JP2017061719A - Forming method for a colored silicon thin film - Google Patents

Forming method for a colored silicon thin film Download PDF

Info

Publication number
JP2017061719A
JP2017061719A JP2015187495A JP2015187495A JP2017061719A JP 2017061719 A JP2017061719 A JP 2017061719A JP 2015187495 A JP2015187495 A JP 2015187495A JP 2015187495 A JP2015187495 A JP 2015187495A JP 2017061719 A JP2017061719 A JP 2017061719A
Authority
JP
Japan
Prior art keywords
film
color
silicon
metal substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015187495A
Other languages
Japanese (ja)
Other versions
JP2017061719A5 (en
Inventor
龍哉 石神
Tatsuya Ishigami
龍哉 石神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakasa Wan Energy Res Center
Wakasa Wan Energy Research Center
Original Assignee
Wakasa Wan Energy Res Center
Wakasa Wan Energy Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakasa Wan Energy Res Center, Wakasa Wan Energy Research Center filed Critical Wakasa Wan Energy Res Center
Priority to JP2015187495A priority Critical patent/JP2017061719A/en
Publication of JP2017061719A publication Critical patent/JP2017061719A/en
Publication of JP2017061719A5 publication Critical patent/JP2017061719A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a colored silicon thin film forming method capable of developing an intermediate color and a high chroma color (especially an orange system color or a red system color) thereby to diversify color variations, and preventing the deterioration of the adhesion of films and the color development due to the contamination of the film surface at the production time, and capable of being manufactured by a simple device configuration.SOLUTION: After a colored silicon film to develop a color by the interference of light on a metal substrate was formed by a high frequency magnetron sputtering method, a nitrogen gas or a mixed gas containing the nitrogen gas is introduced as a discharge gas into a film deposition chamber of a sputtering device so that a silicon nitride film of a yellow-based color or a brown-based color is continuously formed over said silicon film.SELECTED DRAWING: None

Description

本発明は、金属着色方法の改良、詳しくは、可視光スペクトルにない中間色や高彩度の色を発色させることができ、また製造時の膜表面の汚染によって膜同士の密着性や発色に悪影響が出る心配もなく、しかも、簡単な装置構成で着色加工が可能な有色シリコン薄膜の形成方法に関するものである。   The present invention is an improvement of the metal coloring method, more specifically, it is possible to develop intermediate colors and high-saturation colors that are not in the visible light spectrum, and the film surface contamination during production adversely affects the adhesion and color development between films. The present invention relates to a method for forming a colored silicon thin film which can be colored with a simple apparatus configuration without worry.

近年、金属表面を着色する方法としては、塗料やインクの塗布処理による塗膜の形成、陽極酸化やクロメート処理などによる酸化膜の形成、光の干渉による発色を利用した光透過膜の形成、フォトニック結晶(光の波長程度の周期性を持った構造)の形成、或いは電気めっきや無電解めっき、溶融めっき、イオンプレーティング、スパッタリング等によるそれ自身が色を持った薄膜の形成などが知られている。   In recent years, methods for coloring metal surfaces include coating film formation by paint and ink application, formation of an oxide film by anodization and chromate treatment, formation of a light-transmitting film utilizing color development by light interference, photo Known is the formation of nick crystals (structures with periodicity equivalent to the wavelength of light) or the formation of thin films with their own color by electroplating, electroless plating, hot dipping, ion plating, sputtering, etc. ing.

しかしながら、上記塗料等を塗布する方法では、塗膜が有機物から成るため、トルエンやアルコール等の有機溶媒に触れると膜が簡単に剥がれてしまう。また上記フォトニック結晶を形成する方法では、数百ナノメートルの構造周期を制御して色を調節する必要があるため、着色加工が困難である。また上記酸化膜やそれ自身が色を持った薄膜を形成する方法では、色のバリエーションが少ない。   However, in the method of applying the paint or the like, since the coating film is made of an organic substance, the film is easily peeled off when touched with an organic solvent such as toluene or alcohol. Further, in the method of forming the photonic crystal, it is necessary to adjust the color by controlling the structural period of several hundred nanometers, so that the coloring process is difficult. In addition, in the method of forming the oxide film or the thin film having its own color, there are few color variations.

また、上記光の干渉作用によって発色する膜を形成する方法(例えば、特許文献1,2参照)では、可視光スペクトルの色(紫-青-緑-黄-橙-赤)を発色させることができるものの、可視光スペクトルにない中間色を発色させることができないため、発色可能な色の種類には限界がある。またこの種の有色膜では、青系統の色は比較的濃く発色させることができるものの、橙色や赤色を濃く発色させることが難しい。   Further, in the method of forming a film that develops color due to the interference of light (see, for example, Patent Documents 1 and 2), the color of the visible light spectrum (purple-blue-green-yellow-orange-red) can be developed. Although it is possible, an intermediate color that is not in the visible light spectrum cannot be developed. Also, with this type of colored film, the blue color can be developed relatively darkly, but it is difficult to darkly develop orange and red.

