JP2017067495A - Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine - Google Patents

Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine Download PDF

Info

Publication number
JP2017067495A
JP2017067495A JP2015190171A JP2015190171A JP2017067495A JP 2017067495 A JP2017067495 A JP 2017067495A JP 2015190171 A JP2015190171 A JP 2015190171A JP 2015190171 A JP2015190171 A JP 2015190171A JP 2017067495 A JP2017067495 A JP 2017067495A
Authority
JP
Japan
Prior art keywords
cylinder
peripheral wall
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190171A
Other languages
Japanese (ja)
Inventor
裕司 住本
Yuji Sumimoto
裕司 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2015190171A priority Critical patent/JP2017067495A/en
Publication of JP2017067495A publication Critical patent/JP2017067495A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to measure the amount of thermal deformation of am inner surface of a cylinder bore when an internal combustion engine is operated at high rotational speed or at high load.SOLUTION: In a cylinder block, strain gauges are mounted on outer surfaces of peripheral walls of cylinders, which face a water jacket surrounding the cylinders, and temperature sensors for measuring temperatures of the peripheral walls of the cylinders are installed, so that an internal combustion engine is operated. While the amount of stain of the peripheral walls of the cylinders is measured by the strain gauges, the amount of thermal expansion is obtained by measuring the temperatures of the peripheral walls of the cylinders by the temperature sensors.SELECTED DRAWING: Figure 1

Description

本発明は、車両等に搭載される内燃機関の気筒の周壁の内面の熱変形量の測定に関する。   The present invention relates to measurement of the amount of thermal deformation of an inner surface of a peripheral wall of a cylinder of an internal combustion engine mounted on a vehicle or the like.

内燃機関の運転中は、昇温により気筒のボア内面の形状が熱変形を起こす。気筒の内形とピストン及びピストンリングの外形との関係は、内燃機関のピストンの往復運動に伴うメカロス、並びに潤滑油の消費量に影響を及ぼす。内燃機関の運転中の気筒のボア内面の変形度合いを測定することは、メカロスの低減と潤滑油の消費の抑制との両立を図るために有用であると考えられる。   During operation of the internal combustion engine, the shape of the bore inner surface of the cylinder undergoes thermal deformation due to temperature rise. The relationship between the inner shape of the cylinder and the outer shape of the piston and the piston ring affects the mechanical loss accompanying the reciprocating motion of the piston of the internal combustion engine and the consumption amount of the lubricating oil. Measuring the degree of deformation of the inner surface of the bore of the cylinder during operation of the internal combustion engine is considered useful for achieving both reduction of mechanical loss and suppression of lubricating oil consumption.

下記特許文献にも開示されている通り、従来は、ピストンの外周に複数個のギャップセンサを埋設(ピストンに設けたインバー合金等の低膨張材にギャップセンサを取り付け)しておき、各ギャップセンサから気筒のボア内面までの距離を計測することを通じて、ボア内面の熱変形量を測定していた。ギャップセンサと測定装置(または、計算機)との間の信号の授受の方式には、有線のリンク式や無線のテレメータ式、ローガ式等がある。   As disclosed in the following patent documents, conventionally, a plurality of gap sensors are embedded in the outer periphery of the piston (a gap sensor is attached to a low expansion material such as an invar alloy provided on the piston), and each gap sensor is provided. The amount of thermal deformation of the bore inner surface was measured by measuring the distance from the cylinder to the bore inner surface of the cylinder. Signal transmission / reception methods between the gap sensor and the measuring device (or computer) include a wired link method, a wireless telemeter method, a logger method, and the like.

しかし、このような従来の手法では、内燃機関を高回転または高負荷で運転しているときのボア内面の熱変形量を測定することは事実上困難であった。何故ならば、高回転または高負荷の運転領域では、ギャップセンサの耐熱限界や信号伝送のためのリンク機構またはテレメータの耐G限界、許容回転数の限界を超えてしまうからである。   However, with such a conventional method, it is practically difficult to measure the amount of thermal deformation of the bore inner surface when the internal combustion engine is operated at a high rotation speed or a high load. This is because, in the high rotation or high load operation region, the heat resistance limit of the gap sensor, the G mechanism resistance limit of the link mechanism for signal transmission or the telemeter, and the allowable rotation speed limit are exceeded.

