JP2017066514A - Additive for high purity copper electrolytic refining and high purity copper manufacturing method - Google Patents

Additive for high purity copper electrolytic refining and high purity copper manufacturing method Download PDF

Info

Publication number
JP2017066514A
JP2017066514A JP2016106863A JP2016106863A JP2017066514A JP 2017066514 A JP2017066514 A JP 2017066514A JP 2016106863 A JP2016106863 A JP 2016106863A JP 2016106863 A JP2016106863 A JP 2016106863A JP 2017066514 A JP2017066514 A JP 2017066514A
Authority
JP
Japan
Prior art keywords
copper
additive
electrolytic refining
average molecular
purity copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016106863A
Other languages
Japanese (ja)
Other versions
JP6733314B2 (en
Inventor
賢治 久保田
Kenji Kubota
賢治 久保田
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2017066514A publication Critical patent/JP2017066514A/en
Application granted granted Critical
Publication of JP6733314B2 publication Critical patent/JP6733314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an additive for copper electrolytic refining which manufactured high purity copper having largely reduced impurities such as sulfur or silver concentration, small in warpage, preferably no warpage and a manufacturing method for the high purity copper using the additive.SOLUTION: There are provided an additive for high purity copper electrolytic refining containing an ethylene oxide addition article with IOB value in an organic conceptual figure of 1 to 2 and average molecular weight of 150 to 20000 and used for copper electrolytic refining, or an additive for high purity copper electrolytic refining mainly containing the ethylene oxide addition article and containing a stress relaxation agent with IOB value of 2.0 to 9.5 and average molecular weight of 6000 to 150000, and a manufacturing method of the high purity copper using the additive.SELECTED DRAWING: None

Description

本発明は、硫黄や銀濃度などの不純物を大幅に低減した、反りの小さい、好ましくは反りの無い高純度銅を製造する銅電解精錬用の添加剤と該添加剤を用いた高純度銅の製造方法に関する。   The present invention relates to an additive for copper electrolytic refining for producing high-purity copper having a significantly reduced impurity such as sulfur and silver concentration, and having a small warp, preferably no warp, and a high-purity copper using the additive. It relates to a manufacturing method.

高純度銅の製造方法として、特許文献1に記載されているように、硫酸銅水溶液を電解し、陰極に析出した銅を陽極にしてさらに硝酸銅水溶液中において100A/m以下の低電流密度で再電解する二段階の電解を行う方法が知られている。 As described in Patent Document 1, as a method for producing high-purity copper, a copper sulfate aqueous solution is electrolyzed, copper deposited on the cathode is used as an anode, and further, a low current density of 100 A / m 2 or less in the copper nitrate aqueous solution. There is known a method of performing two-stage electrolysis with re-electrolysis.

また、特許文献2に記載されているように、塩素イオン、ニカワ等、および活性硫黄成分を含む硫酸銅電解液にPEG(ポリエチレングリコール)等のポリオキシエチレン系界面活性剤を併用することによって機械的特性とカソード密着性を高めた電解銅箔の製造方法が知られている。さらに、特許文献3に記載されているように、PVA(ポリビニルアルコール)等の平滑化剤とPEGなどのスライム促進剤を併用することによって銅表面が平滑で銀や硫黄の不純物量が少ない高純度電気銅を製造する方法が知られている。   In addition, as described in Patent Document 2, a mechanical effect is obtained by using a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) in combination with a copper sulfate electrolyte containing chlorine ions, glue, and the like, and an active sulfur component. There is known a method for producing an electrolytic copper foil with improved mechanical properties and cathode adhesion. Furthermore, as described in Patent Document 3, by using a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG in combination, the copper surface is smooth and high purity with less silver and sulfur impurities. Methods for producing electrolytic copper are known.

特公平08−990号公報Japanese Patent Publication No. 08-990 特開平2001−123289号公報Japanese Patent Laid-Open No. 2001-123289 特開2005−307343号公報JP 2005-307343 A 特開2011−32509号公報JP 2011-32509 A 特許第5297481号公報Japanese Patent No. 5297481 特開2014−80419公報JP, 2014-80419, A

「新版有機概念図基礎と応用」、甲田善生、佐藤四郎、本間善夫、三共出版、2008年11月30日発行"New edition organic concept diagram basics and application", Yoshio Koda, Shiro Sato, Yoshio Honma, Sankyo Publishing, published on November 30, 2008

特許文献1の製造方法のように、硫酸銅浴による電解と硝酸銅浴による電解を二段階行う製造方法では電解に手間がかかる問題がある。また、硝酸の使用は環境負荷が高く、排水処理が煩雑になる問題がある。さらに、硝酸は銅自体を溶解するため、カソードとアノードの双方の溶解によって歩留まりが低下し、さらに液中の銅濃度が徐々に高くなるため、定期的に銅濃度を下げるための希釈処理が必要になる。   As in the manufacturing method of Patent Document 1, the manufacturing method in which electrolysis using a copper sulfate bath and electrolysis using a copper nitrate bath are two-steps has a problem that the electrolysis is troublesome. In addition, the use of nitric acid has a problem that the environmental load is high and the wastewater treatment becomes complicated. Furthermore, since nitric acid dissolves copper itself, the yield decreases due to dissolution of both the cathode and anode, and the copper concentration in the liquid gradually increases, so a dilution process is required to periodically reduce the copper concentration. become.

