JP2017065042A - Method for producing rubber gasket for fuel cell and fuel cell sealed body and aqueous release agent used for the same - Google Patents

Method for producing rubber gasket for fuel cell and fuel cell sealed body and aqueous release agent used for the same Download PDF

Info

Publication number
JP2017065042A
JP2017065042A JP2015192577A JP2015192577A JP2017065042A JP 2017065042 A JP2017065042 A JP 2017065042A JP 2015192577 A JP2015192577 A JP 2015192577A JP 2015192577 A JP2015192577 A JP 2015192577A JP 2017065042 A JP2017065042 A JP 2017065042A
Authority
JP
Japan
Prior art keywords
fuel cell
release agent
mold
rubber gasket
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015192577A
Other languages
Japanese (ja)
Other versions
JP6585451B2 (en
Inventor
宏和 林
Hirokazu Hayashi
宏和 林
山本 健次
Kenji Yamamoto
健次 山本
晋次 北
Shinji Kita
晋次 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2015192577A priority Critical patent/JP6585451B2/en
Publication of JP2017065042A publication Critical patent/JP2017065042A/en
Application granted granted Critical
Publication of JP6585451B2 publication Critical patent/JP6585451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for producing a rubber gasket for a fuel cell and a fuel cell sealed body capable of improving the durability of a die or the like without giving adverse effect on the power generation property of a fuel cell, the adhesiveness of a gasket and the dimensional precision of a gasket; and an aqueous release agent used for the same.SOLUTION: There is provided a method for producing a rubber gasket for a fuel cell and a fuel cell sealed body in which an aqueous release agent having an electric conductivity of 3.7 to 7857 μs/cm which contains the following components (A) and (B) is applied on the inner peripheral surface of a die for molding a rubber gasket for a fuel cell, followed by crosslinking molding of a rubber composition inside the die. (A) A compound having a fluorine-containing group and a hydrophilic group. (B) Water.SELECTED DRAWING: None

Description

本発明は、燃料電池用ゴムガスケットおよび燃料電池シール体の製造方法、並びにそれに用いられる水系離型剤に関するものである。   The present invention relates to a rubber gasket for a fuel cell, a method for producing a fuel cell seal body, and an aqueous release agent used therefor.

燃料電池は、ガスの電気化学反応により電気を発生させ、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。なかでも固体高分子型燃料電池は、比較的低温で作動させることができ、大きな出力密度を有する。このため、発電用、自動車用電源等、種々の用途が期待される。   The fuel cell generates electricity by the electrochemical reaction of gas, has high power generation efficiency, cleans the discharged gas, and has very little influence on the environment. Among these, the polymer electrolyte fuel cell can be operated at a relatively low temperature and has a large power density. For this reason, various uses, such as a power generation and an automotive power source, are expected.

固体高分子型燃料電池においては、膜電極接合体(MEA)等をセパレータで挟持したセルが発電単位となる。MEAは、電解質となる高分子膜(電解質膜)と、電解質膜の厚さ方向両面に配置された一対の電極触媒層(燃料極(アノード)触媒層、酸素極(カソード)触媒層)と、からなる。一対の電極触媒層の表面には、さらにガスを拡散させるための多孔質層が配置される。燃料極側には水素等の燃料ガスが、酸素極側には酸素や空気等の酸化剤ガスがそれぞれ供給される。供給されたガスと電解質と電極触媒層との三相界面における電気化学反応により、発電が行われる。固体高分子型燃料電池は、上記セルを多数積層したセル積層体を、セル積層方向の両端に配置したエンドプレート等により締め付けて構成される。   In a polymer electrolyte fuel cell, a cell in which a membrane electrode assembly (MEA) or the like is sandwiched between separators is a power generation unit. The MEA includes a polymer membrane (electrolyte membrane) serving as an electrolyte, a pair of electrode catalyst layers (a fuel electrode (anode) catalyst layer, an oxygen electrode (cathode) catalyst layer) disposed on both sides in the thickness direction of the electrolyte membrane, Consists of. On the surface of the pair of electrode catalyst layers, a porous layer for further diffusing gas is disposed. A fuel gas such as hydrogen is supplied to the fuel electrode side, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode side. Power generation is performed by an electrochemical reaction at the three-phase interface between the supplied gas, the electrolyte, and the electrode catalyst layer. The polymer electrolyte fuel cell is configured by fastening a cell laminate in which a large number of the cells are laminated with end plates or the like arranged at both ends in the cell lamination direction.

セパレータには、各々の電極に供給されるガスの流路や、発電の際の発熱を緩和するための冷媒の流路が形成される。例えば、各々の電極に供給されるガスが混合すると、発電効率が低下する等の問題が生じる。また、電解質膜は、水を含んだ状態でプロトン導電性を有する。このため、作動時には、電解質膜を湿潤状態に保つ必要がある。したがって、ガスの混合、ガスおよび冷媒の漏れを防止すると共に、セル内を湿潤状態に保持するためには、MEAおよび多孔質層の周囲や、隣り合うセパレータ間のシール性を確保することが重要となる。これらの構成部材をシールするシール部材としては、例えば、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)、エチレン−プロピレン共重合ゴム(EPM)等からなるゴムガスケットが提案されている(特許文献1、2参照)。   The separator is formed with a flow path of gas supplied to each electrode and a flow path of refrigerant for relaxing heat generation during power generation. For example, when the gas supplied to each electrode is mixed, problems such as a decrease in power generation efficiency occur. The electrolyte membrane has proton conductivity in a state containing water. For this reason, it is necessary to keep the electrolyte membrane in a wet state during operation. Therefore, in order to prevent gas mixing, gas and refrigerant leakage, and to keep the inside of the cell moist, it is important to ensure the sealing performance around the MEA and the porous layer and between adjacent separators. It becomes. As a sealing member for sealing these constituent members, for example, a rubber gasket made of ethylene-propylene-diene terpolymer rubber (EPDM), ethylene-propylene copolymer rubber (EPM) or the like has been proposed (Patent Literature). 1 and 2).

特開2009−94056号公報JP 2009-94056 A 特開2010−146781号公報JP 2010-146781 A

ところで、上記のような燃料電池用ゴムガスケットは、燃料電池の発電性、ガスケットの接着性、ガスケットの寸法精度に悪影響を与えないよう、離型剤無しで、ニッケル表面処理がなされた金型を用いて成形することが好ましいとされてきた。   By the way, the rubber gasket for a fuel cell as described above is a mold with a nickel surface treatment without a release agent so as not to adversely affect the power generation performance of the fuel cell, the adhesiveness of the gasket, and the dimensional accuracy of the gasket. It has been preferred to use and mold.

しかしながら、上記のように離型剤を使用しない手法では、上記ガスケットの成形を繰り返し行うことにより、ガスケット材料のゴムが金型表面(金型内周面)に密着してニッケル表面処理が機能しなくなり、金型の耐久性が低くなるという問題がある。そのため、上記手法は、金型のメンテナンス費用が増大する傾向にある。   However, in the method that does not use a mold release agent as described above, the rubber of the gasket material is brought into close contact with the mold surface (the inner peripheral surface of the mold) by repeatedly molding the gasket, and the nickel surface treatment functions. There is a problem that the durability of the mold is lowered. Therefore, the method described above tends to increase the maintenance cost of the mold.

