JP2017061739A - Method of recovering rare earth element with green algae - Google Patents

Method of recovering rare earth element with green algae Download PDF

Info

Publication number
JP2017061739A
JP2017061739A JP2015208673A JP2015208673A JP2017061739A JP 2017061739 A JP2017061739 A JP 2017061739A JP 2015208673 A JP2015208673 A JP 2015208673A JP 2015208673 A JP2015208673 A JP 2015208673A JP 2017061739 A JP2017061739 A JP 2017061739A
Authority
JP
Japan
Prior art keywords
rare earth
scenedesmus
earth element
alga
belonging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015208673A
Other languages
Japanese (ja)
Inventor
博元 越川
Hiromoto Koshikawa
博元 越川
康弘 古橋
Yasuhiro Furuhashi
康弘 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Publication of JP2017061739A publication Critical patent/JP2017061739A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method of recovering rare earth elements which can recover low-concentration rare earth elements with high selectivity while reducing environmental load without environment contamination.SOLUTION: A method of recovering rare earth elements comprises the step of bringing green algae of Scenedesmus, or an algal processed product thereof, or an extract therefrom into contact with a rare earth element.SELECTED DRAWING: None

Description

本発明は、選択性の高い希土類元素の回収方法に関する。 The present invention relates to a method for recovering rare earth elements with high selectivity.

希土類元素(レアアース)は、蛍光体、蓄電池や発光ダイオードなどの電子部品の性能向上に必要不可欠な材料である。日本の廃棄物中には、世界の埋蔵量の10位内に該当する量の希土類元素が含まれており、希土類元素を廃棄物から回収し、国内で循環利用する技術の開発が求められている。従来、希土類元素を回収するために強酸等の化学薬品を使用する方法が知られているが、危険性や毒性が高く、環境への負荷が大きいという課題を有している。 Rare earth elements (rare earths) are indispensable materials for improving the performance of electronic parts such as phosphors, storage batteries and light emitting diodes. Japan's waste contains a rare earth element corresponding to the 10th place in the world's reserves, and there is a need to develop technology for recovering rare earth elements from waste and recycling them in Japan. Yes. Conventionally, a method of using a chemical such as a strong acid to recover a rare earth element is known, but it has a problem of high risk and toxicity and a large environmental load.

一方、環境への負荷が小さい希土類元素の回収方法として、微生物の生物作用によって希土類元素を吸着・分離する技術が開発されている。 On the other hand, as a method for recovering rare earth elements with a small environmental load, a technique for adsorbing and separating rare earth elements by the biological action of microorganisms has been developed.

特許文献1は、水溶液中の希土類イオンをクロレラ、あるいはスピルリナを用いて吸着する方法を開示する。しかし、クロレラを用いた方法では、金属に対する選択性が十分ではなく、希土類元素以外の金属も混入してしまう。 Patent Document 1 discloses a method of adsorbing rare earth ions in an aqueous solution using chlorella or spirulina. However, in the method using chlorella, the selectivity to the metal is not sufficient, and metals other than rare earth elements are also mixed.

特許文献2、および非特許文献1〜2は、溶液中で、硫酸性温泉より単離された紅藻を培養することにより、溶液に含まれる金属イオンを回収または除去する方法を開示する。しかし、希土類元素はpH2.5の条件下で回収されており、金属に対する選択性を向上するためには、さらにpH1という強酸条件にすることが必要である。工業スケールで回収する場合にこれらのpH条件で回収すると、反応条件の管理が困難であり、環境への負荷が大きいことが問題となる。 Patent Document 2 and Non-Patent Documents 1 and 2 disclose a method of recovering or removing metal ions contained in a solution by culturing red algae isolated from a sulfuric acid hot spring in the solution. However, rare earth elements are recovered under the condition of pH 2.5, and in order to improve the selectivity for metals, it is necessary to further make a strong acid condition of pH 1. When recovering at an industrial scale and recovering under these pH conditions, it is difficult to manage the reaction conditions, and there is a problem that the load on the environment is large.

特開平6−212309号公報JP-A-6-212309 特開2013−67826号公報JP2013-67826A

Minoda et al.,Appl Microbiol Biotechnol 2015 Feb;99(3):1513−9Minoda et al. , Appl Microbiol Biotechnol 2015 Feb; 99 (3): 1513-9 筑波大学・産業技術総合研究所・大阪大学・科学技術振興機構プレスリリース「硫酸性温泉紅藻が強酸性条件下でレアアースを効率的に吸収する」2014年10月1日University of Tsukuba, National Institute of Advanced Industrial Science and Technology, Osaka University, Japan Science and Technology Agency Press Release “Sulfuric hot spring red algae efficiently absorb rare earths under strongly acidic conditions” October 1, 2014

環境汚染を起こさず、環境への負荷を低減しつつ、低濃度の希土類元素を高い選択性で回収できる希土類元素の回収方法を提供することを課題とする。 It is an object of the present invention to provide a method for recovering rare earth elements that can recover a low concentration of rare earth elements with high selectivity while reducing environmental burden without causing environmental pollution.

本発明は、イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を含む、希土類元素の回収方法に関する。 The present invention relates to a method for recovering a rare earth element, which comprises a step of bringing a green algae belonging to squid duck, a processed alga body thereof, or an extract thereof into contact with the rare earth element.

イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を、pH5〜9で行うことが好ましい。 It is preferable to carry out the step of bringing the green algae belonging to squid duck or the processed alga body thereof or the extract thereof into contact with a rare earth element at a pH of 5 to 9.

希土類元素がイットリウム、ユーロピウム、ネオジム、またはジスプロシウムであることが好ましい。 The rare earth element is preferably yttrium, europium, neodymium, or dysprosium.

イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を、グルコースの存在条件下で行うことが好ましい。 It is preferable to perform the step of contacting the green algae belonging to squid duck, the processed alga body thereof, or these extracts with a rare earth element under the presence of glucose.

藻体処理物が加熱乾燥物、凍結乾燥物、または減圧乾燥物であることが好ましい。 It is preferable that the processed alga body is a heat-dried product, a freeze-dried product, or a dried product under reduced pressure.

イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物が担体に固定化され、または膜に包含されていることが好ましい。 It is preferable that a green alga belonging to squid duck, a processed product of the alga body, or an extract thereof be immobilized on a carrier or included in a membrane.

イカダモに属する緑藻が、Scenedesmus属に属する緑藻であることが好ましい。 It is preferable that the green algae belonging to Ikadamo is a green algae belonging to the genus Scenedesmus.

イカダモに属する緑藻が、Scenedesmus acuminatusに属する緑藻であることが好ましい。 It is preferable that the green algae belonging to Ikadamo is a green algae belonging to Scenedesmus acumintus.