従来の添加剤(PVA,PEG等)を用いると電流密度を上げることが難しく、電流密度を上げるために液撹拌を行うとスライムが舞い上がり、これがカソードに付着して電気銅の純度が低下する。しかも、添加剤がアノードの溶解を強く抑制するため、アノード溶解過電圧が上昇してアノード溶解の際にスライムが大量に発生し、カソードの歩留まりが低下すると共にカソードに付着するスライム量が多くなる。また、従来の添加剤はカソードの析出反応を抑制するため、電解液が硫酸根を含んでいると電着銅の硫黄濃度が上昇して純度が低下する問題があった。   When conventional additives (PVA, PEG, etc.) are used, it is difficult to increase the current density, and when liquid agitation is performed to increase the current density, slime rises, which adheres to the cathode and lowers the purity of electrolytic copper. In addition, since the additive strongly suppresses dissolution of the anode, the anode dissolution overvoltage is increased, so that a large amount of slime is generated during anode dissolution, the yield of the cathode is reduced, and the amount of slime attached to the cathode is increased. Further, since the conventional additive suppresses the deposition reaction of the cathode, there is a problem that the purity of the electrodeposited copper is increased and the purity is lowered when the electrolytic solution contains a sulfate group.

また、PEGやPVA等の水溶性高分子の添加剤は親水性が極めて高く、さらに紫外線吸収性が乏しく、高速液体クロマトグラフィー(HPLC)による定量分析が困難であり、また分解速度が速いことから、正確な濃度管理が難しい。さらに、PEGを用いると電気銅表面の樹枝状突起が生じやすく、電気銅の硫黄含有量等が高いと云う問題があり、その問題を解決するためにPVAを用いると電気銅の表面は平滑になるが不純物の銀が十分に低減されない。   Also, water-soluble polymer additives such as PEG and PVA are extremely hydrophilic, have poor UV absorption, are difficult to perform quantitative analysis by high performance liquid chromatography (HPLC), and have a high decomposition rate. Accurate concentration management is difficult. Furthermore, when PEG is used, dendrites are likely to occur on the surface of the electrolytic copper, and there is a problem that the sulfur content of the electrolytic copper is high. If PVA is used to solve the problem, the surface of the electrolytic copper becomes smooth. However, the impurity silver is not sufficiently reduced.

また、添加剤によってカソードの析出反応を抑制すると、析出中の電気銅内部に応力が発生してカソードから剥離したり、電極の湾曲による端部への電流集中によってデンドライトが生じたり粗雑な析出による純度の低下が生じる問題がある。   In addition, if the cathode deposition reaction is suppressed by the additive, stress is generated inside the electrolytic copper during the deposition, causing peeling from the cathode, dendrites due to current concentration at the end due to the curvature of the electrode, and rough deposition. There is a problem that the purity is reduced.

さらに、カソードに銀が共析するのを防ぐため、電解液に塩化物イオンを添加して液中の銀を塩化銀にして沈澱除去することが知られているが、塩化物イオン自体がカソードの電気銅中に共析して塩化物濃度が増加し、電気銅の純度が低下し、さらに電気銅の鋳造時に危険な塩素ガスが発生するなどの問題がある。   Furthermore, in order to prevent silver from being co-deposited on the cathode, it is known that chloride ions are added to the electrolytic solution to convert the silver in the solution into silver chloride to precipitate and remove the chloride ions themselves. There is a problem in that the concentration of chloride increases, the purity of electrolytic copper decreases, and dangerous chlorine gas is generated during the casting of electrolytic copper.

本発明は、高純度銅の製造について、従来の製造方法における上記問題を解消したものであり、有機概念図のIOBを指標にして特定した有機化合物からなる添加剤を用いることによって、硫黄および銀の含有量が大幅に少ない高純度な銅を製造できるようにしたものであり、さらに上記添加剤と共に応力緩和剤を併用することによって、反りの少ない高純度銅を製造できるようにしたものである。本発明は高純度銅製造用の添加剤、ないし該添加剤と応力緩和剤、およびこれらの添加剤を用いた高純度銅の製造方法を提供する。   The present invention solves the above-mentioned problems in conventional production methods for the production of high-purity copper. By using an additive composed of an organic compound identified by using the IOB of the organic conceptual diagram as an index, sulfur and silver are used. It is intended to produce high-purity copper with a significantly reduced content, and by using a stress relaxation agent together with the above-mentioned additives, it is possible to produce high-purity copper with less warpage. . The present invention provides an additive for producing high-purity copper, the additive and a stress relaxation agent, and a method for producing high-purity copper using these additives.