また、本発明者らが、従来使用されている離型剤に関する検討を行ったところ、例えば、溶剤系のフッ素系離型剤は、ガスケットと燃料電池構成部材の界面に存在し、接着性に悪影響を与えることから、ガスケットと燃料電池構成部材との接着が低下するといった問題があるため、その使用が困難であった。また、シリコーン系離型剤は、Si成分が移行し、発電に悪影響を与える問題がある。また、ワックス系離型剤は、厚膜(30〜50μm)でしか塗布することができなく、しかも、ワックス系離型剤自体の分子間結合が弱いことに起因し、その塗膜が破壊されて層間剥離しやすいために、ガスケットの寸法精度を悪化させる問題がある。さらに、これらの離型剤は、金型表面に塗布した後、容易に洗浄できないものも多いことから、金型汚染や、そのメンテナンス費用の増大の要因となる。   In addition, when the present inventors examined a conventionally used release agent, for example, a solvent-based fluorine release agent is present at the interface between the gasket and the fuel cell constituent member, and has an adhesive property. Since it has an adverse effect, there is a problem in that the adhesion between the gasket and the fuel cell constituent member is lowered, and its use is difficult. In addition, the silicone mold release agent has a problem that the Si component migrates and adversely affects power generation. In addition, the wax-based release agent can be applied only with a thick film (30 to 50 μm), and the coating film is destroyed due to the weak intermolecular bond of the wax-based release agent itself. Therefore, there is a problem that the dimensional accuracy of the gasket is deteriorated. Furthermore, since many of these release agents cannot be easily washed after being applied to the mold surface, they cause mold contamination and increase in maintenance costs.

本発明は、このような事情に鑑みなされたもので、燃料電池の発電性、ガスケットの接着性、ガスケットの寸法精度に悪影響を与えずに、金型の耐久性等を向上させることのできる、燃料電池用ゴムガスケットおよび燃料電池シール体の製造方法、並びにそれに用いられる水系離型剤の提供をその目的とする。   The present invention has been made in view of such circumstances, and can improve the durability of the mold without adversely affecting the power generation performance of the fuel cell, the adhesiveness of the gasket, and the dimensional accuracy of the gasket. An object of the present invention is to provide a rubber gasket for a fuel cell, a method for producing a fuel cell seal body, and an aqueous release agent used therefor.

上記の目的を達成するために、本発明は、燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、上記金型内でゴム組成物の架橋成形を行う、燃料電池用ゴムガスケットの製造方法を第1の要旨とする。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
In order to achieve the above object, the present invention provides an electrical conductivity of 3.7 to 7857 μs / cm containing the following components (A) and (B) on the inner peripheral surface of a molding die for a fuel cell rubber gasket. The first gist of the present invention is a method for producing a rubber gasket for a fuel cell, in which a water-based mold release agent is applied and then a rubber composition is subjected to cross-linking molding in the mold.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.

また、本発明は、燃料電池構成部材と燃料電池用ゴムガスケットとが一体化してなる燃料電池シール体の製造方法であって、燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、燃料電池構成部材を上記金型内に配置し、上記金型内で、ゴム組成物を、燃料電池構成部材に接触させた状態で架橋成形する、燃料電池シール体の製造方法を第2の要旨とする。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
The present invention also relates to a method of manufacturing a fuel cell seal body in which a fuel cell constituent member and a fuel cell rubber gasket are integrated. On the inner peripheral surface of a molding die for a fuel cell rubber gasket, After applying an aqueous release agent having a conductivity of 3.7 to 7857 μs / cm containing the components (A) and (B), the fuel cell constituent member is placed in the mold, and the rubber is placed in the mold. The manufacturing method of the fuel cell seal body, in which the composition is crosslinked and formed in contact with the fuel cell constituent member, is a second gist.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.

また、本発明は、下記(A)および(B)成分を含有し、導電率が3.7〜7857μs/cmの範囲である燃料電池用ゴムガスケット成形型用水系離型剤を第3の要旨とする。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
The third aspect of the present invention is an aqueous mold release agent for a rubber gasket mold for a fuel cell, which contains the following components (A) and (B) and has an electric conductivity in the range of 3.7 to 7857 μs / cm. And
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.

すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、燃料電池の発電性、ガスケットの接着性、ガスケットの寸法精度に悪影響を与えない離型剤を選定し、その離型剤を金型に塗布することにより、金型の耐久性を向上させることを検討し、各種実験を重ねた。その結果、1分子中にフッ素含有基と親水基を含有する化合物が離型剤の場合、非常に薄膜に塗布しやすく、しかも、このように非常に薄く塗布しても、良好な離型性が得られ、金型の耐久性を向上させることができることを突き止めた。さらに、上記化合物が離型剤の場合、ガスケットを構成するゴムとのなじみが良く、ガスケットと燃料電池構成部材の界面に存在しにくいために、ガスケットと燃料電池構成部材の接着に悪影響を与えないことを突き止めた。しかしながら、上記のような離型剤を用いた場合であっても、金型成形されるガスケットが燃料電池用ゴムガスケットであるときには、その離型剤の導電性に起因し、燃料電池の発電への悪影響が認められた。したがって、燃料電池用ゴムガスケットの成形用離型剤においては、この点の改善も求められる。そして、上記の離型剤の導電性の高さの大きな要因として、その希釈に通常使用される水道水に含まれる、Na,Ca等の金属イオン成分が挙げられることを突き止めた。そして、上記希釈に用いる溶媒も、イオン交換水等の、金属イオン成分が少ない水を使用し、離型剤の導電率を、3.7〜7857μs/cmといった非常に低い値に設定することにより、所期の目的が達成できることを見いだし、本発明に到達した。   That is, the present inventors have intensively studied to solve the above problems. In the course of that research, we selected a mold release agent that does not adversely affect the power generation performance of the fuel cell, gasket adhesion, and gasket dimensional accuracy, and applied the mold release agent to the mold to ensure the durability of the mold. We examined the improvement of the performance and repeated various experiments. As a result, when a compound containing a fluorine-containing group and a hydrophilic group in one molecule is a release agent, it is very easy to apply to a thin film, and even if it is applied very thin like this, good release properties It was found that the durability of the mold can be improved. Further, when the above compound is a mold release agent, it has good compatibility with the rubber constituting the gasket and is unlikely to exist at the interface between the gasket and the fuel cell constituent member, and therefore does not adversely affect the adhesion between the gasket and the fuel cell constituent member. I found out. However, even when a release agent such as that described above is used, if the gasket to be molded is a rubber gasket for a fuel cell, it is due to the conductivity of the release agent that the fuel cell generates power. Adverse effects were observed. Therefore, an improvement in this point is also required in the mold release agent for molding a fuel cell rubber gasket. And it discovered that metal ion components, such as Na and Ca, contained in the tap water normally used for the dilution as a big factor of the electroconductive height of said mold release agent were mentioned. The solvent used for the dilution is also water having a small amount of metal ion components such as ion exchange water, and the conductivity of the release agent is set to a very low value of 3.7 to 7857 μs / cm. The inventors have found that the intended purpose can be achieved, and have reached the present invention.

