JP2017067494A - Nuclear reactor water injection device and nuclear reactor power generation plant - Google Patents

Nuclear reactor water injection device and nuclear reactor power generation plant Download PDF

Info

Publication number
JP2017067494A
JP2017067494A JP2015190147A JP2015190147A JP2017067494A JP 2017067494 A JP2017067494 A JP 2017067494A JP 2015190147 A JP2015190147 A JP 2015190147A JP 2015190147 A JP2015190147 A JP 2015190147A JP 2017067494 A JP2017067494 A JP 2017067494A
Authority
JP
Japan
Prior art keywords
reactor
water
steam
water level
water injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190147A
Other languages
Japanese (ja)
Inventor
智彦 池側
Tomohiko Ikegawa
智彦 池側
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015190147A priority Critical patent/JP2017067494A/en
Publication of JP2017067494A publication Critical patent/JP2017067494A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear reactor water injection device capable of stably cooling a reactor core for a long period during reactor isolation by suppressing a battery consumption accompanied with a flow control of a steam turbine type pump.SOLUTION: A nuclear reactor water injection device includes: an emergency signal generation device 25 for generating an emergency signal 33 when two states of a nuclear reactor scram and a loss-of total AC current source event are detected in the situation where no dry well pressure high signal is detected; a decay heat amount calculation device 26a for calculating a decay heat amount generated in a nuclear reactor pressure vessel 2; a target flow amount calculation device 27a for calculating a target flow amount of a steam turbine type pump 17 based on a water temperature 34 measured by a thermometer 21 and a decay heat amount 36 calculated by the decay heat amount calculation device during generation of the emergency signal 33; and a steam regulator valve control device 28a for adjusting a degree of opening of a steam increasing and decreasing valve 11 based a pressure 37 measured by a pressure meter 18, a rotation number 38 measured by a rotation speed meter 22, and a target flow amount 32 calculated by the target flow amount calculation device.SELECTED DRAWING: Figure 1

Description

本発明は、原子炉注水装置及び原子力発電プラントに係り、特に、沸騰水型原子力発電プラントに適用するのに好適な原子炉注水装置及び原子力発電プラントに関する。   The present invention relates to a nuclear reactor water injection apparatus and a nuclear power plant, and more particularly to a nuclear reactor water injection apparatus and a nuclear power plant suitable for application to a boiling water nuclear power plant.

多くの沸騰水型原子力発電プラントは、原子炉注水システムの1つとして、蒸気タービン式ポンプを用いた原子炉注水装置からなる原子炉隔離時冷却系(RCIC:Rector Core Isolation Cooling system)を備えている。原子炉隔離時冷却系は、原子力発電プラントに発生した何らかの異常によって、原子炉がスクラムされ、原子炉圧力容器が隔離されることで原子炉圧力容器への給水が停止した場合に、原子炉に注水することによって燃料破損を防止するための設備の一つである。原子力発電プラントでは、通常、原子炉隔離時冷却系以外にも、電動ポンプを用いた動的注水装置を備えているが、原子炉隔離時冷却系は、全交流電源喪失のような、電動ポンプが動作しない状況においても、バッテリからの直流給電のみで動作させることが可能である。このような原子炉隔離時冷却系としての原子炉注水装置を開示するものとして、例えば特許文献1及び2がある。   Many boiling water nuclear power plants have a reactor isolation system (RCIC) consisting of a reactor water injection system using a steam turbine pump as one of the water injection systems. Yes. The reactor isolation cooling system is used when the reactor is scrammed due to any abnormality occurring in the nuclear power plant, and when the reactor pressure vessel is isolated and the water supply to the reactor pressure vessel is stopped, This is one of the facilities to prevent fuel damage by pouring water. Nuclear power plants usually have a dynamic water injection system that uses an electric pump in addition to the reactor isolation cooling system, but the reactor isolation cooling system is an electric pump that loses all AC power. Even in a situation where the battery does not operate, it is possible to operate only by direct current power supply from the battery. For example, Patent Documents 1 and 2 disclose such a reactor water injection device as a reactor isolation cooling system.

まず、特許文献1に記載の原子炉注水装置の動作について、図2を用いて説明する。原子炉隔離時に炉心1に制御棒3が挿入されることで核分裂連鎖反応が停止し、炉出力は大きく低下するが、その後も放射性核種の崩壊によって発生する崩壊熱によって炉心1から蒸気が発生し続ける。発生した蒸気は、主蒸気逃し弁7を介して凝縮用水源12である圧力抑制プールに導き凝縮させることで、原子炉圧力容器2の過圧破損を防止する。主蒸気逃し弁7を介して蒸気が流出することで原子炉圧力容器内水位Hが徐々に低下して予め設定された下限水位を下回ると、蒸気タービン式ポンプ17が起動する。すなわち、タービン止め弁10が全開すると共に蒸気加減弁11の開度が調整され、炉心1で発生した蒸気が蒸気タービン8に導かれて仕事をした後、凝縮用水源12である圧力抑制プールに排気され凝縮される。蒸気タービン8で回収した仕事によって蒸気タービン式ポンプ17を駆動することで、揚水用水源15である復水貯蔵槽の水を原子炉圧力容器2に注水することができる。これにより、原子炉圧力容器内水位Hの減少が止まり、炉心1の冷却機能を維持できる。   First, the operation of the reactor water injection device described in Patent Document 1 will be described with reference to FIG. When the control rod 3 is inserted into the core 1 at the time of reactor isolation, the nuclear fission chain reaction stops and the reactor power is greatly reduced. However, steam is generated from the core 1 due to the decay heat generated by the decay of radionuclides. to continue. The generated steam is led to the pressure suppression pool, which is the condensing water source 12, via the main steam relief valve 7, and condensed, thereby preventing overpressure damage of the reactor pressure vessel 2. When steam flows out through the main steam relief valve 7 and the water level H in the reactor pressure vessel gradually decreases and falls below a preset lower limit water level, the steam turbine pump 17 is activated. That is, after the turbine stop valve 10 is fully opened, the opening of the steam control valve 11 is adjusted, and the steam generated in the core 1 is guided to the steam turbine 8 to perform work, and then enters the pressure suppression pool that is the condensing water source 12. Exhaust and condensed. By driving the steam turbine pump 17 by the work recovered by the steam turbine 8, the water in the condensate storage tank as the pumping water source 15 can be poured into the reactor pressure vessel 2. Thereby, the decrease in the water level H in the reactor pressure vessel stops, and the cooling function of the core 1 can be maintained.

ここで、原子炉注水装置100では、蒸気タービン式ポンプ17の注水流量が予め設定された定格流量に一致するように蒸気加減弁11の開度を制御するが、一般に、原子炉隔離時冷却系の定格流量は崩壊熱によって発生し主蒸気逃し弁7から流出する蒸気量よりも大きいため、蒸気タービン式ポンプ17の起動後は、原子炉圧力容器内水位Hは低下から上昇に転じる。そのため、特許文献1では説明されていないが、原子炉圧力容器内水位Hが予め設定された停止水位を超えた時は、蒸気タービン8への液相冷却材流入を防ぐために、蒸気タービン式ポンプ17を停止させる必要がある。蒸気タービン式ポンプ17の停止後は、炉心1で発生する蒸気が主蒸気逃し弁7を介して流出することで、原子炉圧力容器内水位Hは再び低下に転ずる。以上のような動作の繰り返しにより、原子炉圧力容器2内の圧力レベルは主蒸気逃し弁7からの蒸気排出によって設計制限値以下に制御されつつ、原子炉圧力容器内水位Hは起動水位と停止水位の間で上昇・下降を繰り返す。これにより、原子炉圧力容器内水位Hは一定の範囲に保たれ、炉心1を水面上に露出させることなく安定に冷却することができる。   Here, in the reactor water injection device 100, the opening degree of the steam control valve 11 is controlled so that the water injection flow rate of the steam turbine pump 17 coincides with the preset rated flow rate. Is larger than the amount of steam generated by decay heat and flowing out of the main steam relief valve 7, the water level H in the reactor pressure vessel starts to rise after the steam turbine pump 17 is started. Therefore, although not described in Patent Document 1, when the water pressure H in the reactor pressure vessel exceeds a preset stop water level, a steam turbine pump is used to prevent the liquid phase coolant from flowing into the steam turbine 8. 17 needs to be stopped. After the steam turbine pump 17 is stopped, the steam generated in the reactor core 1 flows out through the main steam relief valve 7, so that the water pressure H in the reactor pressure vessel starts to decrease again. By repeating the operation as described above, the pressure level in the reactor pressure vessel 2 is controlled below the design limit value by the steam discharge from the main steam relief valve 7, while the water level H in the reactor pressure vessel is stopped and stopped. Repeat rising and falling between water levels. Thereby, the water level H in the reactor pressure vessel is maintained within a certain range, and the reactor core 1 can be stably cooled without exposing it to the water surface.

一方、特許文献2に記載の原子炉注水装置100では、原子炉隔離時にタービン止め弁10を開くと共に、原子炉圧力容器内水位Hと水位設定値との偏差が零となる様に蒸気加減弁11の開度を調整する。これにより、原子炉圧力容器内水位Hは一定に保たれ、炉心1を水面上に露出させることなく安定に冷却することができる。   On the other hand, in the reactor water injection device 100 described in Patent Document 2, the turbine stop valve 10 is opened when the reactor is isolated, and the steam control valve is set so that the deviation between the water pressure H in the reactor pressure vessel and the water level set value becomes zero. 11 is adjusted. Thereby, the water level H in the reactor pressure vessel is kept constant, and the reactor core 1 can be stably cooled without exposing it to the water surface.

特開2012−233724号公報JP 2012-233724 A 特開昭58−180998号公報JP 58-180998 A

しかしながら、特許文献1に記載の原子炉注水装置では、蒸気タービン式ポンプ17による注水流量が定格流量で一定のため、蒸気加減弁11の駆動に伴うバッテリ消費は小さいものの、タービン止め弁10を頻繁に開閉するため、タービン止め弁10の駆動に伴うバッテリ消費が大きい。   However, in the reactor water injection apparatus described in Patent Document 1, since the water injection flow rate by the steam turbine pump 17 is constant at the rated flow rate, the battery consumption associated with driving the steam control valve 11 is small, but the turbine stop valve 10 is frequently used. Therefore, battery consumption associated with driving of the turbine stop valve 10 is large.

一方、特許文献2に記載の原子炉注水装置では、タービン止め弁10は一度しか開かないため、タービン止め弁10の駆動に伴うバッテリ消費は小さいものの、蒸気加減弁11の開度を水位変化に追従して常時調整するため、蒸気加減弁11の駆動に伴うバッテリ消費が大きい。   On the other hand, in the reactor water injection device described in Patent Document 2, since the turbine stop valve 10 is opened only once, the battery consumption associated with driving the turbine stop valve 10 is small, but the opening of the steam control valve 11 is changed to the water level. In order to follow and always adjust, battery consumption accompanying the drive of the steam control valve 11 is large.

このように、特許文献1及び2のいずれの原子炉注水装置も、蒸気タービン式ポンプ17の流量制御に伴うバッテリ消費が大きく、原子炉隔離時に長期に亘って炉心1を安定に冷却できないおそれがある。   As described above, both of the reactor water injection devices of Patent Documents 1 and 2 consume a large amount of battery accompanying the flow control of the steam turbine pump 17, and there is a possibility that the reactor core 1 cannot be stably cooled for a long time when the reactor is isolated. is there.

本発明は、上記の事情を鑑みてなされたものであり、その目的は、蒸気タービン式ポンプの流量制御に伴うバッテリ消費を抑えることにより、原子炉隔離時に長期に亘って炉心を安定に冷却可能な原子炉注水装置を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to stably cool the core over a long period of time when the reactor is isolated by suppressing the battery consumption associated with the flow control of the steam turbine pump. Is to provide a reliable reactor water injection device.