本発明は、以下の構成を有する高純度銅電解精錬用添加剤と高純度銅の製造方法に関する。
〔1〕有機概念図のIOB値が1〜2であって、平均分子量 が150〜20000であるエチレンオキシド付加物を含み、銅電解精錬に使用されることを特徴とする高純度銅電解精錬用添加剤。
〔2〕有機概念図のIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物からなる主剤と、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤とを含む上記[1]に記載する高純度銅電解精錬用添加剤。
〔3〕主剤に対する応力緩和剤の濃度比(応力緩和剤/主剤)が0.005〜1.5である上記[2]に記載する高純度銅電解精錬用添加剤。
〔4〕有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物を含む添加剤を銅電解精錬の電解液に添加して銅電解精錬を行う高純度銅の製造方法。
〔5〕有機概念図のIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物からなる主剤と、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤とを含み、主剤に対する応力緩和剤の濃度比(応力緩和剤/主剤)が0.005〜1.5である添加剤を銅電解精錬の電解液に添加して銅電解精錬を行う上記[4]に記載する高純度銅の製造方法。
〔6〕有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物の銅電解液中の濃度が2〜500mg/Lである上記[4]または上記[5]に記載する高純度銅の製造方法。
〔7〕銅電解液が、硫酸銅水溶液、硝酸銅水溶液、塩化銅水溶液、またはピロリン酸銅水溶液である上記[4]〜上記[6]の何れかに記載する高純度銅の製造方法。
〔8〕銅表面の光沢度が1以上であって、銀および硫黄の含有量が1ppm以下の高純度銅を製造する上記[4]〜上記[7]の何れかに記載する高純度銅の製造方法。
The present invention relates to an additive for high-purity copper electrolytic refining having the following configuration and a method for producing high-purity copper.
[1] Addition for high-purity copper electrolytic refining characterized in that it contains an ethylene oxide adduct having an IOB value of 1-2 in the organic conceptual diagram and an average molecular weight of 150-20000, and is used for copper electrolytic refining Agent.
[2] A main agent composed of an ethylene oxide adduct having an IOB value of 1-2 in the organic conceptual diagram and an average molecular weight of 150-20000, an IOB value of 2.0-9.5, and an average molecular weight of 6000 The additive for high-purity copper electrolytic refining according to the above [1], comprising ˜150,000 stress relaxation agents.
[3] The additive for high-purity copper electrolytic refining according to the above [2], wherein the concentration ratio of the stress relaxation agent to the main agent (stress relaxation agent / main agent) is 0.005 to 1.5.
[4] High purity for performing copper electrolytic refining by adding an additive containing an ethylene oxide adduct having an IOB value of 1 to 2 and an average molecular weight of 150 to 20000 to an electrolytic solution of copper electrolytic refining Copper manufacturing method.
[5] A main agent composed of an ethylene oxide adduct having an IOB value of 1-2 in the organic conceptual diagram and an average molecular weight of 150-20000, and an IOB value of 2.0-9.5 and an average molecular weight of 6000 An additive containing a stress relaxation agent of ˜150,000 and a concentration ratio of the stress relaxation agent to the main agent (stress relaxation agent / main agent) of 0.005 to 1.5 is added to the electrolytic solution of copper electrolysis. The method for producing high-purity copper according to [4] above, wherein refining is performed.
[6] The above [4] or [[] wherein the IOB value of the organic conceptual diagram is 1 to 2 and the concentration in the copper electrolyte of an ethylene oxide adduct having an average molecular weight of 150 to 20000 is 2 to 500 mg / L. [5] A method for producing high-purity copper according to [5].
[7] The method for producing high-purity copper according to any one of [4] to [6] above, wherein the copper electrolyte is an aqueous copper sulfate solution, an aqueous copper nitrate solution, an aqueous copper chloride solution, or an aqueous copper pyrophosphate solution.
[8] The high-purity copper according to any one of [4] to [7] above, which produces high-purity copper having a copper surface glossiness of 1 or more and a silver and sulfur content of 1 ppm or less. Production method.

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明の第1の添加剤は、有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物を含み、銅電解精錬に使用されることを特徴とする高純度銅電解精錬用添加剤である。
また、本発明の第2の添加剤は、有機概念図のIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物からなる主剤と、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤とを含む高純度銅電解精錬用添加剤である。
[Specific description]
Hereinafter, the present invention will be specifically described.
The first additive of the present invention includes an ethylene oxide adduct having an IOB value of 1 to 2 in an organic conceptual diagram and an average molecular weight of 150 to 20000, and is used for copper electrolytic refining. It is an additive for high purity copper electrolytic refining.
Moreover, the 2nd additive of this invention is the main ingredient which consists of an ethylene oxide adduct whose IOB value of an organic conceptual diagram is 1-2, and whose average molecular weight is 150-20000, and the said IOB value is 2.0-9. And an additive for high-purity copper electrolytic refining that includes a stress relaxation agent having an average molecular weight of 6000 to 150,000.

有機概念図とは、有機化合物を有機性値(OV)と無機性値(IV)の二つの指標を用いて特徴づけ、有機性値のX軸と無機性値のY軸の平面座標上に示したものである。有機性値(OV)は共有結合に基づいた有機性を示しており、無機性値(IV)はイオン結合に基づいた無機性を示しており、有機化合物が座標に占める位置によって、その物性を判断することができる。一般に、X軸(有機軸)に近い化合物ほど疎水性が高く、Y軸(無機軸)に近い化合物ほど親水性が高い。   An organic conceptual diagram characterizes an organic compound using two indicators, an organic value (OV) and an inorganic value (IV), on the plane coordinates of the X axis of the organic value and the Y axis of the inorganic value. It is shown. The organic value (OV) indicates the organic property based on the covalent bond, the inorganic value (IV) indicates the inorganic property based on the ionic bond, and the physical property is determined by the position occupied by the organic compound in the coordinates. Judgment can be made. In general, a compound closer to the X axis (organic axis) has higher hydrophobicity, and a compound closer to the Y axis (inorganic axis) has higher hydrophilicity.

有機概念図は上記非特許文献1に詳しく説明されている。また、上記特許文献3,特許文献4,および特許文献5には、有機概念図の有機性値および無機性値を指標として特定した物質が記載されている。なお、上記特許文献3〜4は銅電解精錬に関するものではない。   The organic conceptual diagram is described in detail in Non-Patent Document 1 above. Moreover, the said patent document 3, patent document 4, and patent document 5 describe the substance which specified the organic value and the inorganic value of the organic conceptual diagram as a parameter | index. Note that Patent Documents 3 to 4 do not relate to copper electrolytic refining.

有機性値(OV)と無機性値(IV)は化合物の構造式に基づいて求められる。具体的には、有機性値(OV)はその化合物の炭素数に20を乗じた値であり、無機性値(IV)はその化合物に含まれる各置換基に与えられている無機性値(IV)の合計値である。置換基ごとの無機性値表が一般に公表されており、この表に基づいて化合物に含まれる置換基の無機性値(IV)を合計すればよい。   The organic value (OV) and the inorganic value (IV) are determined based on the structural formula of the compound. Specifically, the organic value (OV) is a value obtained by multiplying the number of carbon atoms of the compound by 20, and the inorganic value (IV) is an inorganic value given to each substituent contained in the compound ( This is the total value of IV). An inorganic value table for each substituent is generally published, and based on this table, the inorganic values (IV) of the substituents contained in the compound may be summed.