このように、本発明の燃料電池用ゴムガスケットおよび燃料電池シール体の製造方法では、その成形用金型の内周面に、1分子中にフッ素含有基および親水基を有する化合物と水とを含有する導電率3.7〜7857μs/cmの水系離型剤が塗布される。このことから、燃料電池の発電性、ガスケットの接着性、ガスケットの寸法精度に悪影響を与えずに、金型の耐久性等を向上させることができる。なお、ガスケットの接着性は、ガスケットを成形させながら燃料電池構成部材等の相手部材と接着させる場合と、成形されたガスケットを燃料電池構成部材と後接着させる場合とがあるが、双方とも良好な接着性を得ることができる。また、上記化合物は親水基を含有しているため、水に対しての分散が良く、そのため、金型表面に付着した水系離型剤を洗浄する際も、容易に水洗浄することができる。   As described above, in the method for manufacturing a fuel cell rubber gasket and a fuel cell seal body of the present invention, a compound having a fluorine-containing group and a hydrophilic group in one molecule and water are formed on the inner peripheral surface of the molding die. An aqueous release agent having an electrical conductivity of 3.7 to 7857 μs / cm is applied. Therefore, the durability of the mold can be improved without adversely affecting the power generation performance of the fuel cell, the adhesiveness of the gasket, and the dimensional accuracy of the gasket. In addition, the adhesiveness of the gasket includes a case where it is bonded to a mating member such as a fuel cell constituent member while the gasket is being molded, and a case where the molded gasket is post bonded to the fuel cell constituent member, both of which are good. Adhesiveness can be obtained. Moreover, since the said compound contains a hydrophilic group, its dispersion | distribution with respect to water is good, Therefore, when wash | cleaning the water-type mold release agent adhering to the metal mold | die surface, it can wash easily with water.

燃料電池シール体の一例を示す断面図である。It is sectional drawing which shows an example of a fuel cell seal body. 燃料電池用ゴムガスケットを使用した一例を示す断面図である。It is sectional drawing which shows an example using the rubber gasket for fuel cells.

つぎに、本発明の実施の形態を詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の燃料電池用ゴムガスケットの製造方法は、先に述べたように、燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、上記金型内でゴム組成物の架橋成形を行うことにより、行われる。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
As described above, the method for producing a rubber gasket for a fuel cell according to the present invention has a conductivity containing the following components (A) and (B) on the inner peripheral surface of a molding die for a fuel cell rubber gasket. This is performed by applying a water-based mold release agent of 3.7 to 7857 μs / cm and then performing cross-linking molding of the rubber composition in the mold.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.

上記のように、水系離型剤には、その導電率が3.7〜7857μs/cmのものが使用される。そして、本発明の製造方法における作用効果の観点から、好ましくは、導電率が3.7〜1100μs/cmの水系離型剤が使用され、より好ましくは、導電率が3.7〜733μs/cmの水系離型剤が使用される。なお、上記のような非常に低い導電率に設定するには、その希釈に用いる溶媒も、イオン交換水等の、金属イオン成分が少ない水を使用する必要がある。また、上記導電率は、例えば、横河電機社製の導電率計であるパーソナルSCメータ SC72により測定することができる。   As described above, an aqueous release agent having a conductivity of 3.7 to 7857 μs / cm is used. And from a viewpoint of the effect in the manufacturing method of this invention, Preferably, the water-based mold release agent whose electrical conductivity is 3.7-1100 microseconds / cm is used, More preferably, electrical conductivity is 3.7-733 microseconds / cm. An aqueous mold release agent is used. In addition, in order to set it as the above very low electrical conductivity, it is necessary to use the water used with few metal ion components, such as ion-exchange water, also for the solvent used for the dilution. The conductivity can be measured by, for example, a personal SC meter SC72, which is a conductivity meter manufactured by Yokogawa Electric Corporation.

上記(A)成分である化合物は、特に、その化合物の有する親水基が、ホスホン基(アミノリン酸基)、スルホン基(スルホン酸基)、カルボキシル基、またはエーテル基(エーテル結合を有するもの)であることが、ガスケットを構成するゴムとのなじみが良く、ガスケットと燃料電池構成部材の界面に存在しにくいために、ガスケットと燃料電池構成部材の接着に悪影響を与えない傾向が顕著に出るため、好ましい。   In the compound which is the component (A), particularly, the hydrophilic group of the compound is a phosphonic group (aminophosphoric acid group), a sulfone group (sulfonic acid group), a carboxyl group, or an ether group (having an ether bond). Because there is a good familiarity with the rubber that constitutes the gasket and it is difficult to exist at the interface between the gasket and the fuel cell constituent member, the tendency of not adversely affecting the adhesion between the gasket and the fuel cell constituent member is noticeable. preferable.

上記のような親水基を有する化合物としては、具体的には、ホスホン酸塩に由来の化合物、スルホン酸塩に由来の化合物、カルボン酸塩に由来の化合物、エーテル化合物があげられ、これらは単独でもしくは二種以上併せて用いられる。なお、上記のように「…に由来の化合物」としているのは、上記ホスホン酸塩等が水に溶解されイオン解離されたものを、(A)成分の化合物として規定しているためである。   Specific examples of the compound having a hydrophilic group as described above include a compound derived from a phosphonate, a compound derived from a sulfonate, a compound derived from a carboxylate, and an ether compound. Or in combination of two or more. Note that the reason why “the compound derived from...” Is defined as the compound of the component (A) that is obtained by dissolving the phosphonate or the like in water and ionically dissociating.

上記(A)成分の化合物は、より具体的には、下記の一般式(1)で表される。   More specifically, the compound of the component (A) is represented by the following general formula (1).

Figure 2017065042
Figure 2017065042

上記式(1)において、m,nは整数である。Mは、H,K,NH4,NH(CH33である。なかでも、より発電に悪影響を与えないようにするには、Mは、H,Kが好ましい。 In the above formula (1), m and n are integers. M is H, K, NH 4 , NH (CH 3 ) 3 . Among these, M is preferably H or K so as not to adversely affect power generation.

また、上記水系離型剤は、その固形分濃度が0.0047〜10重量%であることが、ガスケットと燃料電池構成部材の接着への影響の観点から好ましく、同様の観点から、上記水系離型剤の固形分濃度は、より好ましくは0.07〜1.4重量%の範囲である。   The aqueous release agent preferably has a solid concentration of 0.0047 to 10% by weight from the viewpoint of the effect on the adhesion between the gasket and the fuel cell component, and from the same viewpoint, the aqueous release agent. The solid content concentration of the mold is more preferably in the range of 0.07 to 1.4% by weight.

そして、金型内周面に対する上記水系離型剤の塗工を、その塗工膜の乾燥後の厚みが0.001〜10μmとなるよう塗布して行うことが、ガスケットの寸法精度等の観点から好ましく、同様の観点から、上記水系離型剤の塗工膜の乾燥後の厚みは、より好ましくは0.001〜1μmの範囲である。   And it is possible to apply the aqueous mold release agent to the inner peripheral surface of the mold by applying the coating film so that the thickness after drying of the coating film is 0.001 to 10 μm. From the same viewpoint, the thickness of the aqueous release agent coating film after drying is more preferably in the range of 0.001 to 1 μm.