とりわけ、内燃機関の潤滑油の消費量は高回転または高負荷域で増大することから、高回転または高負荷域でのボア内面の熱変形量の評価が重要となる。   In particular, since the consumption of the lubricating oil of the internal combustion engine increases in a high rotation or high load region, it is important to evaluate the amount of thermal deformation of the bore inner surface in the high rotation or high load region.

特開2010−149562号公報JP 2010-149562 A

本発明は、高回転または高負荷域での気筒のボア内面の熱変形量の測定を可能とすることを所期の目的としている。   An object of the present invention is to make it possible to measure the amount of thermal deformation of the bore inner surface of a cylinder in a high rotation or high load range.

本発明に係る内燃機関の気筒の周壁の内面の熱変形量の測定方法は、シリンダブロックにおいて気筒を取り巻くウォータジャケットに面している気筒の周壁の外面にひずみゲージを取り付けるとともに、気筒の周壁の温度を計測する温度センサを設置した上で内燃機関を運転し、ひずみゲージを介して気筒の周壁のひずみ量を計測しつつ、温度センサを介して気筒の周壁の温度を計測して熱膨張量を知得することを特徴とする。   The method for measuring the amount of thermal deformation of the inner surface of the cylinder peripheral wall of the internal combustion engine according to the present invention includes attaching a strain gauge to the outer surface of the cylinder peripheral wall facing the water jacket surrounding the cylinder in the cylinder block, and Operating the internal combustion engine with a temperature sensor that measures the temperature, measuring the amount of strain on the cylinder's peripheral wall via a strain gauge, and measuring the temperature of the cylinder's peripheral wall via a temperature sensor to measure the amount of thermal expansion It is characterized by knowing.

本発明によれば、高回転または高負荷域での気筒のボア内面の熱変形量の測定が可能となる。   According to the present invention, it is possible to measure the amount of thermal deformation of the bore inner surface of a cylinder in a high rotation or high load range.

本発明の一実施形態における内燃機関のシリンダブロック、並びにひずみゲージ及び温度センサの設置箇所を示す平面図。The top view which shows the cylinder block of the internal combustion engine in one Embodiment of this invention, and the installation location of a strain gauge and a temperature sensor. 同実施形態における内燃機関のシリンダブロック、並びに気筒の周壁の内外のひずみゲージの設置箇所を示す平面図。The top view which shows the installation location of the cylinder block of the internal combustion engine in the same embodiment, and the strain gauge inside and outside the surrounding wall of a cylinder.

以下、本発明の一実施形態である気筒2のボア内面の熱変形量の測定方法を、図面を参照して説明する。   Hereinafter, a method for measuring the amount of thermal deformation of the bore inner surface of the cylinder 2 according to an embodiment of the present invention will be described with reference to the drawings.

本測定方法を実施するためには、図1に示すように、内燃機関のシリンダブロック1において気筒2を取り巻くウォータジャケット3に面している各気筒2の周壁の外面の各所に、ひずみゲージ4を貼付する。それとともに、気筒2の周壁における、ひずみゲージ4を貼付した箇所の近傍の部位の温度を計測する温度センサとして、熱電対5を設置する。そして、その状態で内燃機関を運転し、ひずみゲージ4を介して気筒2の周壁の各所のひずみ量を計測しつつ、熱電対5を介して気筒2の周壁の各所の温度を計測して当該箇所の熱膨張量を知得する。因みに、図1及び図2では、直列三気筒エンジンの例を示している。   In order to carry out this measurement method, as shown in FIG. 1, strain gauges 4 are provided at various locations on the outer surface of the peripheral wall of each cylinder 2 facing the water jacket 3 surrounding the cylinder 2 in the cylinder block 1 of the internal combustion engine. Affix. At the same time, a thermocouple 5 is installed as a temperature sensor for measuring the temperature of a portion of the peripheral wall of the cylinder 2 near the portion where the strain gauge 4 is attached. Then, in this state, the internal combustion engine is operated, and while measuring the amount of strain at various locations on the peripheral wall of the cylinder 2 via the strain gauge 4, the temperature at various locations on the peripheral wall of the cylinder 2 is measured via the thermocouple 5 Know the amount of thermal expansion at the location. Incidentally, FIGS. 1 and 2 show an example of an in-line three-cylinder engine.

