to any one of (1) to (5), wherein a spacer is provided between the optical waveguide and the light absorbing member.

(7) 上記(1)乃至(6)のいずれかに記載の光導波路素子において、該光導波路は、前記複数の分岐導波路部からの光を合成する合成部と、該合成部で合成された光を該光導波路素子の外部に出力する出力導波路部とを有し、該出力導波路部及び該合成部において、光強度が高くなる部分の上側を少なくとも覆うように、該光吸収部材が配置されたことを特徴とする。 (7) In the optical waveguide device according to any one of (1) to (6), the optical waveguide is synthesized by a synthesis unit that synthesizes light from the plurality of branch waveguide units, and the synthesis unit. An output waveguide portion for outputting the light to the outside of the optical waveguide element, and the light absorbing member so as to cover at least the upper side of the portion where the light intensity increases in the output waveguide portion and the synthesis portion Is arranged.

(8) 上記(7)に記載の光導波路素子において、
該光吸収部材は、該出力導波路部の全体の上側、または、該出力導波路の一部と該合成部の上側を少なくとも覆うように配置されたことを特徴とする。
(8) In the optical waveguide device according to (7),
The light absorbing member is arranged so as to cover at least the entire upper side of the output waveguide portion or a part of the output waveguide and the upper side of the synthesis portion.

(9) 上記(1)乃至(8)のいずれかに記載の光導波路素子において、該光吸収部材は、該光導波路に沿って複数配置され、前記複数の光吸収部材の各々による光の吸収量は、光の伝搬方向における該光吸収部材の配置順に小さいことを特徴とする。 (9) In the optical waveguide device according to any one of (1) to (8), a plurality of the light absorption members are arranged along the optical waveguide, and light is absorbed by each of the plurality of light absorption members. The amount is small in the order of arrangement of the light absorbing members in the light propagation direction.

(10) 電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子において、該光導波路は、該光導波路素子の外部から光が入力される複数の入力導波路部と、前記複数の入力導波路部に入力された光を合成する合成部と、該合成部で合成された光を該光導波路素子の外部に出力する出力導波路部とを有し、該出力導波路部及び該合成部において、光強度が高くなる部分の上側を覆うように、光吸収により発熱する光吸収部材が配置されたことを特徴とする。 (10) In an optical waveguide device including a substrate having an electro-optic effect and an optical waveguide formed on the substrate, the optical waveguide is a plurality of input waveguides into which light is input from the outside of the optical waveguide device A combining unit that combines light input to the plurality of input waveguide units, and an output waveguide unit that outputs the light combined by the combining unit to the outside of the optical waveguide element, In the output waveguide portion and the combining portion, a light absorbing member that generates heat by light absorption is disposed so as to cover the upper side of the portion where the light intensity increases.

(11) 上記(1)乃至(10)のいずれかに記載の光導波路素子において、該基板を収容する筐体を備え、該基板における該光吸収部材の配置部分を、該筐体の内面から離隔させたことを特徴とする。 (11) The optical waveguide device according to any one of (1) to (10), further including a housing that accommodates the substrate, wherein an arrangement portion of the light absorbing member on the substrate is arranged from an inner surface of the housing It is characterized by being separated.

本発明の光導波路素子は、電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子において、該光導波路は、該光導波路素子の外部から光が入力される入力導波路部と、該入力導波路部に入力された光を複数の分岐導波路部に分岐させる分岐部とを有し、該入力導波路部及び該分岐部において、光強度が高くなる部分の上側を少なくとも覆うように、光吸収により発熱する光吸収部材が配置されたので、該光導波路を伝播する光による光吸収部材の発熱によってフォトリフラクティブ効果を低減させることができ、フォトリフラクティブ効果に起因する現象を抑制することができる。また、光導波路を発熱させる必要がある箇所に光吸収部材を配置するだけで局所的な加熱を行うことができ、加熱用に付加的な電源を設ける必要がない。   The optical waveguide device of the present invention is an optical waveguide device including a substrate having an electro-optic effect and an optical waveguide formed on the substrate, and light is input to the optical waveguide from outside the optical waveguide device. A portion having an input waveguide portion and a branch portion for branching light input to the input waveguide portion into a plurality of branch waveguide portions, and a portion where the light intensity is increased in the input waveguide portion and the branch portion Since the light absorbing member that generates heat by light absorption is disposed so as to cover at least the upper side of the light, the photorefractive effect can be reduced by the heat generation of the light absorbing member by the light propagating through the optical waveguide, and the photorefractive effect can be reduced. The resulting phenomenon can be suppressed. Further, local heating can be performed only by arranging the light absorbing member at a location where the optical waveguide needs to generate heat, and there is no need to provide an additional power source for heating.

本発明の一実施形態に係る光導波路素子の第1構成例を示す図である。It is a figure which shows the 1st structural example of the optical waveguide element which concerns on one Embodiment of this invention. 入力光量を変化させた場合の入力側基板領域の温度変化を示す図である。It is a figure which shows the temperature change of the input side board | substrate area | region at the time of changing input light quantity. 本発明の一実施形態に係る光導波路素子の第2構成例を示す図である。It is a figure which shows the 2nd structural example of the optical waveguide element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光導波路素子の第3構成例を示す図である。It is a figure which shows the 3rd structural example of the optical waveguide element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光導波路素子の第3構成例の変形例を示す図である。It is a figure which shows the modification of the 3rd structural example of the optical waveguide element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光導波路素子の第4構成例を示す図である。It is a figure which shows the 4th structural example of the optical waveguide element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光導波路素子の第5構成例を示す図である。It is a figure which shows the 5th structural example of the optical waveguide element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光導波路素子の第6構成例を示す図である。It is a figure which shows the 6th structural example of the optical waveguide element which concerns on one Embodiment of this invention.