例えば、エチレングリコールは炭素数2なので有機性値(OV)は40、無機性値(IV)はOH基について100、CH基について0であり、この合計が200である。また、重合度が10のポリオキシエチレングリコールは非特許文献1のp.97に記載されているエチレンオキサイド1ユニットの有機性値30および無機性値60を採用し、重合度10を乗じ、有機性値(OV)300、無機性値(IV)600である。 For example, since ethylene glycol has 2 carbon atoms, the organic value (OV) is 40, the inorganic value (IV) is 100 for the OH group, 0 for the CH 2 group, and the total is 200. Further, polyoxyethylene glycol having a polymerization degree of 10 employs an organic value of 30 and an inorganic value of 60 of ethylene oxide unit described in p.97 of Non-Patent Document 1, and is multiplied by a polymerization degree of 10 to give an organic The property value (OV) 300 and the inorganic value (IV) 600.

有機概念図のIOB(Inorganic/organic Balance)は、有機性値(OV)に対する無機性値(IV)の比(IV/OV)である。例えば、ポリオキシエチレングリコールのIOB値は、IOB=(IV60)/(OV30)=2.0である。有機概念図上、IOB値が1以上の化合物はY軸側(無機軸側)に位置し、IOBが1未満の化合物はX軸側(有機軸側)に位置する。以下、有機概念図のIOB値を単にIOB値と云う。   The IOB (Inorganic / organic Balance) in the organic conceptual diagram is a ratio (IV / OV) of the inorganic value (IV) to the organic value (OV). For example, the IOB value of polyoxyethylene glycol is IOB = (IV60) / (OV30) = 2.0. On the organic conceptual diagram, a compound having an IOB value of 1 or more is located on the Y-axis side (inorganic axis side), and a compound having an IOB less than 1 is located on the X-axis side (organic axis side). Hereinafter, the IOB value of the organic conceptual diagram is simply referred to as the IOB value.

本発明において、添加剤分子の有機性と無機性の比により銅表面と添加剤分子の相互作用が異なり、このため有機性と無機性の比により添加剤の作用機構が変化することを見出し、有機性値と無機性値の比が特定の範囲の有機分子を添加剤として用いることにより、高純度でありながら反りのない高純度銅を製造できることを見出した。本発明は上記知見に基づく。   In the present invention, the interaction between the copper surface and the additive molecule is different depending on the organic and inorganic ratio of the additive molecule, and thus the action mechanism of the additive is changed depending on the organic and inorganic ratio, It has been found that by using an organic molecule having a ratio between the organic value and the inorganic value in a specific range as an additive, high-purity copper having high purity and no warpage can be produced. The present invention is based on the above findings.

本発明の第1の添加剤は、有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物を含み、銅電解精錬に使用されることを特徴とする高純度銅電解精錬用添加剤である。   The first additive of the present invention includes an ethylene oxide adduct having an IOB value of 1 to 2 in an organic conceptual diagram and an average molecular weight of 150 to 20000, and is used for copper electrolytic refining. It is an additive for high purity copper electrolytic refining.

上記エチレンオキシド付加物は、例えば、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレングリコールなどである。   Examples of the ethylene oxide adduct include polyoxyethylene monophenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene distyrenated phenyl ether, and polyoxyethylene glycol.

IOB値が1〜2と比較的低い物質(エチレンオキシド付加物)は、銅電解液に添加したときに、カソード表面に密な吸着層を形成するため、カソード表面に析出する電気銅を緻密にする働きがあり、表面が平滑でコンタミの少ない電気銅を得ることができる。また、IOB値が1〜2のエチレンオキシド付加物はアノードスライムを抑制し、カソードに析出する電気銅に含まれる硫黄量を大幅に低減することができる。一方、IOB値が1未満では、電解液に対する添加剤の溶解性が著しく低下し、IOB値が2を上回ると、アノード溶解抑制効果が高まりすぎて、カソードに析出する電気銅表面が粗雑になり、またアノードスライムが増加する傾向があるので、好ましくない。   Substances with relatively low IOB values of 1 to 2 (ethylene oxide adducts) form a dense adsorption layer on the cathode surface when added to the copper electrolyte, thus making the electrolytic copper deposited on the cathode surface dense. It is possible to obtain electrolytic copper having a function, smooth surface and low contamination. Further, the ethylene oxide adduct having an IOB value of 1 to 2 can suppress anode slime and greatly reduce the amount of sulfur contained in the electrolytic copper deposited on the cathode. On the other hand, when the IOB value is less than 1, the solubility of the additive in the electrolytic solution is remarkably lowered. When the IOB value is more than 2, the anode dissolution suppressing effect is excessively increased, and the surface of the electrolytic copper deposited on the cathode becomes rough. , And anode slime tends to increase.

本発明の添加剤として使用するエチレンオキシド付加物は、平均分子量は150〜20000のものが好ましい。平均分子量が150未満では、電析抑制効果が乏しく、カソードに析出する電気銅表面を平滑にする作用が不十分であり、また析出する銅結晶粒子が肥大化して液中の硫黄を取り込みやすくなる。一方、平均分子量が20000を上回ると、アノード溶解抑制効果が高まりすぎて、カソードに析出する電気銅表面が粗雑になり、またアノードスライムが増加する傾向がある。さらに、フェノールやナフトールといった芳香族化合物を有すると分析が容易になるため好ましい。なお、上記平均分子量とは、JIS規格(JIS K 7252-1:2008の3.3.3項)に定義される高分子の平均分子量のことである。   The ethylene oxide adduct used as the additive of the present invention preferably has an average molecular weight of 150 to 20000. If the average molecular weight is less than 150, the effect of suppressing electrodeposition is poor, the effect of smoothing the surface of the electrolytic copper deposited on the cathode is insufficient, and the precipitated copper crystal particles are enlarged to easily take up sulfur in the liquid. . On the other hand, when the average molecular weight exceeds 20000, the anode dissolution suppressing effect is too high, the surface of the electrolytic copper deposited on the cathode becomes rough, and anode slime tends to increase. Furthermore, it is preferable to have an aromatic compound such as phenol or naphthol because analysis becomes easy. In addition, the said average molecular weight is an average molecular weight of the polymer | macromolecule defined in JIS specification (JIS K7252-1: 2008 3.3.3).