一方、従来においては、光干渉作用を利用して発色させた膜とそれ自身が色を持つ膜とを積層して色の種類を増やす技術も公知となっているが(特許文献3,4参照)、文献3に係る技術は、同一装置内でスパッタリングとイオンプレーティングを行って各膜を連続的に形成しているため、複雑な構造の装置が必要となる。また文献4に係る技術も、イオンプレーティング装置内に二つの蒸着源を用意して各膜を連続的に形成しているため、装置構成が複雑になり易い。   On the other hand, in the prior art, a technique for increasing the types of colors by laminating a film colored using a light interference action and a film having a color itself is also known (see Patent Documents 3 and 4). However, since the technique according to Document 3 performs sputtering and ion plating in the same apparatus to form each film continuously, an apparatus having a complicated structure is required. In the technique according to Document 4, since the two deposition sources are prepared in the ion plating apparatus and the respective films are continuously formed, the apparatus configuration tends to be complicated.

他方、従来においては、光干渉作用を利用して発色させた有色シリコン膜上に透明なコーティング膜を形成する技術も公知となっているが(特許文献5参照)、この文献5に係る技術に関しても、上記文献1等の技術と同様、色の種類が光干渉作用を利用するシリコン膜の色に限定されるため、高彩度の色(特に橙系色や赤系色)や可視光スペクトルにない中間色を発色させることができない。   On the other hand, in the prior art, a technique for forming a transparent coating film on a colored silicon film that has been colored using an optical interference action is also known (see Patent Document 5). However, similar to the technique of the above-mentioned document 1 and the like, since the type of color is limited to the color of the silicon film using the light interference action, there is no high saturation color (especially orange or red color) or visible light spectrum. Unable to develop intermediate colors.

しかも、上記文献5に係る技術では、コーティング膜を形成する際に、スパッタリング装置内のターゲットをシリコンからシリカに交換する必要があるため(塗装の場合には金属基材を装置の外に出す必要があるため)、シリコン膜形成後、コーティング膜を形成する前に、シリコン膜が残留ガスや混入ガス、外部の空気等に触れて膜表面が汚染され、コーティング膜の密着性やシリコン膜の発色が損なわれ易い。   Moreover, in the technique according to the above document 5, when forming the coating film, it is necessary to replace the target in the sputtering apparatus from silicon to silica (in the case of painting, the metal base must be taken out of the apparatus). After the silicon film is formed, before the coating film is formed, the silicon film is exposed to residual gas, mixed gas, external air, etc., and the film surface is contaminated, resulting in adhesion of the coating film and color development of the silicon film. Is easily damaged.

特開昭52−35774号公報JP 52-35774 A 特開平4−24425号公報Japanese Patent Laid-Open No. 4-24425 特開平3−97865号公報Japanese Patent Laid-Open No. 3-97865 特開平9−125232号公報JP 9-125232 A 特開平2−263976号公報JP-A-2-263976

本発明は、上記の如き問題に鑑みて為されたものであり、その目的とするところは、可視光スペクトルにない中間色や高彩度の色(特に橙系色や赤系色)を発色させて色のバリエーションを多様化することができ、また製造時の膜表面の汚染によって生じる膜同士の密着性や発色の悪化を防止することもでき、しかも、簡単な装置構成で製造が可能な有色シリコン薄膜の形成方法を提供することにある。   The present invention has been made in view of the problems as described above, and the object of the present invention is to develop a color by developing an intermediate color or a high-saturation color (particularly an orange color or a red color) that is not in the visible light spectrum. Colored silicon thin film that can be manufactured with a simple device configuration, and can prevent variations in film adhesion and color development caused by contamination of the film surface during manufacturing. It is in providing the formation method.

本発明者が上記課題を解決するために採用した手段を説明すれば次のとおりである。   Means adopted by the present inventor for solving the above-described problems will be described as follows.

即ち、本発明は、高周波マグネトロンスパッタ法により金属基材上に光の干渉で発色する有色のシリコン膜を形成した後、スパッタリング装置の成膜室内に放電ガスとして窒素ガス或いは窒素ガスを含む混合ガスを導入し、前記シリコン膜上に光透過性を有する黄系色または茶系色の窒化シリコン膜を連続的に形成した点に特徴がある。   That is, in the present invention, after forming a colored silicon film that develops color by interference of light on a metal substrate by a high-frequency magnetron sputtering method, nitrogen gas or a mixed gas containing nitrogen gas is used as a discharge gas in the deposition chamber of the sputtering apparatus. Is characterized in that a yellow-colored or brown-colored silicon nitride film having light transmittance is continuously formed on the silicon film.

また本発明では、上記シリコン膜の成膜時において、成膜室内に導入する放電ガスにアルゴンガスと水素ガスの混合ガスを使用することにより、アルゴンガス単体よりも発色の良い(色の彩度に優れた)シリコン膜を形成することができる。   Further, in the present invention, when the silicon film is formed, a mixed gas of argon gas and hydrogen gas is used as a discharge gas introduced into the film formation chamber, so that the color development is better than the argon gas alone (color saturation). It is possible to form a silicon film.

また本発明では、上記金属基材上のシリコン膜を膜厚10〜150nmの範囲で形成することによって、光の干渉作用による発色効果を高めることができる。   Further, in the present invention, by forming the silicon film on the metal substrate in the thickness range of 10 to 150 nm, it is possible to enhance the coloring effect due to the light interference action.