以下、本発明の一実施形態について、図面を参照して説明する。
本発明に係る光導波路素子は、図1、図3〜図5に示すように、電気光学効果を有する基板1と、該基板1に形成された光導波路2とを備えた光導波路素子において、該光導波路2の少なくとも一部の上側を覆うように、光吸収により発熱する光吸収部材3が配置されたことを特徴とする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 3 to 5, an optical waveguide device according to the present invention is an optical waveguide device including a substrate 1 having an electro-optic effect and an optical waveguide 2 formed on the substrate 1. A light absorbing member 3 that generates heat by light absorption is disposed so as to cover at least a part of the upper side of the optical waveguide 2.

図1には、本発明に係る光導波路素子の第1構成例を示してある。
光導波路素子に使用する基板1としては、LiNbO3,LiTaO5又はPLZT(ジルコン酸チタン酸鉛ランタン)などの電気光学効果を有する基板を用いることが好ましい。
基板1に形成する光導波路2は、例えば、LiNbO3基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散することにより形成される。また、基板1に光導波路2に沿った凹凸を形成したリッジ型光導波路も利用可能である。また、基板1は、Xカット型であってもよく、Zカット型であってもよい。
光導波路2が形成された基板は、その裏面を研磨して所定厚(例えば9μm)にし、接着剤等を介して保持基板の上に貼り付けられる。
FIG. 1 shows a first configuration example of an optical waveguide device according to the present invention.
As the substrate 1 used for the optical waveguide element, it is preferable to use a substrate having an electro-optic effect such as LiNbO 3 , LiTaO 5 or PLZT (lead lanthanum zirconate titanate).
The optical waveguide 2 formed on the substrate 1 is formed, for example, by thermally diffusing a high refractive index material such as titanium (Ti) on a LiNbO 3 substrate (LN substrate). A ridge-type optical waveguide in which irregularities along the optical waveguide 2 are formed on the substrate 1 can also be used. The substrate 1 may be an X cut type or a Z cut type.
The substrate on which the optical waveguide 2 is formed is polished on its back surface to a predetermined thickness (for example, 9 μm), and is attached to the holding substrate via an adhesive or the like.

基板1には、光導波路2を伝播する光波を制御するための制御電極を構成する信号電極及び接地電極が形成される。これらの電極は、基板1の表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。更に、必要に応じて、光導波路形成後の基板1の表面に誘電体SiO2等のバッファ層や電荷分散膜等を設け、これらの上に電極を形成することも可能である。 The substrate 1 is formed with a signal electrode and a ground electrode that constitute a control electrode for controlling a light wave propagating through the optical waveguide 2. These electrodes can be formed by forming a Ti / Au electrode pattern on the surface of the substrate 1 and using a gold plating method or the like. Further, if necessary, it is possible to provide a buffer layer such as a dielectric SiO 2 or a charge dispersion film on the surface of the substrate 1 after the optical waveguide is formed, and to form electrodes thereon.

光導波路2は、光導波路2の光入射端に接続されて、光導波路素子の外部から光が入力される入力導波路部21と、入力導波路部21からの光を分岐する分岐部22と、該分岐部で分岐された各光に対して制御電極による制御が行われる複数の作用導波路部23と、各作用導波路部23からの光を合成する合成部24と、光導波路2の光出射端に接続されて、合成部24で合成された光を光導波路素子の外部に出力する出力導波路部25とを有する。   The optical waveguide 2 is connected to the light incident end of the optical waveguide 2 and has an input waveguide portion 21 to which light is input from the outside of the optical waveguide device, and a branch portion 22 that branches light from the input waveguide portion 21. , A plurality of working waveguide sections 23 in which the light branched by the branching section is controlled by the control electrode, a combining section 24 for synthesizing the light from each working waveguide section 23, and the optical waveguide 2. An output waveguide unit 25 is connected to the light emitting end and outputs the light combined by the combining unit 24 to the outside of the optical waveguide element.

基板1には、更に、光吸収により発熱する光吸収部材3が形成される。図1の例では、入力側の導波路部分(入力導波路部21及び分岐部22)を含む基板領域と、出力側の導波路部分(合成部24及び出力導波路部25)を含む基板領域とを上側から覆うように光吸収部材3を形成してある。
図1のような1つのマッハツェンダー干渉計だけで構成されたシングル構造のマッハツェンダー型導波路の場合には、光の減衰が小さいことから、光の入力側と出力側とで同程度のフォトリフラクティブ効果が発生することが想定される。そのため、入力側の基板領域と出力側の基板領域の2箇所に光吸収部材3を形成してある。
The substrate 1 is further formed with a light absorbing member 3 that generates heat by light absorption. In the example of FIG. 1, a substrate region including a waveguide portion on the input side (input waveguide portion 21 and branching portion 22) and a substrate region including a waveguide portion on the output side (combining portion 24 and output waveguide portion 25). The light absorbing member 3 is formed so as to cover from above.
In the case of a single-structure Mach-Zehnder type waveguide composed of only one Mach-Zehnder interferometer as shown in FIG. It is assumed that a refraction effect will occur. For this reason, the light absorbing members 3 are formed at two locations of the input side substrate region and the output side substrate region.