ひずみゲージ4は、気筒2の周壁の外面側に存在しており、内燃機関の運転中のピストンの往復運動の妨げとならない。のみならず、内燃機関の運転中に冷却水で満たされるウォータジャケット3内に配されることから、耐熱性の問題も生じない。   The strain gauge 4 is present on the outer surface side of the peripheral wall of the cylinder 2 and does not hinder the reciprocating motion of the piston during operation of the internal combustion engine. In addition, since it is arranged in the water jacket 3 filled with cooling water during operation of the internal combustion engine, the problem of heat resistance does not occur.

ひずみゲージ4は、直接には気筒2の周壁の外面のひずみ量を計測することになるが、本発明の発明者の鋭意研究の結果、気筒2の周壁の外面の熱変形量と内面の熱変形量とは比例関係にあり、しかも周壁の温度条件如何によらず外面の熱変形量と内面の熱変形量とは概ね等しくなる、即ち周壁の外面の熱変形量と内面の熱変形量とは概ね1:1の関係にあることが明らかとなった。従って、各ひずみゲージ4により計測される周壁の外面側の各所のひずみ量を、周壁の内面側の各所のひずみ量の代用とすることができる。   The strain gauge 4 directly measures the amount of strain on the outer surface of the peripheral wall of the cylinder 2, but as a result of intensive research by the inventors of the present invention, the amount of thermal deformation of the outer surface of the peripheral wall of the cylinder 2 and the heat of the inner surface. The amount of deformation is proportional, and regardless of the temperature conditions of the peripheral wall, the amount of thermal deformation of the outer surface and the amount of thermal deformation of the inner surface are substantially equal, that is, the amount of thermal deformation of the outer surface of the peripheral wall and the amount of thermal deformation of the inner surface. Was found to have a 1: 1 relationship. Therefore, the amount of strain at each location on the outer surface side of the peripheral wall measured by each strain gauge 4 can be substituted for the amount of strain at each location on the inner surface side of the peripheral wall.

上記のことは、図2に示すように、気筒2の周壁の外面側と内面側とにそれぞれひずみゲージ4、6を対向させて配置し、外面側のひずみゲージ4により計測されるひずみ量と内面側のひずみゲージ6により計測されるひずみ量とを比較すれは分かる。その際には、シリンダブロック1を高温水や高温油または熱風等で加熱し、以て気筒2の周壁の温度を実運転中に近い状況まで昇温させる。例えば、ウォータジャケット3に高温水または高温油を充填しつつ、気筒2内に熱風を吹き込む。これは、内面側のひずみゲージ6が気筒2内で往復運動するピストンと干渉するために、内燃機関の実運転を行うことが困難であることによる。   As described above, as shown in FIG. 2, the strain gauges 4 and 6 are arranged facing the outer surface side and the inner surface side of the peripheral wall of the cylinder 2, respectively, and the strain amount measured by the strain gauge 4 on the outer surface side is as follows. A comparison is made with the amount of strain measured by the strain gauge 6 on the inner surface side. At that time, the cylinder block 1 is heated with high-temperature water, high-temperature oil, hot air, or the like, thereby raising the temperature of the peripheral wall of the cylinder 2 to a state close to that during actual operation. For example, hot air is blown into the cylinder 2 while filling the water jacket 3 with high-temperature water or high-temperature oil. This is because it is difficult to perform the actual operation of the internal combustion engine because the strain gauge 6 on the inner surface side interferes with the piston that reciprocates in the cylinder 2.

内燃機関の運転中の気筒2の周壁の内面のひずみ量を計測するにあたっては、予め、図2に示しているようにひずみゲージ4、6を貼付して、周壁の外面側の各所のひずみ量と内面側の各所のひずみ量との相関関係を求めておく。その上で、気筒2の周壁の外面側にのみひずみゲージ4を貼付した状態で(周壁の内面側のひずみゲージ6を除去して)内燃機関を運転し、つまりは気筒2内で燃料を燃焼させピストンを運動させながら、ひずみゲージ4により周壁の外面側の各所のひずみ量を計測し、その計測したひずみ量を予め求めておいた相関関係を用いて周壁の内面側の各所のひずみ量に換算する。   When measuring the amount of strain on the inner surface of the peripheral wall of the cylinder 2 during operation of the internal combustion engine, strain gauges 4 and 6 are attached in advance as shown in FIG. And the correlation between the amount of strain at each location on the inner surface side. Then, the internal combustion engine is operated with the strain gauge 4 attached only on the outer surface side of the peripheral wall of the cylinder 2 (with the strain gauge 6 on the inner surface side of the peripheral wall removed), that is, the fuel is burned in the cylinder 2 While moving the piston, the strain gauge 4 measures the amount of strain on the outer surface side of the peripheral wall, and uses the correlation obtained in advance to determine the strain amount on the inner surface side of the peripheral wall. Convert.