上記課題を解決するために、本発明は、核分裂反応熱もしくは崩壊熱によって冷却水を沸騰させることで蒸気を発生することが可能で、かつスクラムによる核分裂連鎖反応停止機能を有する炉心と、前記炉心を内包する原子炉圧力容器と、前記原子炉圧力容器の過圧破損を防止する主蒸気逃し弁とを有する原子力発電プラントに備えられた原子炉注水装置において、前記原子炉圧力容器内で発生した蒸気によって駆動される蒸気タービンと、前記原子炉圧力容器内で発生した蒸気を前記蒸気タービンに導く蒸気引込配管と、前記蒸気引込配管に設けられたタービン止め弁と、前記蒸気引込配管に設けられ、前記蒸気タービンに導かれる蒸気の流量を調整する蒸気加減弁と、前記蒸気タービンで仕事をした蒸気を凝縮する凝縮用水源と、前記蒸気タービンで仕事をした蒸気を前記凝縮用水源に導く蒸気排気配管と、前記蒸気排気配管に設けられ、前記凝縮用水源から前記蒸気タービンへの逆流を防止する逆止弁と、前記原子炉圧力容器内に注水するための冷却水を貯留する揚水用水源と、前記蒸気タービンで駆動され、前記揚水用水源の冷却水を前記原子炉圧力容器内に注水する蒸気タービン式ポンプと、前記原子炉圧力容器内の圧力を計測する圧力計と、前記原子炉圧力容器内の水位を計測する水位計測装置と、前記揚水用水源の水温を計測する温度計と、前記蒸気タービンの回転数を計測する回転速度計と、前記水位計測装置で計測した水位が所定の下限水位を下回った場合に前記蒸気タービン式ポンプを起動させる起動信号を発生させ、前記水位計測装置で計測した水位が所定の停止水位を上回った場合に前記蒸気タービン式ポンプを停止させる停止信号を発生させる起動・停止信号発生装置と、前記起動信号が発生した場合に前記タービン止め弁を全開し、前記停止信号が発生した場合に前記タービン止め弁を全閉する止め弁制御装置と、ドライウェル圧力高信号が検出されない状況において原子炉スクラムと全交流電源喪失の2つの状態を検出した場合に非常信号を発生する非常信号発生装置と、前記原子炉圧力容器内で発生した崩壊熱量を計算する崩壊熱量計算装置と、前記非常信号の発生時に、前記温度計で計測した水温と前記崩壊熱量計算装置で計算した崩壊熱量とに基づいて、前記蒸気タービン式ポンプの目標流量を計算する目標流量計算装置と、前記圧力計で計測した圧力と前記回転速度計で計測した回転数と前記目標流量計算装置で計算した目標流量とに基づいて、前記蒸気加減弁の開度を調整する蒸気加減弁制御装置とを備えたものとする。   In order to solve the above problems, the present invention provides a core capable of generating steam by boiling cooling water using fission reaction heat or decay heat, and having a function of stopping a fission chain reaction by scram, and the core In a nuclear reactor water injection apparatus provided in a nuclear power plant having a reactor pressure vessel containing a reactor and a main steam relief valve for preventing overpressure damage of the reactor pressure vessel. A steam turbine driven by steam; a steam inlet pipe for guiding steam generated in the reactor pressure vessel to the steam turbine; a turbine stop valve provided in the steam inlet pipe; and the steam inlet pipe. A steam control valve that adjusts the flow rate of steam guided to the steam turbine, a condensing water source that condenses steam that has worked in the steam turbine, and the steam A steam exhaust pipe for guiding steam working in a turbine to the condensing water source; a check valve provided in the steam exhaust pipe for preventing a back flow from the condensing water source to the steam turbine; and the reactor pressure vessel A pumping water source for storing cooling water for pouring water therein, a steam turbine pump driven by the steam turbine and for pouring the cooling water of the pumping water source into the reactor pressure vessel, and the reactor pressure A pressure gauge that measures the pressure in the vessel, a water level measuring device that measures the water level in the reactor pressure vessel, a thermometer that measures the water temperature of the pumped water source, and a rotation that measures the number of revolutions of the steam turbine When the water level measured by the speedometer and the water level measuring device falls below a predetermined lower limit water level, a start signal is generated to start the steam turbine pump, and the water level measured by the water level measuring device is predetermined. A start / stop signal generator for generating a stop signal for stopping the steam turbine pump when the stop water level is exceeded, and when the start signal is generated, the turbine stop valve is fully opened to generate the stop signal. A stop valve control device that fully closes the turbine stop valve, and an emergency signal that generates an emergency signal when detecting two states of reactor scram and loss of all AC power in a situation where a high drywell pressure signal is not detected A generator, a decay calorie calculating device for calculating the decay heat generated in the reactor pressure vessel, a water temperature measured by the thermometer when the emergency signal is generated, and a decay heat calculated by the decay calorie calculating device Based on the target flow rate calculation device for calculating the target flow rate of the steam turbine pump, the pressure measured by the pressure gauge and the speed measured by the tachometer. A steam control valve control device that adjusts the opening of the steam control valve based on the rotation number and the target flow rate calculated by the target flow rate calculation device is provided.

本発明によれば、原子力発電プラントにおいて、蒸気タービン式ポンプの流量制御に伴うバッテリ消費を抑えることにより、原子炉隔離時に長期に亘って炉心を安定に冷却することが可能となる。   According to the present invention, in a nuclear power plant, it is possible to stably cool the core for a long time at the time of reactor isolation by suppressing battery consumption accompanying flow control of the steam turbine pump.

本発明の第1の実施例に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on 1st Example of this invention. 従来技術に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on a prior art. 本発明の第1の実施例に係る原子炉注水装置が備える非常信号発生装置のロジック図である。It is a logic diagram of the emergency signal generator with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置が備える蒸気加減弁制御装置のロジック図である。It is a logic diagram of the steam control valve control apparatus with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置が備える目標流量計算装置のロジック図である。It is a logic diagram of the target flow volume calculation apparatus with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置が備える崩壊熱量計算装置のロジック図である。It is a logic diagram of the decay calorie | heat amount calculation apparatus with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置が備える起動・停止信号発生装置のロジック図である。It is a logic diagram of the start / stop signal generator with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置が備える差圧−水位変換装置のロジック図である。It is a logic diagram of the differential pressure-water level conversion apparatus with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置を従来技術と同様に定格流量で運用した場合の蒸気タービン式ポンプの起動・停止回数と、本発明の第1の実施例に係る原子炉注水装置を目標流量計算装置で計算した目標流量で運用した場合の蒸気タービン式ポンプの起動・停止回数とを比較して示す図である。The reactor water injection device according to the first embodiment of the present invention is operated at the rated flow rate as in the prior art, and the number of start / stop times of the steam turbine pump and the reactor according to the first embodiment of the present invention It is a figure which compares and shows the starting / stop frequency | count of a steam turbine type pump at the time of operating a water injection apparatus with the target flow volume calculated with the target flow volume calculation apparatus. 本発明の第1の実施例に係る原子炉注水装置が備える蒸気加減弁制御装置(変形例)のロジック図である。It is a logic diagram of the steam control valve control apparatus (modification) with which the nuclear reactor water injection apparatus which concerns on 1st Example of this invention is provided. 本発明の第1の実施例に係る原子炉注水装置(変形例)の構成図である。It is a block diagram of the reactor water injection apparatus (modification) which concerns on 1st Example of this invention. 本発明の第1の実施例に係る原子炉注水装置が備える起動・停止信号発生装置(変形例)のロジック図である。It is a logic diagram of the starting / stopping signal generator (modification) with which the nuclear reactor water injection device concerning the 1st example of the present invention is provided. 図12に示す起動・停止信号発生装置(変形例)に対応した蒸気加減弁制御装置のロジック図である。It is a logic diagram of the steam control valve control apparatus corresponding to the start / stop signal generator (modification) shown in FIG. 本発明の第2の実施例に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る原子炉注水装置が備える崩壊熱量計算装置のロジック図である。It is a logic diagram of the decay | disintegration calorie | heat amount calculation apparatus with which the nuclear reactor water injection apparatus which concerns on 2nd Example of this invention is provided. 本発明の第2の実施例に係る原子炉注水装置が備える目標流量計算装置のロジック図である。It is a logic diagram of the target flow volume calculation apparatus with which the reactor water injection apparatus which concerns on 2nd Example of this invention is provided. 本発明の第3の実施例に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on the 3rd Example of this invention. 本発明の第3の実施例に係る原子炉注水装置が備える差圧−水位変換装置のロジック図である。It is a logic diagram of the differential pressure-water level conversion apparatus with which the nuclear reactor water injection apparatus which concerns on 3rd Example of this invention is provided. 本発明の第3の実施例に係る原子炉注水装置が備える崩壊熱量計算装置のロジック図である。It is a logic diagram of the decay | disintegration calorie | heat amount calculation apparatus with which the nuclear reactor water injection apparatus which concerns on 3rd Example of this invention is provided. 本発明の第4の実施例に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on the 4th Example of this invention. 本発明の第4の実施例に係る原子炉注水装置が備える水源選択装置のロジック図である。It is a logic diagram of the water source selection apparatus with which the nuclear reactor water injection apparatus which concerns on 4th Example of this invention is provided. 本発明の第5の実施例に係る原子炉注水装置の構成図である。It is a block diagram of the reactor water injection apparatus which concerns on the 5th Example of this invention.

以下、本発明の実施例を図面を用いて説明する。なお、各図中、同一の部材には同一の符号を付し、重複した説明は適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member and the overlapping description is abbreviate | omitted suitably.

本発明の第1の実施例として、沸騰水型原子力発電プラントの原子炉隔離時冷却系としての原子炉注水装置に本発明を適用した例を説明する。   As a first embodiment of the present invention, an example in which the present invention is applied to a reactor water injection device as a cooling system for isolating a reactor of a boiling water nuclear power plant will be described.

図1に本発明の第1の実施例に係る原子炉注水装置の構成を示す。沸騰水型原子力発電プラントでは、複数の燃料集合体(図示せず)が装荷された炉心1が原子炉圧力容器2に内包される。原子炉圧力容器2内には、原子炉隔離時の炉出力を速やかに低下させるための制御棒3が設けられている。原子炉圧力容器2には、主蒸気配管4や給水配管(図示せず)が接続されている。主蒸気配管4には主蒸気隔離弁5が設置されており、主蒸気配管4から分岐した配管(以下「主蒸気逃し配管」という。)6には、原子炉圧力容器2の隔離時の過圧破損を防止する主蒸気逃し弁7が設置されている。   FIG. 1 shows the configuration of a reactor water injection apparatus according to a first embodiment of the present invention. In a boiling water nuclear power plant, a reactor core 1 loaded with a plurality of fuel assemblies (not shown) is contained in a reactor pressure vessel 2. A control rod 3 is provided in the reactor pressure vessel 2 for quickly reducing the reactor power at the time of reactor isolation. A main steam pipe 4 and a water supply pipe (not shown) are connected to the reactor pressure vessel 2. A main steam isolation valve 5 is installed in the main steam pipe 4, and a pipe branching from the main steam pipe 4 (hereinafter referred to as “main steam relief pipe”) 6 has an excess during isolation of the reactor pressure vessel 2. A main steam relief valve 7 is installed to prevent pressure damage.

本実施例に係る原子炉注水装置100aは、原子炉圧力容器2内で発生した蒸気によって駆動される蒸気タービン8と、原子炉圧力容器2内で発生した蒸気を蒸気タービン8に導く蒸気引込配管9と、蒸気引込配管9に設けられたタービン止め弁10と、蒸気引込配管9に設けられ、蒸気タービン8に導かれる蒸気の流量を調整する蒸気加減弁11と、蒸気タービン8で仕事をした蒸気を凝縮する凝縮用水源12と、蒸気タービン8で仕事をした蒸気を凝縮用水源12に導く蒸気排気配管13と、蒸気排気配管13に設けられ、凝縮用水源12から蒸気タービン8への逆流を防止する逆止弁14と、原子炉圧力容器2内に注水するための冷却水を貯留する揚水用水源15と、蒸気タービン8で駆動され、注水配管16を介して揚水用水源15の冷却水を原子炉圧力容器2内に注水する蒸気タービン式ポンプ17とを備えている。以上の構成は、図2に示す従来技術に係る原子炉隔離時冷却系としての原子炉注水装置と同様である。   The reactor water injection device 100a according to the present embodiment includes a steam turbine 8 driven by steam generated in the reactor pressure vessel 2, and a steam inlet pipe that guides the steam generated in the reactor pressure vessel 2 to the steam turbine 8. 9, a turbine stop valve 10 provided in the steam inlet pipe 9, a steam control valve 11 provided in the steam inlet pipe 9 for adjusting the flow rate of the steam guided to the steam turbine 8, and the steam turbine 8. A condensing water source 12 that condenses the steam, a steam exhaust pipe 13 that guides the steam that has worked in the steam turbine 8 to the condensing water source 12, and a backflow from the condensing water source 12 to the steam turbine 8. Check valve 14, a pumping water source 15 for storing cooling water for pouring water into the reactor pressure vessel 2, and a pumping water source 15 driven by the steam turbine 8 and via the water injection pipe 16. Cooling water and a steam turbine pump 17 to the water injection into the reactor pressure vessel 2. The above configuration is the same as that of the reactor water injection device as the reactor isolation cooling system according to the prior art shown in FIG.

本実施例に係る原子炉注水装置100aは、各装置の状態を監視する計装系として、原子炉圧力容器2内の圧力を計測する圧力計18、原子炉圧力容器内水位Hの差圧を計測する差圧計19、揚水用水源15の水温を計測する温度計20、及び蒸気タービン8の回転数を計測する回転速度計22を備えている。また、原子炉注水装置100aは、各装置の動作を制御する制御系として、差圧−水位変換装置22a、起動・停止信号発生装置23a、止め弁制御装置24、非常信号発生装置25、崩壊熱量計算装置26a、目標流量計算装置27a、及び蒸気加減弁制御装置28aを備えている。   Reactor water injection apparatus 100a according to the present embodiment, as an instrumentation system for monitoring the state of each apparatus, pressure gauge 18 for measuring the pressure in reactor pressure vessel 2, and differential pressure between water level H in reactor pressure vessel A differential pressure gauge 19 for measuring, a thermometer 20 for measuring the water temperature of the pumped water source 15, and a tachometer 22 for measuring the rotation speed of the steam turbine 8 are provided. In addition, the reactor water injection device 100a is a control system for controlling the operation of each device, such as a differential pressure-water level conversion device 22a, a start / stop signal generation device 23a, a stop valve control device 24, an emergency signal generation device 25, a decay heat quantity. A calculation device 26a, a target flow rate calculation device 27a, and a steam control valve control device 28a are provided.

