JP2017062274A - Driving device - Google Patents

Driving device Download PDF

Info

Publication number
JP2017062274A
JP2017062274A JP2015186205A JP2015186205A JP2017062274A JP 2017062274 A JP2017062274 A JP 2017062274A JP 2015186205 A JP2015186205 A JP 2015186205A JP 2015186205 A JP2015186205 A JP 2015186205A JP 2017062274 A JP2017062274 A JP 2017062274A
Authority
JP
Japan
Prior art keywords
light emission
unit
battery
power supply
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186205A
Other languages
Japanese (ja)
Inventor
雄太 田邉
Yuta Tanabe
雄太 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015186205A priority Critical patent/JP2017062274A/en
Publication of JP2017062274A publication Critical patent/JP2017062274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stroboscope power supply circuit capable of restraining loss from occurring due to charging and discharging of the stroboscope power supply circuit even in a plurality of different light emitting forms.SOLUTION: A power supply circuit (100) includes: a battery voltage detection circuit for detecting the voltage of a battery; a chargeable unit charged until a prescribed voltage value through a charging circuit by the battery; and a power supply control circuit unit that is supplied power by a power supply unit composed of the battery and the chargeable unit and makes a light-emitting unit emit light by prescribed current. The voltage value of the chargeable unit is set to a first voltage level by preliminary charging performed before preliminary light emission, and after that to a second voltage level by main charging performed after the preliminary light emission.SELECTED DRAWING: Figure 1

Description

本発明は、ストロボ光源として発光ダイオード(LED)を使用した撮像装置に適用可能な電源回路に関する。   The present invention relates to a power supply circuit applicable to an imaging apparatus using a light emitting diode (LED) as a strobe light source.

従来、ストロボにLEDを使用した場合、発光時に多くの電荷が必要になることからキャパシタに充電を行い、発光を行う。   Conventionally, when an LED is used for a strobe, a large amount of charge is required for light emission, so the capacitor is charged to emit light.

一般的にキャパシタは自己放電が大きく、電池のように閉路電圧が安定しないため、常に使用電圧の上限で連続充電した状態でスタンバイし、機器の動作タイミングに備える。しかし、常にキャパシタに充電してスタンバイする使用方法は、リーク電流によりスタンバイ状態にある回路の消費電力を大きくすることや、キャパシタに電圧負荷がかかり、劣化が進んでしまうという問題点があった。   In general, a capacitor has a large self-discharge, and the closed circuit voltage is not stable like a battery. Therefore, the capacitor always stands by in a state of being continuously charged at the upper limit of the use voltage, and prepares for the operation timing of the device. However, the usage method in which the capacitor is always charged and put in standby has problems that the power consumption of the circuit in the standby state is increased due to the leakage current, and that the capacitor is subjected to voltage load, and the deterioration proceeds.

特許文献1には、機器の動作タイミングの直前にキャパシタへ充電を行うことで、連続充電を回避する技術が開示されている。   Patent Document 1 discloses a technique for avoiding continuous charging by charging a capacitor immediately before the operation timing of the device.

特開2011−050229号公報JP 2011-050229 A

しかしながら、特許文献1では、充電時間の条件が同じ場合でも、電池電圧によって充電可能な電荷量は異なるため、電池電圧が変化する中では常に最適な充電を行うことはできない。   However, in Patent Document 1, even when the conditions for the charging time are the same, the amount of charge that can be charged differs depending on the battery voltage. Therefore, optimal charging cannot always be performed while the battery voltage changes.

また、ストロボは発光形態に応じて発光に必要な電荷量が異なるため、使用電圧の上限で充電を行うことは望ましくない。特許文献1に開示された技術では、発光形態によってはキャパシタに電荷残りが発生し、損失となってしまうことに加え、キャパシタの劣化が進んでしまう。   Moreover, since the amount of charge required for light emission differs depending on the light emission form, it is not desirable to charge the strobe at the upper limit of the operating voltage. With the technique disclosed in Patent Document 1, depending on the light emission mode, a charge residue is generated in the capacitor, resulting in a loss, and the capacitor is further deteriorated.