ひずみゲージ4を介して計測されるひずみ量は、気筒2の周壁の径方向に沿ったひずみ変形量を表す。一方で、気筒2の周壁の周方向に沿った熱膨張量を、ひずみゲージ4により検出することは難しい。熱電対5により気筒2の周壁の各所の温度を計測するのは、この周壁の各所の周方向に沿った熱膨張量を知得するためである。熱電対5を介して計測される温度と、周壁の周方向に沿った熱膨張量との相関関係は、周壁の構成材料から予め判明する。従って、熱電対5により計測した各所の温度を、その既知の相関関係を用いて周壁の各所の周方向に沿った熱膨張量に換算することができる。   The strain amount measured through the strain gauge 4 represents the strain deformation amount along the radial direction of the peripheral wall of the cylinder 2. On the other hand, it is difficult for the strain gauge 4 to detect the amount of thermal expansion along the circumferential direction of the peripheral wall of the cylinder 2. The temperature of each part of the peripheral wall of the cylinder 2 is measured by the thermocouple 5 in order to know the amount of thermal expansion along the circumferential direction of each part of the peripheral wall. The correlation between the temperature measured via the thermocouple 5 and the amount of thermal expansion along the circumferential direction of the peripheral wall is found in advance from the constituent material of the peripheral wall. Therefore, the temperature of each place measured by the thermocouple 5 can be converted into the amount of thermal expansion along the circumferential direction of each place on the peripheral wall using the known correlation.

なお、(ひずみゲージ4により計測される)気筒2の周壁の各所の径方向に沿ったひずみ変形量を、周壁の周方向に沿った変形量に幾何的に換算し、それを(熱電対5により計測される温度に基づく)周壁の対応する箇所の周方向に沿った熱膨張量と合算するようにしても構わない。   In addition, the amount of strain deformation along the radial direction of each part of the peripheral wall of the cylinder 2 (measured by the strain gauge 4) is geometrically converted into the amount of deformation along the peripheral direction of the peripheral wall, and this is converted into the thermocouple 5 The thermal expansion amount along the circumferential direction of the corresponding portion of the peripheral wall (based on the temperature measured by the above) may be added together.

また、複数の気筒2を直列に配列している内燃機関では、各気筒2が、それら気筒2の並ぶ方向に対して直交する方向、即ち各気筒2の吸気ポートと排気ポートとが対向する方向にひずみかつ拡張して、平面視(または、断面視)楕円形化するように変形する。これと比較して、複数の気筒2が並ぶ方向に沿ったひずみ量は非常に小さいことから、図1及び図2に示している通り、隣り合う複数の気筒2が最接近する部位については、必ずしもひずみゲージ4、6を貼付してひずみ量を計測する必要がない。   In an internal combustion engine in which a plurality of cylinders 2 are arranged in series, each cylinder 2 is orthogonal to the direction in which the cylinders 2 are arranged, that is, the direction in which the intake port and the exhaust port of each cylinder 2 face each other. And deformed so as to be elliptical in plan view (or cross-sectional view). Compared to this, since the amount of strain along the direction in which the plurality of cylinders 2 are arranged is very small, as shown in FIG. 1 and FIG. It is not always necessary to attach strain gauges 4 and 6 and measure the amount of strain.

上述した気筒2の周壁の各所のひずみ量及び熱膨張量の計測は、気筒2の周壁の温度を様々に変えながら行うことができる。換言すれば、周壁の温度毎に、例えば25℃から110℃の範囲内の様々な冷却水温の値毎に、周壁の各所のひずみ量及び熱膨張量を計測することができる。   The above-described measurement of the amount of strain and the amount of thermal expansion of each part of the peripheral wall of the cylinder 2 can be performed while changing the temperature of the peripheral wall of the cylinder 2 in various ways. In other words, the amount of strain and the amount of thermal expansion at each location on the peripheral wall can be measured for each temperature of the peripheral wall, for example, for each value of various cooling water temperatures within a range of 25 ° C. to 110 ° C.