本発明の原子炉注水装置は交流電源を必要としないが、弁の開閉及び各装置の制御に直流電源を必要とする。直流電源の一つであるバッテリの消耗を防ぐ必要のある状況として、全交流電源喪失が想定される。即ち、外部電源もしくは非常用発電機起動によって交流電源が使える状況であれば、交流電源を直流電源に変換して原子炉注水装置を使用できる上に、原子炉注水装置以外の、交流電源で駆動する電動ポンプによる注水系や除熱系も使えるため、バッテリの消耗を防ぐ必要は無い。対して、全ての交流電源が喪失している場合は、直流電源がバッテリのみとなり、注水手段も原子炉注水装置のみとなる可能性があることから、外部電源もしくは非常用発電機の復旧や外部からの支援物資到着までの間、バッテリを可能な限り延命しながら原子炉注水装置を運転し続け、炉心冷却を維持する必要がある。   The reactor water injection apparatus of the present invention does not require an AC power supply, but requires a DC power supply for opening / closing valves and controlling each apparatus. As a situation where it is necessary to prevent the battery that is one of the DC power supplies from being consumed, the loss of all AC power supplies is assumed. In other words, if AC power can be used by starting an external power supply or emergency generator, the AC power can be converted to DC power and the reactor water injection device can be used, and it can be driven by an AC power source other than the reactor water injection device. Since it is possible to use a water injection system and a heat removal system using an electric pump, there is no need to prevent battery consumption. On the other hand, if all AC power is lost, the DC power may be only the battery and the water injection means may be only the reactor water injection device. It is necessary to maintain the core cooling by continuing to operate the reactor water injection system while extending the battery life as long as possible until the arrival of support supplies from the plant.

以下、全交流電源喪失発生時の原子炉注水装置100aの動作を説明する。   Hereinafter, the operation of the reactor water injection device 100a at the time of occurrence of loss of all AC power will be described.

まず、システム動作を説明する。全交流電源喪失が発生すると、交流電源喪失によって冷却材再循環ポンプが停止すると共に、主復水器真空度低信号等により、主蒸気隔離弁5が閉止することで、原子炉圧力容器2は隔離される。また、主蒸気隔離弁閉信号や炉水位低信号等により、スクラム信号が発生して炉心1に制御棒3が挿入される。制御棒3の挿入によって核分裂連鎖反応が停止し、炉出力は急激に低下するが、その後も放射性核種の崩壊によって発生した崩壊熱によって炉心1から蒸気が発生し続ける。発生した蒸気を、主蒸気逃し弁7を介して原子炉圧力容器2外に排出することで、原子炉圧力容器2の過圧破損を防止する。主蒸気逃し弁7を介して蒸気が流出することで原子炉圧力容器内水位Hが徐々に低下して予め設定された下限水位を下回ると、蒸気タービン式ポンプ17が起動する。すなわち、タービン止め弁10及び蒸気加減弁11が開き、炉心1で発生した蒸気が蒸気引込配管9を介して蒸気タービン8に導かれて仕事をした後、蒸気排気配管13を介して凝縮用水源12に排気され凝縮される。蒸気タービン8で回収した仕事によって蒸気タービン式ポンプ17を駆動することで、注水配管16を介して揚水用水源15の冷却材を原子炉圧力容器2内に注水する。また、蒸気タービン式ポンプ17の起動時刻における崩壊熱量36及び目標流量32を計算し、原子炉圧力容器2内への注水流量が必要注水流量に一致するように蒸気加減弁11の開度を制御する。これにより、原子炉圧力容器内水位Hの減少が止まり、炉心1の冷却機能を維持できる。   First, the system operation will be described. When all AC power is lost, the coolant recirculation pump stops due to AC power loss, and the main steam isolation valve 5 is closed by a main condenser vacuum low signal, etc. Isolated. Further, a scram signal is generated by a main steam isolation valve closing signal, a reactor water level low signal, or the like, and the control rod 3 is inserted into the reactor core 1. Although the fission chain reaction is stopped by the insertion of the control rod 3 and the reactor power rapidly decreases, steam continues to be generated from the reactor core 1 due to the decay heat generated by the decay of the radionuclide. The generated steam is discharged out of the reactor pressure vessel 2 through the main steam relief valve 7, thereby preventing overpressure damage of the reactor pressure vessel 2. When steam flows out through the main steam relief valve 7 and the water level H in the reactor pressure vessel gradually decreases and falls below a preset lower limit water level, the steam turbine pump 17 is activated. That is, the turbine stop valve 10 and the steam control valve 11 are opened, and the steam generated in the core 1 is guided to the steam turbine 8 through the steam inlet pipe 9 to work, and then the water source for condensation is supplied through the steam exhaust pipe 13. 12 is exhausted and condensed. The coolant of the pumping water source 15 is injected into the reactor pressure vessel 2 through the water injection pipe 16 by driving the steam turbine pump 17 by work recovered by the steam turbine 8. Further, the decay heat quantity 36 and the target flow rate 32 at the start time of the steam turbine pump 17 are calculated, and the opening degree of the steam control valve 11 is controlled so that the water injection flow rate into the reactor pressure vessel 2 matches the required water flow rate. To do. Thereby, the decrease in the water level H in the reactor pressure vessel stops, and the cooling function of the core 1 can be maintained.

次に、上記システム動作を実現するための各装置の動作を説明する。蒸気タービン式ポンプ17の起動・停止は、差圧−水位変換装置22aで計算した水位30に基づいて制御される。具体的には、差圧−水位変換装置22aは、差圧計19で計測した原子炉圧力容器内水位Hの差圧29を原子炉圧力容器2内の水位30に変換する。起動・停止信号発生装置23aは、水位30が予め設定された下限水位を下回った場合には蒸気タービン式ポンプ17を起動するための起動信号を出力し、水位30が予め設定された停止水位を超えた場合には蒸気タービン式ポンプ17を停止するための停止信号を出力する(これら起動信号及び停止信号をまとめて起動・停止信号31で示す)。止め弁制御装置24は、起動・停止信号31に基づいて、タービン止め弁10を全開・全閉する。また、蒸気タービン式ポンプ17が起動している間、蒸気加減弁制御装置28aが蒸気加減弁11の開度を調整することで、蒸気タービン式ポンプ17による注水流量を目標流量に一致させる。交流電源が使える場合、即ち非常信号発生装置25が起動していない場合は、目標流量計算装置27aが起動せず、蒸気加減弁制御装置28aに目標流量32が入力されない。この場合、蒸気加減弁制御装置28aは、蒸気タービン式ポンプ17による注水流量が予め設定された定格流量に一致するように蒸気加減弁11の開度を調整する。   Next, the operation of each device for realizing the system operation will be described. The start / stop of the steam turbine pump 17 is controlled based on the water level 30 calculated by the differential pressure / water level converter 22a. Specifically, the differential pressure-water level conversion device 22 a converts the differential pressure 29 of the reactor pressure vessel water level H measured by the differential pressure gauge 19 into the water level 30 in the reactor pressure vessel 2. The start / stop signal generator 23a outputs a start signal for starting the steam turbine pump 17 when the water level 30 falls below a preset lower limit water level, and the water level 30 is set to a preset stop water level. When it exceeds, a stop signal for stopping the steam turbine pump 17 is output (the start signal and the stop signal are collectively indicated by a start / stop signal 31). The stop valve control device 24 fully opens and closes the turbine stop valve 10 based on the start / stop signal 31. Further, while the steam turbine pump 17 is activated, the steam control valve control device 28a adjusts the opening of the steam control valve 11 so that the water injection flow rate by the steam turbine pump 17 matches the target flow rate. When the AC power supply can be used, that is, when the emergency signal generator 25 is not activated, the target flow rate calculation device 27a is not activated, and the target flow rate 32 is not input to the steam control valve control device 28a. In this case, the steam control valve control device 28a adjusts the opening of the steam control valve 11 so that the flow rate of water injected by the steam turbine pump 17 matches the preset rated flow rate.

一方、全交流電源喪失発生、スクラム成功、かつ原子炉隔離成功時は、非常信号発生装置25が非常信号33を発生させ、これにより目標流量計算装置27aが起動する。目標流量計算装置27aは、原子炉圧力容器2内の崩壊熱量36及び揚水用水源15の水温34を入力として、目標流量32を出力する。蒸気加減弁制御装置28aは、蒸気タービン式ポンプ17による注水流量が目標流量計算装置27aで計算した目標流量32と一致するように、蒸気加減弁11の開度を調整するための弁開閉トルク35を出力する。目標流量計算装置27aに入力される崩壊熱量36は、崩壊熱量計算装置26aで計算される。崩壊熱量計算装置26aは、原子炉圧力容器2内の水位変化率が崩壊熱による蒸発に因ることを利用し、圧力計18で計測した圧力37及び差圧−水位変換装置22aで計算した水位30を入力として、崩壊熱量36を出力する。   On the other hand, when all AC power is lost, scrum is successful, and reactor isolation is successful, the emergency signal generator 25 generates an emergency signal 33, thereby starting the target flow rate calculation device 27a. The target flow rate calculation device 27a receives the decay heat quantity 36 in the reactor pressure vessel 2 and the water temperature 34 of the pumped water source 15 and outputs a target flow rate 32. The steam control valve control device 28a is a valve opening / closing torque 35 for adjusting the opening of the steam control valve 11 so that the water injection flow rate by the steam turbine pump 17 matches the target flow rate 32 calculated by the target flow rate calculation device 27a. Is output. The decay heat quantity 36 input to the target flow rate calculation device 27a is calculated by the decay heat quantity calculation device 26a. The decay heat quantity calculation device 26a utilizes the fact that the rate of change in the water level in the reactor pressure vessel 2 is due to evaporation due to decay heat, and the water level calculated by the pressure 37 measured by the pressure gauge 18 and the differential pressure-water level conversion device 22a. 30 is input, and the decay heat quantity 36 is output.

次に、各装置のロジックについて図を用いて詳しく説明する。   Next, the logic of each device will be described in detail with reference to the drawings.

図3に非常信号発生装置25のロジックを示す。原子炉注水装置100aは、全交流電源喪失発生、スクラム成功、かつ原子炉隔離成功時に限り、性能を発揮するものであるため、これらの信号を全て検出した時点で、非常信号33を発生するロジックとする。また、冷却材喪失事故(LOCA)、即ち原子炉圧力容器2に何らかの破断が発生していると、崩壊熱による水の蒸発に伴う水量減少に加えて、原子炉圧力容器2の破断口から流出する冷却材量分だけ原子炉圧力容器内水位Hの低下速度が増加する。水の蒸発による原子炉圧力容器内水位減少と、破断口からの流出による原子炉圧力容器内水位減少とでは水位減少の機構が異なるため、LOCAが発生している状況では、本発明の蒸気タービン式ポンプ17による注水量が不足し、炉心1が水面上に露出し、燃料が破損する恐れがある。そこで、一般的なLOCA信号であるドライウェル圧力高信号が発生していない場合に限り、非常信号33を発生するロジックとする。非常信号発生装置25で発生させた非常信号33は、目標流量計算装置27aに入力される。   FIG. 3 shows the logic of the emergency signal generator 25. Since the reactor water injection device 100a exhibits performance only when all AC power is lost, when scram is successful, and when reactor isolation is successful, the logic that generates the emergency signal 33 when all of these signals are detected. And In addition, when a loss of coolant accident (LOCA) occurs, that is, when the reactor pressure vessel 2 is ruptured, it flows out of the rupture port of the reactor pressure vessel 2 in addition to a decrease in water volume due to water evaporation due to decay heat. The rate of decrease in the water level H in the reactor pressure vessel increases by the amount of coolant to be increased. In the situation where LOCA has occurred, the steam turbine according to the present invention has a different mechanism for reducing the water level in the reactor pressure vessel due to water evaporation and in the reactor pressure vessel due to outflow from the break opening. The amount of water injected by the pump 17 is insufficient, the core 1 is exposed on the water surface, and the fuel may be damaged. Therefore, the logic for generating the emergency signal 33 is set only when the dry well pressure high signal which is a general LOCA signal is not generated. The emergency signal 33 generated by the emergency signal generator 25 is input to the target flow rate calculation device 27a.