そこで、本発明は、発光を行う際の電池電圧と、あらかじめ設定されたISO、絞りの条件と、予備発光を受光した受光結果の情報を用いることで、異なる複数の発光形態においても、ストロボ電源回路の充放電によって生じる損失を抑えることが可能なストロボ電源回路を提供することを目的とする。   Therefore, the present invention uses a battery voltage at the time of light emission, preset ISO and aperture conditions, and information on a light reception result of receiving a preliminary light emission, so that a strobe power supply can be used even in a plurality of different light emission forms. An object of the present invention is to provide a strobe power supply circuit capable of suppressing loss caused by charge / discharge of the circuit.

上記の目的を達成するために、本発明に係る電源回路は、
電池の電圧を検出する電池電圧検出回路と、前記電池より充電回路を通して所定の電圧値まで充電される充電部と、前記電池および前記充電部である電力供給部より電力を供給され、発光部を所定の電流で発光させる電源制御回路部とを有し、前記充電部の電圧値は、予備発光前に行われる予備充電によって第1の電圧レベルに設定され、その後、予備発光後に行われる本充電によって第2の電圧レベルに設定されることを特徴とする。
In order to achieve the above object, a power supply circuit according to the present invention includes:
A battery voltage detection circuit that detects the voltage of the battery, a charging unit that is charged from the battery through a charging circuit to a predetermined voltage value, power is supplied from the battery and the power supply unit that is the charging unit, and the light emitting unit is A power control circuit unit that emits light at a predetermined current, and the voltage value of the charging unit is set to the first voltage level by the preliminary charging performed before the preliminary light emission, and then the main charging performed after the preliminary light emission. Is set to the second voltage level.

本発明に係る電源回路によれば、異なる複数の発光形態においても、ストロボ電源回路の充放電によって生じる損失を抑えることができる。   According to the power supply circuit of the present invention, it is possible to suppress loss caused by charging / discharging of the strobe power supply circuit even in a plurality of different light emission modes.

実施形態1におけるLEDストロボ電源回路100が有する構成要素の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of components included in the LED strobe power supply circuit 100 according to the first embodiment. 実施形態1におけるストロボ発光シーケンスの一例を説明するためのフローチャートである。6 is a flowchart for explaining an example of a strobe light emission sequence in the first embodiment. 電池電圧が高く、本発光としてフル発光を行う場合を説明するためのタイムチャートである。It is a time chart for demonstrating the case where a battery voltage is high and performs full light emission as main light emission. 電池電圧が低く、本発光としてフル発光を行う場合を説明するためのタイムチャートである。It is a time chart for demonstrating the case where a battery voltage is low and performs full light emission as main light emission. 電池電圧が高く、本発光として1/2発光を行う場合を説明するためのタイムチャートである。It is a time chart for demonstrating the case where a battery voltage is high and performs 1/2 light emission as main light emission.

以下、図面を参照して本発明の実施形態を説明する。ただし、本発明の実施形態は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, embodiments of the present invention are not limited to the following embodiments.

[実施形態1]
図1は実施形態1におけるLEDストロボ電源回路100が有する構成要素の一例を説明するための図である。
[Embodiment 1]
FIG. 1 is a diagram for explaining an example of components included in the LED strobe power supply circuit 100 according to the first embodiment.

LEDストロボ電源回路100は、ストロボ光源として発光ダイオード(LED)を使用した撮像装置に適用可能な電源回路である。   The LED strobe power supply circuit 100 is a power supply circuit applicable to an imaging apparatus using a light emitting diode (LED) as a strobe light source.