本実施形態に係る気筒2のボア内面の熱変形量の測定方法は、シリンダブロック1において気筒2を取り巻くウォータジャケット3に面している、気筒2の周壁の外面にひずみゲージ4を取り付けるとともに、気筒2の周壁の温度を計測する温度センサ5を設置した上で、内燃機関を運転し、ひずみゲージ4を介して気筒2の周壁のひずみ量を計測しつつ、温度センサ5を介して気筒2の周壁の温度を計測して熱膨張量を知得するものである。   The method for measuring the amount of thermal deformation of the bore inner surface of the cylinder 2 according to the present embodiment includes attaching a strain gauge 4 to the outer surface of the peripheral wall of the cylinder 2 facing the water jacket 3 surrounding the cylinder 2 in the cylinder block 1, After installing the temperature sensor 5 for measuring the temperature of the peripheral wall of the cylinder 2, the internal combustion engine is operated and the strain amount of the peripheral wall of the cylinder 2 is measured via the strain gauge 4, while the cylinder 2 is connected via the temperature sensor 5. The amount of thermal expansion is obtained by measuring the temperature of the peripheral wall.

本測定方法によれば、従来は困難であった、内燃機関が高回転及び/または高負荷で運転している最中の気筒2のボア内面の熱変形量を測定することが可能となる。   According to this measurement method, it is possible to measure the amount of thermal deformation of the bore inner surface of the cylinder 2 during the operation of the internal combustion engine at high rotation and / or high load, which has been difficult in the past.

さらに、本測定方法による測定結果を利用して、トレードオフの関係にある、メカロスの低減と潤滑油の消費量の抑制との両立を図ることがより容易となる。ピストンリングの張力を高めれば、潤滑油の消費量を抑制できる一方で、メカロスが増大する。様々な内燃機関の運転領域(エンジン回転数及びエンジン負荷)、様々な気筒2の周壁温度(または、冷却水温)の条件下におけるボア内面の熱変形量を測定できることは、そのボア内面の熱変形がメカロス及び潤滑油の消費量に及ぼす影響を定量的に評価できるようになることを意味する。そして、高回転または高負荷の運転領域における潤滑油の消費量を低減しながらもメカロスを顕著に増大させないような、ピストンリングの最適な諸元の設計に大いに寄与し得る。   Furthermore, using the measurement result obtained by this measurement method, it becomes easier to achieve both a reduction in mechanical loss and a reduction in the consumption of lubricating oil, which are in a trade-off relationship. If the tension of the piston ring is increased, the consumption of lubricating oil can be suppressed, while the mechanical loss increases. The ability to measure the amount of thermal deformation of the bore inner surface under conditions of various internal combustion engine operating ranges (engine speed and engine load) and various cylinder 2 peripheral wall temperatures (or cooling water temperature) It is possible to quantitatively evaluate the influence of the mechanical loss and the consumption of lubricating oil. And it can greatly contribute to the design of the optimum specifications of the piston ring so that the mechanical loss is not remarkably increased while reducing the consumption amount of the lubricating oil in the operation region of high rotation or high load.

なお、本発明は以上に詳述した実施形態に限られるものではない。特に、ひずみゲージ4、6や温度センサ5の設置箇所及び設置個数、換言すれば気筒2の周壁における熱変形量の測定箇所は、図示例に限定されないことは言うまでもない。ひずみゲージ4、6、温度センサ5の設置箇所及び設置個数を増やし、気筒2の周壁の内面の熱変形をより詳細に調査してもよい。   The present invention is not limited to the embodiment described in detail above. In particular, it is needless to say that the installation location and the number of installations of the strain gauges 4 and 6 and the temperature sensor 5, in other words, the measurement location of the amount of thermal deformation on the peripheral wall of the cylinder 2 are not limited to the illustrated example. The installation location and the number of installations of the strain gauges 4 and 6 and the temperature sensor 5 may be increased, and the thermal deformation of the inner surface of the peripheral wall of the cylinder 2 may be investigated in more detail.

その他、各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part can be variously modified without departing from the gist of the present invention.