光吸収部材3の材料や形成方法に関しては特に指定はないが、金属膜を光吸収部材3に用いる場合には、例えば、表1を参考にして材料を選定することができる。表1には、Ti拡散導波路を有するXcutのLN基板の表面に金属膜を装荷したときに生じる過剰損失量を示してある。第1構成例では、材料としてAlを用い、スパッタ法にて光吸収部材3を形成している。   Although there is no particular designation regarding the material and formation method of the light absorbing member 3, when a metal film is used for the light absorbing member 3, for example, the material can be selected with reference to Table 1. Table 1 shows the amount of excess loss that occurs when a metal film is loaded on the surface of an Xcut LN substrate having a Ti diffusion waveguide. In the first configuration example, the light absorbing member 3 is formed by sputtering using Al as a material.

Figure 2017067986
Figure 2017067986

図2には、入力光量を変化させた場合の入力側基板領域の温度変化を示してある。本例では、Ti拡散導波路を有するXcutのLN基板で、入力光量と入力側の導波路部分のチップ温度との関係を示してあり、横軸は入力光量(dBm)であり、縦軸はチップ温度(℃)である。また、光吸収部材3の膜を設けない場合を○印でプロットし、Al膜を光吸収部材3として設けた場合を□印でプロットし、Ti膜を光吸収部材3として設けた場合を△印でプロットしてある。   FIG. 2 shows the temperature change of the input side substrate region when the input light quantity is changed. In this example, an Xcut LN substrate having a Ti diffusion waveguide shows the relationship between the input light amount and the chip temperature of the input side waveguide portion, the horizontal axis is the input light amount (dBm), and the vertical axis is Chip temperature (° C.). Further, the case where the film of the light absorbing member 3 is not provided is plotted by ◯, the case where the Al film is provided as the light absorbing member 3 is plotted by □, and the case where the Ti film is provided as the light absorbing member 3 is Δ Plotted with marks.

同図に示されるように、光吸収部材3の膜を設けない場合には、入力光量を増加させてもチップ温度は略一定だが、Al膜を設けた場合には、入力光量の増加に伴ってチップ温度が緩やかに上昇しており、Ti膜を設けた場合には、入力光量の増加に伴ってチップ温度が急激に上昇している。つまり、光導波路2の上側に光吸収部材3を配置することで、その部位を伝播する光によって光吸収部材3の発熱効果が得られることが分かる。
また、光吸収部材3の有無によるOn/Off消光比の劣化を比較したところ、吸収部材3を設けることでOn/Off消光比の劣化が改善していることを確認した。
As shown in the figure, when the film of the light absorbing member 3 is not provided, the chip temperature is substantially constant even when the input light quantity is increased. However, when the Al film is provided, the input light quantity increases. When the Ti film is provided, the chip temperature is rapidly increased as the input light quantity is increased. That is, it can be seen that by arranging the light absorbing member 3 on the upper side of the optical waveguide 2, the heat generating effect of the light absorbing member 3 can be obtained by the light propagating through the portion.
Further, when the deterioration of the On / Off extinction ratio due to the presence or absence of the light absorbing member 3 was compared, it was confirmed that the deterioration of the On / Off extinction ratio was improved by providing the absorbing member 3.

図1に示した第1構成例では、入力側の基板領域と出力側の基板領域の全域を覆うように光吸収部材3を配置してあるが、これは一例に過ぎない。但し、分岐部22や合成部24にフォトリフラクティブ現象が発生すると、分岐比や合成比などに影響が生じて消光比の劣化などが懸念されるので、少なくとも分岐部22及び合成部24に光吸収部材3を形成し、その部分のフォトリフラクティブ現象を抑制することが好ましい。また、入力導波路部21や出力導波路部25は、光の強度が作用導波路部23と比べて高いため、これらの部位にも光吸収部材3を形成し、その部分のフォトリフラクティブ現象を抑制することが好ましい。   In the first configuration example shown in FIG. 1, the light absorbing member 3 is disposed so as to cover the entire area of the input side substrate region and the output side substrate region, but this is only an example. However, if a photorefractive phenomenon occurs in the branching section 22 or the combining section 24, the branching ratio or the combining ratio is affected, and there is a concern about deterioration of the extinction ratio. Therefore, at least the branching section 22 and the combining section 24 absorb light. It is preferable to form the member 3 and suppress the photorefractive phenomenon at that portion. Further, since the input waveguide section 21 and the output waveguide section 25 have higher light intensity than the working waveguide section 23, the light absorbing member 3 is formed also in these portions, and the photorefractive phenomenon of the portion is observed. It is preferable to suppress.

なお、入力側の導波路部分(入力導波路部21及び分岐部22)や、出力側の導波路部分(合成部24及び出力導波路部25)について、その全体(全区間)を光吸収部材3で覆うことは必ずしも必要ではなく、光強度が高くなる部分を光吸収部材3で覆うようにしてもよい。入力側の導波路部分では、入力導波路部21の全体、または、入力導波路21の一部と分岐部22の部分において光強度が高くなることが想定されるため、これらのいずれかを少なくとも覆うように光吸収部材3を設ければよい。また、出力側の導波路部分では、出力導波路部25の全体、または、出力導波路部25の一部と合成部24の部分において光強度が高くなることが想定されるため、これらのいずれかを少なくとも覆うように光吸収部材3を設ければよい。   In addition, about the waveguide part (input waveguide part 21 and the branching part 22) of an input side, and the waveguide part (synthesis | combination part 24 and the output waveguide part 25) of an output side, the whole (all areas) is light absorption member. It is not always necessary to cover with 3, and a portion where the light intensity is high may be covered with the light absorbing member 3. In the waveguide portion on the input side, it is assumed that the light intensity is increased in the entire input waveguide portion 21 or in a portion of the input waveguide 21 and the branch portion 22. What is necessary is just to provide the light absorption member 3 so that it may cover. Further, in the waveguide portion on the output side, it is assumed that the light intensity is increased in the entire output waveguide portion 25 or in a portion of the output waveguide portion 25 and the combining portion 24. What is necessary is just to provide the light absorption member 3 so that at least this may be covered.