また、本発明は、イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を含む、希土類元素の回収剤に関する。 Moreover, this invention relates to the collection | recovery agent of rare earth elements containing the green algae which belong to squid duck, its alga body processed material, or these extracts.

イカダモに属する緑藻が、Scenedesmus属に属する緑藻であることが好ましい。 It is preferable that the green algae belonging to Ikadamo is a green algae belonging to the genus Scenedesmus.

イカダモに属する緑藻が、Scenedesmus acuminatusに属する緑藻であることが好ましい。 It is preferable that the green algae belonging to Ikadamo is a green algae belonging to Scenedesmus acumintus.

本発明の希土類元素の回収方法および回収剤によれば、低濃度の希土類元素を、環境に過大な負荷を掛けることなく選択的に回収でき、資源の有効利用と地球環境の保全に顕著な寄与をすることが期待される。 According to the rare earth element recovery method and recovery agent of the present invention, a low concentration of rare earth elements can be selectively recovered without overloading the environment, contributing significantly to the effective use of resources and the preservation of the global environment. It is expected to do.

緑藻によるEuの収着を示す。The sorption of Eu by green algae is shown. 緑藻によるYの収着を示す。The sorption of Y by green algae is shown. Sample8によるEuの収着の経時変化を示す。The time course of Eu sorption by Sample 8 is shown. 図4A〜Cは、それぞれalgaeA〜Cの顕微鏡観察図である。4A to C are microscopic observation views of algae A to C, respectively. Sample8を構成するalgaeA〜CによるEuの収着を示す。The sorption of Eu by algaeA-C which comprises Sample8 is shown. 図6AはalgaeAによるEuの収着を示す。図6BはalgaeAによるYの収着を示す。FIG. 6A shows Eu sorption by algaeA. FIG. 6B shows Y sorption by algaeA. 図7AはalgaeBによるEuの収着を示す。図7BはalgaeBによるYの収着を示す。FIG. 7A shows Eu sorption by algaeB. FIG. 7B shows Y sorption by algaeB. 図8Aは無炭素・明条件、図8Bは無炭素・暗条件、図8Cはグルコース添加・明条件、図8Dはグルコース添加・暗条件での、algaeAによる金属の収率を示す。FIG. 8A shows the yield of metal by algaeA under carbonless / light conditions, FIG. 8B shows carbonless / dark conditions, FIG. 8C shows glucose addition / light conditions, and FIG. 8D shows glucose addition / dark conditions. 緑藻によるNd、Eu、Dy、Yの収着を示す。The sorption of Nd, Eu, Dy, Y by green algae is shown.

本発明は、イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を含む、希土類元素の回収方法に関する。 The present invention relates to a method for recovering a rare earth element, which comprises a step of bringing a green algae belonging to squid duck, a processed alga body thereof, or an extract thereof into contact with the rare earth element.

本発明では、緑藻として、イカダモを使用する。イカダモを使用することにより、希土類元素以外の元素の混入を抑えつつ、希土類元素を選択的に回収できる。
イカダモとしては、Scenedesmus属、またはDesmodesmus属に属する緑藻が挙げられる。本発明では、これらの中でもScenedesmus属に属するイカダモを使用することが好ましい。Scenedesmus属は、Acutodesmus属という別名で呼称されることもある。
In the present invention, squid shellfish is used as the green algae. By using squid damo, rare earth elements can be selectively recovered while suppressing the mixing of elements other than rare earth elements.
Examples of the squid damo include green alga belonging to the genus Scenedesmus or the genus Desmodesmus. In the present invention, among these, it is preferable to use Ikadamamo belonging to the genus Scenedesmus. The Scenedesmus genus may also be referred to by the alias Actodedesmus genus.

Scenedesmus属としては、Scenedesmus acuminatus(Acutodesmus acuminatus)、Scenedesmus abundans、Scenedesmus acutus、Scenedesmus armatus、Scenedesmus balatonicus、Scenedesmus brasiliensis、Scenedesmus carinatus、Scenedesmus circumfusus、Scenedesmus communis、Scenedesmus costatus、Scenedesmus dactyloccoides、Scenedesmus denticulatus、Scenedesmus dispar、Scenedesmus elegans、Scenedesmus ecornis、Scenedesmus granulatus、Scenedesmus intermedius、Scenedesmus javanensis、Scenedesmus longispina、Scenedesmus maximus、Scenedesmus microspina、Scenedesmus nanus、Scenedesmus oahuensis、Scenedesmus opoliensis、Scenedesmus pannonicus、Scenedesmus pecsensis、Scenedesmus perforates、Scenedesmus polyglobulus、Scenedesmus polydenticulatus、Scenedesmus product−capitatus、Scenedesmus protuberans、Scenedesmus quadricauda、Scenedesmus qutwinskii、Scenedesmus raciborskii、Scenedesmus rostrato−spinosus、Scenedesmus serratus、Scenedesmus sooi、Scenedesmus spinosus、Scenedesmus spicatus、Scenedesmus unicus、Scenedesmus vesiculosusが挙げられる。これらの中でも、Scenedesmus acuminatusであることが好ましい。 The Scenedesmus genus, Scenedesmus acuminatus (Acutodesmus acuminatus), Scenedesmus abundans, Scenedesmus acutus, Scenedesmus armatus, Scenedesmus balatonicus, Scenedesmus brasiliensis, Scenedesmus carinatus, Scenedesmus circumfusus, Scenedesmus communis, Scenedesmus costatus, Scenedesmus dactyloccoides, Scenedesmus denticulatus, Scenedesmus dispar, Scened esmus elegans, Scenedesmus ecornis, Scenedesmus granulatus, Scenedesmus intermedius, Scenedesmus javanensis, Scenedesmus longispina, Scenedesmus maximus, Scenedesmus microspina, Scenedesmus nanus, Scenedesmus oahuensis, Scenedesmus opoliensis, Scenedesmus pannonicus, Scenedesmus pecsensis, Scenedesmus perforates, Scenedesmus polyglobulus, Scenedesmus olydenticulatus, Scenedesmus product-capitatus, Scenedesmus protuberans, Scenedesmus quadricauda, Scenedesmus qutwinskii, Scenedesmus raciborskii, Scenedesmus rostrato-spinosus, Scenedesmus serratus, Scenedesmus sooi, Scenedesmus spinosus, Scenedesmus spicatus, Scenedesmus unicus, include Scenedesmus vesiculosus. Among these, Scenedesmus accuminatus is preferable.