また本発明では、上記スパッタリング装置の成膜室内に放電ガスを導入した後、シリコン膜の成膜前に金属基材に負の電圧を印加して基材表面のスパッタクリーニングを行うことによって、基材表面の不純物等を取り除き、シリコン膜と基材表面の密着性を高めることができる。また基材表面上の汚れが及ぼす発色への悪影響も排除できる。   In the present invention, after introducing a discharge gas into the film formation chamber of the sputtering apparatus, a negative voltage is applied to the metal base material before the silicon film is formed to perform sputter cleaning on the surface of the base material. Impurities and the like on the surface of the material can be removed, and the adhesion between the silicon film and the surface of the substrate can be improved. In addition, it is possible to eliminate the adverse effect on the coloring caused by the stain on the substrate surface.

また本発明では、上記窒化シリコン膜の成膜時における金属基材の温度を200℃以上とすることによって基材表面とシリコン膜の密着性を向上させて、シリコン膜を綺麗に成膜することができる。   Further, in the present invention, the temperature of the metal base material at the time of forming the silicon nitride film is set to 200 ° C. or more to improve the adhesion between the surface of the base material and the silicon film, thereby forming the silicon film neatly. Can do.

本発明では、高周波マグネトロンスパッタ法により金属基材の表面に、光干渉作用で発色するシリコン膜と、それ自体が黄系色または茶系色の色を持つ窒化シリコン膜とを連続的に形成したことにより、シリコン膜の色と窒化シリコン膜の色の組み合わせで(減法混色)、可視光スペクトルにない山吹色や茶色等の中間色を発色させることが可能となる。しかも、これによりシリコン膜だけでは発色が難しい高彩度の橙色や赤色を発色させることも可能となる。   In the present invention, a silicon film that develops color by light interference and a silicon nitride film that itself has a yellowish or brownish color are continuously formed on the surface of the metal substrate by high-frequency magnetron sputtering. Thus, it becomes possible to develop an intermediate color such as a bright color or brown color that is not in the visible light spectrum by combining the color of the silicon film and the color of the silicon nitride film (subtractive color mixture). In addition, this makes it possible to develop high-saturation orange and red colors, which are difficult to develop with a silicon film alone.

また本発明では、上記シリコン膜と窒化シリコン膜を同一装置内で連続的に形成しているため、シリコン膜表面が装置内の残留ガスや混入ガス(空気等)によって汚染される心配もなく、膜同士の密着性や発色に悪影響が出る心配もない。加えて、本発明では、複数のターゲットは不要で窒化シリコン膜の成膜時に放電ガスのみを変更するだけでよいため、スパッタリング装置の構成が複雑になることもない。   In the present invention, since the silicon film and the silicon nitride film are continuously formed in the same apparatus, there is no concern that the silicon film surface is contaminated by residual gas or mixed gas (air etc.) in the apparatus, There is no worry about adverse effects on the adhesion and color development between films. In addition, in the present invention, since a plurality of targets are not required and only the discharge gas is changed when the silicon nitride film is formed, the configuration of the sputtering apparatus is not complicated.

したがって、本発明により、金属表面の着色において、従来限定的だった色のバリエーションに中間色や高彩度の色を加えて多様化できるだけでなく、着色加工にかかるコストも抑えることができ、しかも、品質も安定した有色シリコン薄膜の形成方法を提供できることから、本発明の実用的利用価値は頗る高い。   Therefore, according to the present invention, in the coloring of the metal surface, not only diversification can be achieved by adding intermediate colors and high saturation colors to previously limited color variations, but also the cost for coloring processing can be suppressed, and the quality can also be reduced. Since a method for forming a stable colored silicon thin film can be provided, the practical utility value of the present invention is very high.

次に、本発明を実施するための具体的態様及び好ましい条件について説明する。   Next, specific embodiments and preferable conditions for carrying out the present invention will be described.

「有色シリコン薄膜の形成方法」
[1]金属基材上にシリコン膜を成膜する工程
本発明の有色シリコン薄膜の形成方法について以下に説明する。まず本発明では、高周波マグネトロンスパッタ法により金属基材上に光の干渉で発色する有色のシリコン膜を形成する。具体的には、スパッタリング装置の成膜室内に配置された基材ホルダに金属基材を固定すると共に、この基材ホルダと対向するように配置されたターゲットホルダにシリコンを固定する。そして、成膜室内に放電ガスを導入した後、高周波電源からターゲットホルダ(ヘッド部分)に所定の電力を供給し、成膜室内に発生させたプラズマ中の陽イオンをシリコンに衝突させて、飛び出したシリコン粒子を金属基材上に付着・堆積させる。またこの際、高周波電源からの電力供給時間を計算してシリコン膜の厚さを調節する。
"Method for forming colored silicon thin film"
[1] Step of forming a silicon film on a metal substrate A method for forming a colored silicon thin film of the present invention will be described below. First, in the present invention, a colored silicon film that develops color by interference of light is formed on a metal substrate by a high-frequency magnetron sputtering method. Specifically, a metal substrate is fixed to a substrate holder disposed in a film forming chamber of the sputtering apparatus, and silicon is fixed to a target holder disposed so as to face the substrate holder. Then, after introducing the discharge gas into the film formation chamber, a predetermined power is supplied from the high-frequency power source to the target holder (head portion), and the positive ions in the plasma generated in the film formation chamber collide with silicon and jump out. The silicon particles adhered and deposited on the metal substrate. At this time, the thickness of the silicon film is adjusted by calculating the power supply time from the high-frequency power source.