図1において、LEDストロボ電源回路100は、電池101、充電部であるキャパシタ102、充電回路103、電源制御回路部であるDCDCコンバータ104、発光部105、抵抗106、電源電圧検出回路107、回路制御部であるマイコン108、測光部であるAEセンサ109、メモリ110を有する。電池101は、その他負荷回路111にも接続される。また、電池101およびキャパシタ102は、DCDCコンバータ104への電力供給部である。   In FIG. 1, an LED strobe power supply circuit 100 includes a battery 101, a capacitor 102 as a charging unit, a charging circuit 103, a DCDC converter 104 as a power supply control circuit unit, a light emitting unit 105, a resistor 106, a power supply voltage detection circuit 107, and circuit control. A microcomputer 108 that is a scanning unit, an AE sensor 109 that is a photometric unit, and a memory 110. Battery 101 is also connected to other load circuit 111. The battery 101 and the capacitor 102 are a power supply unit to the DCDC converter 104.

電池101は、LEDストロボ電源回路100およびその他負荷回路111に電力を供給する。実施形態1では電圧が5.5V〜8.5Vの範囲、連続許容放電電流が2000mAのリチウムイオン電池を使用しているが、他の電池でもよい。   The battery 101 supplies power to the LED strobe power supply circuit 100 and the other load circuit 111. In the first embodiment, a lithium ion battery having a voltage in the range of 5.5 V to 8.5 V and a continuous allowable discharge current of 2000 mA is used, but other batteries may be used.

電池101よりLEDストロボ回路100に供給可能な電流値は電池残量によって変化する。例えば、その他負荷回路112に供給する電力が4.0Wであった場合、その他負荷回路112へ供給する電流値は、電池電圧が8.5Vの場合480mAとなり、5.5Vの場合は730mAとなる。従って電池101がLEDストロボ電源回路100に供給可能な電流値は電池残量によって1270mA〜1520mAの範囲で変化する。   The current value that can be supplied from the battery 101 to the LED strobe circuit 100 varies depending on the remaining battery level. For example, when the power supplied to the other load circuit 112 is 4.0 W, the current value supplied to the other load circuit 112 is 480 mA when the battery voltage is 8.5 V, and 730 mA when the battery voltage is 5.5 V. . Therefore, the current value that the battery 101 can supply to the LED strobe power supply circuit 100 varies in the range of 1270 mA to 1520 mA depending on the remaining battery level.

キャパシタ102は充電回路103を通して充電される充電装置である。LEDストロボ電源回路100に用いられる充電装置としては、大容量、低ESRのものが望まれる。特に、充放電によって生じる損失を抑えるためには、キャパシタ102の抵抗成分であるESRが低いことが望ましく、ESRが十分に低くなければ電圧低下が大きくなり、短時間での充放電を行うことができない。   The capacitor 102 is a charging device that is charged through the charging circuit 103. As a charging device used in the LED strobe power supply circuit 100, one having a large capacity and low ESR is desired. In particular, in order to suppress the loss caused by charging / discharging, it is desirable that the ESR which is the resistance component of the capacitor 102 is low. If the ESR is not sufficiently low, the voltage drop is large, and charging / discharging can be performed in a short time. Can not.

充電回路103は、特にESRが低いキャパシタ102への充電に用いられる一般的な充電回路であり、例えばバッテリチャージャで構成される。   The charging circuit 103 is a general charging circuit used for charging the capacitor 102 having a particularly low ESR, and is constituted by, for example, a battery charger.

DCDCコンバータ104は、入力電源を電池101、もしくはキャパシタ102の一方、または電池101、キャパシタ102の双方とし、定電流出力で発光部105を発光させる電圧帰還型のDCDCコンバータである。実施形態1において発光部105は、Vが3.0〜4.0Vの範囲の白色LEDを使用しており、センス抵抗である抵抗106は50mΩを使用しているため、DCDCコンバータ104の出力電圧は3.1〜4.1Vの範囲となる。発光部105は白色LEDに限らず、その他のLEDやキセノン管でもよい。 The DCDC converter 104 is a voltage feedback type DCDC converter that uses the battery 101 or one of the capacitors 102 or both the battery 101 and the capacitor 102 as an input power source and causes the light emitting unit 105 to emit light with a constant current output. Emitting unit 105 in the first embodiment, V F is using a white LED in the range of 3.0~4.0V, the resistance 106 is the sense resistor uses a 50 m [Omega, the output of the DCDC converter 104 The voltage is in the range of 3.1-4.1V. The light emitting unit 105 is not limited to a white LED, but may be another LED or a xenon tube.