Desmodesmus属としては、Desmodesmus abundans、Desmodesmus acuminatus、Desmodesmus acutus、Desmodesmus armatus、Desmodesmus balatonicus、Desmodesmus brasiliensis、Desmodesmus carinatus、Desmodesmus circumfusus、Desmodesmus communis、Desmodesmus costatus、Desmodesmus dactyloccoides、Desmodesmus denticulatus、Desmodesmus dispar、Desmodesmus elegans、Desmodesmus ecornis、Desmodesmus granulatus、Desmodesmus intermedius、Desmodesmus javanensis、Desmodesmus longispina、Desmodesmus maximus、Desmodesmus microspina、Desmodesmus nanus、Desmodesmus oahuensis、Desmodesmus opoliensis、Desmodesmus pannonicus、Desmodesmus pecsensis、Desmodesmus perforates、Desmodesmus polyglobulus、Desmodesmus polydenticulatus、Desmodesmus product−capitatus、Desmodesmus protuberans、Desmodesmus quadricauda、Desmodesmus qutwinskii、Desmodesmus raciborskii、Desmodesmus rostrato−spinosus、Desmodesmus serratus、Desmodesmus sooi、Desmodesmus spinosus、Desmodesmus spicatus、Desmodesmus unicus、Desmodesmus vesiculosusが挙げられる。 As a Desmodesmus species, Desmodesmus abundans, Desmodesmus acuminatus, Desmodesmus acutus, Desmodesmus armatus, Desmodesmus balatonicus, Desmodesmus brasiliensis, Desmodesmus carinatus, Desmodesmus circumfusus, Desmodesmus communis, Desmodesmus costatus, Desmodesmus dactyloccoides, Desmodesmus denticulatus, Desmodesmus dispar, Desmodesmus elegans, Desmodesmu s ecornis, Desmodesmus granulatus, Desmodesmus intermedius, Desmodesmus javanensis, Desmodesmus longispina, Desmodesmus maximus, Desmodesmus microspina, Desmodesmus nanus, Desmodesmus oahuensis, Desmodesmus opoliensis, Desmodesmus pannonicus, Desmodesmus pecsensis, Desmodesmus perforates, Desmodesmus polyglobulus, Desmodesmus polydenticulatus, Desmode mus product-capitatus, Desmodesmus protuberans, Desmodesmus quadricauda, Desmodesmus qutwinskii, Desmodesmus raciborskii, Desmodesmus rostrato-spinosus, Desmodesmus serratus, Desmodesmus sooi, Desmodesmus spinosus, Desmodesmus spicatus, Desmodesmus unicus, include Desmodesmus vesiculosus.

イカダモは、その18S rDNA配列によっても同定され得る。本発明において使用されるイカダモの18S rDNA配列は、配列番号1に記載の塩基配列と90%以上の相同性を有することが好ましく、95%以上の相同性を有することがより好ましく、98%以上の相同性を有することがさらに好ましく、99%以上の相同性を有することが特に好ましい。 Squidamo can also be identified by its 18S rDNA sequence. The 18S rDNA sequence of Ikadamo used in the present invention preferably has 90% or more homology with the base sequence described in SEQ ID NO: 1, more preferably 95% or more, and more preferably 98% or more. It is further preferable to have a homology of 99% or more.

イカダモに属する緑藻は、通常の方法により培養することができる。たとえば、リン、窒素、炭素、微量元素(ホウ素、マンガン、亜鉛、銅、モリブデン、鉄)を含む液体培地中で、20〜30℃、好ましくは20〜25℃で、4〜17日間、好ましくは7〜14日間培養する方法が挙げられる。 Green algae belonging to Ikadamo can be cultured by a usual method. For example, in a liquid medium containing phosphorus, nitrogen, carbon, and trace elements (boron, manganese, zinc, copper, molybdenum, iron), 20-30 ° C, preferably 20-25 ° C, preferably 4-17 days, A method of culturing for 7 to 14 days can be mentioned.

イカダモに属する緑藻としては、イカダモを培養して得られる培養液を用いることもでき、イカダモの培養液から液体成分を除去して得られる藻体を用いることもできる。藻体は湿潤藻体であってもよく、乾燥藻体であってもよい。湿潤藻体を使用する場合には、培養後のイカダモを超純水で洗浄した後、使用することができる。 As the green algae belonging to Ikadamo, a culture solution obtained by culturing Ikadamo can also be used, and an algal body obtained by removing liquid components from the culture solution of Ikadamo can also be used. The algal body may be a wet alga body or a dry alga body. When using a wet algal body, it can be used after washing | cleaning ikadamo after culture | cultivation with an ultrapure water.

希土類元素を回収するために、イカダモに属する緑藻の藻体処理物を用いることもできる。藻体処理物としては、藻体の凍結乾燥物、減圧乾燥物、加熱乾燥物、濃縮物、ペースト化処理物、希釈物が挙げられる。 In order to recover the rare earth element, a processed product of green algae belonging to Ikadamo can also be used. Examples of the processed alga body include a freeze-dried product, a dried product under reduced pressure, a dried product by heating, a concentrated product, a processed paste product, and a diluted product.

希土類元素を回収するために、イカダモに属する緑藻、またはその藻体処理物の抽出物を用いることもできる。当該抽出物は、希土類元素の収着に寄与する、酵素、構造タンパク質、細胞膜、細胞壁等を含有するものであることが好ましい。 In order to recover rare earth elements, green algae belonging to Ikadamo or extracts of processed alga bodies can also be used. The extract preferably contains an enzyme, a structural protein, a cell membrane, a cell wall, or the like that contributes to the sorption of rare earth elements.

希土類元素は、元素周期表で3族に分類されているスカンジウム(Sc)、イットリウム(Y)、およびランタノイドである。ランタノイドにはセリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Td)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)が含まれる。本発明で回収される希土類元素は、イットリウム、ユーロピウム、ネオジム、ジスプロシウムが好ましい。希土類元素は、塩として存在していてもよい。このような塩としては、たとえばYCl、EuCl、NdCl、DyClが挙げられる。 The rare earth elements are scandium (Sc), yttrium (Y), and lanthanoids classified into Group 3 in the periodic table. Lanthanoids include cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Td), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu). The rare earth element recovered in the present invention is preferably yttrium, europium, neodymium, or dysprosium. The rare earth element may be present as a salt. Examples of such salts include YCl 3 , EuCl 3 , NdCl 3 , and DyCl 3 .