《シリコン膜成膜時に導入する放電ガス》
上記シリコン膜の成膜時に導入する放電ガスとしては、アルゴンガス等を使用することができるが、特にアルゴンガスと水素ガスの混合ガスを使用することによって鮮やかな色のシリコン膜を形成することができる。なお混合ガスのアルゴンガスと水素ガスの比率に関しては、1:1に近い比率とすることが好ましいが、特にこれに限定されない。
<< Discharge gas introduced during silicon film formation >>
Argon gas or the like can be used as a discharge gas introduced during the formation of the silicon film, but a vivid color silicon film can be formed by using a mixed gas of argon gas and hydrogen gas. it can. In addition, although it is preferable to set it as the ratio close | similar to 1: 1 about the ratio of argon gas and hydrogen gas of mixed gas, it is not limited to this in particular.

《シリコン膜成膜時における金属基材の温度》
上記シリコン膜の成膜時における金属基材の温度に関しては、綺麗なシリコン膜を形成するために200℃以上(好ましくは200〜300℃)とすることが望ましい。また金属基材の温度は、成膜装置内の基材ホルダにヒータと温度センサを付設することによって成膜前または成膜中に調節できる。
<< Temperature of metal substrate during silicon film formation >>
Regarding the temperature of the metal substrate during the formation of the silicon film, it is desirable that the temperature be 200 ° C. or higher (preferably 200 to 300 ° C.) in order to form a clean silicon film. The temperature of the metal substrate can be adjusted before or during film formation by attaching a heater and a temperature sensor to the substrate holder in the film formation apparatus.

《金属基材の材質》
上記金属基材の材質に関しては、200℃以下で溶ける低融点金属や高軟質の金属でなければ問題なく使用でき、具体的には、鉄やステンレス鋼、クロム、チタン等から成るものを使用できる。また金属基材には、単一材料から成るものだけでなく、表面がめっき処理されたもの(例えば、クロムメッキされた鉄等)を使用することもできる。
<Material of metal substrate>
As for the material of the above metal base material, it can be used without any problem unless it is a low melting point metal or high soft metal that melts at 200 ° C. or less, and specifically, a material made of iron, stainless steel, chromium, titanium, or the like can be used. . In addition, the metal substrate may be made of not only a single material but also a surface plated (for example, chrome-plated iron).

《シリコン膜の膜厚および成膜時間》
上記シリコン膜の膜厚に関しては、発色させたいシリコン膜の色に応じて適宜調節できるが(青系色に発色させたい場合には膜厚を小さく、赤系色に発色させたい場合には膜厚を大きくする)、特に光干渉作用が働く10〜150nmの範囲で形成するのが望ましい。また上記シリコン膜の成膜時間は、スパッタリング装置の種類や成膜条件によって必要となる時間が変わるため、予め成膜時間と発色の相関関係を調べた上で成膜時間の計算を行う。
<< Silicon film thickness and deposition time >>
The film thickness of the silicon film can be adjusted as appropriate according to the color of the silicon film to be developed (though the film thickness is small when a blue color is desired and the film is red when a red color is desired). It is desirable to increase the thickness), particularly in the range of 10 to 150 nm where the optical interference action works. Further, since the time required for forming the silicon film varies depending on the type of sputtering apparatus and the film forming conditions, the film forming time is calculated after the correlation between the film forming time and the color development is examined in advance.

《シリコン膜成膜時における高周波電源からの供給電力》
上記シリコン膜の成膜時に高周波電源から供給する電力は、使用するスパッタリング装置によって好ましい範囲が異なるため特に限定されないが、予め試験を行ってシリコン膜が問題なく形成できるかどうかを確認しておく必要がある。
《Power supplied from high frequency power supply during silicon film formation》
The power supplied from the high-frequency power source during the formation of the silicon film is not particularly limited because the preferred range varies depending on the sputtering apparatus to be used, but it is necessary to test in advance to confirm whether the silicon film can be formed without any problem. There is.

《シリコン膜成膜前のスパッタクリーニング》
本発明では、上記シリコン膜の成膜を行う前に、スパッタクリーニングを行って金属基材表面に付着した不純物等を除去して、金属基材表面とシリコン膜の密着性を向上させるのが望ましい。具体的には、スパッタリング装置の成膜室内に放電ガスを導入した後、直流電源から金属基材に負の電圧を印加してプラズマ中の陽イオンを基材表面に衝突させることにより(逆スパッタリング)不純物等を除去できる。また、プラズマの生成を継続したまま金属基材の負電圧の絶対値をグラウンド近くまで下げれば、基材を叩くアルゴンイオンのエネルギーが減少して基材から叩き出される原子の数が減り、シリコン原子の供給速度の方が大きくなるため、クリーニング状態から成膜状態に連続的に移行できる。これによりクリーニング後に基材表面が不純物等で汚染される問題も防止できる。
《Sputter cleaning before silicon film formation》
In the present invention, it is desirable to improve the adhesion between the metal substrate surface and the silicon film by performing sputter cleaning to remove impurities attached to the metal substrate surface before the silicon film is formed. . Specifically, after introducing a discharge gas into the film formation chamber of the sputtering apparatus, a negative voltage is applied to the metal substrate from a DC power source to cause the cations in the plasma to collide with the substrate surface (reverse sputtering). ) Impurities can be removed. In addition, if the absolute value of the negative voltage of the metal substrate is lowered to near the ground while plasma generation continues, the energy of argon ions striking the substrate decreases, and the number of atoms knocked out of the substrate decreases. Since the atom supply rate becomes larger, it is possible to continuously shift from the cleaning state to the film formation state. This can also prevent the problem that the surface of the substrate is contaminated with impurities after cleaning.