電池電圧検出回路107は、例えば、直列に接続された二つの抵抗で構成される分圧回路であり、分圧した電池電圧をマイコン108で検出する。   The battery voltage detection circuit 107 is a voltage dividing circuit composed of two resistors connected in series, for example, and the microcomputer 108 detects the divided battery voltage.

マイコン108は、LEDストロボ電源回路100を構成する回路の制御、各種演算およびメモリ110の読み出しを行う。   The microcomputer 108 controls the circuits constituting the LED strobe power supply circuit 100, performs various calculations, and reads the memory 110.

AEセンサ109は、自動露光を行う測光センサであり、予備発光の測光を行い、マイコン108へ情報を送る。   The AE sensor 109 is a photometric sensor that performs automatic exposure, performs pre-emission photometry, and sends information to the microcomputer 108.

メモリ110は、データ格納装置である。実施形態1では、少なくとも電池101の電圧値に応じたLEDストロボ電源回路100に供給可能な電流レベルのデータ、予備発光で必要な電荷量およびフル発光で必要な電荷量を格納した装置であるが、他のデータを格納した装置でもよい。   The memory 110 is a data storage device. In the first embodiment, at least the current level data that can be supplied to the LED strobe power supply circuit 100 according to the voltage value of the battery 101, the charge amount necessary for preliminary light emission, and the charge amount necessary for full light emission are stored. A device that stores other data may also be used.

その他負荷回路111は、デジタルカメラを構成する一般的な回路であり、例えばAF回路やレンズ通信回路等があるが、他の回路でもよい。   The other load circuit 111 is a general circuit constituting a digital camera, and includes, for example, an AF circuit and a lens communication circuit, but may be other circuits.

次に、図2を参照して、実施形態1におけるストロボ発光シーケンスの一例を説明する。   Next, an example of the strobe light emission sequence in the first embodiment will be described with reference to FIG.

S101では、マイコン108によって制御される電池電圧検出回路107によって現在の電池電圧値を検出する。   In S101, the battery voltage detection circuit 107 controlled by the microcomputer 108 detects the current battery voltage value.

S102では、あらかじめメモリ110に格納された各電池電圧値におけるLEDストロボ電源回路100に供給可能な電流値より、S101で読み出した現在の電池電圧値における電池がLEDストロボ電源回路100に供給可能な電流値を読み出す。   In S <b> 102, the current that can be supplied to the LED strobe power circuit 100 by the battery at the current battery voltage value read in S <b> 101 from the current value that can be supplied to the LED strobe power circuit 100 at each battery voltage value stored in advance in the memory 110. Read the value.

S103では、マイコン108があらかじめ設定された、予備発光から本発光までの時間を読み出し、S102で計算したLEDストロボ電源回路100に供給可能な電流値において、予備発光から本発光までの間にキャパシタ102に充電可能な電荷量を計算する。   In S103, the microcomputer 108 reads a preset time from the preliminary light emission to the main light emission, and in the current value that can be supplied to the LED strobe power supply circuit 100 calculated in S102, the capacitor 102 between the preliminary light emission and the main light emission. Calculate the amount of charge that can be charged.

一般的に、キャパシタ102への充電は、定電流で行われるため、キャパシタ102に蓄積される電荷量Q[F]は、充電電流をI[A]、充電時間をt[sec]、キャパシタ102の静電容量をFとすると、0[V]からV[V]までキャパシタ102を充電する場合、Q=I×t=V×Fと表される。   In general, since the capacitor 102 is charged with a constant current, the charge amount Q [F] accumulated in the capacitor 102 is set to I [A] as the charging current, t [sec] as the charging time, and the capacitor 102. When the capacitor 102 is charged from 0 [V] to V [V], Q = I × t = V × F.