イカダモに属する緑藻と希土類元素との接触方法は、イカダモに希土類元素が収着できれば特に限定されない。例えば、イカダモの湿潤藻体を超純水に懸濁し、その懸濁液と、希土類元素の含有液とを混合して反応させる方法が挙げられる。本発明の回収方法では、溶液中の希土類元素の濃度が低い場合でも希土類元素を効率的に回収できる。イカダモと希土類元素とを含む反応液中の、希土類元素の濃度は、0.5mg/L以下であってもよく、50mg/L以下であってもよい。 The contact method between the green alga belonging to Ikadamo and the rare earth element is not particularly limited as long as the rare earth element can be sorbed by Ikadamo. For example, a wet alga body of squid shellfish is suspended in ultrapure water, and the suspension and a rare earth element-containing liquid are mixed and reacted. In the recovery method of the present invention, the rare earth element can be efficiently recovered even when the concentration of the rare earth element in the solution is low. The concentration of the rare earth element in the reaction liquid containing squid damo and the rare earth element may be 0.5 mg / L or less, or 50 mg / L or less.

イカダモに属する緑藻と希土類元素とを含む反応液のpH条件は、pH5〜9であることが好ましく、pH6〜8であることがより好ましく、pH7〜8であることがさらに好ましい。pH9を超えると希土類元素が不溶性塩を形成するという傾向がある。pH5未満では収着量が減少するという傾向がある。 The pH condition of the reaction solution containing green algae belonging to squid duck and rare earth elements is preferably pH 5-9, more preferably pH 6-8, and even more preferably pH 7-8. When the pH exceeds 9, the rare earth element tends to form an insoluble salt. If the pH is less than 5, the sorption amount tends to decrease.

イカダモに属する緑藻と希土類元素とを含む反応液の温度は、20〜30℃であることが好ましく、20〜25℃であることがより好ましい。光条件は、明条件でもよく、暗条件でもよい。イカダモと希土類元素との接触時間は、としては、12〜24時間が挙げられる。 The temperature of the reaction solution containing green algae belonging to squid duck and rare earth elements is preferably 20 to 30 ° C, and more preferably 20 to 25 ° C. The light condition may be a bright condition or a dark condition. Examples of the contact time between the squid duck and the rare earth element include 12 to 24 hours.

イカダモに属する緑藻と希土類元素とを含む反応液は、さらに炭素源を含むことが好ましい。炭素源を含むことにより、希土類元素に対する回収の効率を改善できる。炭素源としては、グルコース、ラクトース、スクロース、マルトースが挙げられる。炭素源の濃度は100〜1000mg/Lであることが好ましい。また、イカダモと希土類元素とを含む反応液に、二酸化炭素ガスを通気することによって炭素を供給することもできる。 It is preferable that the reaction liquid containing the green alga belonging to Ikadamo and the rare earth element further contains a carbon source. By including a carbon source, the recovery efficiency for rare earth elements can be improved. Examples of the carbon source include glucose, lactose, sucrose, and maltose. The concentration of the carbon source is preferably 100 to 1000 mg / L. Moreover, carbon can also be supplied by bubbling carbon dioxide gas through a reaction solution containing squid duck and rare earth elements.

イカダモに属する緑藻に希土類元素を収着させた後、イカダモに属する緑藻を遠心分離により沈殿させ、当該沈殿物に溶出剤を添加することにより、イカダモから希土類元素を溶出できる。溶出剤としては酸溶液が挙げられ、この中でもHNOが好ましい。希土類元素の収着量は、たとえば高周波誘導結合プラズマ発光分析法(ICP発光分析法)を用いて測定できる。 After sorption of rare earth elements to green algae belonging to Ikadamo, the green algae belonging to Ikadamo are precipitated by centrifugation, and an eluent is added to the precipitate, whereby the rare earth elements can be eluted from Ikadamo. Examples of the eluent include an acid solution, and among these, HNO 3 is preferable. The sorption amount of the rare earth element can be measured using, for example, a high frequency inductively coupled plasma emission analysis method (ICP emission analysis method).

また、本発明は、イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を含む希土類元素の回収剤に関する。回収剤の形態としては、ペレット、錠剤、培養物が挙げられる。回収剤は軽量で保存性が良好であり、希土類元素の濃度や、希土類元素を含む溶液の液量に応じて適切な個数を設定し、必要なときに、必要な量を使用することができる。 Moreover, this invention relates to the collection | recovery agent of the rare earth elements containing the green algae which belong to a squid duck, or its alga-body processed material, or these extracts. Examples of the form of the recovery agent include pellets, tablets, and cultures. The collection agent is lightweight and has good storage stability. An appropriate number can be set according to the concentration of the rare earth element and the amount of the solution containing the rare earth element, and the necessary amount can be used when necessary. .

回収剤は、イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物以外に、賦形剤、安定化剤、酸化防止剤を含んでいてもよい。 The recovery agent may contain an excipient, a stabilizer, and an antioxidant in addition to the green algae belonging to squid duck, or a processed product of the alga body, or an extract thereof.

希土類元素の回収方法において、イカダモに属する緑藻の藻体、藻体処理物、藻体抽出物は、担体に固定化した状態で希土類元素と接触させてもよい。藻体、藻体処理物、藻体抽出物を担体に固定化した状態で希土類元素と接触させることにより、希土類元素の回収を、より短時間に、大量に行うことができ、藻体、藻体処理物、藻体抽出物を処理対象液から回収し、再利用することも可能となる。 In the method for recovering rare earth elements, the alga bodies, processed alga bodies, and algal body extracts of green algae belonging to squid duck may be contacted with the rare earth elements in a state of being immobilized on a carrier. By bringing algae bodies, algae body processed products, and algae body extracts into contact with rare earth elements in a state of being immobilized on a carrier, the collection of rare earth elements can be carried out in large quantities in a shorter time. The body treatment product and the algal extract can be recovered from the treatment target liquid and reused.

藻体、藻体処理物、藻体抽出物を固定するための担体としては、アルミナ、シリカ、活性炭、ポリアクリルアミド等の合成樹脂、カラギーナン等の多糖が挙げられる。藻体、藻体処理物、藻体抽出物の担体への固定化は、架橋剤を用いて行うこともできる。藻体、藻体処理物、藻体抽出物を固定化した担体を固定化担体ともいい、一般に、生体触媒を固定化した担体は固定化生体触媒として知られている。藻体、藻体処理物、藻体抽出物をカプセルに入れることも固定化法に該当する。包括固定により、藻体、藻体処理物、藻体抽出物を保護し、高濃度に保持することができる。その結果、回収剤の長期利用、高濃度化による高効率化に寄与できる。 Examples of the carrier for immobilizing algal bodies, processed algal bodies, and algal body extracts include synthetic resins such as alumina, silica, activated carbon, and polyacrylamide, and polysaccharides such as carrageenan. Immobilization of the algal body, the processed algal body, and the algal body extract to the carrier can also be performed using a crosslinking agent. A carrier on which algal bodies, processed alga bodies, and algal body extracts are immobilized is also referred to as an immobilized carrier. In general, a carrier on which a biocatalyst is immobilized is known as an immobilized biocatalyst. Putting alga bodies, processed alga bodies, and algal body extracts into capsules also falls under the immobilization method. By inclusion fixing, alga bodies, processed alga bodies, and algal body extracts can be protected and kept at a high concentration. As a result, it is possible to contribute to high efficiency by long-term use of the recovery agent and high concentration.