図3には、本発明に係る光導波路素子の第2構成例を示してある。
第2構成例では、入力側の導波路部分(入力導波路部21及び分岐部22)及びその近傍と、出力側の導波路部分(合成部24及び出力導波路部25)及びその近傍を覆うように、光導波路2に沿って延びる所定幅の光吸収部材3を配置してある。このように、光吸収部材3の配置を光導波路2の近傍部分に限定し、光吸収に寄与せずに熱を拡散させてしまう部分の面積を小さくすることで、光導波路2の温度を効率的に上昇させることができる。第2構成例では、第1構成例と同じ材料の光吸収部材3を用いたが、第1構成例よりも光導波路2の温度上昇が高くなり、フォトリフラクティブ現象の抑制効果が改善していた。
FIG. 3 shows a second configuration example of the optical waveguide element according to the present invention.
In the second configuration example, the input-side waveguide portion (input waveguide portion 21 and branching portion 22) and the vicinity thereof, and the output-side waveguide portion (combining portion 24 and output waveguide portion 25) and the vicinity thereof are covered. As described above, a light absorbing member 3 having a predetermined width extending along the optical waveguide 2 is disposed. Thus, by limiting the arrangement of the light absorbing member 3 to the vicinity of the optical waveguide 2 and reducing the area of the portion that diffuses heat without contributing to the light absorption, the temperature of the optical waveguide 2 is made efficient. Can be raised. In the second configuration example, the light absorbing member 3 made of the same material as that in the first configuration example is used. However, the temperature rise of the optical waveguide 2 is higher than that in the first configuration example, and the suppression effect of the photorefractive phenomenon is improved. .

図4には、本発明に係る光導波路素子の第3構成例を示してある。
第3構成例では、第2構成例の光吸収部材3に対して、光導波路2と交わる方向の複数のスリットを光導波路2に沿って設けてある。このように、光吸収部材3の一部に、光導波路2に沿って図示したスリットのような貫通孔を設けることで、貫通孔の箇所での光吸収を抑制できるので、光強度の減衰量と発熱量とを調整しやすくなる。このような形状の光吸収部材3は、Al膜のように光吸収効率が低い材料を用いる場合よりも、Ti膜のように光吸収効率が高い材料を用いる場合に好適である。
FIG. 4 shows a third configuration example of the optical waveguide element according to the present invention.
In the third configuration example, a plurality of slits in the direction intersecting with the optical waveguide 2 are provided along the optical waveguide 2 with respect to the light absorbing member 3 of the second configuration example. In this way, by providing a through hole such as the slit shown along the optical waveguide 2 in a part of the light absorbing member 3, light absorption at the location of the through hole can be suppressed. It becomes easy to adjust the calorific value. The light absorbing member 3 having such a shape is suitable when a material having a high light absorption efficiency such as a Ti film is used rather than using a material having a low light absorption efficiency such as an Al film.

なお、図4では、光吸収部材3に複数の貫通孔を設けることで、光吸収部材3の配置区間内において光導波路2を光吸収部材3で覆う部分と覆わない部分とを交互に形成し、光強度の減衰量と発熱量とを調整しているが、図5に変形例を示すように、光吸収部材3を光導波路2上に離散的に配置することでも、光吸収部材3の配置区間内において光導波路2を光吸収部材3で覆う部分と覆わない部分とを交互に形成でき、光強度の減衰量と発熱量とを調整できる。   In FIG. 4, by providing a plurality of through holes in the light absorbing member 3, portions where the optical waveguide 2 is covered with the light absorbing member 3 and portions that are not covered are alternately formed in the arrangement section of the light absorbing member 3. The attenuation of light intensity and the amount of heat generated are adjusted, but the light absorbing member 3 can also be discretely arranged on the optical waveguide 2 as shown in FIG. In the arrangement section, the portion where the optical waveguide 2 is covered with the light absorbing member 3 and the portion which is not covered can be formed alternately, and the light intensity attenuation amount and the heat generation amount can be adjusted.

図6には、本発明に係る光導波路素子の第4構成例を示してある。
第4構成例の光導波路素子における光導波路2は、入力導波路部21からの光を分岐部22で2つのマッハツェンダー型導波路部に分岐し、各々のマッハツェンダー型導波路部を伝播してきた光をマッハツェンダー型導波路部毎に設けた出力導波路部25から出力する構造となっている。このような構造の場合、入力側の光強度よりも出力側の光強度の方が弱く、出力側は入力側に比べてフォトリフラクティブ現象が発生しにくいので、入力側の導波路部分(入力導波路部21及び分岐部22)のみに光吸収部材3を配置している。
FIG. 6 shows a fourth configuration example of the optical waveguide element according to the present invention.
The optical waveguide 2 in the optical waveguide element of the fourth configuration example branches light from the input waveguide section 21 into two Mach-Zehnder type waveguide sections by the branch section 22 and propagates through each Mach-Zehnder type waveguide section. The light is output from the output waveguide section 25 provided for each Mach-Zehnder type waveguide section. In such a structure, the light intensity on the output side is weaker than the light intensity on the input side, and the photorefractive phenomenon is less likely to occur on the output side than on the input side. The light absorbing member 3 is disposed only in the waveguide section 21 and the branch section 22).