S104では、マイコン108が演算によって第1の電圧レベルを計算する。第1の電圧レベルはあらかじめメモリ110にデータとして格納された予備発光に必要な電荷量とフル発光に必要な電荷量の和とS103で計算した予備発光から本発光までの間に充電可能な電荷量の差から計算される。例えば、予備発光に必要な電荷量が0.006[C]、フル発光に必要な電荷量が0.1[C]であった場合、予備発光に必要な電荷量とフル発光に必要な電荷量の和は0.106[C]となる。   In S104, the microcomputer 108 calculates the first voltage level by calculation. The first voltage level is the sum of the charge amount necessary for preliminary light emission and the charge amount necessary for full light emission stored in advance in the memory 110 as data, and the charge that can be charged between the preliminary light emission and the main light emission calculated in S103. Calculated from the difference in quantity. For example, when the charge amount necessary for preliminary light emission is 0.006 [C] and the charge amount necessary for full light emission is 0.1 [C], the charge amount necessary for preliminary light emission and the charge necessary for full light emission The sum of the amounts is 0.106 [C].

予備発光から本発光までの時間を0.05[sec]、充電電流が1[A]の条件では、予備発光から本発光までの充電時間に充電可能な電荷量は0.05[C]となるため、予備発光に必要な電荷量とフル発光に必要な電荷量の和と、電荷量とS103で計算した予備発光から本発光までの間に充電可能な電荷量の差は、0.056C]となり、キャパシタ102静電容量を0.2[F]とした場合の第1の電圧レベルは約0.3[V]となる。   Under the condition that the time from the preliminary light emission to the main light emission is 0.05 [sec] and the charging current is 1 [A], the charge amount that can be charged during the charge time from the preliminary light emission to the main light emission is 0.05 [C]. Therefore, the difference between the charge amount necessary for preliminary light emission and the charge amount necessary for full light emission, and the charge amount and the charge amount chargeable between the preliminary light emission and the main light emission calculated in S103 are 0.056C. When the capacitance of the capacitor 102 is 0.2 [F], the first voltage level is about 0.3 [V].

S105では、S104で求められた第1の電圧レベルまでキャパシタ102の充電を行う。   In S105, the capacitor 102 is charged to the first voltage level obtained in S104.

S106では、予備発光を行い、AEセンサ109は予備発光を受光した際の受光結果をマイコン108へ送信する。   In S106, preliminary light emission is performed, and the AE sensor 109 transmits a light reception result when the preliminary light emission is received to the microcomputer 108.

S107では、マイコン108が演算によって第2の電圧レベルを計算する。第2の電圧レベルはあらかじめ設定されたISO、絞りの条件と、測光を行うAEセンサ109において、予備発光を受光した際の受光結果をもとに決定される本発光の発光形態によって決定される。例えばフル発光で必要な電圧レベルが0.53[V]であり、予備発光を受光した際の受光結果をもとに決定された本発光の発光形態が1/2発光であった場合、第2の電圧レベルは0.265[V]となる。   In S107, the microcomputer 108 calculates the second voltage level by calculation. The second voltage level is determined according to the preset emission and emission conditions determined by the preset ISO and aperture conditions, and the AE sensor 109 that performs photometry, based on the light reception result when the preliminary light emission is received. . For example, when the voltage level required for full light emission is 0.53 [V] and the light emission form of the main light emission determined based on the light reception result when the preliminary light emission is received is 1/2 light emission, The voltage level of 2 is 0.265 [V].

S108では、S107で決定した第2の電圧レベルまでキャパシタ102の充電を行う。   In S108, the capacitor 102 is charged up to the second voltage level determined in S107.