[2]シリコン膜上に窒化シリコン膜を成膜する工程
本発明では、上記金属基材上にシリコン膜を形成した後、プラズマの生成を継続したまま、成膜装置内に導入する放電ガスを窒素ガス或いは窒素ガスを含む混合ガスに変えて、シリコン膜上に黄系色または茶系色の窒化シリコン膜を連続的に形成する。これにより残留ガスによる汚染を防止しつつ金属基材上に多様な発色の有色シリコン薄膜を形成することが可能となる。
[2] Step of forming a silicon nitride film on the silicon film In the present invention, after the silicon film is formed on the metal substrate, the discharge gas introduced into the film forming apparatus is generated while the plasma is continuously generated. Instead of nitrogen gas or a mixed gas containing nitrogen gas, a yellow or brown silicon nitride film is continuously formed on the silicon film. As a result, it is possible to form colored silicon thin films with various colors on the metal substrate while preventing contamination by residual gas.

《窒化シリコン膜成膜時に導入する放電ガス》
上記窒化シリコン膜の成膜時に導入する放電ガスとしては、窒素ガス単体を好適に使用できるが、必要に応じて窒素ガスを含む混合ガス(例えば、窒素ガスとアルゴンガス等)を使用することができる。なお混合ガスに含まれる窒素ガスの比率に関しては、50%以上とすることのが望ましいが、これに限定されない。
《Discharge gas introduced during silicon nitride film formation》
As the discharge gas introduced during the formation of the silicon nitride film, nitrogen gas alone can be suitably used, but if necessary, a mixed gas containing nitrogen gas (for example, nitrogen gas and argon gas) can be used. it can. The ratio of nitrogen gas contained in the mixed gas is preferably 50% or more, but is not limited thereto.

《窒化シリコン膜成膜時における金属基材の温度》
上記窒化シリコン膜の成膜時における金属基材の温度に関しては、綺麗な窒化シリコン膜を形成するために200℃以上(好ましくは200〜300℃)とすることが望ましい。また金属基材の温度は、シリコン膜の成膜時と同じ温度で問題ないが、必要に応じて異なる温度に調節することもできる。
<< Temperature of the metal substrate during the formation of the silicon nitride film >>
Regarding the temperature of the metal substrate during the formation of the silicon nitride film, it is desirable that the temperature be 200 ° C. or higher (preferably 200 to 300 ° C.) in order to form a clean silicon nitride film. Further, the temperature of the metal substrate is no problem at the same temperature as when the silicon film is formed, but it can be adjusted to a different temperature as required.

《窒化シリコン膜の成膜時間》
上記窒化シリコン膜の成膜時間は、発色させたい窒化シリコン膜の色に応じて調整することができるが(黄系色に発色させたい場合には成膜時間を比較的短く、茶系色に発色させたい場合には成膜時間を比較的長くする)、スパッタリング装置の種類や成膜条件によって必要となる成膜時間は変わるため、予め成膜時間と発色の相関関係を調べた上で成膜時間の計算を行う。
《Silicon nitride film formation time》
The film formation time of the silicon nitride film can be adjusted according to the color of the silicon nitride film to be developed (if it is desired to develop a yellow color, the film formation time is relatively short and the brown color is used. (If you want to develop color, make the film formation time relatively long), and the required film formation time varies depending on the type of sputtering equipment and film formation conditions. Calculate the membrane time.

《窒化シリコン膜成膜時における高周波電源からの供給電力》
上記窒化シリコン膜の成膜時に高周波電源から供給する電力は、上記シリコン膜成膜時と同様、使用するスパッタリング装置によって好ましい範囲が異なるため特に限定されないが、予め試験を行って窒化シリコン膜が問題なく形成できるかどうかを確認しておく必要がある。
《Power supplied from high frequency power supply during silicon nitride film formation》
The power supplied from the high-frequency power source during the formation of the silicon nitride film is not particularly limited because the preferred range varies depending on the sputtering apparatus used, as in the case of the silicon film formation. It is necessary to confirm whether it can be formed without any problems.

[3]有色シリコン薄膜の色調整
上記シリコン膜と窒化シリコン膜から成る有色シリコン薄膜の色は、減法混合の原理で簡単に調整することができる(例えば、紫色のシリコン膜に黄色の窒化シリコン膜を積層すれば赤色、青色のシリコン膜に黄色の窒化シリコン膜を積層すれば緑色になる)。これにより金属基材の表面を、有色シリコン薄膜によって様々な色に着色できるだけでなく、従来発色が困難であった赤系統の色も鮮やかに発色させることができる。
[3] Color adjustment of the colored silicon thin film The color of the colored silicon thin film composed of the silicon film and the silicon nitride film can be easily adjusted by the principle of subtractive mixing (for example, a purple silicon film and a yellow silicon nitride film). Are stacked, a red silicon film and a yellow silicon nitride film are stacked on the blue silicon film. As a result, the surface of the metal substrate can be colored not only in various colors by the colored silicon thin film, but also the red color, which has been difficult to develop in the past, can be vividly developed.