また、金型内周面に対する上記水系離型剤の塗工を、その塗工膜の乾燥後の重量が、400mm×200mmの面積当たり、0.0001036〜1.4504gとなるよう塗布して行うことが、ガスケットの寸法精度等の観点から好ましく、同様の観点から、上記水系離型剤の塗工膜の乾燥後の重量は、より好ましくは、400mm×200mmの面積当たり0.000259〜0.0518gの範囲である。   Further, the aqueous mold release agent is applied to the inner peripheral surface of the mold by coating so that the weight of the coated film after drying is 0.0001036 to 1.4504 g per 400 mm × 200 mm area. It is preferable from the viewpoint of the dimensional accuracy of the gasket and the like, and from the same viewpoint, the weight of the aqueous release agent coating film after drying is more preferably 0.000259 to 0.000 per 400 mm × 200 mm area. It is in the range of 0518 g.

また、上記金型として、その内周面にニッケル表面処理がなされた金型を用いることが、離型性を高める観点から、好ましい。   Moreover, it is preferable to use the metal mold | die with which nickel surface treatment was made | formed as the said metal mold | die from the viewpoint of improving mold release property.

本発明の燃料電池用ゴムガスケットの形成材料として用いられるゴム組成物としては、そのポリマーとして、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)やエチレン−プロピレン共重合ゴム(EPM)といったエチレン−プロピレン系ゴム、シリコーンゴム、アクリロニトリル−ブタジエンゴム(NBR)、水素添加アクリロニトリル−ブタジエンゴム(H−NBR)等を用いたものがあげられる。なかでも、耐候性、耐酸性の観点から、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)やエチレン−プロピレン共重合ゴム(EPM)といったエチレン−プロピレン系ゴムが好ましく用いられる。また、上記エチレン−プロピレン系ゴム組成物を用いる場合、その架橋剤として、有機過酸化物を用いることが、固体高分子膜の電解質膜表面触媒への影響の観点から好ましい。また、上記ゴム組成物においては、ポリマーや架橋剤の他にも、加硫促進剤、加硫助剤、老化防止剤、プロセスオイル等を必要に応じて適宜に配合することも可能である。   As a rubber composition used as a material for forming a rubber gasket for a fuel cell of the present invention, an ethylene-propylene-diene terpolymer rubber (EPDM) or an ethylene-propylene copolymer rubber (EPM) such as an ethylene-propylene copolymer rubber (EPM) is used as the polymer. Examples include those using propylene rubber, silicone rubber, acrylonitrile-butadiene rubber (NBR), hydrogenated acrylonitrile-butadiene rubber (H-NBR), and the like. Of these, ethylene-propylene rubbers such as ethylene-propylene-diene terpolymer rubber (EPDM) and ethylene-propylene copolymer rubber (EPM) are preferably used from the viewpoint of weather resistance and acid resistance. Moreover, when using the said ethylene-propylene type rubber composition, it is preferable from a viewpoint of the influence on the electrolyte membrane surface catalyst of a solid polymer film to use the organic peroxide as the crosslinking agent. In the rubber composition, in addition to the polymer and the crosslinking agent, a vulcanization accelerator, a vulcanization aid, an antiaging agent, a process oil, and the like can be appropriately blended as necessary.

なお、上記ゴムガスケットのみを製造するのであれば、先に述べたように、その成形用金型の内周面に、前記特定の水系離型剤を塗布した後、上記金型内でゴム組成物の架橋成形を行うことにより、製造することが可能であるが、例えば、燃料電池構成部材である、金属セパレータ、膜電極接合体(MEA)といったものと、上記ゴムガスケットとを一体化して、燃料電池シール体を製造するのであれば、以下のようにして製造することができる。すなわち、燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、燃料電池構成部材を上記金型内に配置し、上記金型内で、ゴム組成物を、燃料電池構成部材に接触させた状態で架橋成形するといった製造方法である。なお、本製造方法における各要件ないし各構成要件の好適な範囲のものは、前記の、燃料電池用ゴムガスケットの製造方法に準ずる。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
If only the rubber gasket is manufactured, as described above, after applying the specific aqueous release agent to the inner peripheral surface of the molding die, the rubber composition is formed in the die. Although it is possible to manufacture by performing cross-linking molding of the product, for example, a fuel cell component, such as a metal separator, a membrane electrode assembly (MEA), and the rubber gasket are integrated, If a fuel cell sealing body is manufactured, it can be manufactured as follows. That is, after applying an aqueous release agent containing 3.7 to 7857 μs / cm of electrical conductivity containing the following components (A) and (B) to the inner peripheral surface of a molding die for a fuel cell rubber gasket, In the production method, the battery constituent member is disposed in the mold, and the rubber composition is crosslinked and molded in the mold in contact with the fuel cell constituent member. In addition, the thing of the suitable range of each requirement thru | or each component requirement in this manufacturing method applies to the manufacturing method of the said rubber gasket for fuel cells.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.

ここで、燃料電池シール体の一例を図1に示す。図1は、複数枚のセルが積層されてなる燃料電池における単一のセル1を主として示したものであり、セル1は、MEA2と、ガス拡散層(GDL)3と、ガスケット4aと、セパレータ5と、接着層6を備えているが、先の製造方法に基づき、ガスケット4aと、セパレータ5等とを接着剤レスで一体化するのであれば、上記接着層6は不要となる。   Here, an example of the fuel cell seal body is shown in FIG. FIG. 1 mainly shows a single cell 1 in a fuel cell in which a plurality of cells are stacked. The cell 1 includes an MEA 2, a gas diffusion layer (GDL) 3, a gasket 4a, and a separator. 5 and the adhesive layer 6, the adhesive layer 6 is not necessary if the gasket 4 a and the separator 5 are integrated without an adhesive based on the previous manufacturing method.

MEA2は、図示しないが、電解質膜を挟んで積層方向両側に配置されている一対の電極からなる。電解質膜および一対の電極は、矩形薄板状を呈している。上記MEA2を挟んで積層方向両側には、ガス拡散層3が配置されている。上記ガス拡散層3は、多孔質層で、矩形薄板状を呈している。   Although not shown, the MEA 2 includes a pair of electrodes disposed on both sides in the stacking direction with the electrolyte membrane interposed therebetween. The electrolyte membrane and the pair of electrodes have a rectangular thin plate shape. Gas diffusion layers 3 are disposed on both sides in the stacking direction with the MEA 2 interposed therebetween. The gas diffusion layer 3 is a porous layer and has a rectangular thin plate shape.