本発明は、車両等に搭載される内燃機関の気筒の周壁の内面の熱変形量の測定に利用できる。   The present invention can be used for measuring the amount of thermal deformation of the inner surface of the peripheral wall of a cylinder of an internal combustion engine mounted on a vehicle or the like.

1…シリンダブロック
2…気筒
3…ウォータジャケット
4…ひずみゲージ
5…温度センサ(熱電対)
DESCRIPTION OF SYMBOLS 1 ... Cylinder block 2 ... Cylinder 3 ... Water jacket 4 ... Strain gauge 5 ... Temperature sensor (thermocouple)

Claims (1)

シリンダブロックにおいて気筒を取り巻くウォータジャケットに面している気筒の周壁の外面にひずみゲージを取り付けるとともに、気筒の周壁の温度を計測する温度センサを設置した上で内燃機関を運転し、
ひずみゲージを介して気筒の周壁のひずみ量を計測しつつ、温度センサを介して気筒の周壁の温度を計測して熱膨張量を知得する、内燃機関の気筒の周壁の内面の熱変形量の測定方法。
In the cylinder block, a strain gauge is attached to the outer surface of the peripheral wall of the cylinder facing the water jacket surrounding the cylinder, and the internal combustion engine is operated after installing a temperature sensor for measuring the temperature of the peripheral wall of the cylinder.
The amount of thermal deformation of the inner surface of the cylinder peripheral wall of the internal combustion engine is obtained by measuring the temperature of the cylinder peripheral wall via a temperature sensor while measuring the amount of strain on the cylinder peripheral wall via a strain gauge. Measuring method.
JP2015190171A 2015-09-28 2015-09-28 Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine Pending JP2017067495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190171A JP2017067495A (en) 2015-09-28 2015-09-28 Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190171A JP2017067495A (en) 2015-09-28 2015-09-28 Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017067495A true JP2017067495A (en) 2017-04-06

Family

ID=58494601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190171A Pending JP2017067495A (en) 2015-09-28 2015-09-28 Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017067495A (en)

Similar Documents

Publication Publication Date Title
Amirante et al. Towards the development of the in-cylinder pressure measurement based on the strain gauge technique for internal combustion engines
RU2015104030A (en) METHOD AND DEVICE FOR MEASURING LEVELS OF IRON AND SLAG IN A BLAST FURNACE
US20100290502A1 (en) Method of measuring the internal surface temperature of a pipe and associated device
JP3593282B2 (en) Sensor mounting structure for piston behavior analysis
JP2017067495A (en) Method for measuring amount of thermal deformation of inner surface of peripheral wall of cylinder of internal combustion engine
US6684690B2 (en) Method for monitoring slide bearings of a crank mechanism of a piston engine with at least one cylinder
CN102853938A (en) Engine cylinder cover parameter measuring instrument and method based on optical fiber probe
CN108699967B (en) Piston engine
JP4869202B2 (en) Blow-by gas detection method for a 4-cycle multi-cylinder engine
Bird et al. Measurement of bore distortion in a firing engine
JP2002071321A (en) Deformation measuring apparatus for bore in cylinder block for internal-combustion engine
JP4825292B2 (en) Abnormality detection method for marine diesel engines
EP2227670B1 (en) Monitoring and detection system for scuffing between pistons and liners in reciprocating machines
KR101855067B1 (en) A method of calibrating a cylinder pressure sensor and an internal combustion piston engine
Tanaka et al. Measurement Technique of Exhaust Valve Temperature
US7669462B2 (en) Internal combustion engine including a sensor for detecting a parameter partially characterizing a course of combustion and strategically positioned between two adjacent combustion chambers
KR102063001B1 (en) Pressure monitoring device and method
Beerens et al. Transient Valve Temperature Measurement (TVTM)
CN202903367U (en) Engine cylinder head parameter measuring instrument based on optical fiber probe
RU69238U1 (en) THERMOELECTRIC CONVERTER
RU2769047C1 (en) Method for comprehensive assessment of the technical condition of internal combustion engines
JP4443561B2 (en) Marine diesel engine, abnormality detection device and abnormality detection method thereof
Lewis et al. Dynamic measurement of heat flux through the cylinder wall of a modern HSDI engine over a new European drive cycle
Higgs et al. The Development and Application of Advanced Sensor Solutions for Gaining New Insights Into Large Engines
Schumacher et al. Single-cylinder CV Engine for Friction Measurement in Fired Operation