なお、ここでは光吸収部材3を入力側の導波路部分(入力導波路部21及び分岐部22)のみに配置する構成としたが、本発明はこれに限定されない。例えば、光導波路2に沿って複数の光吸収部材3を配置し、各々の光吸収部材3による光の吸収量を光の伝搬方向における光吸収部材3の配置順に小さくする構成としてもよい。ここで、光吸収部材3は、入力側の分岐部22及びその後段の分岐部22’の全てに対して設ける構成としてもよく、これら分岐部の一部に対して光吸収部材3を設ける構成としてもよい。また、各々の分岐部について、その分岐部及びその前段に接続された導波路部分に全体的に光吸収部材3を設けてもよく、そのうちの光強度が高くなる部分(例えば、分岐部前段の導波路部分全体、または、その導波路部分の一部と分岐部)だけに光吸収部材3を設けてもよい。光の吸収量は、光吸収部材3が光導波路2を覆う面積を調整したり、光吸収部材3の材料を選択することで調整してもよい。   Here, the light absorbing member 3 is arranged only in the waveguide portion on the input side (the input waveguide portion 21 and the branch portion 22), but the present invention is not limited to this. For example, a plurality of light absorbing members 3 may be arranged along the optical waveguide 2 and the amount of light absorbed by each light absorbing member 3 may be reduced in the order of arrangement of the light absorbing members 3 in the light propagation direction. Here, the light absorbing member 3 may be provided for all of the branch portion 22 on the input side and the subsequent branch portion 22 ′, or the light absorbing member 3 is provided for a part of these branch portions. It is good. In addition, for each branch portion, the light absorbing member 3 may be provided as a whole in the waveguide portion connected to the branch portion and the preceding stage, and the portion of which the light intensity is increased (for example, the stage before the branch portion) The light absorbing member 3 may be provided only on the entire waveguide portion or only on a part of the waveguide portion and a branching portion. The amount of light absorption may be adjusted by adjusting the area where the light absorbing member 3 covers the optical waveguide 2 or by selecting the material of the light absorbing member 3.

図7には、本発明に係る光導波路素子の第5構成例を示してある。
第5構成例では、平面光波回路(PLC)の後段に光導波路素子(LN)を接続した構造となっている。すなわち、平面光波回路(PLC)で分岐された複数の光が、光導波路素子(LN)が持つ複数の入力導波路21にそれぞれ入力され、各々の入力導波路21に接続された複数の作用導波路部23で制御電極による制御が行われた後に、その後段の各合成部24’で合成され、その後さらに合成部24で合成された後に、出力導波路部25から光導波路素子(LN)の外部に出力される構造となっている。このような構造の場合、入力側の光強度よりも出力側の光強度の方が強く、出力側は入力側に比べてフォトリフラクティブ現象が発生し易いので、出力側の導波路部分(合成部24及び出力導波路部25)のみに光吸収部材3を配置している。
FIG. 7 shows a fifth configuration example of the optical waveguide element according to the present invention.
In the fifth configuration example, an optical waveguide element (LN) is connected to the subsequent stage of the planar lightwave circuit (PLC). That is, a plurality of lights branched by the planar lightwave circuit (PLC) are respectively input to a plurality of input waveguides 21 included in the optical waveguide element (LN), and a plurality of working guides connected to the respective input waveguides 21 are connected. After the control by the control electrode in the waveguide portion 23, the light is synthesized by each synthesis portion 24 ′ at the subsequent stage, and further synthesized by the synthesis portion 24, and then the optical waveguide element (LN) is output from the output waveguide portion 25. It is structured to be output to the outside. In such a structure, the light intensity on the output side is stronger than the light intensity on the input side, and the photorefractive phenomenon is more likely to occur on the output side than on the input side. 24 and the output waveguide portion 25) are disposed only on the light absorbing member 3.

なお、ここでは光吸収部材3を出力側の導波路部分(合成部24及び出力導波路部25)のみに配置する構成としたが、出力側の合成部24及びその前段の合成部24’の全てに対して設ける構成としてもよく、これら合成部の一部に対して光吸収部材3を設ける構成としてもよい。また、各々の合成部について、その合成部及びその後段に接続された導波路部分に全体的に光吸収部材3を設けてもよく、そのうちの光強度が高くなる部分(例えば、合成部後段の導波路部分全体、または、その導波路部分の一部と合成部)だけに光吸収部材3を設けてもよい。   Here, the light absorbing member 3 is arranged only in the output-side waveguide portion (the combining portion 24 and the output waveguide portion 25). However, the output-side combining portion 24 and the preceding combining portion 24 ′ are arranged. It is good also as a structure provided with respect to all, and it is good also as a structure which provides the light absorption member 3 with respect to a part of these synthetic | combination parts. In addition, for each combining unit, the light absorbing member 3 may be provided as a whole in the waveguide unit connected to the combining unit and the subsequent stage, of which the light intensity increases (for example, in the latter part of the combining unit) The light absorbing member 3 may be provided in the entire waveguide portion or only in a part of the waveguide portion and the combining portion.