藻体、藻体処理物、藻体抽出物を固定化した担体と、希土類元素との接触方法としては、浮遊法と、カラムを利用した接触方法が挙げられる。 Examples of the contact method between the algal body, the processed algal body, the carrier on which the algal extract is immobilized, and the rare earth element include a floating method and a contact method using a column.

浮遊法では、藻体、藻体処理物、藻体抽出物、またはこれらを固定化した担体を、反応液中で浮遊した状態で希土類元素と接触させる。藻体、藻体処理物、藻体抽出物を担体に固定化した固定化担体の比重は1に近いことが好ましい。比重を1に近づけることにより水中における浮遊性が改善し、希土類元素と藻体、藻体処理物、藻体抽出物との相対的な接触面積が増大し、収着効率を改善できる。一般的に、水処理では、固定化担体を浮遊させるための空気吹き込みのためのブロアや撹拌などに必要な電力が、コストの7割程度を占めるといわれており、固定化担体そのものの浮遊性を改善できれば処理コストを低減できる。また、藻体は沈降しやすいため、適切な浮力を与えることにより希土類元素との接触面積を増大でき、回収効率を改善できる。 In the floating method, an algal body, a processed algal body, an algal body extract, or a carrier on which these are immobilized is brought into contact with a rare earth element in a suspended state in a reaction solution. The specific gravity of the immobilized carrier obtained by immobilizing the algal body, the processed alga body, and the algal body extract on the carrier is preferably close to 1. By bringing the specific gravity closer to 1, the floating property in water is improved, and the relative contact area between the rare earth element and the algal body, the processed algal body, and the algal body extract is increased, and the sorption efficiency can be improved. In general, in water treatment, it is said that the power required for blower and stirring for air blowing to suspend the immobilization carrier accounts for about 70% of the cost. If it can improve, processing cost can be reduced. In addition, since alga bodies are likely to settle, the contact area with the rare earth element can be increased by providing an appropriate buoyancy, and the recovery efficiency can be improved.

カラムを利用した接触方法では、藻体、藻体処理物、藻体抽出物を固定化した担体をカラムに充填し、このカラムに希土類元素を含む溶液を通液し、希土類元素を選択的に収着する。その後、必要があれば適切な条件でカラムを洗浄し、収着した希土類元素を脱着することにより、希土類元素をその濃縮液として回収できる。希土類元素の脱着は、pHの変化、温度の変化、加圧・減圧、電圧の印加、光条件の変化によって行うことができる。カラムへの希土類元素を含む溶液の通液方向は、上向流でもよく、下向流でもよい。上向流とすることにより、カラム中で固定化担体が充填されているカラムベッドを処理対象液で満たせるため、収着が容易となる。下向流とする場合には、自然流下であることからカラムへの通液エネルギーが不要である。 In the contact method using a column, a carrier on which algal bodies, processed algal bodies, and algal body extracts are immobilized is packed into a column, and a solution containing rare earth elements is passed through the column to selectively remove rare earth elements. Sorption. Thereafter, if necessary, the column is washed under appropriate conditions, and the sorbed rare earth element is desorbed, whereby the rare earth element can be recovered as a concentrated liquid. The desorption of rare earth elements can be performed by changing pH, changing temperature, pressurizing / depressurizing, applying voltage, and changing light conditions. The flow direction of the solution containing the rare earth element to the column may be an upward flow or a downward flow. By setting the upward flow, the column bed filled with the immobilization carrier in the column can be filled with the liquid to be treated, so that sorption becomes easy. In the case of a downward flow, since it is a natural flow, liquid passing energy to the column is unnecessary.

藻体、藻体処理物、藻体抽出物との接触は、膜分離処理法と組み合わせて行うこともできる。具体的には、藻体、藻体処理物、藻体抽出物、あるいはそれらを担持させた担体を膜に包み、処理対象液と接触させる。この方法により藻体、藻体処理物、藻体抽出物、あるいはそれらを担持させた担体を高濃度に保持できるとともに、膜で保護できる。膜としては、メンブレン、半透膜、セラミック膜が挙げられる。藻体、藻体処理物、藻体抽出物、あるいはそれらを担持させた担体を包む膜をモジュール化し、必要に応じて、モジュールの増減、交換を行うこともできる。 The contact with the alga body, the alga body processed product, and the algal body extract can be performed in combination with a membrane separation treatment method. Specifically, an alga body, an alga body processed product, an algal body extract, or a carrier carrying them is wrapped in a membrane and brought into contact with a liquid to be processed. By this method, alga bodies, processed alga bodies, algal body extracts, or carriers carrying them can be maintained at a high concentration and can be protected with a membrane. Examples of the membrane include a membrane, a semipermeable membrane, and a ceramic membrane. Membranes enclosing the alga bodies, the processed alga bodies, the algal body extracts, or the carrier carrying them can be modularized, and the modules can be increased or decreased and replaced as necessary.

(参考例1)緑藻の採取及び培養
複数の環境中より、緑藻を含む水を採取した。緑藻を、P(リン)、N(窒素)、C(炭素)、および微量のミネラルを含有した培養液中で、温度23℃、明暗12時間の条件で培養した。培養液成分は表1〜3に示す。表2〜3に示すA5 solution、Fe solutionは、1000倍に希釈して培養液に加えた。
(Reference Example 1) Collection and cultivation of green algae Water containing green algae was collected from a plurality of environments. Green algae were cultured in a culture solution containing P (phosphorus), N (nitrogen), C (carbon), and a trace amount of minerals at a temperature of 23 ° C. for 12 hours in the dark and light. Culture fluid components are shown in Tables 1-3. A5 solution and Fe solution shown in Tables 2-3 were diluted 1000 times and added to the culture solution.

定常期に達した緑藻を遠沈管に分注し、超純水で洗菌した後、藻体の湿重量を測定した。100mg/LのEuClまたはYCl溶液を加え、23℃、明所の条件で24時間振とうした。 Green algae that reached the stationary phase were dispensed into a centrifuge tube, washed with ultrapure water, and then the wet weight of the alga bodies was measured. 100 mg / L EuCl 3 or YCl 3 solution was added, and the mixture was shaken for 24 hours at 23 ° C. in a bright place.