図4に蒸気加減弁制御装置28aのロジックを示す。蒸気加減弁制御装置28aは、蒸気タービン式ポンプ17の起動・停止信号31、蒸気タービン8の回転数38、原子炉圧力容器2内の圧力37、及び蒸気タービン式ポンプ17の目標流量32を入力として、蒸気加減弁11の開度を調整するための弁開閉トルク35を出力する。以下、具体的に説明する。蒸気加減弁制御装置28aの起動・停止制御部28a−1に起動信号31−1が入力されると、蒸気加減弁制御装置28aの弁開度調整部28a−2が起動する。弁開度調整部28a−2は、蒸気タービン式ポンプ17の駆動源である蒸気タービン8の回転数を制御することで、蒸気タービン式ポンプ17による注水流量を間接的に制御する。注水流量、原子炉圧力容器内の圧力、タービンの回転数の関係は、テーブルとして弁開度調整部28a−2内に保持されており、目標流量32と圧力37を入力することで、蒸気タービン8の目標回転数が計算される。なお、非常信号33が発生していない場合は、目標流量32が入力されないため、予め設定された定格流量を用いて目標回転数を計算する。次に回転数38と目標回転数とを比較する。回転数38が目標回転数を下回る場合は、トルク発生器に正の入力が入り、蒸気加減弁11を開方向に操作することで回転数38を増加させ、回転数38を目標回転数に近づける。逆の場合は、蒸気加減弁11を閉方向に操作することで回転数38を減少させ、回転数38を目標回転数に近づける。   FIG. 4 shows the logic of the steam control valve control device 28a. The steam control valve control device 28a receives the start / stop signal 31 of the steam turbine pump 17, the rotational speed 38 of the steam turbine 8, the pressure 37 in the reactor pressure vessel 2, and the target flow rate 32 of the steam turbine pump 17. The valve opening / closing torque 35 for adjusting the opening degree of the steam control valve 11 is output. This will be specifically described below. When the activation signal 31-1 is input to the activation / stop control unit 28a-1 of the steam control valve control device 28a, the valve opening degree adjustment unit 28a-2 of the steam control valve control device 28a is activated. The valve opening adjustment unit 28 a-2 indirectly controls the flow rate of water injected by the steam turbine pump 17 by controlling the rotation speed of the steam turbine 8 that is a drive source of the steam turbine pump 17. The relationship between the water injection flow rate, the pressure in the reactor pressure vessel, and the rotational speed of the turbine is held in the valve opening adjustment unit 28a-2 as a table. By inputting the target flow rate 32 and the pressure 37, the steam turbine A target rotational speed of 8 is calculated. Note that when the emergency signal 33 is not generated, the target flow rate 32 is not input, so the target rotational speed is calculated using a preset rated flow rate. Next, the rotation speed 38 is compared with the target rotation speed. When the rotational speed 38 is lower than the target rotational speed, a positive input is input to the torque generator, the rotational speed 38 is increased by operating the steam control valve 11 in the opening direction, and the rotational speed 38 is brought close to the target rotational speed. . In the opposite case, the rotation speed 38 is decreased by operating the steam control valve 11 in the closing direction, and the rotation speed 38 is brought close to the target rotation speed.

なお、蒸気加減弁11の上流側に設置したタービン止め弁10は、止め弁制御装置24によって制御される。止め弁制御装置24のロジックは、起動・停止信号発生装置23aから起動信号31−1が入力されるとタービン止め弁10を全開にし、停止信号31−2が入力されるとタービン止め弁10を全閉にするという単純なものである。タービン止め弁10は全開/全閉の制御ロジックとなるため、タービン止め弁10を頻繁に開閉した場合、タービン止め弁10の駆動に伴い直流電力が消費される。   The turbine stop valve 10 installed on the upstream side of the steam control valve 11 is controlled by a stop valve control device 24. The logic of the stop valve control device 24 opens the turbine stop valve 10 when the start signal 31-1 is input from the start / stop signal generator 23a, and turns off the turbine stop valve 10 when the stop signal 31-2 is input. It is as simple as fully closing. Since the turbine stop valve 10 has a fully open / closed control logic, when the turbine stop valve 10 is frequently opened and closed, DC power is consumed as the turbine stop valve 10 is driven.

図5に目標流量計算装置27aのロジックを示す。目標流量計算装置27aは、非常信号33、原子炉圧力容器2内の崩壊熱量36、及び揚水用水源15の水温34を入力として、蒸気タービン式ポンプ17の目標流量32を出力する。以下、具体的に説明する。目標流量計算装置27aの起動・停止制御部27a−1に非常信号33が入力されると、目標流量計算装置27aの目標流量計算部27a−2が起動する。目標流量計算部27a−2は、崩壊熱量36及び水温34の両方が入力された場合に限り、目標流量32を計算して出力する。揚水用水源15の水温34は、揚水用水源15の冷却材エンタルピの計算に使用される。冷却材エンタルピは、圧力依存性はほとんど無いが温度依存性は大きいため、線形関数を仮定して、計測された水温から近似計算する。一方、飽和蒸気エンタルピの圧力依存性は小さいため、設定値(2790kJ/kg)を使用する。崩壊熱量36の値を飽和蒸気エンタルピと揚水用水源15の冷却材エンタルピとの差分で除した結果が目標流量32として出力される。   FIG. 5 shows the logic of the target flow rate calculation device 27a. The target flow rate calculation device 27a receives the emergency signal 33, the decay heat quantity 36 in the reactor pressure vessel 2, and the water temperature 34 of the pumped water source 15 and outputs the target flow rate 32 of the steam turbine pump 17. This will be specifically described below. When the emergency signal 33 is input to the activation / stop control unit 27a-1 of the target flow rate calculation device 27a, the target flow rate calculation unit 27a-2 of the target flow rate calculation device 27a is activated. The target flow rate calculation unit 27a-2 calculates and outputs the target flow rate 32 only when both the decay heat quantity 36 and the water temperature 34 are input. The water temperature 34 of the pumping water source 15 is used to calculate the coolant enthalpy of the pumping water source 15. The coolant enthalpy has almost no pressure dependency, but has a large temperature dependency. Therefore, an approximate calculation is performed from the measured water temperature assuming a linear function. On the other hand, since the pressure dependency of saturated steam enthalpy is small, a set value (2790 kJ / kg) is used. A result obtained by dividing the value of the decay heat quantity 36 by the difference between the saturated steam enthalpy and the coolant enthalpy of the pumped water source 15 is output as the target flow rate 32.

図6に崩壊熱量計算装置26aのロジックを示す。崩壊熱量計算装置26aは、蒸気タービン式ポンプ17の起動・停止信号31、原子炉圧力容器2内の圧力37及び水位30を入力として、原子炉圧力容器2内の崩壊熱量36を出力する。以下、具体的に説明する。崩壊熱量計算装置26aは、水位変化率、飽和水密度、原子炉圧力容器2内の冷却材が占める流路面積、及び蒸発潜熱の4つの物理量を乗じることで、崩壊熱量36を計算する。水位変化率は、崩壊熱による水の蒸発量を評価するために計測するものであるため、蒸気タービン式ポンプ17による注水中に測定することができず、原子炉圧力容器内水位Hが低下している時、即ち、蒸気タービン式ポンプ17が停止しているタイミングで計算する必要がある。計測タイミングの選択を可能にするため、崩壊熱量計算装置26aでは、起動・停止信号発生装置23aから起動信号31−1が入力された場合は、内部変数F1とF2を1にセットして水位変化率の計算ルーチンをオフにする。対して、停止信号31−2が入力されると、内部変数F1及びF2のそれぞれに0をセットすることで、水位変化率計算ルーチンをオンにする。水位変化率は、2つの設定水位(上側水位と下側水位)の水位差を、2つの水位設定点を原子炉圧力容器内水位Hが横切る際の時間差で除することで計算する。時間差は、崩壊熱量計算装置26aの内蔵タイマーで計測する。なお、上側水位は蒸気タービン式ポンプ17の停止水位より下方に、下側水位は蒸気タービン式ポンプ17の起動水位より上方に設定する。沸騰水型原子力発電プラントの原子炉圧力容器2内には、セパレータ、ドライヤ、シュラウド等の炉内構造物(図示せず)が設置されており、原子炉圧力容器2内の冷却材が占める流路面積は高さ方向で異なる値を取るが、セパレータ直下のスタンドパイプ部等、ほぼ一定の流路面積と見なせる領域も存在する。例えば、上側水位をスタンドパイプ領域上端高さに設定し、下側水位をスタンドパイプ領域下端高さに設定すれば、崩壊熱量を計算する際に水位変化率に乗じるべき流路面積を幾何学的に決定することができ、利便性が向上する。原子炉圧力容器2内の冷却材の蒸発潜熱及び飽和水密度は、一般に原子炉圧力容器内圧力の関数であり、予め用意してあるテーブルを内挿補間することで、圧力37に対応する蒸発潜熱及び飽和水密度を計算する。   FIG. 6 shows the logic of the decay heat quantity calculation device 26a. The decay heat amount calculation device 26 a receives the start / stop signal 31 of the steam turbine pump 17, the pressure 37 in the reactor pressure vessel 2 and the water level 30 and outputs the decay heat amount 36 in the reactor pressure vessel 2. This will be specifically described below. The decay heat quantity calculation device 26a calculates the decay heat quantity 36 by multiplying the four physical quantities of the water level change rate, the saturated water density, the channel area occupied by the coolant in the reactor pressure vessel 2, and the latent heat of vaporization. Since the water level change rate is measured in order to evaluate the amount of water evaporation due to decay heat, it cannot be measured during the water injection by the steam turbine pump 17, and the water level H in the reactor pressure vessel decreases. Therefore, it is necessary to calculate at the timing when the steam turbine pump 17 is stopped. In order to enable selection of the measurement timing, the decay calorie calculation device 26a sets the internal variables F1 and F2 to 1 and changes the water level when the start signal 31-1 is input from the start / stop signal generator 23a. Turn off the rate calculation routine. On the other hand, when the stop signal 31-2 is input, the water level change rate calculation routine is turned on by setting 0 to each of the internal variables F1 and F2. The water level change rate is calculated by dividing the water level difference between two set water levels (upper water level and lower water level) by the time difference when the water level H in the reactor pressure vessel crosses the two water level set points. The time difference is measured by a built-in timer of the decay heat quantity calculation device 26a. The upper water level is set below the stop water level of the steam turbine pump 17, and the lower water level is set above the startup water level of the steam turbine pump 17. In the reactor pressure vessel 2 of the boiling water nuclear power plant, reactor structures (not shown) such as separators, dryers, and shrouds are installed, and the flow occupied by the coolant in the reactor pressure vessel 2 Although the road area takes different values in the height direction, there is a region that can be regarded as a substantially constant flow path area, such as a stand pipe portion directly under the separator. For example, if the upper water level is set to the upper end height of the standpipe area and the lower water level is set to the lower end height of the standpipe area, the flow area that should be multiplied by the water level change rate when calculating the decay heat quantity is geometrically calculated. The convenience can be improved. The latent heat of vaporization and the saturated water density of the coolant in the reactor pressure vessel 2 are generally functions of the pressure in the reactor pressure vessel, and the evaporation corresponding to the pressure 37 is performed by interpolating a prepared table. Calculate latent heat and saturated water density.

図7に起動・停止信号発生装置23aのロジックを示す。起動・停止信号発生装置23aは、原子炉圧力容器2内の水位30を入力として、蒸気タービン式ポンプ17の起動・停止信号31(起動信号31−1又は停止信号31−2)を出力する。以下、具体的に説明する。起動・停止信号発生装置23aに入力された水位30は、蒸気タービン式ポンプ17の起動水位及び停止水位のそれぞれと大小を比較される。水位30の値が起動水位を下回ると、炉心1の水面上への露出を防ぐために、蒸気タービン式ポンプ17の起動信号31−1を発生させる。一方、水位30が停止水位を上回ると、原子炉圧力容器2内への冷却材流入による蒸気タービン8の破損を防ぐために、蒸気タービン式ポンプ17の停止信号31−2を発生させる。以上のような機能を達成するために、起動水位は停止水位より下方に設置する。具体的には、起動水位は炉心1の水面上への露出を防止するために必要となる余裕を炉心1の上端水位に加えた水位、停止水位は、蒸気タービン8への冷却材流入を防止するために必要となる余裕を蒸気タービン8への蒸気引込配管高さから減じた水位に設定する。   FIG. 7 shows the logic of the start / stop signal generator 23a. The start / stop signal generator 23a outputs the start / stop signal 31 (start signal 31-1 or stop signal 31-2) of the steam turbine pump 17 with the water level 30 in the reactor pressure vessel 2 as an input. This will be specifically described below. The water level 30 input to the start / stop signal generator 23a is compared in magnitude with the start water level and the stop water level of the steam turbine pump 17, respectively. When the value of the water level 30 falls below the startup water level, the startup signal 31-1 of the steam turbine pump 17 is generated in order to prevent exposure of the core 1 to the water surface. On the other hand, when the water level 30 exceeds the stop water level, the stop signal 31-2 of the steam turbine pump 17 is generated in order to prevent the steam turbine 8 from being damaged due to the coolant flowing into the reactor pressure vessel 2. In order to achieve the above functions, the starting water level is installed below the stopping water level. Specifically, the water level at which the startup water level is added to the upper water level of the core 1 to prevent exposure of the core 1 to the water surface, and the stop water level prevent coolant from flowing into the steam turbine 8. The water level required to do this is set to a water level that is reduced from the height of the steam inlet pipe to the steam turbine 8.