本発明の第2の添加剤は、有機概念図におけるIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物を主剤として含み、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤を含む。   The second additive of the present invention contains an ethylene oxide adduct having an IOB value in the organic conceptual diagram of 1 to 2 and an average molecular weight of 150 to 20000 as a main agent, and the IOB value is 2.0 to 9.5. In addition, a stress relaxation agent having an average molecular weight of 6000 to 150,000 is included.

IOB値が2.0〜9.5と比較的高い物質(応力緩和剤)は親水性が比較的高いため、カソード表面の吸着した応力緩和剤が水をよく含み、粗な吸着層を形成するため、カソード表面に析出する電気銅を緻密にする作用は乏しいが、主剤のエチレンオキシド付加物の作用を緩和して電着応力を低減し(応力緩和効果)、カソードに析出する電気銅の反りを抑制する。   A substance having a relatively high IOB value of 2.0 to 9.5 (stress relieving agent) has a relatively high hydrophilicity, so that the stress relieving agent adsorbed on the cathode surface contains a lot of water and forms a rough adsorption layer. Therefore, although the action of densifying the electrolytic copper deposited on the cathode surface is poor, the action of the main component ethylene oxide adduct is reduced to reduce the electrodeposition stress (stress relaxation effect), and the warp of the electrolytic copper deposited on the cathode is reduced. Suppress.

応力緩和剤の平均分子量が6000未満および150000超では、何れも応力緩和効果が乏しく、カソードに析出する電気銅の反りが発生しやすい。   When the average molecular weight of the stress relaxation agent is less than 6000 and over 150,000, the stress relaxation effect is poor, and the warp of the electrolytic copper deposited on the cathode is likely to occur.

応力緩和剤としては、例えば、ポリビニルアルコール、ポリアクリル酸ナトリウム、エチレン変性ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、ポリオキシエチレン変性ポリビニルアルコールなどを用いることができる。   As the stress relaxation agent, for example, polyvinyl alcohol, sodium polyacrylate, ethylene-modified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, polyoxyethylene-modified polyvinyl alcohol, and the like can be used.

上記エチレンオキシド付加物の主剤に対する応力緩和剤の濃度比(応力緩和剤/主剤)は0.005〜1.5が好ましい。この濃度比が0.005未満および1.5超では何れも応力緩和効果が乏しく、カソードに析出する電気銅の反りが発生しやすい。   The concentration ratio of the stress relaxation agent to the main agent of the ethylene oxide adduct (stress relaxation agent / main agent) is preferably 0.005 to 1.5. When the concentration ratio is less than 0.005 and more than 1.5, the stress relaxation effect is poor, and the warp of electrolytic copper deposited on the cathode is likely to occur.

本発明の添加剤(第1添加剤および第2添加剤を含めて添加剤と云う)は、銅電解精錬の電解液に添加して使用される。本発明の添加剤は、硫酸銅水溶液、硝酸銅水溶液、塩化銅水溶液、またはピロリン酸銅水溶液の何れの銅電解液についても使用することができる。なお、一般に電解液中の銅濃度は5〜90g/Lが好ましい。添加剤に関する条件以外は通常の銅電解精錬と同様に実施することができる。   The additive of the present invention (referred to as an additive including the first additive and the second additive) is used by being added to an electrolytic solution of copper electrolytic refining. The additive of the present invention can be used for any copper electrolyte of an aqueous copper sulfate solution, an aqueous copper nitrate solution, an aqueous copper chloride solution, or an aqueous copper pyrophosphate solution. In general, the copper concentration in the electrolytic solution is preferably 5 to 90 g / L. Except for the conditions relating to the additive, the process can be carried out in the same manner as in ordinary copper electrolytic refining.

本発明の添加剤は、銅電解液において上記エチレンオキシド付加物の濃度は2〜500mg/Lの範囲が好ましく、10〜300mg/Lの範囲がより好ましい。該添加剤の濃度が2mg/Lを下回ると効果が乏しいため電気銅表面の平滑性が低下し、電気銅表面に電解液中の硫黄成分が付着して取り込まれ易くなる。一方、上記濃度が500mg/Lを上回るとアノード表面の付着が強すぎてスライムの発生量が増える傾向がある。   In the additive of the present invention, the concentration of the ethylene oxide adduct in the copper electrolyte is preferably in the range of 2 to 500 mg / L, more preferably in the range of 10 to 300 mg / L. When the concentration of the additive is less than 2 mg / L, the effect is poor, so that the smoothness of the surface of the electrolytic copper is lowered, and the sulfur component in the electrolytic solution is easily attached to and taken in the electrolytic copper surface. On the other hand, when the concentration exceeds 500 mg / L, adhesion of the anode surface is too strong and the amount of slime generated tends to increase.

本発明のエチレンオキシド付加物からなる添加剤は、銅電解精錬において、スライム発生率を30%以下に抑制することができ、銅表面の光沢度が1以上であって、銀および硫黄の含有量が1ppm以下の高純度銅を製造することができる。さらに上記添加剤と共に応力緩和剤を併用することによって、反りの少ない高純度銅を製造することができる。   The additive comprising the ethylene oxide adduct of the present invention can suppress the slime generation rate to 30% or less in copper electrolytic refining, the copper surface has a glossiness of 1 or more, and contains silver and sulfur. High purity copper of 1 ppm or less can be produced. Furthermore, high-purity copper with little warpage can be produced by using a stress relaxation agent together with the additive.