上記セパレータ5は、チタン等の金属製のものが好ましく、導通信頼性の観点から、DLC膜(ダイヤモンドライクカーボン膜)やグラファイト膜等の炭素薄膜を有する金属セパレータが特に好ましい。上記セパレータ5は、矩形薄板状を呈しており、長手方向に延在する溝が合計六つ凹設されており、この溝により、セパレータ5の断面は、凹凸形状を呈している。セパレータ5は、ガス拡散層3の積層方向両側に、対向して配置されている。ガス拡散層3とセパレータ5との間には、凹凸形状を利用して、電極にガスを供給するためのガス流路7が区画されている。そして、固体高分子型燃料電池等の燃料電池の作動時には、燃料ガスおよび酸化剤ガスが、各々ガス流路7を通じて供給される。   The separator 5 is preferably made of a metal such as titanium, and a metal separator having a carbon thin film such as a DLC film (diamond-like carbon film) or a graphite film is particularly preferable from the viewpoint of conduction reliability. The separator 5 has a rectangular thin plate shape and is provided with a total of six grooves extending in the longitudinal direction. The cross section of the separator 5 has an uneven shape due to the grooves. The separators 5 are opposed to each other on both sides of the gas diffusion layer 3 in the stacking direction. A gas flow path 7 for supplying gas to the electrode is defined between the gas diffusion layer 3 and the separator 5 by using an uneven shape. When a fuel cell such as a solid polymer fuel cell is operated, fuel gas and oxidant gas are supplied through the gas flow paths 7 respectively.

上記ガスケット4aは、矩形枠状を呈している。そして、上記ガスケット4aは、MEA2やガス拡散層3の周縁部、およびセパレータ5に接着され、MEA2やガス拡散層3の周縁部を封止している。なお、図1において、ガスケット4aは、上下に分かれた2個の部材を使用しているが、両者を合わせた単一のガスケットであっても差し支えない。   The gasket 4a has a rectangular frame shape. The gasket 4a is bonded to the peripheral portion of the MEA 2 and the gas diffusion layer 3 and the separator 5, and seals the peripheral portion of the MEA 2 and the gas diffusion layer 3. In FIG. 1, the gasket 4 a uses two members that are divided into upper and lower parts, but a single gasket in which both are combined may be used.

さらに、本発明の製造方法により得られた燃料電池用ゴムガスケットを用いた他の使用例を図2に示す。図2は、矩形薄板状を呈し、長手方向に延在する溝が合計六つ凹設された、上述の断面凹凸形状を呈するセパレータ5の周縁部に、接着層6を介して、矩形状で断面凸部形状のリップ4bが設けられてなる部材である。そして、上記リップ4bとして、本発明の燃料電池用ゴムガスケットが用いられる。なお、図2に示す部材において、セパレータ5とリップ4bとが接着層6を介さず直接接着された態様もあげられる。   Furthermore, another example of use using the rubber gasket for fuel cells obtained by the production method of the present invention is shown in FIG. FIG. 2 shows a rectangular thin plate shape, in which a total of six grooves extending in the longitudinal direction are recessed, and the separator 5 having the above-described cross-sectional concavo-convex shape has a rectangular shape with an adhesive layer 6 interposed therebetween. This is a member provided with a lip 4b having a convex section. The rubber gasket for a fuel cell of the present invention is used as the lip 4b. In addition, in the member shown in FIG. 2, an embodiment in which the separator 5 and the lip 4 b are directly bonded without the adhesive layer 6 being included.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、その要旨を超えない限り、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

まず、実施例および比較例に先立ち、下記に示す離型剤(i)〜(iv)、および溶媒(α)〜(γ)を準備した。   First, prior to Examples and Comparative Examples, release agents (i) to (iv) and solvents (α) to (γ) shown below were prepared.

〔離型剤(i)〕
下記の式(2)で示される化合物を主成分とするフッ素水系離型剤(フリリースGP−10、ネオス社製)
[Release agent (i)]
Fluorine water-based mold release agent mainly composed of the compound represented by the following formula (2) (Flease GP-10, manufactured by Neos)

Figure 2017065042
Figure 2017065042

〔離型剤(ii)〕
下記の式(3)で示される化合物を主成分とするフッ素水系離型剤(フタージェント212M、ネオス社製)
[Release agent (ii)]
Fluorine water-based mold release agent containing a compound represented by the following formula (3) as a main component (Futterent 212M, manufactured by Neos)

Figure 2017065042
Figure 2017065042

〔離型剤(iii)〕
フッ素溶剤系離型剤(スミモールドF1、住鉱潤滑剤社製)
[Release agent (iii)]
Fluorine solvent release agent (Sumimold F1, manufactured by Sumiko Lubricant)

〔離型剤(iv)〕
シリコーン系離型剤(キュアコートRM1412、中京化成工業社製)
[Release agent (iv)]
Silicone release agent (Cure Coat RM1412, manufactured by Chukyo Kasei Kogyo Co., Ltd.)

〔溶媒(α)〕
イオン交換樹脂により不純物を取り除いた、イオン交換水。
[Solvent (α)]
Ion exchange water with impurities removed by ion exchange resin.

〔溶媒(β)〕
有機溶媒(ブタン)
[Solvent (β)]
Organic solvent (butane)

〔溶媒(γ)〕
水道水
[Solvent (γ)]
Tap water

[実施例1〜9、比較例1〜6]
後記の表1〜表2に示す組合せで、離型剤と溶媒とを混合し、同表に示す導電率および固形分濃度の離型剤液を調製した。なお、離型剤液の導電率は、液の状態で、導電率計(パーソナルSCメータ SC72、横河電機社製)により測定した。
そして、上記離型剤液に関し、下記の基準に従い、各特性の評価を行った。これらの結果を後記の表1〜表2に併せて示した。
なお、各特性の評価に際し、金型内周面等に上記離型剤液を塗布する場合、後記の表1〜表2に示す塗工膜厚み(塗工膜の乾燥後の厚み)、塗工膜重量(塗工膜の乾燥後の、400mm×200mmの面積当たりの重量)となるよう、塗布した。また、各特性の評価に使用されるゴム組成物としては、EPDM(住友化学社製、エスプレン505)100重量部と、軟化剤(出光興産社製、ダイアナプロセスPW−150)20重量部と、GPF級カーボンブラック(キャボットジャパン社製、ショウブラックIP200)45重量部とを、バンバリーミキサーを用いて120℃で5分間混練した後、その混練物を冷却し、さらに、有機過酸化物(日油社製、パーヘキサC−40)5重量部と、架橋助剤(大内新興化学工業社製、バルノックPM)0.8重量部とを加え、オープンロールを用いて50℃で10分間混練し、調製したものを用いた。さらに、平板状ゴム成形体としては、このゴム組成物をプレス成形した、幅25mm、長さ60mm、厚み5mmの平板状ゴム成形体を用いた。
[Examples 1-9, Comparative Examples 1-6]
In the combinations shown in Tables 1 and 2 below, the release agent and the solvent were mixed to prepare a release agent solution having a conductivity and a solid content concentration shown in the same table. The conductivity of the release agent solution was measured with a conductivity meter (Personal SC Meter SC72, manufactured by Yokogawa Electric Corporation) in the liquid state.
And regarding the said mold release agent liquid, according to the following reference | standard, each characteristic was evaluated. These results are shown in Tables 1 and 2 below.
In addition, when evaluating each characteristic, when apply | coating the said mold release agent liquid to a metal inner peripheral surface etc., the coating film thickness (thickness after drying of a coating film) shown in Table 1-Table 2 of a postscript, coating It applied so that it might become a film weight (weight per area of 400 mm x 200 mm after drying of a coating film). Moreover, as a rubber composition used for evaluation of each property, EPDM (Sumitomo Chemical Co., Esprene 505) 100 parts by weight, softener (Idemitsu Kosan Co., Ltd., Diana Process PW-150) 20 parts by weight, After 45 parts by weight of GPF grade carbon black (manufactured by Cabot Japan, Show Black IP200) was kneaded at 120 ° C. for 5 minutes using a Banbury mixer, the kneaded product was cooled, and further organic peroxide (NOF) Co., Perhexa C-40) 5 parts by weight and a crosslinking assistant (Ouchi Shinsei Chemical Co., Ltd., Barnock PM) 0.8 part by weight, kneaded at 50 ° C. for 10 minutes using an open roll, The prepared one was used. Further, as the flat rubber molded body, a flat rubber molded body having a width of 25 mm, a length of 60 mm, and a thickness of 5 mm obtained by press-molding this rubber composition was used.