24時間の振とうの終了後、緑藻と金属溶液を遠心分離し、緑藻を超純水で洗菌した。0.1M HNOを加えて1時間静置することで、藻体中の金属を溶出した。その後再度遠心分離した。HNO溶液に含まれるEu、Yの金属量を、緑藻の収着による希土類元素(レアアース)の回収量とし、分離した金属溶液と0.1M HNO溶液に含まれるEuとYの濃度を、高周波誘導結合プラズマ発光分析法(ICP発光分析法)を用いて測定した。 After the 24-hour shaking, the green algae and the metal solution were centrifuged, and the green algae were washed with ultrapure water. 0.1M HNO 3 was added and allowed to stand for 1 hour to elute the metal in the algal cells. Then it was centrifuged again. The amount of Eu and Y contained in the HNO 3 solution is defined as the amount of rare earth elements (rare earth) recovered by sorption of green algae, and the concentration of Eu and Y contained in the separated metal solution and 0.1 M HNO 3 solution Measurement was performed using a high frequency inductively coupled plasma optical emission spectrometry (ICP optical emission spectrometry).

Eu、Yの収着が確認できた24サンプルについて、藻体の湿重量1gあたりのEuの収着量を図1に、Yの収着量を図2に示す。図1〜2に示すように、Sample8(S8)は多くの希土類元素を回収できる。 For 24 samples in which Eu and Y sorption was confirmed, the sorption amount of Eu per 1 g of wet weight of the alga is shown in FIG. 1, and the sorption amount of Y is shown in FIG. As shown in FIGS. 1-2, Sample8 (S8) can collect many rare earth elements.

さらに、EuClの濃度を100mg/Lとしたときの、Sample8によるEuの収着の経時変化を検討した。その結果を図3に示す。図3において、黒色は藻体単位質湿重量あたりの希土類元素の収着量を表し、白色は回収率を表す。図3に示されるように、Sample8を用いた場合、緑藻を希土類元素と接触させると、希土類元素の収着は速やかに開始され、24時間で終了すると考えられる。 Furthermore, the time course of Eu sorption by Sample 8 was examined when the EuCl 3 concentration was 100 mg / L. The result is shown in FIG. In FIG. 3, black represents the sorption amount of the rare earth element per algal body unit wet weight, and white represents the recovery rate. As shown in FIG. 3, when Sample 8 is used, when green algae are brought into contact with the rare earth element, sorption of the rare earth element is started rapidly and is considered to end in 24 hours.

(実施例1、比較例1〜2)藻類の単離
参考例1で選択したSample8には、複数の藻類が混合した群集態が含まれていた。希土類元素の収着に寄与する藻類を単離するために、顕微鏡を用いてピペット洗浄法で藻類を単離し、無機栄養培地で培養を行った。その結果、3種の緑藻を単離できた。便宜上、単離した藻類をalgaeA、algaeB、algaeCとした。algaeA〜Cの顕微鏡観察図を、それぞれ図4A〜Cに示す。
(Example 1, Comparative Examples 1 and 2) Isolation of algae Sample 8 selected in Reference Example 1 contained a community state in which a plurality of algae were mixed. In order to isolate algae that contribute to the sorption of rare earth elements, the algae were isolated by pipette washing using a microscope and cultured in an inorganic nutrient medium. As a result, three types of green algae could be isolated. For convenience, the isolated algae were designated as algaeA, algaeB, and algaeC. FIGS. 4A to C show microscopic views of algae A to C, respectively.

単離したalgaeAの藻体(実施例1)、およびalgaeB〜Cの藻体(比較例1〜2)を用いて、参考例1に記載の方法により、再度、Euの収着を行った。実施例1および比較例1〜2の結果を図5に示す。図5から、algaeAは藻類群の中ではEuの収着に大きく寄与し、algaeCはEuの収着にほとんど寄与しないことが分かった。その後、顕微鏡観察を繰り返し行った結果、algaeAはイカダモに属し、algaeCはクロレラに属すると判定した。 Eu sorption was again performed by the method described in Reference Example 1 using the isolated algae bodies of Algae A (Example 1) and algae B to C (Comparative Examples 1 and 2). The results of Example 1 and Comparative Examples 1 and 2 are shown in FIG. FIG. 5 shows that algaeA greatly contributed to Eu sorption in the algae group, and algaeC hardly contributed to Eu sorption. Thereafter, as a result of repeated microscopic observations, it was determined that algaeA belongs to squid damo and algaeC belongs to chlorella.

(実施例2、比較例3)algaeAおよびalgaeBによる希土類元素の収着試験
より多くの希土類元素を回収できる最適条件を探るため、algaeA(実施例2)とalgaeB(比較例3)について、光条件、および炭素条件が希土類元素の回収効率に及ぼす効果を検討した。人工気象器内おいて24時間の金属溶液の接触時に明所と暗所の2系列を設定した。また、金属溶液に含まれる炭素源を0mg/L(control)、100mg−C12/L、またはCOガスの3系列に設定し、希土類元素の収着量を比較した。algaeAによる希土類元素の収着量を図6A〜Bに示し、algaeBによる希土類元素の収着量を図7A〜Bに示す。図6〜7において、白色は明所での回収結果を表し、黒色は暗所での回収結果を表す。
(Example 2, Comparative Example 3) In order to find the optimum conditions for recovering more rare earth elements than the sorption test of rare earth elements with algae A and algae B, the light conditions for algae A (Example 2) and algae B (Comparative Example 3) The effects of carbon and carbon conditions on the recovery efficiency of rare earth elements were investigated. Two series of light and dark places were set when the metal solution contacted for 24 hours in an artificial meteorograph. In addition, the carbon source contained in the metal solution was set to 3 series of 0 mg / L (control), 100 mg-C 6 H 12 O 6 / L, or CO 2 gas, and the sorption amount of rare earth elements was compared. The sorption amount of the rare earth element by algaeA is shown in FIGS. 6A to B, and the sorption amount of the rare earth element by algaeB is shown in FIGS. 6-7, white represents the collection result in a bright place, and black represents the collection result in a dark place.

図6A〜Bに示されるように、algaeA(実施例2)は光の有無によってEuの収着量は変化せず、グルコース、CO存在下ではEuの収着量は減少した。一方、Yの収着量は、炭素源が存在しない、またはCO存在下の時、光条件による収着量は大きく変化しないが、グルコース存在下では暗所の場合に収着量が増大した。またCO存在下では光条件に関わらず、炭素源が存在しない場合と比較して収着量が増大した。 As shown in FIGS. 6A and 6B, algae A (Example 2) did not change the Eu sorption amount depending on the presence or absence of light, and the Eu sorption amount decreased in the presence of glucose and CO 2 . On the other hand, the sorption amount of Y does not change significantly due to light conditions when no carbon source is present or in the presence of CO 2, but the sorption amount increases in the dark in the presence of glucose. . In the presence of CO 2, the amount of sorption increased compared to the case where no carbon source was present regardless of the light conditions.