図8に差圧−水位変換装置22aのロジックを示す。差圧−水位変換装置22aは、原子炉圧力容器2内の差圧29及び圧力37を入力として、原子炉圧力容器2内の水位30を出力する。以下、具体的に説明する。差圧−水位変換装置22aは、差圧29を飽和水密度と重力加速度の積で除した後、基準水位Hsからの相対水位に変換するための基準水位偏差ΔH(=Hs−Hp)を減じることで、基準水位Hsからの水位30を計算する。重力加速度は設定値として保持している。また、基準水位偏差ΔHも、基準水位Hsと差圧計19の設置水位Hpとが決まれば一意に決定されるため、設定値として保持している。飽和水密度は、圧力依存性が大きいため、予め用意してあるテーブルを内挿補間することで、計測された圧力から近似計算する。   FIG. 8 shows the logic of the differential pressure / water level converter 22a. The differential pressure-water level conversion device 22a receives the differential pressure 29 and the pressure 37 in the reactor pressure vessel 2 and outputs the water level 30 in the reactor pressure vessel 2. This will be specifically described below. After the differential pressure 29 is divided by the product of the saturated water density and the gravitational acceleration, the differential pressure-water level conversion device 22a reduces the reference water level deviation ΔH (= Hs−Hp) for conversion to the relative water level from the reference water level Hs. Thus, the water level 30 from the reference water level Hs is calculated. Gravitational acceleration is held as a set value. The reference water level deviation ΔH is also held as a set value because it is uniquely determined if the reference water level Hs and the installation water level Hp of the differential pressure gauge 19 are determined. Since the saturated water density is highly pressure dependent, an approximate calculation is performed from the measured pressure by interpolating a table prepared in advance.

図9に、蒸気タービン式ポンプ17を従来技術と同様に定格流量で運用した場合の蒸気タービン式ポンプ17の起動・停止回数と、蒸気タービン式ポンプ17を目標流量計算装置27aで計算した目標流量32で運用した場合の蒸気タービン式ポンプ17の起動・停止回数とを比較して示す。図の横軸は経過時間、縦軸は蒸気タービン式ポンプ17の注水流量を表す。運転期間は2週間を想定した。図中、流量が0になっている領域が蒸気タービン式ポンプ17の停止状態を表すことから、流量が0になる回数が蒸気タービン式ポンプ17の停止回数に相当する。図に示すように、定格流量で運用した場合の蒸気タービン式ポンプ17の起動・停止回数は46回であったのに対し、目標流量計算装置27aで計算した目標流量で運用した場合の蒸気タービン式ポンプ17の起動・停止回数は5回であった。   FIG. 9 shows the number of times the steam turbine pump 17 is started and stopped when the steam turbine pump 17 is operated at the rated flow rate as in the prior art, and the target flow rate calculated by the target flow rate calculation device 27a. The number of start / stop times of the steam turbine pump 17 when operated at 32 is shown in comparison. The horizontal axis in the figure represents the elapsed time, and the vertical axis represents the water injection flow rate of the steam turbine pump 17. The operation period was assumed to be 2 weeks. In the figure, since the region where the flow rate is 0 represents the stop state of the steam turbine pump 17, the number of times the flow rate becomes 0 corresponds to the number of stops of the steam turbine pump 17. As shown in the figure, the steam turbine pump 17 was started and stopped 46 times when operated at the rated flow rate, whereas the steam turbine when operated at the target flow rate calculated by the target flow rate calculation device 27a. The number of times the pump 17 was started and stopped was 5 times.

以上のとおり、本実施例によれば、崩壊熱によって原子炉圧力容器2内で失われる冷却材量とほぼバランスする目標流量を原子炉隔離時に計算し、蒸気タービン式ポンプ17の注水流量をこの目標流量と一致するように制御することにより、タービン止め弁10の開閉頻度が低減する。また、蒸気タービン式ポンプ17の起動中は目標流量が一定であるため、蒸気加減弁11の開度調整を行う時間が蒸気タービン式ポンプ17の起動直後にほぼ限定される。その結果、タービン止め弁10及び蒸気加減弁11の駆動に伴うバッテリ消費が抑えられ、長期に亘って炉心1を安定的に冷却すること可能となる。   As described above, according to the present embodiment, the target flow rate that is substantially balanced with the amount of coolant lost in the reactor pressure vessel 2 due to decay heat is calculated at the time of reactor isolation, and the water injection flow rate of the steam turbine pump 17 is calculated as follows. By controlling so as to coincide with the target flow rate, the frequency of opening and closing the turbine stop valve 10 is reduced. Further, since the target flow rate is constant during the startup of the steam turbine pump 17, the time for adjusting the opening degree of the steam control valve 11 is almost limited immediately after the startup of the steam turbine pump 17. As a result, battery consumption associated with the driving of the turbine stop valve 10 and the steam control valve 11 is suppressed, and the core 1 can be stably cooled over a long period of time.

また、図4の蒸気加減弁制御装置28aの代わりに、図10の蒸気加減弁制御装置28bを用いることもできる。図4の蒸気加減弁制御装置28aに対する図10の蒸気加減弁制御装置28bの相違点は、蒸気加減弁制御装置28bの起動・停止制御部28b−1に、内蔵タイマーを追加した点にある。すなわち、起動・停止制御部28b−1では、内蔵タイマーによって蒸気加減弁制御装置28aが起動してからの経過時間を測定し、30秒経過したタイミングで弁開度制御部28b−2を停止させる。30秒で制御を停止する理由は以下の2つである。1つは、従来技術に係る原子炉隔離時冷却系としての原子炉注水装置では30秒の間に蒸気加減弁の開度制御による流量制御が概ね終了することから本発明でも同様の制御速度が期待できること、もう一つは、本発明の蒸気タービン式ポンプ17による注水量は崩壊熱によって原子炉圧力容器2内で失われる冷却材量とほぼバランスすることから、原子炉圧力容器2内が注水によって過度に冷却されることが無く、原子炉圧力容器2内圧力が主蒸気逃し弁7の設定圧近傍にほぼ固定されるため、原子炉圧力容器2内の圧力が蒸気タービン式ポンプ17の注水流量に与える影響が小さく、炉心1を冷却するための必要注水流量が比較的安定することが挙げられる。図10の蒸気加減弁制御装置28bを用いることで、弁開度制御部28b−2による起動後30秒以降の細やかな蒸気加減弁11の制御に伴うバッテリ消費を抑えることが可能となり、さらなるバッテリ消費抑制効果が期待できる。なお、弁開度調整部28b−2の停止タイミングは30秒より大きい任意の時間に設定することも可能である。   Further, the steam control valve control device 28b of FIG. 10 can be used instead of the steam control valve control device 28a of FIG. The steam control valve control device 28b of FIG. 10 differs from the steam control valve control device 28a of FIG. 4 in that a built-in timer is added to the start / stop control unit 28b-1 of the steam control valve control device 28b. That is, the start / stop control unit 28b-1 measures the elapsed time since the start of the steam control valve control device 28a by the built-in timer, and stops the valve opening degree control unit 28b-2 at the timing when 30 seconds have elapsed. . There are two reasons why control is stopped in 30 seconds. One is that, in the reactor water injection device as a cooling system for reactor isolation according to the prior art, the flow control by the opening control of the steam control valve is almost completed within 30 seconds. What can be expected is that the amount of water injected by the steam turbine pump 17 of the present invention is almost balanced with the amount of coolant lost in the reactor pressure vessel 2 due to decay heat. Therefore, the pressure in the reactor pressure vessel 2 is almost fixed in the vicinity of the set pressure of the main steam relief valve 7, so that the pressure in the reactor pressure vessel 2 is injected into the steam turbine pump 17. The influence on the flow rate is small, and the required water injection flow rate for cooling the core 1 is relatively stable. By using the steam control valve control device 28b of FIG. 10, it becomes possible to suppress the battery consumption accompanying the detailed control of the steam control valve 11 after 30 seconds from the start by the valve opening control unit 28b-2, and further battery Expected to reduce consumption. The stop timing of the valve opening adjusting unit 28b-2 can be set to any time longer than 30 seconds.

また、図1に示すように揚水用水源15と凝縮用水源12とを個別に備える代わりに、図11に示すように揚水用水源と凝縮用水源とを一体化した凝縮・揚水用水源39を備える構成も考えられる。その場合、よりコンパクトな原子力発電プラントを実現できる。   Further, instead of separately providing the pumping water source 15 and the condensing water source 12 as shown in FIG. 1, a condensing / pumping water source 39 that integrates the pumping water source and the condensing water source as shown in FIG. A configuration provided is also conceivable. In that case, a more compact nuclear power plant can be realized.

また、図7の起動・停止信号発生装置23a及び図4の蒸気加減弁制御装置28aの代わりに、図12の起動・停止信号発生装置23b及び図13の蒸気加減弁制御装置28cを用いることもできる。図7の起動・停止信号発生装置に対する図12の起動・停止信号発生装置23aの相違点は、原子炉圧力容器2内の水位30が蒸気タービン式ポンプ17の起動水位より下方に設定された異常水位を下回った場合に、異常信号31−3を出力する点である。これに対応して、図13の蒸気加減弁制御装置28cには、起動・停止信号31として異常信号31−3が入力された場合の処理ロジックが追加されている。具体的には、弁開度制御部28c−2は、起動・停止信号31として異常信号31−3が入力されると、目標流量計算装置27aから入力された目標流量32の代わりに、予め設定された定格流量を用いて目標回転数を計算する。一般に定格流量は崩壊熱レベルよりも大きめに設定されているため、異常信号31−3が発生する水位(異常水位)からでも炉心1の冠水を維持することができる。このように、図12の起動・停止信号発生装置23b及び図13の蒸気加減弁制御装置28cを用いることで、万一、目標流量計算装置27aで計算した目標流量32が炉心1の冠水維持に対して不十分であった場合でも炉心1の冠水を維持することができるため、原子炉注水装置100aの信頼性を向上させることができる。   Further, instead of the start / stop signal generating device 23a of FIG. 7 and the steam control valve control device 28a of FIG. 4, the start / stop signal generating device 23b of FIG. 12 and the steam control valve control device 28c of FIG. 13 may be used. it can. The start / stop signal generator 23a of FIG. 12 differs from the start / stop signal generator of FIG. 7 in that the water level 30 in the reactor pressure vessel 2 is set lower than the start water level of the steam turbine pump 17. The point is that an abnormal signal 31-3 is output when the water level falls below. Correspondingly, processing logic when the abnormal signal 31-3 is input as the start / stop signal 31 is added to the steam control valve control device 28c of FIG. Specifically, when the abnormal signal 31-3 is input as the start / stop signal 31, the valve opening degree control unit 28c-2 sets in advance instead of the target flow rate 32 input from the target flow rate calculation device 27a. The target rotational speed is calculated using the rated flow rate. In general, the rated flow rate is set to be larger than the decay heat level, so that the flooding of the core 1 can be maintained even from the water level (abnormal water level) where the abnormal signal 31-3 is generated. In this way, by using the start / stop signal generating device 23b of FIG. 12 and the steam control valve control device 28c of FIG. 13, the target flow rate 32 calculated by the target flow rate calculation device 27a should be used to maintain the flooding of the core 1. Even if it is insufficient, the flooding of the reactor core 1 can be maintained, so that the reliability of the reactor water injection device 100a can be improved.

本発明の第2の実施例に係る原子炉注水装置について、第1の実施例との相違点を中心に説明する。   The reactor water injection apparatus according to the second embodiment of the present invention will be described focusing on differences from the first embodiment.

図14に本発明の第2の実施例に係る原子炉注水装置の構成を示す。本実施例に係る原子炉注水装置100bは、非常信号発生装置25から出力された非常信号33がタイマー40に入力され、崩壊熱量計算装置26bにはタイマー40の経過時間41のみが入力され、目標流量計算装置27bには崩壊熱量計算装置26bで計算した崩壊熱量36及び温度計20で計測した水温34のみが入力される点で第1の実施例と異なる。   FIG. 14 shows the configuration of a reactor water injection apparatus according to the second embodiment of the present invention. In the reactor water injection device 100b according to the present embodiment, the emergency signal 33 output from the emergency signal generator 25 is input to the timer 40, and only the elapsed time 41 of the timer 40 is input to the decay heat quantity calculation device 26b. The flow rate calculation device 27b is different from the first embodiment in that only the decay heat amount 36 calculated by the decay heat amount calculation device 26b and the water temperature 34 measured by the thermometer 20 are input.

以下、全交流電源喪失発生時の原子炉注水装置100bの動作を説明する。   Hereinafter, the operation of the reactor water injection device 100b when the loss of all AC power is generated will be described.

システム動作については第1の実施例と同様であるため、説明を省略する。   Since the system operation is the same as that of the first embodiment, description thereof is omitted.