従来のPEG添加剤を用いる電解精錬では、電気銅表面の樹枝状突起が生じやすく、PVA添加剤を用いると電気銅の表面は平滑になるものの銀のコンタミが多くなるが、本発明の添加剤は、電気銅表面に樹枝状突起が生じることが無く、かつ銀の含有量も1ppm以下である。また、従来の銅電解精錬では、銅電解液に塩化物イオンを添加して液中の銀を塩化銀にして沈澱させて除去することが知られているが、本発明の添加剤を用いる銅電解精錬では塩化物イオンを添加する必要が無い。   In conventional electrolytic refining using a PEG additive, dendrites on the surface of electrolytic copper are likely to occur, and when the PVA additive is used, the surface of electrolytic copper becomes smooth but contains more silver, but the additive of the present invention Has no dendrites on the surface of the copper electrode, and the silver content is 1 ppm or less. Further, in the conventional copper electrolytic refining, it is known that chloride ions are added to a copper electrolyte solution, and silver in the solution is precipitated to be removed by silver chloride. Electrolytic refining does not require the addition of chloride ions.

本発明の添加剤を用いる銅電解精錬は、添加剤以外の電解条件は通常の銅電解と同様に実施することができるので、既存の銅電解設備を利用して容易に実施することができる。また、本発明の添加剤であるエチレンオキシド付加物は、例えば、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンジスチレン化フェニルエーテルなどの芳香族環を有するものは、高速液体クロマトグラフィー(HPLC)による定量分析を行うことができるので、添加剤の管理を迅速かつ正確に行うことができる。   Since the copper electrolytic refining using the additive of the present invention can be carried out in the same manner as ordinary copper electrolysis under electrolysis conditions other than the additive, it can be easily carried out using existing copper electrolysis equipment. The ethylene oxide adduct that is an additive of the present invention includes, for example, those having an aromatic ring such as polyoxyethylene monophenyl ether, polyoxyethylene naphthyl ether, and polyoxyethylene distyrenated phenyl ether. Since quantitative analysis by chromatography (HPLC) can be performed, the management of additives can be performed quickly and accurately.

以下に本発明の実施例を比較例と共に示す。
実施例および比較例において、(イ)電気銅の硫黄濃度および銀濃度はGD−MS(グロー放電質量分析法)によって電気銅の中央部を測定した。(ロ)銅表面の光沢度は日本電色社製品(HANDY GLOSSMETER PG-1M)を用いて角度60°の条件で測定した。光沢度が2より低いと電気銅表面に付着した電解液を十分に水洗洗浄し難いために電気銅表面に電解液が残留し易くなり、電気銅の純度が低下する。(ハ)電気銅の反りを目視観察によって判断した。反りが見られないものを○印、反りが小さいものを△、反りが大きく剥離が見られるものを×印で示した。(ニ)スライム発生率は次式によって求めた。
スライム発生率(%)=100−(析出した電気銅の重量)/(アノードの溶解量)×100
Examples of the present invention are shown below together with comparative examples.
In the examples and comparative examples, (a) the sulfur concentration and silver concentration of electrolytic copper were measured at the center of electrolytic copper by GD-MS (glow discharge mass spectrometry). (B) The glossiness of the copper surface was measured using a Nippon Denshoku product (HANDY GLOSSMETER PG-1M) at an angle of 60 °. When the glossiness is lower than 2, the electrolytic solution adhering to the surface of the electrolytic copper is not easily washed with water, so that the electrolytic solution tends to remain on the surface of the electrolytic copper, and the purity of the electrolytic copper is lowered. (C) Warpage of electrolytic copper was judged by visual observation. A mark with no warpage was indicated by a circle, a mark with a small warpage was indicated by Δ, and a mark with a large warpage was observed by x. (D) The slime generation rate was determined by the following equation.
Slime generation rate (%) = 100− (weight of deposited copper) / (dissolution amount of anode) × 100

〔実施例1〕
本発明の第1添加剤(A、B、C、D)を用い、酸濃度50g/L、銅濃度50g/L、塩酸以外は塩化物イオン濃度100mg/Lの硫酸銅水溶液、塩化銅水溶液、硝酸銅水溶液、またはピロリン酸銅水溶液を銅電解液として用い、該銅電解液に、上記添加剤を濃度30mg/Lになるように加え、アノードには硫黄濃度5ppmおよび銀濃度8ppmの電気銅を用い、電流密度を200A/m、浴温30℃にて銅電解を行ない、12時間ごとにODSカラムを用いたHPLCによって添加剤濃度を測定し、添加剤濃度が30mg/Lを維持するように減少分を補給して電気銅を電解製造した。この結果を表1に示した。
使用した第1添加剤(A、B、C、D)を以下に示す。
添加剤A:ポリオキシエチレンモノフェニルエーテル
添加剤B:ポリオキシエチレンナフチルエーテル
添加剤C:ポリオキシエチレンジスチレン化フェニルエーテル
添加剤D:ポリオキシエチレングリコール
表1に示すように、電気銅の硫黄および銀の含有量は1ppm以下であり、光沢度は1以上であり、スライム発生率は30%以下である。また、電気銅の反りは小さい。
[Example 1]
Using the first additive (A, B, C, D) of the present invention, an acid concentration of 50 g / L, a copper concentration of 50 g / L, and a hydrochloric acid ion concentration of 100 mg / L other than hydrochloric acid, an aqueous solution of copper sulfate, an aqueous solution of copper chloride, An aqueous copper nitrate solution or an aqueous copper pyrophosphate solution is used as a copper electrolyte, and the above additives are added to the copper electrolyte to a concentration of 30 mg / L, and electrolytic copper with a sulfur concentration of 5 ppm and a silver concentration of 8 ppm is added to the anode. Use copper current at a current density of 200 A / m 2 and a bath temperature of 30 ° C., measure the additive concentration by HPLC using an ODS column every 12 hours, and maintain the additive concentration at 30 mg / L. The decrease was replenished to produce electrolytic copper electrolytically. The results are shown in Table 1.
The first additive (A, B, C, D) used is shown below.
Additive A: Polyoxyethylene monophenyl ether additive B: Polyoxyethylene naphthyl ether additive C: Polyoxyethylene distyrenated phenyl ether additive D: Polyoxyethylene glycol As shown in Table 1, sulfur of electrolytic copper The silver content is 1 ppm or less, the glossiness is 1 or more, and the slime generation rate is 30% or less. Moreover, the warp of the electric copper is small.