図8には、本発明に係る光導波路素子の第6構成例を示してある。
図8では、基板1を筐体4に収容した様子を示してあり、(a)は側面断面図、(b)は平面断面図である。本例では、筐体4の底面部分に所定高さの台座41を設け、台座41の上に基板1を載置することで、基板1を筐体4の上面や側面だけでなく基板1の底面からも離隔させている。また、基板1における光吸収部材3の配置部分は、台座41にも接しないように台座41からはみ出させてある。このように、基板1における光吸収部材3の配置部分を筐体4の内面部分から離隔させることで、筐体4による熱の拡散を抑制し、光導波路2を効率的に温度上昇させることができる。なお、本例では、基板1と筐体4の内面部分との間隔を1〜2mm程度取っているが、筐体4に対する基板1の実装の仕方に応じて基板1と筐体4の内面部分との間隔を決めればよい。
FIG. 8 shows a sixth configuration example of the optical waveguide element according to the present invention.
FIG. 8 shows a state in which the substrate 1 is housed in the housing 4, (a) is a side sectional view, and (b) is a plan sectional view. In this example, a pedestal 41 having a predetermined height is provided on the bottom surface portion of the housing 4, and the substrate 1 is placed on the pedestal 41, so that the substrate 1 is not limited to the top surface and side surfaces of the housing 4. It is also separated from the bottom. Further, the arrangement portion of the light absorbing member 3 on the substrate 1 is protruded from the pedestal 41 so as not to contact the pedestal 41. Thus, by dissociating the arrangement portion of the light absorbing member 3 in the substrate 1 from the inner surface portion of the housing 4, it is possible to suppress the diffusion of heat by the housing 4 and to efficiently raise the temperature of the optical waveguide 2. it can. In this example, the distance between the substrate 1 and the inner surface portion of the housing 4 is about 1 to 2 mm. However, the inner surface portion of the substrate 1 and the housing 4 depending on how the substrate 1 is mounted on the housing 4. What is necessary is just to decide the interval.

以上のように、光導波路2の少なくとも一部の上側を覆うように光吸収部材3を配置することで、光導波路2を伝播する光による光吸収部材3の発熱によってフォトリフラクティブ効果を低減させることができ、フォトリフラクティブ効果に起因する現象を抑制することができる。また、光導波路2を発熱させる必要がある箇所に光吸収部材3を配置するだけで局所的な加熱を行うことができ、加熱用に付加的な電源を設ける必要がない。   As described above, by arranging the light absorbing member 3 so as to cover at least a part of the upper side of the optical waveguide 2, the photorefractive effect is reduced by the heat generated by the light absorbing member 3 by the light propagating through the optical waveguide 2. And the phenomenon caused by the photorefractive effect can be suppressed. Moreover, local heating can be performed only by arranging the light absorbing member 3 at a place where the optical waveguide 2 needs to generate heat, and there is no need to provide an additional power source for heating.

なお、光吸収部材3のチャージアップが懸念されるため、光吸収部材3から熱が逃げない程度に、光吸収部材3を接地電位に接続しておくことが好ましい。
また、上記の各構成例では、光導波路2の上側に光吸収部材3を直接重ねて形成しているが、光導波路2と光吸収部材3の間にスペーサを設けることで、光吸収効率の調整を行うようにしてもよい。すなわち、例えば、光導波路2の上に(リアクティブ)スパッタにてスペーサを形成し、その後、光吸収部材3を蒸着にて形成する。スペーサとしては、種々の材料のものを用いることができる。例えば、SiO2,SiN,Al23等のようにLNよりも屈折率が低い材料の膜を用いる場合には、膜が厚くなるに従って光吸収量が減少する。また例えば、TiO2,Si,Cu2O等のようにLNよりも屈折率が高い材料の膜を用いる場合には、膜の厚さによって光吸収量が変化する。つまり、スペーサの材料やその厚さに応じて光吸収効率を適宜に調整できる。
In addition, since there is a concern about charge-up of the light absorbing member 3, it is preferable to connect the light absorbing member 3 to the ground potential so that heat does not escape from the light absorbing member 3.
In each of the above configuration examples, the light absorbing member 3 is formed directly on the upper side of the optical waveguide 2. However, by providing a spacer between the optical waveguide 2 and the light absorbing member 3, the light absorption efficiency can be improved. Adjustments may be made. That is, for example, a spacer is formed on the optical waveguide 2 by (reactive) sputtering, and then the light absorbing member 3 is formed by vapor deposition. As the spacer, various materials can be used. For example, when a film made of a material having a lower refractive index than LN, such as SiO 2 , SiN, Al 2 O 3, etc., the amount of light absorption decreases as the film becomes thicker. For example, when a film made of a material having a higher refractive index than LN such as TiO 2 , Si, Cu 2 O, or the like is used, the amount of light absorption varies depending on the thickness of the film. That is, the light absorption efficiency can be appropriately adjusted according to the spacer material and its thickness.

また、上記の各構成例では、光吸収部材3として金属膜を用いたが、光吸収により発熱する他の材料を用いても構わない。例えば、酸素欠損している酸化金属、半導体等を光吸収部材3として用いることができる。また、メタマテリアル等の構造を利用して光吸収を調整する方法などもある。
また、光導波路2を伝播する光の偏波面に応じて光吸収部材3の光吸収量による発熱量が変化する特性を利用して、光導波路2に対する入力光の偏波面を調整する偏波面調整機構を設け、偏波面調整機構により入力光の偏波面を調整することで、光吸収部材3の光吸収量による発熱量を調整してもよい。
Moreover, in each said structural example, although the metal film was used as the light absorption member 3, you may use the other material which generate | occur | produces heat by light absorption. For example, oxygen-deficient metal oxide, semiconductor, or the like can be used as the light absorbing member 3. There is also a method of adjusting light absorption using a structure such as a metamaterial.
Further, the polarization plane adjustment that adjusts the polarization plane of the input light to the optical waveguide 2 using the characteristic that the amount of heat generated by the light absorption amount of the light absorbing member 3 changes according to the polarization plane of the light propagating through the optical waveguide 2. The amount of heat generated by the light absorption amount of the light absorbing member 3 may be adjusted by providing a mechanism and adjusting the polarization plane of the input light by the polarization plane adjustment mechanism.