システム動作を実現するための各装置の動作については、第1の実施例と異なる、タイマー40、崩壊熱量計算装置26b、及び目標流量計算装置27aについて説明する。全交流電源喪失発生、スクラム成功、かつ原子炉隔離成功時は、非常信号発生装置25が起動して非常信号33が発生し、非常信号33が入力されることでタイマー40が起動される。タイマー40は、スクラム発生後の経過時間を測定する装置であり、一旦起動するとバッテリが枯渇するまで経過時間41を出力し続ける。崩壊熱量計算装置26bは、崩壊熱量がスクラム発生後の経過時間の関数となることを利用し、経過時間41を入力として、崩壊熱量36を出力する。本実施例における目標流量計算装置27bは、第1の実施例における目標流量計算装置27aの目標流量計算部27a−2に相当する構成のみを備えており、起動・停止制御部27a−1に相当する構成を備えていない点で第1の実施例と異なる。   The operation of each device for realizing the system operation will be described with respect to the timer 40, the decay heat amount calculation device 26b, and the target flow rate calculation device 27a, which are different from the first embodiment. When all AC power is lost, scrum is successful, and reactor isolation is successful, the emergency signal generator 25 is activated to generate an emergency signal 33, and the emergency signal 33 is input to start the timer 40. The timer 40 is a device that measures the elapsed time after the occurrence of the scrum, and once activated, continues to output the elapsed time 41 until the battery is depleted. The decay heat quantity calculation device 26b uses the fact that the decay heat quantity is a function of the elapsed time after scram generation, and outputs the decay heat quantity 36 with the elapsed time 41 as an input. The target flow rate calculation device 27b in the present embodiment has only a configuration corresponding to the target flow rate calculation unit 27a-2 of the target flow rate calculation device 27a in the first embodiment, and corresponds to the start / stop control unit 27a-1. This is different from the first embodiment in that it does not have a configuration to do so.

次に、各装置のロジックについて図を用いて詳しく説明する。タイマー40については、上述した通りであるため、説明を省略する。   Next, the logic of each device will be described in detail with reference to the drawings. Since the timer 40 is as described above, the description thereof is omitted.

図15に崩壊熱量計算装置26bのロジックを示す。崩壊熱量計算装置26bは、タイマー40の経過時間41を入力として、原子炉圧力容器2内の崩壊熱量36を出力する。以下、具体的に説明する。第1の実施例における崩壊熱量計算装置26a(図6参照)は、原子炉圧力容器2内の水位変化率が崩壊熱による蒸発に因ることを利用し、原子炉圧力容器2内の圧力37及び水位30を入力として、崩壊熱量36を出力する。これに対し、本実施例の崩壊熱量計算装置26bは、崩壊熱量がスクラム発生後の経過時間の関数となることを利用し、経過時間41を入力として、崩壊熱量36を出力する。ここで、崩壊熱量はスクラム発生後の経過時間(冷却期間)の関数であると同時に、燃料組成、照射期間の関数でもある。そのため、本方式を採用する際には、当該運転サイクル中に炉心に装荷される燃料を対象に、崩壊熱量を事前に評価し、評価結果をテーブル化して崩壊熱量計算装置26b内に保持する必要がある。   FIG. 15 shows the logic of the decay heat quantity calculation device 26b. The decay heat quantity calculation device 26 b receives the elapsed time 41 of the timer 40 and outputs the decay heat quantity 36 in the reactor pressure vessel 2. This will be specifically described below. The decay heat quantity calculation device 26a (see FIG. 6) in the first embodiment utilizes the fact that the water level change rate in the reactor pressure vessel 2 is caused by evaporation due to decay heat, and the pressure 37 in the reactor pressure vessel 2 And the water level 30 is input, and the decay heat quantity 36 is output. On the other hand, the decay heat quantity calculation device 26b of the present embodiment uses the fact that the decay heat quantity is a function of the elapsed time after scram generation, and outputs the decay heat quantity 36 with the elapsed time 41 as an input. Here, the decay heat quantity is a function of the elapsed time (cooling period) after the occurrence of the scram and also a function of the fuel composition and the irradiation period. Therefore, when adopting this method, it is necessary to evaluate the decay heat quantity in advance for the fuel loaded in the core during the operation cycle, and make a table of the evaluation results and hold it in the decay heat quantity calculation device 26b. There is.

図16に目標流量計算装置27bのロジックを示す。目標流量計算装置27bは、原子炉圧力容器2内の崩壊熱量36及び揚水用水源15の水温34を入力として、目標流量32を出力する。本実施例における目標流量計算装置27bは、非常信号33を入力する必要が無い点で第1の実施例における目標流量計算装置27a(図5参照)と異なる。即ち、第1の実施例における目標流量計算装置27aは非常信号33によって起動されるが、本実施例における崩壊熱量36は非常信号33の役割を兼ねているため、本実施例における目標流量計算装置27bは、非常信号33に基づいて目標流量計算部27a−2を起動・停止する起動・停止制御部27a−1に相当する構成を備えていない。   FIG. 16 shows the logic of the target flow rate calculation device 27b. The target flow rate calculation device 27b receives the decay heat quantity 36 in the reactor pressure vessel 2 and the water temperature 34 of the pumped water source 15 and outputs a target flow rate 32. The target flow rate calculation device 27b in this embodiment is different from the target flow rate calculation device 27a (see FIG. 5) in the first embodiment in that it is not necessary to input the emergency signal 33. That is, the target flow rate calculation device 27a in the first embodiment is activated by the emergency signal 33, but the decay heat quantity 36 in the present embodiment also serves as the emergency signal 33, so the target flow rate calculation device in the present embodiment. 27 b does not have a configuration corresponding to the start / stop control unit 27 a-1 that starts and stops the target flow rate calculation unit 27 a-2 based on the emergency signal 33.

本実施例においても、第1の実施例と同様に、タービン止め弁10及び蒸気加減弁11の駆動に伴うバッテリ消費が抑えられ、長期に亘って炉心1を安定的に冷却すること可能となる。さらに、スクラム発生後の経過時間41を用いて崩壊熱量36を計算することにより、崩壊熱量計算装置26b及び目標流量計算装置27bの構成が簡素となる。   Also in the present embodiment, as in the first embodiment, battery consumption associated with driving of the turbine stop valve 10 and the steam control valve 11 is suppressed, and the core 1 can be stably cooled over a long period of time. . Furthermore, by calculating the decay heat quantity 36 using the elapsed time 41 after scram generation, the configuration of the decay heat quantity calculation device 26b and the target flow rate calculation device 27b is simplified.

本発明の第3の実施例に係る原子炉注水装置について、第1の実施例との相違点を中心に説明する。   A reactor water injection apparatus according to a third embodiment of the present invention will be described focusing on differences from the first embodiment.

図17に本発明の第3の実施例に係る原子炉注水装置の構成を示す。本実施例における原子炉注水装置100cは、圧力計18で計測した圧力37を、差圧−水位変換装置22b及び崩壊熱量計算装置26cに入力しない点で第1の実施例と異なる。   FIG. 17 shows the configuration of a reactor water injection apparatus according to the third embodiment of the present invention. The reactor water injection device 100c in the present embodiment is different from the first embodiment in that the pressure 37 measured by the pressure gauge 18 is not input to the differential pressure-water level conversion device 22b and the decay heat amount calculation device 26c.

以下、全交流電源喪失発生時の原子炉注水装置100cの動作を説明する。   Hereinafter, the operation of the reactor water injection device 100c when the loss of all AC power is generated will be described.

システム動作、及びシステム動作を実現するための各装置の動作については第1の実施例と同様であるため、説明を省略し、各装置のロジックについて図を用いて詳しく説明する。   Since the system operation and the operation of each device for realizing the system operation are the same as those in the first embodiment, the description thereof will be omitted, and the logic of each device will be described in detail with reference to the drawings.

図18に差圧−水位変換装置22bのロジックを示す。差圧−水位変換装置22bは、原子炉圧力容器2内の差圧29を入力として、原子炉圧力容器2内の水位30を出力する。以下、第1の実施例における差圧−水位変換装置22a(図8参照)との相違点を具体的に説明する。第1の実施例における差圧−水位変換装置22aでは、飽和水密度を原子炉圧力容器2内の圧力37の関数として計算するが、本実施例における差圧−水位変換装置22bでは設定値として保持している。これは、本発明の蒸気タービン式ポンプ17による原子炉圧力容器2への注水流量は、崩壊熱によって原子炉圧力容器2内で失われる冷却材量とほぼバランスすることから、原子炉圧力容器2内が注水によって過度に冷却されることが無く、原子炉圧力容器2内の圧力37は主蒸気逃し弁7の設定圧近傍で安定するため、飽和水密度を主蒸気逃し弁7の設定圧に対応する値に固定しても誤差が小さいことによる。   FIG. 18 shows the logic of the differential pressure / water level converter 22b. The differential pressure-water level converter 22b receives the differential pressure 29 in the reactor pressure vessel 2 as an input and outputs the water level 30 in the reactor pressure vessel 2. Hereinafter, differences from the differential pressure / water level converter 22a (see FIG. 8) in the first embodiment will be described in detail. In the differential pressure-water level converter 22a in the first embodiment, the saturated water density is calculated as a function of the pressure 37 in the reactor pressure vessel 2, but in the differential pressure-water level converter 22b in the present embodiment, as a set value. keeping. This is because the flow rate of water injected into the reactor pressure vessel 2 by the steam turbine pump 17 of the present invention is almost balanced with the amount of coolant lost in the reactor pressure vessel 2 due to decay heat. The inside of the reactor pressure vessel 2 is not cooled excessively by water injection, and the pressure 37 in the reactor pressure vessel 2 stabilizes in the vicinity of the set pressure of the main steam relief valve 7, so that the saturated water density is set to the set pressure of the main steam relief valve 7. This is because the error is small even if the corresponding value is fixed.

図19に崩壊熱量計算装置26cのロジックを示す。崩壊熱量計算装置26cは、蒸気タービン式ポンプの起動・停止信号31、及び原子炉圧力容器2内の水位30を入力として、原子炉圧力容器2内の崩壊熱量36を出力する。以下、第1の実施例における崩壊熱量計算装置26a(図6参照)との相違点を具体的に説明する。第1の実施例における崩壊熱量計算装置26aでは、原子炉圧力容器2内の冷却材の蒸発潜熱及び飽和水密度をそれぞれ原子炉圧力容器2内の圧力37の関数として計算したが、本実施例における崩壊熱量計算装置26cではいずれも設定値として保持している。これは、上述した通り、原子炉圧力容器2内の圧力37は主蒸気逃し弁7の設定圧近傍で安定するため、蒸発潜熱及び飽和水密度をそれぞれ主蒸気逃し弁7の設定圧に対応する値に固定しても誤差が小さいことによる。   FIG. 19 shows the logic of the decay heat quantity calculation device 26c. The decay heat quantity calculation device 26c receives the start / stop signal 31 of the steam turbine pump and the water level 30 in the reactor pressure vessel 2, and outputs the decay heat amount 36 in the reactor pressure vessel 2. Hereinafter, differences from the decay heat quantity calculation device 26a (see FIG. 6) in the first embodiment will be specifically described. In the decay calorie calculation device 26a in the first embodiment, the latent heat of vaporization and the saturated water density of the coolant in the reactor pressure vessel 2 are calculated as functions of the pressure 37 in the reactor pressure vessel 2, respectively. In the decay heat quantity calculation device 26c in FIG. As described above, since the pressure 37 in the reactor pressure vessel 2 is stabilized in the vicinity of the set pressure of the main steam relief valve 7, the latent heat of vaporization and the saturated water density correspond to the set pressure of the main steam relief valve 7, respectively. This is because the error is small even if the value is fixed.

本実施例においても、第1の実施例と同様に、タービン止め弁10及び蒸気加減弁11の駆動に伴うバッテリ消費が抑えられ、長期に亘って炉心1を安定的に冷却すること可能となる。さらに、蒸発潜熱及び飽和水密度をそれぞれ主蒸気逃し弁7の設定圧に対応する値に固定することにより、差圧−水位変換装置22b及び崩壊熱量計算装置26cの構成が簡素となる。   Also in the present embodiment, as in the first embodiment, battery consumption associated with driving of the turbine stop valve 10 and the steam control valve 11 is suppressed, and the core 1 can be stably cooled over a long period of time. . Furthermore, by fixing the latent heat of vaporization and the saturated water density to values corresponding to the set pressure of the main steam relief valve 7, the configurations of the differential pressure-water level converter 22b and the decay heat quantity calculator 26c are simplified.

本発明の第4の実施例に係る原子炉注水装置について、第1の実施例との相違点を中心に説明する。   A nuclear reactor water injection apparatus according to a fourth embodiment of the present invention will be described focusing on differences from the first embodiment.

図20に本実施例に係る原子炉注水装置の構成を示す。本実施例に係る原子炉注水装置100dは、第1の実施例における揚水用水源15及び温度計20に代えて、2つの揚水用水源15a,15bと、これら2つの揚水用水源15a,15bの水温をそれぞれ計測する温度計20a,20bと、2つの揚水用水源15a,15bの切替制御を行うための注水弁42a,42b及び水源選択装置43とを備えている。   FIG. 20 shows the configuration of the reactor water injection apparatus according to this embodiment. The reactor water injection device 100d according to the present embodiment replaces the pumping water source 15 and the thermometer 20 in the first embodiment with two pumping water sources 15a and 15b and the two pumping water sources 15a and 15b. Thermometers 20a and 20b for measuring the water temperature, water injection valves 42a and 42b, and a water source selector 43 for performing switching control of the two pumping water sources 15a and 15b are provided.

以下、全交流電源喪失発生時の原子炉注水装置100dの動作を説明する。   Hereinafter, the operation of the reactor water injection device 100d when the loss of all AC power is generated will be described.