<発電への影響>
金属イオン量が多いと発電に悪影響を与えるため、離型剤液の導電率で規定した。基準として、734(μs/cm)未満を◎、734〜7857(μs/cm)を○、7857(μs/cm)をより大きい場合を×と評価した。
<Impact on power generation>
Since the amount of metal ions has an adverse effect on power generation, it is defined by the conductivity of the release agent solution. As a reference, less than 734 (μs / cm) was evaluated as ◎, 734 to 7857 (μs / cm) as ◯, and 7857 (μs / cm) as greater as ×.

<セパレータとの接着性>
金属部材であるチタン板(幅25mm、長さ60mm、厚み0.1mm)の表面に、接着剤(ロード・ファー・イースト社製、AP−133)を、その塗布後の厚みが80nmになるよう、スプレー塗布した。そして、前記作製の平板状ゴム成形体(未加硫)の上に、離型剤液を塗布し、その塗布面とチタン板の接着剤面を重ね合せて積層し、150℃で10分間保持することによりゴムを加硫し、金属と加硫ゴムとが接着してなる積層体(接着評価サンプルのテストピース)を作製した。このようにして得られた積層体に対し、JIS K 6256−2(2006)に準拠した90°剥離試験を行った際の、チタン板側の接着界面の目視評価を、下記の評価基準に従い行った。
(評価基準)
○:接着界面にゴムのみが観察された。
△:接着界面にゴムとプライマー(または金属部材)の両方が観察された。
×:接着界面にゴムが観察されず、プライマーまたは金属部材が観察された。
<Adhesiveness with separator>
Adhesive (AP-133, manufactured by Road Far East) is applied to the surface of a titanium plate (width 25 mm, length 60 mm, thickness 0.1 mm), which is a metal member, so that the thickness after application becomes 80 nm. Spray applied. Then, a mold release agent solution is applied onto the prepared flat rubber molded body (unvulcanized), and the application surface and the adhesive surface of the titanium plate are laminated and held at 150 ° C. for 10 minutes. By doing so, rubber was vulcanized, and a laminate (a test piece of an adhesion evaluation sample) formed by bonding a metal and a vulcanized rubber was produced. The laminated body thus obtained was subjected to visual evaluation of the adhesive interface on the titanium plate side when a 90 ° peel test based on JIS K 6256-2 (2006) was performed according to the following evaluation criteria. It was.
(Evaluation criteria)
○: Only rubber was observed at the bonding interface.
Δ: Both rubber and primer (or metal member) were observed at the bonding interface.
X: No rubber was observed at the bonding interface, and a primer or metal member was observed.

<ガスケットの寸法精度>
内周面にニッケル表面処理がなされた燃料電池用ゴムガスケットの成形用金型に、離型剤液を塗布した後、接着剤が塗布された金属チタン製のセパレータ(10cm角×厚み0.1mm)と、前記ゴム組成物からなる未加硫ゴム成形体とを、上記金型内の所定箇所に配置し、150℃で10分間保持することにより、未加硫ゴム成形体を架橋させた。これにより、セパレータの表面中央部に、ゴムガスケット(半円形状、厚み2mm×幅4mm×長さ8cm)を接着形成させた。このものを10個作製し、レーザー顕微鏡(型グレード名:VK−X200、キーエンス社製)によりガスケットの厚みを測定した。そして、その寸法精度、すなわち、{(ガスケットの厚みの最大値−ガスケットの厚みの最小値)/(ガスケットの厚みの設計値(2mm))}×100が、3%未満であるものを○、3%〜5%であるものを△、5%を超えるものを×と評価した。
<Dimensional accuracy of gasket>
A metal titanium separator (10 cm square x 0.1 mm thick) coated with an adhesive after applying a release agent solution to a molding die for a fuel cell rubber gasket whose inner peripheral surface is nickel-treated. ) And an unvulcanized rubber molded body made of the rubber composition were placed at predetermined locations in the mold and held at 150 ° C. for 10 minutes to crosslink the unvulcanized rubber molded body. As a result, a rubber gasket (semicircular shape, thickness 2 mm × width 4 mm × length 8 cm) was adhered and formed at the center of the surface of the separator. Ten of these were prepared, and the thickness of the gasket was measured with a laser microscope (model grade name: VK-X200, manufactured by Keyence Corporation). The dimensional accuracy, that is, {(maximum value of gasket thickness−minimum value of gasket thickness) / (design value of gasket thickness (2 mm))} × 100 is less than 3%. The case of 3% to 5% was evaluated as Δ, and the case of exceeding 5% was evaluated as ×.

<水洗浄性>
水洗浄性は、離型剤液の水との溶解性で判断した。すなわち、離型剤液を、イオン交換水(水道水が溶媒の離型剤については、水道水)中に、離型剤液の濃度が10重量%となるように混合し(計30ml)、1日放置した。その後、目視観察により、上記離型剤液が透明状態であるものを○、沈殿物があるものを×と評価した。
<Washability>
Water washability was judged by the solubility of the release agent solution in water. That is, the release agent solution was mixed in ion-exchanged water (for a release agent whose tap water is a solvent, tap water) so that the concentration of the release agent solution was 10% by weight (total 30 ml), Left for a day. Thereafter, by visual observation, the case where the release agent solution was in a transparent state was evaluated as ○, and the case where there was a precipitate was evaluated as ×.

<金型離型性>
前記「ガスケットの寸法精度」の評価の際に用いたサンプルと同様のものを一回作製した。そして、そのときのサンプルの状態を目視観察した。すなわち、サンプルの状態から、ゴム破損やセパレータの変形がみられなかったものを◎、ゴム破損はみられたがセパレータの変形はみられなかったものを○、ゴム破損もセパレータの変形もみられたものを×と評価した。
<Mold releasability>
A sample similar to the sample used in the evaluation of the “gasket dimensional accuracy” was prepared once. And the state of the sample at that time was visually observed. That is, from the state of the sample, ◎ when the rubber was not damaged or the separator was not deformed, ○ when the rubber was damaged but the separator was not deformed, ○, the rubber was broken or the separator was deformed Things were rated as x.