Figure 2017066514
Figure 2017066514

〔比較例1〕
有機概念図のIOB値ないし平均分子量が本発明の範囲を外れる添加剤A、添加剤D、添加剤E、エチレンオキシド付加物以外の添加剤F、添加剤Gを用い、実施例1と同様の条件で銅電解精錬を行い、電気銅を製造した。使用した添加剤E〜Gを以下に示す。この結果を表2に示した。
添加剤E:ポリオキシエチレンアルキルエーテル
添加剤F:ドデシル硫酸ナトリウム
添加剤G:ヘプタデンカン酸ナトリウム
表2に示すように、電気銅の銀含有量は0.2〜2ppmであるが、硫黄含有量は1.1〜6ppmと多く、光沢度は低く1未満であり、スライム発生率は31%〜45%と高い。また、電気銅には反りによる剥離が見られた。
[Comparative Example 1]
The same conditions as in Example 1 using Additive A, Additive D, Additive E, Additive F other than ethylene oxide adduct, and Additive G whose IOB value or average molecular weight of the organic conceptual diagram is outside the scope of the present invention Copper electrolytic refining was performed to produce electrolytic copper. The additives EG used are shown below. The results are shown in Table 2.
Additive E: Polyoxyethylene alkyl ether additive F: Sodium dodecyl sulfate additive G: Sodium heptadencanate As shown in Table 2, the silver content of electrolytic copper is 0.2-2 ppm, but the sulfur content is It is as high as 1.1 to 6 ppm, the glossiness is low and less than 1, and the slime generation rate is as high as 31% to 45%. Further, peeling due to warping was observed in the electrolytic copper.

Figure 2017066514
Figure 2017066514

〔実施例2〕
表3に示すIOB値と平均分子量の添加剤A〜Dを主剤とし、表3に示すIOB値と平均分子量の応力緩和剤(D、H、I、J、K、L)を併用し、実施例1と同様の条件で銅電解精錬を行い、電気銅を製造した。使用した応力緩和剤D〜Lを以下に示す。この結果を表3に示した。
応力緩和剤H:ポリビニルアルコール
応力緩和剤I:ポリアクリル酸ナトリウム
応力緩和剤J:エチレン変性ポリビニルアルコール
応力緩和剤K:カルボキシ変性ポリビニルアルコール
応力緩和剤L:ポリオキシエチレン変性ポリビニルアルコール
表3に示すように、電気銅の硫黄および銀の含有量は0.9ppm以下と少なく、光沢度は1以上であり、スライム発生率は30%以下であった。また、電気銅の反りは小さいか、または反りが見られない。
[Example 2]
Based on additives I to D of IOB values and average molecular weights shown in Table 3 as main ingredients, stress relaxation agents (D, H, I, J, K, L) of IOB values and average molecular weights shown in Table 3 were used in combination. Copper electrolytic refining was performed under the same conditions as in Example 1 to produce electrolytic copper. The used stress relaxation agents D to L are shown below. The results are shown in Table 3.
Stress relaxation agent H: Polyvinyl alcohol stress relaxation agent I: Sodium polyacrylate stress relaxation agent J: Ethylene-modified polyvinyl alcohol stress relaxation agent K: Carboxy-modified polyvinyl alcohol Stress relaxation agent L: Polyoxyethylene-modified polyvinyl alcohol As shown in Table 3 In addition, the content of sulfur and silver in electrolytic copper was as low as 0.9 ppm or less, the glossiness was 1 or more, and the slime generation rate was 30% or less. Moreover, the warp of the electrolytic copper is small or no warp is observed.

Figure 2017066514
Figure 2017066514

Claims (8)