「効果の実証試験」
次に本発明の効果の実証試験について説明する。まず本試験では、製造条件の異なる複数のサンプル(下記比較例1〜9および実施例1〜5)を作製し、これらの各サンプルについて外観評価を行った。以下に比較例および実施例の各サンプルの製造条件について記載する。
"Effectiveness test"
Next, a verification test of the effect of the present invention will be described. First, in this test, a plurality of samples having different manufacturing conditions (Comparative Examples 1 to 9 and Examples 1 to 5 below) were produced, and the appearance of each of these samples was evaluated. The manufacturing conditions of each sample of the comparative example and the example are described below.

<本試験で使用したスパッタリング装置>
本試験では、サンプルの製造に、成膜室内に放電ガスを導入するガス導入部、成膜室内から放電ガスを排出するガス排出部、基材を固定する基材ホルダ、この基材ホルダに接続された直流電源、ターゲットを固定するターゲットホルダとその近傍に電極を備えたヘッド部(Kurt J.Lesker社製TORUS)、並びにこのヘッド部にマッチングボックス(日本電子社製EH-MN03A)を介して接続された高周波電源(日本電子社製JRF-750)を備えたスパッタリング装置を使用した。
<Sputtering equipment used in this test>
In this test, a gas introduction part that introduces a discharge gas into the film formation chamber, a gas discharge part that discharges the discharge gas from the film formation chamber, a base material holder that fixes the base material, and a connection to the base material holder are used in this test. DC power supply, a target holder for fixing the target and a head part (TORUS made by Kurt J. Lesker) equipped with an electrode in the vicinity thereof, and a matching box (EH-MN03A made by JEOL Ltd.) via this head part A sputtering apparatus equipped with a connected high-frequency power supply (JRF-750 manufactured by JEOL Ltd.) was used.

『比較例1』
この比較例1では、まず成膜室内にアルゴンガスを放電ガスとして20sccm導入した後、金属基材に-550Vの電圧をかけると共に、高周波電源からヘッド部に100Wの電力を供給して18分間、スパッタクリーニングを行った。その後、金属基板の温度(成膜温度)をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして19分間、シリコン膜の成膜を行った。
『比較例2』
この比較例2では、まず成膜室内にアルゴンガスを放電ガスとして20sccm導入した後、金属基材に-550Vの電圧をかけると共に、高周波電源からヘッド部に100Wの電力を供給して20分間、スパッタクリーニングを行った。その後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして23分間、シリコン膜の成膜を行った。
『比較例3』
この比較例3では、まず上記比較例2と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして28分間、シリコン膜の成膜を行った。
Comparative Example 1
In Comparative Example 1, 20 sccm of argon gas was first introduced into the film forming chamber as a discharge gas, and then a voltage of −550 V was applied to the metal substrate, and 100 W of power was supplied from the high frequency power source to the head portion for 18 minutes. Sputter cleaning was performed. After that, the temperature of the metal substrate (deposition temperature) was set to 300 ° C. with a heater, the absolute value of the negative voltage applied to the metal substrate was lowered, and the potential of the metal substrate was set to −20 V for 19 minutes. Film formation was performed.
"Comparative Example 2"
In Comparative Example 2, 20 sccm of argon gas was first introduced into the film forming chamber as a discharge gas, and then a voltage of −550 V was applied to the metal substrate, and 100 W of power was supplied from the high frequency power source to the head portion for 20 minutes. Sputter cleaning was performed. After that, the temperature of the metal substrate was set to 300 ° C. with a heater, the absolute value of the negative voltage applied to the metal substrate was lowered, and the silicon substrate was formed for 23 minutes with the potential of the metal substrate set to −20V. .
Comparative Example 3
In Comparative Example 3, first, after performing sputter cleaning under the same conditions as in Comparative Example 2, the temperature of the metal substrate was set to 300 ° C. with a heater, and then the absolute value of the negative voltage applied to the metal substrate was lowered. A silicon film was formed for 28 minutes with the potential of the metal substrate set to −20V.

『比較例4』
この比較例4では、まず成膜室内にアルゴンガス20sccm及び水素ガス20sccmの混合ガスを放電ガスとして導入した後、金属基材に-550Vの電圧をかけると共に、高周波電源からヘッド部に100Wの電力を供給して20分間、スパッタクリーニングを行った。その後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして23分間、シリコン膜の成膜を行った。
『比較例5』
この比較例5では、まず上記比較例4と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして28分間、シリコン膜の成膜を行った。
『比較例6』
この比較例6では、まず成膜室内にアルゴンガス20sccm及び水素ガス20sccmの混合ガスを放電ガスとして導入した後、金属基材に-550Vの電圧をかけると共に、高周波電源からヘッド部に100Wの電力を供給して18分間、スパッタクリーニングを行った。その後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして31分間、シリコン膜の成膜を行った。
Comparative Example 4
In Comparative Example 4, first, a mixed gas of 20 sccm of argon gas and 20 sccm of hydrogen gas is introduced as a discharge gas into the film forming chamber, and then a voltage of −550 V is applied to the metal substrate, and 100 W of power is supplied from the high frequency power source to the head portion. Was sputter cleaned for 20 minutes. After that, the temperature of the metal substrate was set to 300 ° C. with a heater, the absolute value of the negative voltage applied to the metal substrate was lowered, and the silicon substrate was formed for 23 minutes with the potential of the metal substrate set to −20V. .
Comparative Example 5
In this comparative example 5, first, after performing sputter cleaning under the same conditions as in the above comparative example 4, the temperature of the metal substrate was set to 300 ° C. with a heater, and the absolute value of the negative voltage applied to the metal substrate was lowered, A silicon film was formed for 28 minutes with the potential of the metal substrate set to −20V.
Comparative Example 6
In Comparative Example 6, first, a mixed gas of 20 sccm of argon gas and 20 sccm of hydrogen gas is introduced as a discharge gas into the film forming chamber, and then a voltage of −550 V is applied to the metal substrate, and 100 W of power is supplied from the high frequency power source to the head portion. Was sputter cleaned for 18 minutes. Thereafter, the temperature of the metal substrate was set to 300 ° C. with a heater, the absolute value of the negative voltage applied to the metal substrate was lowered, and the silicon substrate was formed for 31 minutes with the potential of the metal substrate set to −20V. .