<金型耐久性>
前記「ガスケットの寸法精度」の評価の際に用いたサンプルと同様のものを作製した。その後、金型を、各々の離型剤液に使用の溶媒と同じもの(実施例1ならイオン交換水)で洗浄し、再度、上記サンプルを作製した。このサイクルを繰り返し、100回上記サンプルを作製し終えた後、100個目のサンプルの状態を目視観察した。そして、サンプルの状態から、ゴム破損やセパレータの変形がみられなかったものを◎、ゴム破損はみられたがセパレータの変形はみられなかったものを○、ゴム破損もセパレータの変形もみられたものを×と評価した。
<Die durability>
A sample similar to the sample used for the evaluation of the “dimensional accuracy of the gasket” was prepared. Thereafter, the mold was washed with the same solvent as that used for each release agent solution (in the case of Example 1, ion-exchanged water), and the above samples were produced again. This cycle was repeated, and after producing the sample 100 times, the state of the 100th sample was visually observed. And from the state of the sample, ◎ if the rubber was not damaged or the separator was not deformed, ○ if the rubber was damaged but the separator was not deformed, ○, the rubber was broken or the separator was deformed Things were rated as x.

Figure 2017065042
Figure 2017065042

Figure 2017065042
Figure 2017065042

上記表の結果から、実施例の離型剤液を使用して金型成形したものは、その離型剤液の使用による発電への影響もなく、また、実施例の離型剤液を使用することにより、セパレータとの接着性、ガスケットの寸法精度、水洗浄性、金型離型性、金型耐久性に支障をきたすことがないと認められた。   From the results in the above table, those molded using the mold release agent solution of the example have no effect on power generation due to the use of the mold release agent solution, and the mold release solution of the example is used. By doing so, it was recognized that there would be no problem in the adhesiveness to the separator, the dimensional accuracy of the gasket, the water washability, the mold releasability, and the mold durability.

これに対し、比較例1および比較例2の離型剤液は、有機溶剤系であるため、セパレータとの接着性、水洗浄性等に支障が生じた。比較例3では、離型剤液を使用せずに金型成形等を行っているが、金型耐久性に支障が生じた。比較例4〜6では、実施例と同様の離型剤種を用いているが、その離型剤液の導電率が、本願に規定された範囲から外れており、導電率が低すぎるもの(比較例4)は、離型剤の濃度が薄く、離型剤でカバーしきれなくなり金型内周面のニッケルメッキ層が摩耗するため、金型耐久性に支障が生じる結果となった。また、導電率が高すぎるもの(比較例5,6)は、それにより発電への悪影響が生じる結果となった。   On the other hand, since the release agent liquids of Comparative Example 1 and Comparative Example 2 are based on organic solvents, there are problems in adhesiveness to the separator, water washability, and the like. In Comparative Example 3, mold molding or the like was performed without using a mold release agent solution, but the mold durability was hindered. In Comparative Examples 4 to 6, the same release agent type as in the examples is used, but the conductivity of the release agent liquid is out of the range defined in the present application, and the conductivity is too low ( In Comparative Example 4), the concentration of the mold release agent was thin, and the nickel plating layer on the inner peripheral surface of the mold was abraded because it could not be covered with the mold release agent, resulting in hindering the mold durability. Moreover, the thing with comparatively high electrical conductivity (Comparative Examples 5 and 6) resulted in an adverse effect on power generation.

本発明の燃料電池用ゴムガスケットおよび燃料電池シール体の製造方法では、その成形用金型の内周面に、特定の水系離型剤が塗布される。そして、上記水系離型剤は、燃料電池用ゴムガスケットおよび燃料電池シール体の製造において使用されることに特化したものであるが、他の製品の金型成形時に離型剤として使用することも可能である。   In the method for producing the fuel cell rubber gasket and the fuel cell seal body of the present invention, a specific aqueous release agent is applied to the inner peripheral surface of the molding die. The water-based mold release agent is specialized for use in the manufacture of fuel cell rubber gaskets and fuel cell seal bodies, but should be used as a mold release agent when molding other products. Is also possible.

1 セル
2 MEA
3 ガス拡散層
4a ガスケット
4b リップ
5 セパレータ
6 接着層
7 ガス流路
1 cell 2 MEA
3 Gas diffusion layer 4a Gasket 4b Lip 5 Separator 6 Adhesive layer 7 Gas flow path

Claims (14)

燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、上記金型内でゴム組成物の架橋成形を行うことを特徴とする燃料電池用ゴムガスケットの製造方法。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
After applying an aqueous mold release agent having a conductivity of 3.7 to 7857 μs / cm containing the following components (A) and (B) to the inner peripheral surface of a molding die for a rubber gasket for a fuel cell, the above die A method for producing a rubber gasket for a fuel cell, characterized in that the rubber composition is subjected to cross-linking molding in the inside.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.
上記(A)成分である化合物の有する親水基が、ホスホン基、スルホン基、カルボキシル基、またはエーテル基である、請求項1記載の燃料電池用ゴムガスケットの製造方法。   The method for producing a rubber gasket for a fuel cell according to claim 1, wherein the hydrophilic group of the compound as the component (A) is a phosphone group, a sulfone group, a carboxyl group, or an ether group. 上記(A)成分である化合物が、ホスホン酸塩に由来の化合物、スルホン酸塩に由来の化合物、カルボン酸塩に由来の化合物、およびエーテル化合物からなる群から選ばれた少なくとも一つである、請求項2記載の燃料電池用ゴムガスケットの製造方法。   The compound as the component (A) is at least one selected from the group consisting of a compound derived from a phosphonate, a compound derived from a sulfonate, a compound derived from a carboxylate, and an ether compound. The manufacturing method of the rubber gasket for fuel cells of Claim 2. 上記水系離型剤の固形分濃度が0.0047〜10重量%である、請求項1〜3のいずれか一項に記載の燃料電池用ゴムガスケットの製造方法。   The manufacturing method of the rubber gasket for fuel cells as described in any one of Claims 1-3 whose solid content concentration of the said water-system mold release agent is 0.0047 to 10 weight%. 金型内周面に対する上記水系離型剤の塗工を、その塗工膜の乾燥後の厚みが0.001〜10μmとなるよう塗布して行う、請求項1〜4のいずれか一項に記載の燃料電池用ゴムガスケットの製造方法。   The coating of the water-based mold release agent on the inner peripheral surface of the mold is performed by applying the coating film so that the thickness after drying of the coating film is 0.001 to 10 μm. The manufacturing method of the rubber gasket for fuel cells of description. 金型内周面に対する上記水系離型剤の塗工を、その塗工膜の乾燥後の重量が、400mm×200mmの面積当たり、0.0001036〜1.4504gとなるよう塗布して行う、請求項1〜5のいずれか一項に記載の燃料電池用ゴムガスケットの製造方法。   Application of the aqueous release agent to the inner peripheral surface of the mold is performed by applying so that the weight after drying of the coated film is 0.0001036 to 1.4504 g per 400 mm × 200 mm area. Item 6. A method for producing a rubber gasket for a fuel cell according to any one of Items 1 to 5. 上記金型として、その内周面にニッケル表面処理がなされた金型を用いる、請求項1〜6のいずれか一項に記載の燃料電池用ゴムガスケットの製造方法。   The manufacturing method of the rubber gasket for fuel cells as described in any one of Claims 1-6 which uses the metal mold | die by which the nickel peripheral surface treatment was made | formed as the said metal mold | die. 上記ゴム組成物として、エチレン−プロピレン−ジエン三元共重合ゴム(EPDM)およびエチレン−プロピレン共重合ゴム(EPM)の少なくとも一方をポリマーとするエチレン−プロピレン系ゴム組成物を用いる、請求項1〜7のいずれか一項に記載の燃料電池用ゴムガスケットの製造方法。   The ethylene-propylene rubber composition comprising at least one of ethylene-propylene-diene terpolymer rubber (EPDM) and ethylene-propylene copolymer rubber (EPM) as a polymer is used as the rubber composition. A method for producing a rubber gasket for a fuel cell according to any one of claims 7 to 10. 上記エチレン−プロピレン系ゴム組成物の架橋剤として、有機過酸化物を用いる、請求項8記載の燃料電池用ゴムガスケットの製造方法。   The method for producing a rubber gasket for a fuel cell according to claim 8, wherein an organic peroxide is used as a cross-linking agent for the ethylene-propylene rubber composition. 燃料電池構成部材と燃料電池用ゴムガスケットとが一体化してなる燃料電池シール体の製造方法であって、燃料電池用ゴムガスケットの成形用金型の内周面に、下記(A)および(B)成分を含有する導電率3.7〜7857μs/cmの水系離型剤を塗布した後、燃料電池構成部材を上記金型内に配置し、上記金型内で、ゴム組成物を、燃料電池構成部材に接触させた状態で架橋成形することを特徴とする燃料電池シール体の製造方法。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
A method of manufacturing a fuel cell sealing body in which a fuel cell constituent member and a fuel cell rubber gasket are integrated, on the inner peripheral surface of a molding die of the fuel cell rubber gasket, the following (A) and (B ) After applying a water-based mold release agent containing 3.7 to 7857 μs / cm containing the component, the fuel cell constituent member is placed in the mold, and the rubber composition is placed in the fuel cell in the mold. A method for producing a fuel cell seal body, characterized by carrying out cross-linking molding in a state of being in contact with a component member.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.
下記(A)および(B)成分を含有し、導電率が3.7〜7857μs/cmの範囲であることを特徴とする燃料電池用ゴムガスケット成形型用水系離型剤。
(A)1分子中にフッ素含有基と親水基とを有する化合物。
(B)水。
An aqueous mold release agent for a rubber gasket mold for a fuel cell, comprising the following components (A) and (B) and having a conductivity in a range of 3.7 to 7857 μs / cm.
(A) A compound having a fluorine-containing group and a hydrophilic group in one molecule.
(B) Water.
上記(A)成分である化合物の有する親水基が、ホスホン基、スルホン基、カルボキシル基、またはエーテル基である、請求項11記載の燃料電池用ゴムガスケット成形型用水系離型剤。   The water-based mold release agent for a fuel cell rubber gasket mold according to claim 11, wherein the hydrophilic group of the compound (A) is a phosphone group, a sulfone group, a carboxyl group, or an ether group. 上記(A)成分である化合物が、ホスホン酸塩に由来の化合物、スルホン酸塩に由来の化合物、カルボン酸塩に由来の化合物、およびエーテル化合物からなる群から選ばれた少なくとも一つである、請求項12記載の燃料電池用ゴムガスケット成形型用水系離型剤。   The compound as the component (A) is at least one selected from the group consisting of a compound derived from a phosphonate, a compound derived from a sulfonate, a compound derived from a carboxylate, and an ether compound. The water-based mold release agent for a rubber gasket mold for a fuel cell according to claim 12. 上記水系離型剤の固形分濃度が0.0047〜10重量%である、請求項11〜13のいずれか一項に記載の燃料電池用ゴムガスケット成形型用水系離型剤。   The aqueous release agent for a rubber gasket mold for a fuel cell according to any one of claims 11 to 13, wherein the solid content concentration of the aqueous release agent is 0.0047 to 10% by weight.
JP2015192577A 2015-09-30 2015-09-30 Rubber gasket for fuel cell, method for producing fuel cell seal body, and water-based mold release agent used therefor Active JP6585451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192577A JP6585451B2 (en) 2015-09-30 2015-09-30 Rubber gasket for fuel cell, method for producing fuel cell seal body, and water-based mold release agent used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192577A JP6585451B2 (en) 2015-09-30 2015-09-30 Rubber gasket for fuel cell, method for producing fuel cell seal body, and water-based mold release agent used therefor

Publications (2)

Publication Number Publication Date
JP2017065042A true JP2017065042A (en) 2017-04-06
JP6585451B2 JP6585451B2 (en) 2019-10-02

Family

ID=58493626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192577A Active JP6585451B2 (en) 2015-09-30 2015-09-30 Rubber gasket for fuel cell, method for producing fuel cell seal body, and water-based mold release agent used therefor

Country Status (1)

Country Link
JP (1) JP6585451B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216370A (en) * 2019-11-29 2020-06-02 南京金三力橡塑有限公司 Processing method and forming die for rubber composite gasket with metal framework

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111216370A (en) * 2019-11-29 2020-06-02 南京金三力橡塑有限公司 Processing method and forming die for rubber composite gasket with metal framework

Also Published As

Publication number Publication date
JP6585451B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP4871295B2 (en) Design, method and process for unitizing MEA
CN101496204B (en) Fuel cell and gasket for fuel cell
WO2013147020A1 (en) Rubber composition and sealed fuel cell
JP6190607B2 (en) Fuel cell seal
JP2009094056A (en) Adhesive seal member for fuel cell
KR100821033B1 (en) Fuel cell stack and manufacturing method thereof
CN110739473A (en) Method for manufacturing fuel cell unit and fuel cell unit
JP2017183198A (en) Manufacturing method of fuel cell seal body, and rubber gasket for fuel cell used therein
JP2017188417A (en) Seal member for fuel cell
US8722277B2 (en) Fuel cell and method for manufacturing same
JP6585451B2 (en) Rubber gasket for fuel cell, method for producing fuel cell seal body, and water-based mold release agent used therefor
JP2009269248A (en) Method for manufacturing seal structure body
US10680256B2 (en) Sealing member for a fuel cell
JP5879553B2 (en) Method for manufacturing fuel cell separator, method for manufacturing fuel cell separator with gasket, and method for manufacturing fuel cell
JP3620294B2 (en) Sealing material for stacked fuel cell
JP6067417B2 (en) Laminate manufacturing method
JP2013229324A (en) Rubber composition and fuel cell seal body
JP2009076354A (en) Adhesive sealing member for fuel cell
JP4512316B2 (en) Adhesive composition
JP2014120213A (en) Fuel cell and manufacturing method for the same
JP5941804B2 (en) Laminate and production method thereof
JP7319899B2 (en) Fuel cell sealing material
WO2022209027A1 (en) Sealing member for fuel cell
JP4486801B2 (en) Adhesive composition
WO2022208926A1 (en) Multilayer body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150