まず、システム動作を説明する。全交流電源喪失が発生してから蒸気タービン式ポンプ17が起動するまでの動作は第1の実施例と同様である。2つの揚水用水源15a,15bのいずれを使用するかは初期設定によるが、例えば、揚水用水源15aを使う設定であれば、蒸気タービン8で回収した仕事によって駆動された蒸気タービン式ポンプ17は、注水配管16を介して揚水用水源15aの冷却材を原子炉圧力容器2内に注水する。これにより、原子炉圧力容器内水位Hの減少が止まり、炉心1の冷却機能が維持される。揚水用水源15aの水量不足等の理由により水源を切り替える必要が生じた場合は、揚水用水源15bを選択するための水源選択信号44を水源選択装置43に入力する。これにより、注水弁42aが閉じると共に注水弁42bが開き、揚水用水源15bが使用可能となる。   First, the system operation will be described. The operation from the occurrence of loss of all AC power to the start of the steam turbine pump 17 is the same as in the first embodiment. Which of the two pumping water sources 15a and 15b is used depends on the initial setting. For example, if the pumping water source 15a is used, the steam turbine pump 17 driven by the work recovered by the steam turbine 8 is The coolant of the pumping water source 15 a is injected into the reactor pressure vessel 2 through the water injection pipe 16. Thereby, the decrease in the water level H in the reactor pressure vessel stops, and the cooling function of the core 1 is maintained. When it is necessary to switch the water source due to a shortage of the water amount of the pumping water source 15a, a water source selection signal 44 for selecting the pumping water source 15b is input to the water source selecting device 43. Accordingly, the water injection valve 42a is closed and the water injection valve 42b is opened, so that the pumping water source 15b can be used.

上記システム動作を実現するための各装置の動作については、第1の実施例と異なる、揚水用水源15a,15b、温度計20a,20b、注水弁42a,42b、及び水源選択装置43について説明する。水源選択装置43は、2つの揚水用水源15a,15bのそれぞれの水温34a,34b及び水源選択信号44を入力とする。水源選択装置43は、2つの揚水用水源15a,15bのうち水源選択信号44で選択された一方のみが注水配管16と連通するように注水弁42a,42bを開閉するための弁制御信号45a,45b、及び選択された揚水用水源15a又は15bの水温34a又は34bを出力する。例えば、揚水用水源15bが選択された場合、水源選択装置43は、注水弁42aを全閉するための弁制御信号45a、注水弁42bを全開するための弁制御信号45b、及び揚水用水源15bの水温34bを出力する。   About operation | movement of each apparatus for implement | achieving the said system operation | movement, different from 1st Example, the water sources 15a and 15b for pumping, the thermometers 20a and 20b, the water injection valves 42a and 42b, and the water source selection apparatus 43 are demonstrated. . The water source selector 43 receives the water temperatures 34a and 34b and the water source selection signal 44 of the two pumping water sources 15a and 15b, respectively. The water source selection device 43 is configured to open and close the water injection valves 42a and 42b so that only one of the two pumping water sources 15a and 15b selected by the water source selection signal 44 communicates with the water injection pipe 16. 45b and the water temperature 34a or 34b of the selected pumping water source 15a or 15b is output. For example, when the pumping water source 15b is selected, the water source selecting device 43 includes a valve control signal 45a for fully closing the water injection valve 42a, a valve control signal 45b for fully opening the water injection valve 42b, and a pumping water source 15b. The water temperature 34b is output.

次に、水源選択装置43のロジックについて図21を用いて詳しく説明する。   Next, the logic of the water source selection device 43 will be described in detail with reference to FIG.

水源選択装置43は、水源選択信号44及び2つの水温34a,34bを入力として、2つの弁制御信号45a,45b及び水温34を出力する。以下、具体的に説明する。水源選択信号44が入力されると、まず、2つの揚水用水源15a,15bのどちらが選択されたかを判定する。揚水用水源15aが選択された場合は、選択回路は、注水弁42aを全開するための弁制御信号45a、注水弁42bを全閉するための弁制御信号45b、及び揚水用水源15aの水温34aを出力する。注水弁42aを全開すると共に注水弁42bを全閉することで、揚水用水源15aが使用可能となり、目標流量計算装置27aに揚水用水源15aの水温34aを出力することで、揚水用水源15aに対応した目標流量計算が可能となる。揚水用水源15aが選択されなかった場合、もしくは揚水用水源15bが選択された場合は、選択回路は、注水弁42aを全閉するための弁制御信号45a、注水弁42bを全開するための弁制御信号45b、及び揚水用水源15bの水温34bを出力する。注水弁42bを全開すると共に注水弁42aを全閉することで、揚水用水源15bが使用可能となり、目標流量計算装置27aに揚水用水源15bの水温34bを出力することで、揚水用水源15bに対応した目標流量計算が可能となる。なお、水源選択信号44は、運転員が手動で発生させる他に、揚水用水源水位低等の信号を受けて水源を切り替えるロジックによって発生させても良い。   The water source selector 43 receives the water source selection signal 44 and the two water temperatures 34a and 34b as inputs, and outputs two valve control signals 45a and 45b and the water temperature 34. This will be specifically described below. When the water source selection signal 44 is input, it is first determined which of the two pumping water sources 15a and 15b has been selected. When the pumping water source 15a is selected, the selection circuit controls the valve control signal 45a for fully opening the water injection valve 42a, the valve control signal 45b for fully closing the water injection valve 42b, and the water temperature 34a of the pumping water source 15a. Is output. By fully opening the water injection valve 42a and fully closing the water injection valve 42b, the pumping water source 15a can be used, and by outputting the water temperature 34a of the pumping water source 15a to the target flow rate calculation device 27a, the pumping water source 15a is output. Corresponding target flow rate calculation is possible. When the pumping water source 15a is not selected, or when the pumping water source 15b is selected, the selection circuit controls the valve control signal 45a for fully closing the water injection valve 42a and the valve for fully opening the water injection valve 42b. The control signal 45b and the water temperature 34b of the pumping water source 15b are output. When the water injection valve 42b is fully opened and the water injection valve 42a is fully closed, the pumping water source 15b can be used. By outputting the water temperature 34b of the pumping water source 15b to the target flow rate calculation device 27a, the pumping water source 15b is output. Corresponding target flow rate calculation is possible. The water source selection signal 44 may be generated not only by the operator manually but also by logic for switching the water source in response to a signal such as a pumping water source water level low.

本実施例においても、第1の実施例と同様に、タービン止め弁10及び蒸気加減弁11の駆動に伴うバッテリ消費が抑えられ、長期に亘って炉心1を安定的に冷却すること可能となる。さらに、2つの揚水用水源15a,15bを切替可能に備えたことにより、より長期に亘って炉心1を安定に冷却することが可能となる。   Also in the present embodiment, as in the first embodiment, battery consumption associated with driving of the turbine stop valve 10 and the steam control valve 11 is suppressed, and the core 1 can be stably cooled over a long period of time. . Furthermore, by providing the two pumping water sources 15a and 15b so as to be switchable, the core 1 can be stably cooled over a longer period.

本発明の第5の実施例に係る原子炉注水装置について、第1の実施例との相違点を中心に説明する。   A nuclear reactor water injection apparatus according to a fifth embodiment of the present invention will be described focusing on differences from the first embodiment.

図22に本実施例に係る原子炉注水装置の構成を示す。本実施例に係る原子炉注水装置100eは、原子炉圧力容器内水位Hを計測する手段として、第1の実施例における差圧計19及び差圧−水位変換装置22aに代えて、原子炉圧力容器内水位Hを直接測定する水位計46を備えている。水位計46としては、超音波センサや熱電対等を用いることができる。   FIG. 22 shows the configuration of the reactor water injection apparatus according to this embodiment. The reactor water injection device 100e according to the present embodiment replaces the differential pressure gauge 19 and the differential pressure-water level conversion device 22a in the first embodiment as means for measuring the water level H in the reactor pressure vessel, instead of the reactor pressure vessel. A water level gauge 46 for directly measuring the internal water level H is provided. As the water level meter 46, an ultrasonic sensor, a thermocouple, or the like can be used.

本実施例においても、第1の実施例と同様に、タービン止め弁10及び蒸気加減弁11の駆動に伴うバッテリ消費が抑えられ、長期に亘って炉心1を安定的に冷却すること可能となる。さらに、原子炉圧力容器内水位Hを直接計測する水位計46を備えたことにより、第1の実施例における差圧−水位変換装置22a(図1参照)が不要となるため、原子炉注水装置100eの構成が簡素となる。   Also in the present embodiment, as in the first embodiment, battery consumption associated with driving of the turbine stop valve 10 and the steam control valve 11 is suppressed, and the core 1 can be stably cooled over a long period of time. . Furthermore, since the water level gauge 46 for directly measuring the water level H in the reactor pressure vessel is provided, the differential pressure-water level conversion device 22a (see FIG. 1) in the first embodiment is not required, so the reactor water injection device The configuration of 100e is simplified.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、あるいは、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, or the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…炉心、2…原子炉圧力容器、3…制御棒、4…主蒸気配管、5…主蒸気隔離弁、6…主蒸気逃し配管、7…主蒸気逃し弁、8…蒸気タービン、9…蒸気引込配管、10…タービン止め弁、11…蒸気加減弁、12…凝縮用水源、13…蒸気排気配管、14…逆止弁、15,15a,15b…揚水用水源、16…注水配管、17…蒸気タービン式ポンプ、18…圧力計、19…差圧計(水位計測装置)、20,20a,20b…温度計、21…回転速度計、22,22a,22b…差圧−水位変換装置(水位計測装置)、23a,23b…起動・停止信号発生装置、24…止め弁制御装置、25…非常信号発生装置、26a,26b,26c…崩壊熱量計算装置、27a,27b…目標流量計算装置、27a−1…起動・停止制御部、27a−2…目標流量計算部、28,28a,28b,28c…蒸気加減弁制御装置、28a−1,28b−1,28c−1…起動・停止制御部、28a−2,28b−2,28c−2…弁開度制御部、29…差圧、30…水位、31…起動・停止信号、31−1…起動信号、31−2…停止信号、31−3…異常信号、32…目標流量、33…非常信号、34,34a,34b…水温、35…弁開閉トルク、36…崩壊熱量、37…圧力、38…回転数、39…凝縮・揚水用水源、40…タイマー、41…経過時間、42a,42b…注水弁、43…水源選択装置、44…水源選択信号、45a,45b…弁制御信号、46…水位計(水位計測装置)、100,100a,100b,100c,100d,100e…原子炉注水装置、H…原子炉圧力容器内水位、Hp…設置水位、Hs…基準水位、ΔH…基準水位偏差。   DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Reactor pressure vessel, 3 ... Control rod, 4 ... Main steam piping, 5 ... Main steam isolation valve, 6 ... Main steam relief piping, 7 ... Main steam relief valve, 8 ... Steam turbine, 9 ... Steam inlet piping, 10 ... Turbine stop valve, 11 ... Steam control valve, 12 ... Condensation water source, 13 ... Steam exhaust piping, 14 ... Check valve, 15, 15a, 15b ... Water source for pumping water, 16 ... Water injection piping, 17 ... steam turbine pump, 18 ... pressure gauge, 19 ... differential pressure gauge (water level measuring device), 20, 20a, 20b ... thermometer, 21 ... rotational speed meter, 22, 22a, 22b ... differential pressure-water level conversion device (water level) Measuring device), 23a, 23b ... start / stop signal generator, 24 ... stop valve controller, 25 ... emergency signal generator, 26a, 26b, 26c ... decay heat quantity calculator, 27a, 27b ... target flow rate calculator, 27a -1 ... start / stop control unit, 27 -2 ... Target flow rate calculation unit, 28, 28a, 28b, 28c ... Steam control valve control device, 28a-1, 28b-1, 28c-1 ... Start / stop control unit, 28a-2, 28b-2, 28c- 2 ... Valve opening control unit, 29 ... Differential pressure, 30 ... Water level, 31 ... Start / stop signal, 31-1 ... Start signal, 31-2 ... Stop signal, 31-3 ... Abnormal signal, 32 ... Target flow rate, 33 ... Emergency signal, 34, 34a, 34b ... Water temperature, 35 ... Valve opening / closing torque, 36 ... Decay heat, 37 ... Pressure, 38 ... Revolution, 39 ... Condensation / pumping water source, 40 ... Timer, 41 ... Elapsed time, 42a, 42b ... water injection valve, 43 ... water source selection device, 44 ... water source selection signal, 45a, 45b ... valve control signal, 46 ... water level meter (water level measurement device), 100, 100a, 100b, 100c, 100d, 100e ... atom Water injection device, H ... Atom Pressure vessel water level, Hp ... installation level, Hs ... reference level, [Delta] H ... reference water level deviation.