『比較例7』
この比較例7では、まず上記比較例4と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして35分間、シリコン膜の成膜を行った。
『比較例8』
この比較例8では、まず上記比較例4と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして40分間、シリコン膜の成膜を行った。
『比較例9』
この比較例9では、まず上記比較例6と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材に印加する負電圧の絶対値を下げ、金属基材の電位を-20Vとして45分間、シリコン膜の成膜を行った。
Comparative Example 7
In Comparative Example 7, first, after performing sputter cleaning under the same conditions as in Comparative Example 4, the temperature of the metal substrate was set to 300 ° C. with a heater, and the absolute value of the negative voltage applied to the metal base material was lowered. A silicon film was formed for 35 minutes with the potential of the metal substrate set to -20V.
Comparative Example 8
In Comparative Example 8, first, sputter cleaning was performed under the same conditions as in Comparative Example 4, and then the temperature of the metal substrate was set to 300 ° C. with a heater, and then the absolute value of the negative voltage applied to the metal substrate was lowered, A silicon film was formed for 40 minutes with the potential of the metal substrate set to -20V.
Comparative Example 9
In Comparative Example 9, first, after performing sputter cleaning under the same conditions as in Comparative Example 6, the absolute value of the negative voltage applied to the metal substrate was lowered after setting the temperature of the metal substrate to 300 ° C. with a heater, A silicon film was formed for 45 minutes by setting the potential of the metal substrate to −20V.

『実施例1』
この実施例1では、まず成膜室内にアルゴンガス20sccm及び水素ガス20sccmの混合ガスを放電ガスとして導入した後、金属基材に-550Vの電圧をかけると共に、高周波電源からヘッド部に100Wの電力を供給して18分間、スパッタクリーニングを行った。その後、金属基板の温度をヒータにより300℃とした上で、金属基材への印加電圧の絶対値を下げ、金属基材の電位を-20Vとして14分間、シリコン膜の成膜を行った。その後、成膜室内に導入する放電ガスを窒素ガス25sccm、高周波電源からヘッド部への供給電力を200Wに変更すると共に、金属基材に印加する負電圧の絶対値を上げて金属基材の電位を-100Vとして25分間、窒化シリコン膜の成膜を行った。
『実施例2』
この実施例2では、まず上記実施例1と同じ条件でスパッタクリーニング及びシリコン膜の成膜を行った後、成膜室内に導入する放電ガスを窒素ガス25sccm、高周波電源からヘッド部への供給電力を200Wに変更すると共に、金属基材に印加する負電圧の絶対値を上げて金属基材の電位を-100Vとして30分間、窒化シリコン膜の成膜を行った。
“Example 1”
In Example 1, first, a mixed gas of 20 sccm of argon gas and 20 sccm of hydrogen gas was introduced into the film forming chamber as a discharge gas, and then a voltage of −550 V was applied to the metal substrate, and a power of 100 W was applied from the high frequency power source to the head portion. Was sputter cleaned for 18 minutes. Thereafter, the temperature of the metal substrate was set to 300 ° C. with a heater, the absolute value of the voltage applied to the metal substrate was lowered, and the silicon substrate was formed for 14 minutes with the potential of the metal substrate set to −20V. After that, the discharge gas to be introduced into the film forming chamber is changed to nitrogen gas 25 sccm, the power supplied from the high frequency power source to the head unit is changed to 200 W, and the absolute value of the negative voltage applied to the metal substrate is increased to increase the potential of the metal substrate. A silicon nitride film was formed at -100 V for 25 minutes.
“Example 2”
In this second embodiment, first, after performing sputter cleaning and silicon film formation under the same conditions as in the first embodiment, the discharge gas introduced into the film formation chamber is nitrogen gas 25 sccm, and the power supplied from the high-frequency power source to the head unit. Was changed to 200 W, and the absolute value of the negative voltage applied to the metal substrate was increased to set the potential of the metal substrate to -100 V, and a silicon nitride film was formed for 30 minutes.