有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物を含み、銅電解精錬に使用されることを特徴とする高純度銅電解精錬用添加剤。   An additive for high-purity copper electrolytic refining, comprising an ethylene oxide adduct having an IOB value of 1-2 in an organic conceptual diagram and an average molecular weight of 150-20000, and being used for copper electrolytic refining. 有機概念図のIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物からなる主剤と、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤とを含む請求項1に記載する高純度銅電解精錬用添加剤。   An organic conceptual diagram having an IOB value of 1 to 2 and an average molecular weight of 150 to 20000 based on an ethylene oxide adduct, and an IOB value of 2.0 to 9.5 and an average molecular weight of 6000 to 150,000 The additive for high-purity copper electrolytic refining according to claim 1, comprising a stress relaxation agent. 主剤に対する応力緩和剤の濃度比(応力緩和剤/主剤)が0.005〜1.5である請求項2に記載する高純度銅電解精錬用添加剤。   The additive for high-purity copper electrolytic refining according to claim 2, wherein the concentration ratio of the stress relaxation agent to the main agent (stress relaxation agent / main agent) is 0.005 to 1.5. 有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物を含む添加剤を銅電解精錬の電解液に添加して銅電解精錬を行う高純度銅の製造方法。   Production of high-purity copper in which an IOB value in an organic conceptual diagram is 1 to 2 and an additive containing an ethylene oxide adduct having an average molecular weight of 150 to 20000 is added to an electrolytic solution of copper electrolytic refining to perform copper electrolytic refining Method. 有機概念図のIOB値が1〜2であって平均分子量が150〜20000であるエチレンオキシド付加物からなる主剤と、上記IOB値が2.0〜9.5であって平均分子量が6000〜150000の応力緩和剤とを含み、主剤に対する応力緩和剤の濃度比(応力緩和剤/主剤)が0.005〜1.5である添加剤を銅電解精錬の電解液に添加して銅電解精錬を行う請求項4に記載する高純度銅の製造方法。   An organic conceptual diagram having an IOB value of 1 to 2 and an average molecular weight of 150 to 20000 based on an ethylene oxide adduct, and an IOB value of 2.0 to 9.5 and an average molecular weight of 6000 to 150,000 The copper electrolytic refining is performed by adding an additive having a stress relaxation agent concentration ratio (stress relaxing agent / main agent) of 0.005 to 1.5 to the electrolytic solution of the copper electrolytic refining. The manufacturing method of the high purity copper described in Claim 4. 有機概念図のIOB値が1〜2であって、平均分子量が150〜20000であるエチレンオキシド付加物の銅電解液中の濃度が2〜500mg/Lである請求項4または請求項5に記載する高純度銅の製造方法。   The IOB value of the organic conceptual diagram is 1 to 2, and the concentration in the copper electrolyte of an ethylene oxide adduct having an average molecular weight of 150 to 20000 is 2 to 500 mg / L. Manufacturing method of high purity copper. 銅電解液が、硫酸銅水溶液、硝酸銅水溶液、塩化銅水溶液、またはピロリン酸銅水溶液である請求項4〜請求項6の何れかに記載する高純度銅の製造方法。   The method for producing high-purity copper according to any one of claims 4 to 6, wherein the copper electrolyte is an aqueous copper sulfate solution, an aqueous copper nitrate solution, an aqueous copper chloride solution, or an aqueous copper pyrophosphate solution. 銅表面の光沢度が1以上であって、銀および硫黄の含有量が1ppm以下の高純度銅を製造する請求項4〜請求項7の何れかに記載する高純度銅の製造方法。
The method for producing high-purity copper according to any one of claims 4 to 7, wherein a high-purity copper having a copper surface glossiness of 1 or more and a silver and sulfur content of 1 ppm or less is produced.
JP2016106863A 2015-09-29 2016-05-28 High-purity copper electrolytic refining additive and high-purity copper manufacturing method Active JP6733314B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192202 2015-09-29
JP2015192202 2015-09-29

Publications (2)

Publication Number Publication Date
JP2017066514A true JP2017066514A (en) 2017-04-06
JP6733314B2 JP6733314B2 (en) 2020-07-29

Family

ID=58491984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106863A Active JP6733314B2 (en) 2015-09-29 2016-05-28 High-purity copper electrolytic refining additive and high-purity copper manufacturing method

Country Status (1)

Country Link
JP (1) JP6733314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221734A1 (en) 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
JP2018204103A (en) * 2017-06-01 2018-12-27 三菱マテリアル株式会社 High-purity electrolytic copper
US11453953B2 (en) 2017-06-01 2022-09-27 Mitsubishi Materials Corporation High-purity electrolytic copper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505187A (en) * 1991-08-07 1995-06-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Acidic plating bath for electrolytic deposition of copper and method of using the bath
JPH11302893A (en) * 1998-04-22 1999-11-02 Okuno Chem Ind Co Ltd Non-cyanide silver electroplating liquid
JP2007146285A (en) * 2005-09-30 2007-06-14 Rohm & Haas Electronic Materials Llc Leveler compound
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis
JP2012201976A (en) * 2011-03-28 2012-10-22 C Uyemura & Co Ltd Electric copper plating additive and electric copper plating bath
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505187A (en) * 1991-08-07 1995-06-08 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Acidic plating bath for electrolytic deposition of copper and method of using the bath
JPH11302893A (en) * 1998-04-22 1999-11-02 Okuno Chem Ind Co Ltd Non-cyanide silver electroplating liquid
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis
JP2007146285A (en) * 2005-09-30 2007-06-14 Rohm & Haas Electronic Materials Llc Leveler compound
JP2012201976A (en) * 2011-03-28 2012-10-22 C Uyemura & Co Ltd Electric copper plating additive and electric copper plating bath
JP2014015677A (en) * 2012-06-14 2014-01-30 Mitsubishi Materials Corp High purity electrolytic copper and electrolytic refining method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221734A1 (en) 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
JP2018204103A (en) * 2017-06-01 2018-12-27 三菱マテリアル株式会社 High-purity electrolytic copper
US11453953B2 (en) 2017-06-01 2022-09-27 Mitsubishi Materials Corporation High-purity electrolytic copper
US11753733B2 (en) 2017-06-01 2023-09-12 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
JP7454329B2 (en) 2017-06-01 2024-03-22 三菱マテリアル株式会社 High purity electrical copper plate

Also Published As

Publication number Publication date
JP6733314B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP6733313B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
JP2017066514A (en) Additive for high purity copper electrolytic refining and high purity copper manufacturing method
CN106555208B (en) Additive for electrolytic refining of high-purity copper, method for producing high-purity copper, and high-purity electrolytic copper
WO2018221734A1 (en) Method for producing high-purity electrolytic copper
JP6548020B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
CN110582594A (en) Molten salt titanium plating solution composition and method for producing titanium-plated member
JP6548019B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
JP2006519312A (en) Electrodeposition of aluminum and refractory metals from non-aromatic organic solvents
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP5937937B2 (en) Aluminum anodized film
US10793956B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
TWI787275B (en) Method for producing high purity electrolytic copper
KR101421503B1 (en) High purity methane sulfonic acid copper salt and Method for manufacturing PCB plating solution having the same
Roscol et al. Application of an experimental design to study AISI 4340 and 300M steels electropolishing in a concentrated perchloric/acetic acid solution
WO2016052727A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
WO2016052725A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
JP5590328B2 (en) Phosphorus-containing copper anode for electrolytic copper plating and electrolytic copper plating method using the same
JP2017179506A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP5234844B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP2018003072A (en) Tungsten film and manufacturing method of tungsten film
JP2012149323A (en) Phosphorus-containing copper anode for electric copper plating and electric copper plating method using the same
JP2017179505A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2017179504A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP5179549B2 (en) Electro copper plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6733314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250