S109では、あらかじめ設定されたISO、絞りの条件と、測光を行う測光部において、予備発光を受光した際の受光結果をもとに決定された条件で本発光を行う。   In S109, the main light emission is performed under the conditions determined based on the preset ISO and aperture conditions and the light reception result when the preliminary light emission is received in the photometry unit that performs photometry.

次に、図3〜図5を参照して、電池電圧および本発光の形態によって、第1及び第2の電圧レベルがどのように変化するのかを説明する。   Next, how the first and second voltage levels change according to the battery voltage and the form of the main light emission will be described with reference to FIGS.

図3は電池電圧が高く、本発光としてフル発光を行う場合を説明するためのタイムチャートである。   FIG. 3 is a time chart for explaining the case where the battery voltage is high and full light emission is performed as the main light emission.

図3に示すタイムチャートでは、条件として電池電圧が高いため、LEDストロボ電源回路100に供給可能な電流は大きくなり、キャパシタ102の電圧レベルが充電開始から第1の電圧レベルおよび第2の電圧レベルまでに達する時間は短い。また、本発光ではフル発光を行うため、第2の電圧レベルは高く設定される。   In the time chart shown in FIG. 3, since the battery voltage is high as a condition, the current that can be supplied to the LED strobe power supply circuit 100 increases, and the voltage level of the capacitor 102 changes from the start of charging to the first voltage level and the second voltage level. The time to reach is short. In addition, since the full emission is performed in the main emission, the second voltage level is set high.

図4は電池電圧が低く、本発光としてフル発光を行う場合を説明するためのタイムチャートである。   FIG. 4 is a time chart for explaining the case where the battery voltage is low and full light emission is performed as the main light emission.

図4に示すタイムチャートでは、条件として電池電圧が低いため、LEDストロボ電源回路100に供給可能な電流は小さくなり、キャパシタ102の電圧レベルが充電開始から第1の電圧レベルおよび第2の電圧レベルに達するには時間を要する。そのため、第1の電圧レベルは高い値に設定される。   In the time chart shown in FIG. 4, since the battery voltage is low as a condition, the current that can be supplied to the LED strobe power supply circuit 100 is small, and the voltage level of the capacitor 102 changes from the start of charging to the first voltage level and the second voltage level. It takes time to reach Therefore, the first voltage level is set to a high value.

図5は電池電圧が高く、本発光として1/2発光を行う場合を説明するためのタイムチャートである。   FIG. 5 is a time chart for explaining the case where the battery voltage is high and half light emission is performed as main light emission.

図5に示すタイムチャートでは、条件として電池電圧が高いため、LEDストロボ電源回路100に供給可能な電流は大きくなり、キャパシタ102の電圧レベルが充電開始から第1の電圧レベルおよび第2の電圧レベルまでに達する時間は短い。また、本発光として1/2発光を行うため、第2の電圧レベルは本発光としてフル発光を行う場合に比べて低い値が設定される。   In the time chart shown in FIG. 5, since the battery voltage is high as a condition, the current that can be supplied to the LED strobe power supply circuit 100 increases, and the voltage level of the capacitor 102 changes from the start of charging to the first voltage level and the second voltage level. The time to reach is short. Further, since 1/2 light emission is performed as the main light emission, the second voltage level is set to a lower value than in the case of performing full light emission as the main light emission.

100 LEDストロボ電源回路、101 電池、102 充電部、103 充電回路、
104 電源制御回路部、105 発光部、106 抵抗、107 電池電圧検出回路、
108 回路制御部、109 測光部、110 メモリ、111 その他負荷回路、
112 電力供給部
100 LED strobe power supply circuit, 101 battery, 102 charging unit, 103 charging circuit,
104 power supply control circuit unit, 105 light emitting unit, 106 resistor, 107 battery voltage detection circuit,
108 circuit control unit, 109 photometry unit, 110 memory, 111 other load circuit,
112 Power supply unit

Claims (8)