図7A〜Bに示されるように、algaeB(比較例3)はEu、Y共に明所の時、収着量が増大した。炭素源について明所ではCO存在下に収着量が減少し、暗所では炭素源による収着量の変化はみられなかった。 As shown in FIGS. 7A and 7B, argae B (Comparative Example 3) increased the amount of sorption when Eu and Y were both in a bright place. As for the carbon source, the sorption amount decreased in the presence of CO 2 in the light place, and no change in the sorption amount due to the carbon source was observed in the dark place.

(実施例3)希土類元素の選択的回収試験
イカダモの一種であるalgaeA単離体を用いて、重金属元素が共存するときの、希土類元素の選択的な回収について検討した。Eu、Y、Zn、Ni、Mo、Cu、Mnの7種の金属をそれぞれ5mg/Lの濃度で含有する溶液に、培養した緑藻(algaeA単離体)を4.0mg−wet/mLの濃度で加えた。その後190rpmで24時間振とうした。24時間の振とう時には、明条件または暗条件、およびグルコース(100mg/L)の有無により4種の条件で振とうした。その後、遠心分離(2500rpm、10min)で金属溶液と藻体を分離し、溶液はさらに遠心分離(10000rpm、10min)し、10倍希釈した。藻体に0.1M HNOを加え、撹拌し、1時間静置した後、同様の方法で遠心分離し、上清を10倍希釈をした。作成した溶液についてICP発光分析法を用いて先述の7種の金属濃度を測定し、それぞれの回収率を求めた。
(Example 3) Selective recovery test of rare earth element The selective recovery of rare earth element when heavy metal elements coexist was examined using an algae A isolate which is a kind of squid. Cultured green algae (algae A isolate) in a solution containing 7 metals of Eu, Y, Zn, Ni, Mo, Cu, and Mn at a concentration of 5 mg / L, respectively, at a concentration of 4.0 mg-wet / mL Added in. Thereafter, the mixture was shaken at 190 rpm for 24 hours. When shaking for 24 hours, it was shaken under four conditions depending on whether it was light or dark, and whether or not glucose (100 mg / L) was present. Thereafter, the metal solution and the algal bodies were separated by centrifugation (2500 rpm, 10 min), and the solution was further centrifuged (10000 rpm, 10 min) and diluted 10 times. 0.1M HNO 3 was added to the algae, stirred and allowed to stand for 1 hour, then centrifuged in the same manner, and the supernatant was diluted 10-fold. With respect to the prepared solution, the above-mentioned seven kinds of metal concentrations were measured using ICP emission spectrometry, and the respective recoveries were obtained.

図8Aは無炭素・明条件、図8Bは無炭素・暗条件、図8Cはグルコース添加・明条件、図8Dはグルコース添加・暗条件での、algaeAによる金属の収率を示す。図8A〜Dにおいて、白色は溶液中に残留した金属量を比率で示し、灰色は藻体に収着し回収された金属量を収率(比率)で示す。 FIG. 8A shows the yield of metal by algaeA under carbonless / light conditions, FIG. 8B shows carbonless / dark conditions, FIG. 8C shows glucose addition / light conditions, and FIG. 8D shows glucose addition / dark conditions. 8A to 8D, white indicates the amount of metal remaining in the solution as a ratio, and gray indicates the amount of metal sorbed and recovered by the algal bodies as a yield (ratio).

図8A〜Dにおいて、Eu、Yは、Zn、Ni、Mo、Cu、Mnと比較して極めて高い選択性で回収された。明条件では、無炭素(図8A)と比較してグルコース添加(図8C)のEuおよびYの選択性が向上した。暗条件でも、無炭素(図8B)と比較してグルコース添加(図8D)のEuおよびYの選択性が向上した。 8A to 8D, Eu and Y were recovered with extremely high selectivity compared to Zn, Ni, Mo, Cu, and Mn. Under bright conditions, Eu and Y selectivity of glucose addition (FIG. 8C) was improved compared to carbon-free (FIG. 8A). Even in the dark condition, Eu and Y selectivity of glucose addition (FIG. 8D) was improved compared to carbon-free (FIG. 8B).

(実施例4)希土類元素の収着試験
algaeAによるNd、Eu、Dy、Yの収着量を検討した。収着条件は、24時間、明所下で行い、金属の初期濃度を0.5mg/L、5mg/L、15mg/L、25mg/L、または50mg/Lとした以外は、参考例1に記載の収着条件に準じて行った。各元素の収着量を図9に示す。Nd、Dyも、Eu、Yと同様に藻体に収着した。
(Example 4) Rare earth element sorption test The amount of sorption of Nd, Eu, Dy, Y by algae A was examined. The sorption conditions were as described in Reference Example 1 except that the sorption conditions were performed in the light for 24 hours and the initial metal concentration was 0.5 mg / L, 5 mg / L, 15 mg / L, 25 mg / L, or 50 mg / L. Performed according to the described sorption conditions. The amount of sorption of each element is shown in FIG. Similarly to Eu and Y, Nd and Dy also sorbed on the algae.

(実施例5)藻類の同定
algaeAの18S rDNA配列を同定した。その塩基配列を配列表の配列番号1に示す。次いで、配列番号1の塩基配列と相同な配列を、国際塩基配列データベースからBLASTにより検索した。その結果、algaeAの18S rDNA配列は、Scenedesmus acuminatus Hagewald 1986−2株(Accession No.AB037088)の18S rDNAと最も高い相同性を示し、その相同性は99.8%であった。algaeAはScenedesmus acuminatusに属すると判定された。なお、18S rDNA配列の特定と、相同配列の検索は、株式会社テクノスルガ・ラボにおいて行った。
(Example 5) Identification of algae The 18S rDNA sequence of algae A was identified. The base sequence is shown in SEQ ID NO: 1 in the sequence listing. Subsequently, a sequence homologous to the nucleotide sequence of SEQ ID NO: 1 was searched by BLAST from the international nucleotide sequence database. As a result, the 18S rDNA sequence of algaeA showed the highest homology with the 18S rDNA of Scenedesmus accuminatus Hagewald 1986-2 strain (Accession No. AB037088), and the homology was 99.8%. algaeA was determined to belong to Scenedesmus accuminatus. The specification of 18S rDNA sequence and the search for homologous sequences were carried out at Techno Suruga Lab.