以上、実施例に基づいて本発明を説明したが、本発明は上述した内容に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更可能であることはいうまでもない。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described contents, and it is needless to say that the design can be changed as appropriate without departing from the gist of the present invention.

以上説明したように、本発明によれば、基板材料のフォトリフラクティブ効果に起因する現象を抑制できる光変調素子を提供することができる。   As described above, according to the present invention, it is possible to provide a light modulation element that can suppress a phenomenon caused by a photorefractive effect of a substrate material.

1 基板
2 光導波路
3 光吸収部材
4 筐体
21 入力導波路部
22,22’ 分岐部
23 作用導波路部
24,24’ 合成部
25 出力導波路部
41 台座
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Optical waveguide 3 Light absorption member 4 Case 21 Input waveguide part 22,22 'Branch part 23 Action waveguide part 24,24' Synthesis | combination part 25 Output waveguide part 41 Base

Claims (11)

電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子において、
該光導波路は、該光導波路素子の外部から光が入力される入力導波路部と、該入力導波路部に入力された光を複数の分岐導波路部に分岐させる分岐部とを有し、
該入力導波路部及び該分岐部において、光強度が高くなる部分の上側を少なくとも覆うように、光吸収により発熱する光吸収部材が配置されたことを特徴とする光導波路素子。
In an optical waveguide device comprising a substrate having an electro-optic effect and an optical waveguide formed on the substrate,
The optical waveguide has an input waveguide portion to which light is input from the outside of the optical waveguide element, and a branch portion that branches light input to the input waveguide portion into a plurality of branch waveguide portions,
An optical waveguide element, wherein a light absorbing member that generates heat by light absorption is disposed so as to cover at least the upper side of a portion where the light intensity increases in the input waveguide portion and the branch portion.
請求項1に記載の光導波路素子において、
該光吸収部材は、該入力導波路部の全体の上側、または、該入力導波路の一部と該分岐部の上側を少なくとも覆うように配置されたことを特徴とする光導波路素子。
The optical waveguide device according to claim 1,
The optical waveguide element, wherein the light absorbing member is disposed so as to cover at least the entire upper side of the input waveguide section or a part of the input waveguide and the upper side of the branch section.
請求項1又は請求項2に記載の光導波路素子において、
該光吸収部材は、該光導波路に沿って延びる所定幅の部材であることを特徴とする光導波路素子。
In the optical waveguide device according to claim 1 or 2,
The optical waveguide element, wherein the light absorbing member is a member having a predetermined width extending along the optical waveguide.
請求項1乃至請求項3のいずれかに記載の光導波路素子において、
該光吸収部材の一部に、該光導波路に沿って貫通孔を設けたことを特徴とする光導波路素子。
In the optical waveguide device according to any one of claims 1 to 3,
An optical waveguide device, wherein a through hole is provided in a part of the light absorbing member along the optical waveguide.
請求項1乃至請求項4のいずれかに記載の光導波路素子において、
該光吸収部材は接地されていることを特徴とする導波路素子。
In the optical waveguide device according to any one of claims 1 to 4,
The waveguide element, wherein the light absorbing member is grounded.
請求項1乃至請求項5のいずれかに記載の光導波路素子において、
該光導波路と該光吸収部材の間にスペーサを設けたことを特徴とする光導波路素子。
The optical waveguide device according to any one of claims 1 to 5,
An optical waveguide element comprising a spacer provided between the optical waveguide and the light absorbing member.
請求項1乃至請求項6のいずれかに記載の光導波路素子において、
該光導波路は、前記複数の分岐導波路部からの光を合成する合成部と、該合成部で合成された光を該光導波路素子の外部に出力する出力導波路部とを有し、
該出力導波路部及び該合成部において、光強度が高くなる部分の上側を少なくとも覆うように、該光吸収部材が配置されたことを特徴とする光導波路素子。
The optical waveguide device according to any one of claims 1 to 6,
The optical waveguide includes a combining unit that combines light from the plurality of branch waveguide units, and an output waveguide unit that outputs the light combined by the combining unit to the outside of the optical waveguide element.
An optical waveguide element, wherein the light absorbing member is disposed so as to cover at least the upper side of the portion where the light intensity increases in the output waveguide portion and the combining portion.
請求項7に記載の光導波路素子において、
該光吸収部材は、該出力導波路部の全体の上側、または、該出力導波路の一部と該合成部の上側を少なくとも覆うように配置されたことを特徴とする光導波路素子。
In the optical waveguide device according to claim 7,
The optical waveguide element, wherein the light absorbing member is arranged so as to cover at least the entire upper side of the output waveguide part or a part of the output waveguide and the upper side of the synthesis part.
請求項1乃至請求項8のいずれかに記載の光導波路素子において、
該光吸収部材は、該光導波路に沿って複数配置され、
前記複数の光吸収部材の各々による光の吸収量は、光の伝搬方向における該光吸収部材の配置順に小さいことを特徴とする光導波路素子。
The optical waveguide device according to any one of claims 1 to 8,
A plurality of the light absorbing members are arranged along the optical waveguide,
An optical waveguide device characterized in that the amount of light absorbed by each of the plurality of light absorbing members is small in the order of arrangement of the light absorbing members in the light propagation direction.
電気光学効果を有する基板と、該基板に形成された光導波路とを備えた光導波路素子において、
該光導波路は、該光導波路素子の外部から光が入力される複数の入力導波路部と、前記複数の入力導波路部に入力された光を合成する合成部と、該合成部で合成された光を該光導波路素子の外部に出力する出力導波路部とを有し、
該出力導波路部及び該合成部において、光強度が高くなる部分の上側を覆うように、光吸収により発熱する光吸収部材が配置されたことを特徴とする光導波路素子。
In an optical waveguide device comprising a substrate having an electro-optic effect and an optical waveguide formed on the substrate,
The optical waveguide is synthesized by a plurality of input waveguide portions to which light is input from the outside of the optical waveguide element, a synthesis portion for synthesizing light input to the plurality of input waveguide portions, and the synthesis portion. An output waveguide portion that outputs the light to the outside of the optical waveguide element,
An optical waveguide element, wherein a light absorbing member that generates heat by light absorption is disposed so as to cover an upper side of a portion where the light intensity increases in the output waveguide portion and the combining portion.
請求項1乃至請求項10のいずれかに記載の光導波路素子において、
該基板を収容する筐体を備え、
該基板における該光吸収部材の配置部分を、該筐体の内面から離隔させたことを特徴とする光導波路素子。
The optical waveguide device according to any one of claims 1 to 10,
A housing for accommodating the substrate;
An optical waveguide element characterized in that an arrangement portion of the light absorbing member on the substrate is separated from an inner surface of the casing.
JP2015192708A 2015-09-30 2015-09-30 Optical waveguide device Active JP6582821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192708A JP6582821B2 (en) 2015-09-30 2015-09-30 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192708A JP6582821B2 (en) 2015-09-30 2015-09-30 Optical waveguide device