電池の電圧を検出する電池電圧検出回路と、
前記電池より充電回路を通して所定の電圧値まで充電される充電部と、
前記電池および前記充電部である電力供給部より電力を供給され、発光部を所定の電流で発光させる電源制御回路部と
を有し、
前記充電部の電圧値は、予備発光前に行われる予備充電によって第1の電圧レベルに設定され、その後、予備発光後に行われる本充電によって第2の電圧レベルに設定されることを特徴とする電源回路。
A battery voltage detection circuit for detecting the voltage of the battery;
A charging unit charged to a predetermined voltage value from the battery through a charging circuit;
A power control circuit unit that is supplied with power from the battery and a power supply unit that is the charging unit, and causes the light emitting unit to emit light at a predetermined current;
The voltage value of the charging unit is set to a first voltage level by preliminary charging performed before preliminary light emission, and is then set to a second voltage level by main charging performed after preliminary light emission. Power supply circuit.
電池の電圧を検出する電池電圧検出回路と、
前記電池より充電回路を通して所定の電圧値まで充電される充電部と、
前記電池および前記充電部である電力供給部より電力を供給され、発光部を所定の電流で発光させる電源制御回路部と
を有し、
前記充電部の電圧値は、予備発光前に行われる予備充電によって第1の電圧レベルに設定され、その後、予備発光後に行われる本充電によって第2の電圧レベルに設定され、
前記第1の電圧レベルは、予備発光に必要な電荷量、フル発光に必要な電荷量、予備発光から本発光まで間に充電可能な電荷量をもとに前記回路制御部によって設定されることを特徴とする電源回路。
A battery voltage detection circuit for detecting the voltage of the battery;
A charging unit charged to a predetermined voltage value from the battery through a charging circuit;
A power control circuit unit that is supplied with power from the battery and a power supply unit that is the charging unit, and causes the light emitting unit to emit light at a predetermined current;
The voltage value of the charging unit is set to a first voltage level by preliminary charging performed before preliminary light emission, and then set to a second voltage level by main charging performed after preliminary light emission.
The first voltage level is set by the circuit control unit based on a charge amount necessary for preliminary light emission, a charge amount necessary for full light emission, and a charge amount chargeable between preliminary light emission and main light emission. A power circuit characterized by.
電池の電圧を検出する電池電圧検出回路と、
前記電池より充電回路を通して所定の電圧値まで充電される充電部と、
前記電池および前記充電部である電力供給部より電力を供給され、発光部を所定の電流で発光させる電源制御回路部と
を有し、
前記充電部の電圧値は、予備発光前に行われる予備充電によって第1の電圧レベルに設定され、その後、予備発光後に行われる本充電によって第2の電圧レベルに設定され、
前記第2の電圧レベルは、あらかじめ設定されたISO、絞りの条件と測光を行う測光部において、予備発光を受光した際の受光結果をもとに前記回路制御部によって設定されることを特徴とする電源回路。
A battery voltage detection circuit for detecting the voltage of the battery;
A charging unit charged to a predetermined voltage value from the battery through a charging circuit;
A power control circuit unit that is supplied with power from the battery and a power supply unit that is the charging unit, and causes the light emitting unit to emit light at a predetermined current;
The voltage value of the charging unit is set to a first voltage level by preliminary charging performed before preliminary light emission, and then set to a second voltage level by main charging performed after preliminary light emission.
The second voltage level is set by the circuit control unit based on a light reception result when a preliminary light emission is received in a photometry unit that performs preset ISO and aperture conditions and photometry. Power supply circuit.
第1の電圧レベルは、メモリに記憶された予備発光に必要な電荷量とフル発光に必要な電荷量の和と予備発光から本発光までの時間の間に充電可能な電荷量の差をもとに前記回路制御部によって設定されることを特徴とする請求項1乃至請求項3の何れか一項に記載の電源回路。   The first voltage level has a difference between the amount of charge necessary for preliminary light emission stored in the memory and the amount of charge necessary for full light emission and the amount of charge that can be charged during the time from preliminary light emission to main light emission. The power supply circuit according to any one of claims 1 to 3, wherein the power supply circuit is set by the circuit control unit. 予備発光から本発光までの間に充電可能な電荷量は、あらかじめ設定された予備発光から本発光までの時間と、前記メモリに記憶された前記電池の電圧値に応じた前記電源回路に供給可能な電流レベルとをもとに、前記回路制御部によって計算されることを特徴とする請求項1乃至請求項4の何れか一項に記載の電源回路。   The amount of charge that can be charged between the preliminary light emission and the main light emission can be supplied to the power supply circuit according to the preset time from the preliminary light emission to the main light emission and the voltage value of the battery stored in the memory. The power supply circuit according to claim 1, wherein the power supply circuit is calculated by the circuit control unit based on a current level. 前記電力供給部は、前記充電部であることを特徴とする請求項1乃至請求項5の何れか一項に記載の電源回路。   The power supply circuit according to any one of claims 1 to 5, wherein the power supply unit is the charging unit. 前記電力供給部は、前記電池であることを特徴とする請求項1乃至請求項6の何れか一項に記載の電源回路。   The power circuit according to claim 1, wherein the power supply unit is the battery. 前記電力供給部は、前記充電部および前記電池の双方であることを特徴とする請求項1乃至請求項7の何れか一項に記載の電源回路。   The power supply circuit according to any one of claims 1 to 7, wherein the power supply unit is both the charging unit and the battery.
JP2015186205A 2015-09-24 2015-09-24 Driving device Pending JP2017062274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186205A JP2017062274A (en) 2015-09-24 2015-09-24 Driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186205A JP2017062274A (en) 2015-09-24 2015-09-24 Driving device