Claims (11)

イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を含む、希土類元素の回収方法。 A method for recovering a rare earth element, comprising a step of contacting a green algae belonging to squid duck, a processed alga body thereof, or an extract thereof with a rare earth element. イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程をpH5〜9で行う、請求項1に記載の方法。 The method according to claim 1, wherein the step of contacting the green alga belonging to squid duck, the processed alga body thereof, or an extract thereof with a rare earth element is performed at pH 5-9. 希土類元素がイットリウム、ユーロピウム、ネオジム、またはジスプロシウムである、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the rare earth element is yttrium, europium, neodymium, or dysprosium. イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を希土類元素と接触させる工程を、グルコースの存在条件下で行う、請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the step of contacting the green algae belonging to squid duck, the processed alga body thereof, or the extract thereof with a rare earth element is performed under the presence of glucose. 藻体処理物が加熱乾燥物、凍結乾燥物、または減圧乾燥物である、請求項1〜4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the processed alga body is a heat-dried product, a freeze-dried product, or a vacuum-dried product. イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物が担体に固定化され、または膜に包含されている、請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein a green alga belonging to squid damo, a processed product of the alga body, or an extract thereof is immobilized on a carrier or included in a membrane. イカダモに属する緑藻が、Scenedesmus属に属する緑藻である、請求項1〜6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the green alga belonging to the squid damo is a green alga belonging to the genus Scenedesmus. イカダモに属する緑藻が、Scenedesmus acuminatusに属する緑藻である、請求項1〜7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the green alga belonging to Ikadamo is a green alga belonging to Scenedesmus acminatus. イカダモに属する緑藻、もしくはその藻体処理物、またはこれらの抽出物を含む、希土類元素の回収剤。 A rare earth element recovery agent comprising green algae belonging to squid duck, or a processed product of the algae, or an extract thereof. イカダモに属する緑藻が、Scenedesmus属に属する緑藻である、請求項9に記載の回収剤。 The collection | recovery agent of Claim 9 whose green algae which belongs to Squidamo is a green algae which belongs to Scenedesmus genus. イカダモに属する緑藻が、Scenedesmus acuminatusに属する緑藻である、請求項9または10に記載の回収剤。 The collection agent according to claim 9 or 10, wherein the green alga belonging to Ikadamo is a green alga belonging to Scenedesmus accumintus.
JP2015208673A 2015-09-24 2015-10-23 Method of recovering rare earth element with green algae Pending JP2017061739A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187382 2015-09-24
JP2015187382 2015-09-24

Publications (1)

Publication Number Publication Date
JP2017061739A true JP2017061739A (en) 2017-03-30

Family

ID=58429302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208673A Pending JP2017061739A (en) 2015-09-24 2015-10-23 Method of recovering rare earth element with green algae

Country Status (1)

Country Link
JP (1) JP2017061739A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593977A (en) * 2018-11-07 2019-04-09 东北师范大学 A method of removal is containing iron ion in neodymium, praseodymium, dysprosium and ferrous solution
CN110373549A (en) * 2019-09-04 2019-10-25 贵州理工学院 A kind of method of the dump leaching leaching slag of acidolysis containing rare earth recovering rare earth
CN110408801A (en) * 2019-09-04 2019-11-05 贵州理工学院 A kind of method of the dump leaching leaching recovering rare earth of ardealite containing rare earth
WO2023032811A1 (en) * 2021-08-31 2023-03-09 株式会社Ihi Method for recovering metal from metal element-containing substance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593977A (en) * 2018-11-07 2019-04-09 东北师范大学 A method of removal is containing iron ion in neodymium, praseodymium, dysprosium and ferrous solution
CN109593977B (en) * 2018-11-07 2021-11-23 东北师范大学 Method for removing iron ions in neodymium, praseodymium, dysprosium and iron-containing solution
CN110373549A (en) * 2019-09-04 2019-10-25 贵州理工学院 A kind of method of the dump leaching leaching slag of acidolysis containing rare earth recovering rare earth
CN110408801A (en) * 2019-09-04 2019-11-05 贵州理工学院 A kind of method of the dump leaching leaching recovering rare earth of ardealite containing rare earth
WO2023032811A1 (en) * 2021-08-31 2023-03-09 株式会社Ihi Method for recovering metal from metal element-containing substance
JP7243947B1 (en) * 2021-08-31 2023-03-22 株式会社Ihi METHOD FOR RECOVERING METAL FROM METAL CONTAINING SUBSTANCE

Similar Documents

Publication Publication Date Title
Ju et al. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria
CN110813244B (en) Modified zirconium-based organic metal framework adsorbent for adsorbing lead ions and preparation method and application thereof
JP2017061739A (en) Method of recovering rare earth element with green algae
CN110982727B (en) Stenotrophomonas maltophilia strain and application thereof
CN102071186A (en) Kit and method for fast separating virus nucleic acid from biological sample
CN106701732B (en) A kind of preparation method and applications of gamboge coccus immobilized spherule
Mowafy Biological leaching of rare earth elements
CN106916765B (en) A method of heavy metal in waste water zinc is adsorbed using penicillium janthinellum
CN100441686C (en) Small quality fast extraction method for soil total DNA
CN102924602A (en) Gold ion adsorption protein and method for enriching and recovering gold ion
Ali et al. Fungal remediation of Cd (ii) from wastewater using immobilization techniques
CN107469783B (en) Preparation method of biomass metal adsorbent
JP5150282B2 (en) Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain
BR112015027630B1 (en) METHODS FOR LEACHING, RECOVERY OR SOLIDIFICATION OF A RARE EARTH ELEMENT
CN108998400B (en) Bioengineering bacterium for reducing bivalent mercury ions and preparation method and application thereof
CN104328110A (en) Kit and method for extracting soil microorganism DNA (Deoxyribonucleic Acid) based on paramagnetic particle method
CN107217067A (en) Heavy metal ion adsorbed system and its Host Strains, heavy metal removal method
CN103421702B (en) Bacteria Lysinibacillus sp. for adsorbing gold and antimony
CN104465008A (en) Magnetic fluid preparation method for DNA purification
CN110938565B (en) Bacillus cereus and method for recycling rare earth ions by using same
JP2672224B2 (en) Method for extracting metal oxides from coal fly ash
Deng et al. Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and indigenous cadmium-tolerant bacteria
CN110016561B (en) Method for recovering uranium from microalgae cells
RU2014117466A (en) VIRUS VECTOR CLEANING SYSTEM
CN1313478C (en) New method for rapid purifying DNA plasmid in large quantities