Publications (2)

Publication Number Publication Date
JP2017067986A true JP2017067986A (en) 2017-04-06
JP6582821B2 JP6582821B2 (en) 2019-10-02

Family

ID=58492551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192708A Active JP6582821B2 (en) 2015-09-30 2015-09-30 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP6582821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152789A (en) * 2018-03-05 2019-09-12 住友大阪セメント株式会社 Optical modulator
JP2020038241A (en) * 2018-08-31 2020-03-12 国立大学法人東京工業大学 All-optical switch and optical device
WO2023188137A1 (en) * 2022-03-30 2023-10-05 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module, and optical transmission device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331829A (en) * 1993-05-25 1994-12-02 Sumitomo Metal Mining Co Ltd Attenuator for optical waveguide
JPH11174248A (en) * 1997-12-15 1999-07-02 Ngk Insulators Ltd Optical waveguide element
JP2000275592A (en) * 1999-03-26 2000-10-06 Sumitomo Osaka Cement Co Ltd Waveguide type optical device
JP2001249242A (en) * 1999-12-23 2001-09-14 Litton Syst Inc Integrated optical chip with decreased surface wave propagation
JP2006309199A (en) * 2005-03-31 2006-11-09 Sumitomo Osaka Cement Co Ltd Optical modulator
WO2008090685A1 (en) * 2007-01-23 2008-07-31 Murata Manufacturing Co., Ltd. Light control element
JP2016071273A (en) * 2014-10-01 2016-05-09 日本電信電話株式会社 Optical switch element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331829A (en) * 1993-05-25 1994-12-02 Sumitomo Metal Mining Co Ltd Attenuator for optical waveguide
JPH11174248A (en) * 1997-12-15 1999-07-02 Ngk Insulators Ltd Optical waveguide element
JP2000275592A (en) * 1999-03-26 2000-10-06 Sumitomo Osaka Cement Co Ltd Waveguide type optical device
JP2001249242A (en) * 1999-12-23 2001-09-14 Litton Syst Inc Integrated optical chip with decreased surface wave propagation
JP2006309199A (en) * 2005-03-31 2006-11-09 Sumitomo Osaka Cement Co Ltd Optical modulator
WO2008090685A1 (en) * 2007-01-23 2008-07-31 Murata Manufacturing Co., Ltd. Light control element
JP2016071273A (en) * 2014-10-01 2016-05-09 日本電信電話株式会社 Optical switch element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152789A (en) * 2018-03-05 2019-09-12 住友大阪セメント株式会社 Optical modulator
CN110231681A (en) * 2018-03-05 2019-09-13 住友大阪水泥股份有限公司 Optical modulator
JP7047469B2 (en) 2018-03-05 2022-04-05 住友大阪セメント株式会社 Optical modulator
JP2020038241A (en) * 2018-08-31 2020-03-12 国立大学法人東京工業大学 All-optical switch and optical device
WO2023188137A1 (en) * 2022-03-30 2023-10-05 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module, and optical transmission device

Also Published As

Publication number Publication date
JP6582821B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP3827629B2 (en) Light modulator
US7916981B2 (en) Optical modulator
JP5782974B2 (en) Light modulator and light receiving amount adjustment method of light receiving element of light modulator
JP5792702B2 (en) Light modulator
JP5716714B2 (en) Optical waveguide device
JP6582821B2 (en) Optical waveguide device
WO2015129039A1 (en) Optical semiconductor device
US9377666B2 (en) Light modulator
JP7322784B2 (en) Optical waveguide element, optical modulation device using the same, and optical transmitter
US9008468B2 (en) Electro-optic modulator of large bandwidth
JP5166450B2 (en) Optical waveguide device
US12025833B2 (en) Optical waveguide element
JP2016142799A (en) Light control element
JP5467414B2 (en) Optical functional waveguide
JP5983839B2 (en) Light modulator
US9158077B2 (en) Waveguide lens including planar waveguide and media grating
JP2021162641A (en) Optical control element, optical modulation device using the same, and optical transmitter
JP2007248944A (en) Optical modulator
JP2018017852A (en) Optical modulator
JP2014191087A (en) Optical phase modulator
JP2006343412A (en) Optical modulator
JP2020057024A (en) Optical modulator
JPH0315831A (en) Light deflecting element
JPH06347737A (en) Optical control device
JP2009229793A (en) Optical waveguide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150