Publications (1)

Publication Number Publication Date
JP2017062274A true JP2017062274A (en) 2017-03-30

Family

ID=58429640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186205A Pending JP2017062274A (en) 2015-09-24 2015-09-24 Driving device

Country Status (1)

Country Link
JP (1) JP2017062274A (en)

Similar Documents

Publication Publication Date Title
US7649343B2 (en) Charge control circuit, charging device, and connection checking method
JP5506498B2 (en) Secondary battery charging device and charging method
WO2016113791A1 (en) Cell device, charging control device, and charging control method
US9515505B2 (en) Charging method and charging device using the same
JP2008136330A (en) Charging system, charger, and battery pack
CN101803141A (en) Adaptive current limiting for any power source with output equivalent series resistance
JP6196466B2 (en) Power supply
KR101683603B1 (en) apparatus for balancing cell of battery pack and method thereof
JP2011082158A (en) Charge control method of battery pack
JP2017125680A (en) Battery control device
JP2014068468A (en) Charge control device
JP6641665B2 (en) Power storage state adjustment device, battery pack, load system, and power storage state adjustment method
JP6039239B2 (en) LIGHT EMITTING CONTROL DEVICE, ITS CONTROL METHOD, AND CONTROL PROGRAM
JP2017062274A (en) Driving device
JP2007259633A (en) Charging circuit and charging control method
JP6919701B2 (en) Power storage status adjustment device, battery pack, load system and storage status adjustment method
JP2013247716A (en) Secondary battery charging system and secondary battery charging method
JP2018055876A (en) Light-emitting device, control method of the same, and program
JP2004040869A (en) Method and apparatus for controlling secondary battery
JP5191002B2 (en) Charging device, discharging device and mode switching control method thereof
WO2018139135A1 (en) Power storage device and method for controlling charging of electric double-layer capacitor
JP6542113B2 (en) Parallel operation device of bidirectional DC-DC converter
JP2015138062A (en) LED strobe device
JP5979973B2 (en) LIGHT EMITTING CONTROL DEVICE, ITS CONTROL METHOD, AND CONTROL PROGRAM
JP2018207738A (en) Battery capacity learning system