Claims (11)

核分裂反応熱もしくは崩壊熱によって冷却水を沸騰させることで蒸気を発生することが可能で、かつスクラムによる核分裂連鎖反応停止機能を有する炉心と、前記炉心を内包する原子炉圧力容器と、前記原子炉圧力容器の過圧破損を防止する主蒸気逃し弁とを有する原子力発電プラントに備えられた原子炉注水装置において、
前記原子炉圧力容器内で発生した蒸気によって駆動される蒸気タービンと、
前記原子炉圧力容器内で発生した蒸気を前記蒸気タービンに導く蒸気引込配管と、
前記蒸気引込配管に設けられたタービン止め弁と、
前記蒸気引込配管に設けられ、前記蒸気タービンに導かれる蒸気の流量を調整する蒸気加減弁と、
前記蒸気タービンで仕事をした蒸気を凝縮する凝縮用水源と、
前記蒸気タービンで仕事をした蒸気を前記凝縮用水源に導く蒸気排気配管と、
前記蒸気排気配管に設けられ、前記凝縮用水源から前記蒸気タービンへの逆流を防止する逆止弁と、
前記原子炉圧力容器内に注水するための冷却水を貯留する揚水用水源と、
前記蒸気タービンで駆動され、前記揚水用水源の冷却水を前記原子炉圧力容器内に注水する蒸気タービン式ポンプと、
前記原子炉圧力容器内の圧力を計測する圧力計と、
前記原子炉圧力容器内の水位を計測する水位計測装置と、
前記揚水用水源の水温を計測する温度計と、
前記蒸気タービンの回転数を計測する回転速度計と、
前記水位計測装置で計測した水位が所定の起動水位を下回った場合に前記蒸気タービン式ポンプを起動させる起動信号を発生させ、前記水位計測装置で計測した水位が前記起動水位より上方に設定された所定の停止水位を上回った場合に前記蒸気タービン式ポンプを停止させる停止信号を発生させる起動・停止信号発生装置と、
前記起動信号が発生した場合に前記タービン止め弁を全開し、前記停止信号が発生した場合に前記タービン止め弁を全閉する止め弁制御装置と、
ドライウェル圧力高信号が検出されない状況においてスクラムと全交流電源喪失の2つの状態を検出した場合に非常信号を発生する非常信号発生装置と、
前記原子炉圧力容器内で発生した崩壊熱量を計算する崩壊熱量計算装置と、
前記非常信号の発生時に、前記温度計で計測した水温と前記崩壊熱量計算装置で計算した崩壊熱量とに基づいて、前記蒸気タービン式ポンプの目標流量を計算する目標流量計算装置と、
前記圧力計で計測した圧力と前記回転速度計で計測した回転数と前記目標流量計算装置で計算した目標流量とに基づいて、前記蒸気加減弁の開度を調整する蒸気加減弁制御装置と
を備えたことを特徴とする原子炉注水装置。
A core capable of generating steam by boiling boiling water with fission reaction heat or decay heat, and having a fission chain reaction stop function by scram, a reactor pressure vessel containing the core, and the reactor In a reactor water injection device provided in a nuclear power plant having a main steam relief valve for preventing overpressure damage of a pressure vessel,
A steam turbine driven by steam generated in the reactor pressure vessel;
A steam inlet pipe for guiding the steam generated in the reactor pressure vessel to the steam turbine;
A turbine stop valve provided in the steam inlet pipe;
A steam control valve that is provided in the steam inlet pipe and adjusts a flow rate of steam guided to the steam turbine;
A condensing water source for condensing the steam that has worked in the steam turbine;
A steam exhaust pipe for guiding the steam working in the steam turbine to the water source for condensation;
A check valve provided in the steam exhaust pipe to prevent a backflow from the water source for condensation to the steam turbine;
A pumping water source for storing cooling water for pouring water into the reactor pressure vessel;
A steam turbine pump that is driven by the steam turbine and injects cooling water of the pumped water source into the reactor pressure vessel;
A pressure gauge for measuring the pressure in the reactor pressure vessel;
A water level measuring device for measuring the water level in the reactor pressure vessel;
A thermometer for measuring the water temperature of the pumping water source;
A tachometer for measuring the rotation speed of the steam turbine;
When the water level measured by the water level measuring device falls below a predetermined starting water level, an activation signal for starting the steam turbine pump is generated, and the water level measured by the water level measuring device is set above the starting water level. A start / stop signal generator for generating a stop signal for stopping the steam turbine pump when a predetermined stop water level is exceeded;
A stop valve control device that fully opens the turbine stop valve when the start signal is generated and fully closes the turbine stop valve when the stop signal is generated;
An emergency signal generator for generating an emergency signal when detecting two states of scram and loss of all AC power in a situation where a dry well pressure high signal is not detected;
A decay heat quantity calculation device for calculating the decay heat quantity generated in the reactor pressure vessel;
A target flow rate calculation device for calculating a target flow rate of the steam turbine pump based on the water temperature measured by the thermometer and the decay heat amount calculated by the decay heat amount calculation device when the emergency signal is generated;
A steam control valve control device that adjusts the opening of the steam control valve based on the pressure measured by the pressure gauge, the rotational speed measured by the tachometer, and the target flow rate calculated by the target flow rate calculation device. A reactor water injection apparatus characterized by comprising:
請求項1に記載の原子炉注水装置において、
前記崩壊熱量計算装置は、前記起動信号の発生時に、前記水位計測装置で計測した水位と前記圧力計で計測した圧力とに基づいて、前記原子炉圧力容器内の崩壊熱量を計算することを特徴する原子炉注水装置。
In the reactor water injection device according to claim 1,
The decay heat quantity calculation device calculates decay heat quantity in the reactor pressure vessel based on a water level measured by the water level measurement device and a pressure measured by the pressure gauge when the activation signal is generated. Reactor water injection equipment.
請求項1に記載の原子炉注水装置において、
前記崩壊熱量計算装置は、前記起動信号の発生時に、前記水位計測装置で計測した水位に基づいて、前記原子炉圧力容器内の崩壊熱量を計算することを特徴する原子炉注水装置。
In the reactor water injection device according to claim 1,
The decay heat quantity calculation device calculates a decay heat amount in the reactor pressure vessel based on a water level measured by the water level measurement device when the activation signal is generated.
請求項1乃至3のいずれか1項に記載の原子炉注水装置において、
前記非常信号が発生してからの経過時間を計測するタイマーを更に備え、
前記崩壊熱量計算装置は、前記タイマーで計測した経過時間に基づいて崩壊熱量を計算し、
前記目標流量計算装置は、前記温度計で計測した水温と前記崩壊熱量計算装置で計算した崩壊熱量とに基づいて、前記蒸気タービン式ポンプの目標流量を計算することを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 3,
A timer for measuring an elapsed time after the emergency signal is generated;
The decay heat quantity calculation device calculates the decay heat quantity based on the elapsed time measured by the timer,
The target flow rate calculation device calculates a target flow rate of the steam turbine pump based on a water temperature measured by the thermometer and a decay heat amount calculated by the decay heat amount calculation device. .
請求項1乃至4のいずれか1項に記載の原子炉注水装置において、
前記蒸気加減弁制御装置は、起動してから30秒以上経過した後に前記蒸気加減弁の開度の調整を停止することを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 4,
The said steam control valve control apparatus stops the adjustment of the opening degree of the said steam control valve after 30 second or more after starting, The reactor water injection apparatus characterized by the above-mentioned.
請求項1乃至5のいずれか1項に記載の原子炉注水装置において、
前記水位計測装置は、前記原子炉圧力容器内の水位の差圧を計測する差圧計を有し、前記圧力計で計測した圧力と前記差圧計で計測した差圧とに基づいて、前記原子炉圧力容器内の水位を計算することを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 5,
The water level measuring device has a differential pressure gauge that measures the differential pressure of the water level in the reactor pressure vessel, and based on the pressure measured by the pressure gauge and the differential pressure measured by the differential pressure gauge, Reactor water injection device that calculates the water level in a pressure vessel.
請求項1乃至6のいずれか1項に記載の原子炉注水装置において、
前記水位計測装置は、前記原子炉圧力容器に設けられた水位計であることを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 6,
The water injection device according to claim 1, wherein the water level measuring device is a water level meter provided in the reactor pressure vessel.
請求項1乃至7のいずれか1項に記載の原子炉注水装置において、
前記蒸気加減弁制御装置は、前記水位計測装置で計測した水位が前記原子炉注水装置の起動水位より下方に設定された異常水位を下回った場合に、前記目標流量計算装置で計算した目標流量に代えて、予め設定された定格流量に基づいて、前記蒸気加減弁の開度を調整することを特徴とする原子炉注水装置。
The reactor water injection device according to any one of claims 1 to 7,
When the water level measured by the water level measurement device falls below the abnormal water level set below the startup water level of the reactor water injection device, the steam control valve control device sets the target flow rate calculated by the target flow rate calculation device. Instead, the reactor water injection apparatus is characterized in that the opening of the steam control valve is adjusted based on a preset rated flow rate.
請求項1乃至8のいずれか1項に記載の原子炉注水装置において、
前記揚水用水源は、第1の揚水用水源と第2の揚水用水源とを有し、
前記温度計は、前記第1の揚水用水源の水温を計測する第1の温度計と前記第2の揚水用水源の水温を計測する第2の温度計とを有し、
前記第1及び第2の揚水用水源のいずれかを使用可能とする水源選択装置を更に備えたことを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 8,
The pumping water source has a first pumping water source and a second pumping water source,
The thermometer has a first thermometer that measures the water temperature of the first pumping water source and a second thermometer that measures the water temperature of the second pumping water source,
A reactor water injection device, further comprising a water source selection device that enables use of any of the first and second pumping water sources.
請求項1乃至8のいずれか1項に記載の原子炉注水装置において、
前記凝縮用水源と前記揚水用水源とが一体化されたことを特徴とする原子炉注水装置。
In the reactor water injection device according to any one of claims 1 to 8,
A reactor water injection apparatus, wherein the condensing water source and the pumping water source are integrated.
請求項1乃至10のいずれか1項に記載の原子炉注水装置を備えたことを特徴とする原子力発電プラント。   A nuclear power plant comprising the reactor water injection device according to any one of claims 1 to 10.
JP2015190147A 2015-09-28 2015-09-28 Nuclear reactor water injection device and nuclear reactor power generation plant Pending JP2017067494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190147A JP2017067494A (en) 2015-09-28 2015-09-28 Nuclear reactor water injection device and nuclear reactor power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190147A JP2017067494A (en) 2015-09-28 2015-09-28 Nuclear reactor water injection device and nuclear reactor power generation plant

Publications (1)

Publication Number Publication Date
JP2017067494A true JP2017067494A (en) 2017-04-06

Family

ID=58492244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190147A Pending JP2017067494A (en) 2015-09-28 2015-09-28 Nuclear reactor water injection device and nuclear reactor power generation plant

Country Status (1)

Country Link
JP (1) JP2017067494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131012A (en) * 2017-06-09 2017-09-05 中广核工程有限公司 Nuclear power station prevents the method and system of nuclear island peace note signal false triggering
WO2022105357A1 (en) * 2020-11-20 2022-05-27 西安热工研究院有限公司 Helium flow control system and method for high temperature gas-cooled reactor having incremental adjustment function
WO2023158657A1 (en) * 2022-02-16 2023-08-24 Constellation Energy Generation, Llc. Steam hammer pump and electrical power facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131012A (en) * 2017-06-09 2017-09-05 中广核工程有限公司 Nuclear power station prevents the method and system of nuclear island peace note signal false triggering
WO2022105357A1 (en) * 2020-11-20 2022-05-27 西安热工研究院有限公司 Helium flow control system and method for high temperature gas-cooled reactor having incremental adjustment function
WO2023158657A1 (en) * 2022-02-16 2023-08-24 Constellation Energy Generation, Llc. Steam hammer pump and electrical power facility

Similar Documents

Publication Publication Date Title
KR101234570B1 (en) Integrated type reactor capable of mitigating loss-of-coolant accident and its mitigation method
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
JP2017067494A (en) Nuclear reactor water injection device and nuclear reactor power generation plant
JP2013174447A (en) Nuclear power plant
JP6429585B2 (en) Nuclear power plant and operation method
JP5642091B2 (en) Reactor transient mitigation system
EP1113456B1 (en) Method of expanding the operating domain for a boiling water nuclear reactor
US7333584B2 (en) Nuclear power plant and operation method thereof
SE407123B (en) PROTECTION SYSTEM FOR A NUCLEAR FACILITY INCLUDING AT LEAST ONE REACTORKER KEYPED STORAGE TANK FOR HEUTRON ABSORBATOR
KR20160044621A (en) Reactor with safety system using steam pressure and operating method for the reactor
WO2012026328A1 (en) Water supply device
JP6505889B1 (en) Abnormality alleviation facility for nuclear reactor and method for judging adherence of control rod
JP2013104729A (en) Nuclear reactor core cooling system and nuclear power plant facility equipped with the same
JP4385218B2 (en) Reactor water injection equipment
KR860000760B1 (en) The water supply system and method of the p.w.r.reactor
EP1770716A2 (en) Improved on-line steam flow measurement device and method
Zhenying et al. Dimension of the forced vessel water level based on subcooling margin of core outlet coolant in CPR1000 nuclear power plants
JP5898578B2 (en) Reactor core cooling system and nuclear power plant
JP3095485B2 (en) Full capacity turbine bypass nuclear power plant
Kondo et al. Actual Operation Control of Boiling Water Reactor
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
KR20120033409A (en) Method and apparatus for control equipment of steam generator of nuclear power plant with invaded process measurement accuracy compensation
JP2011038809A (en) Unit and method for controlling reactor power
Huang et al. Risk Monitoring of Spurious Safety Injection in Pressurized Water Reactor Nuclear Power Plants
JP2005331290A (en) Operation control system of bwr plant