『実施例3』
この実施例3では、まず上記実施例1と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材への印加電圧の絶対値を下げて、金属基材の電位を-20Vとして39分間、シリコン膜の成膜を行った。その後、上記実施例1と同じ条件で窒化シリコン膜の成膜を行った。
『実施例4』
この実施例4では、まず上記実施例1と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材への印加電圧の絶対値を下げて、金属基材の電位を-20Vとして44分間、シリコン膜の成膜を行った。その後、上記実施例1と同じ条件で窒化シリコン膜の成膜を行った。
『実施例5』
この実施例5では、まず上記実施例1と同じ条件でスパッタクリーニングを行った後、金属基板の温度をヒータにより300℃とした上で、金属基材への印加電圧の絶対値を下げて、金属基材の電位を-20Vとして49分間、シリコン膜の成膜を行った。その後、上記実施例1と同じ条件で窒化シリコン膜の成膜を行った。
“Example 3”
In this Example 3, first, after performing sputter cleaning under the same conditions as in Example 1, the temperature of the metal substrate was set to 300 ° C. with a heater, and then the absolute value of the voltage applied to the metal substrate was lowered, A silicon film was formed for 39 minutes with the potential of the metal substrate set to -20V. Thereafter, a silicon nitride film was formed under the same conditions as in Example 1.
Example 4
In this Example 4, after performing sputter cleaning under the same conditions as in Example 1 above, the temperature of the metal substrate was set to 300 ° C. with a heater, and the absolute value of the voltage applied to the metal substrate was lowered, A silicon film was formed for 44 minutes by setting the potential of the metal substrate to −20V. Thereafter, a silicon nitride film was formed under the same conditions as in Example 1.
Example 5
In this Example 5, after performing sputter cleaning under the same conditions as in Example 1 above, the temperature of the metal substrate was set to 300 ° C. with a heater, and then the absolute value of the voltage applied to the metal substrate was lowered, A silicon film was formed for 49 minutes by setting the potential of the metal substrate to −20V. Thereafter, a silicon nitride film was formed under the same conditions as in Example 1.

<サンプルの外観評価>
次に上記製造条件で作製した比較例1〜9及び実施例1〜5のサンプルについて外観評価を行ったところ、実施例1〜5のサンプルの方が、比較例1〜9のサンプルよりも緑系統、橙系統及び赤系統の色が鮮やかに濃く発色していた。これにより本発明に係る薄膜形成方法が色の彩度の面で従来の方法よりも優れていることが確認できた。各サンプルの製造条件と色をまとめたものを以下に示す。なお表中の色番号は、DICカラーガイド(登録商標)からサンプルの色に近いものを探して特定した。

Figure 2017061719
Figure 2017061719
<External appearance evaluation of sample>
Next, when the appearance evaluation was performed on the samples of Comparative Examples 1 to 9 and Examples 1 to 5 manufactured under the above manufacturing conditions, the samples of Examples 1 to 5 were greener than the samples of Comparative Examples 1 to 9 The colors of the system, orange system and red system were vividly dark. Thus, it was confirmed that the thin film forming method according to the present invention was superior to the conventional method in terms of color saturation. A summary of the manufacturing conditions and colors of each sample is shown below. The color numbers in the table were specified by searching for a color similar to the sample color from the DIC Color Guide (registered trademark).
Figure 2017061719
Figure 2017061719

一般的に、金属表面への着色は、単なる装飾という理由だけでなく、目視では形状で区別できないものを区別したり、容器を着色することでそこに置かれたものを見付け易くするためにも用いられている。工具、構造材などでは傷、刻印で区別する方法もあるが、小さ過ぎて刻印ができないものもある。そのため着色は物を区別したり見付け易くするための有効な手段であり、実際に自動車や鉄道車両の区別には塗装の色が使われている。そのような中で、本発明は、多様な用途に用いられる金属表面を様々な色に着色できる有用な技術であるため、産業上の利用価値は非常に高い。   In general, the coloration on the metal surface is not only for decoration, but also for distinguishing things that cannot be visually distinguished by shape, or to make it easier to find what was placed there by coloring the container. It is used. For tools and structural materials, there is a method of distinguishing them by scratches or stamps, but there are also methods that are too small to be stamped. Therefore, coloring is an effective means for distinguishing objects and making them easy to find, and the color of paint is actually used to distinguish between automobiles and railway vehicles. Under such circumstances, the present invention is a useful technique capable of coloring metal surfaces used in various applications in various colors, and thus has a very high industrial utility value.

Claims (5)

高周波マグネトロンスパッタ法により金属基材上に光の干渉で発色する有色のシリコン膜を形成した後、スパッタリング装置の成膜室内に放電ガスとして窒素ガス或いは窒素ガスを含む混合ガスを導入し、前記シリコン膜上に光透過性を有する黄系色または茶系色の窒化シリコン膜を連続的に形成することを特徴とする有色シリコン薄膜の形成方法。   After forming a colored silicon film that develops color by interference of light on a metal substrate by high-frequency magnetron sputtering, nitrogen gas or a mixed gas containing nitrogen gas is introduced as a discharge gas into the deposition chamber of the sputtering apparatus, and the silicon A method for forming a colored silicon thin film, comprising continuously forming a light-transmitting yellow or brown silicon nitride film on the film. シリコン膜の成膜時において、成膜室内に導入する放電ガスにアルゴンガスと水素ガスの混合ガスを使用することを特徴とする請求項1記載の有色シリコン薄膜の形成方法。   2. The method for forming a colored silicon thin film according to claim 1, wherein a mixed gas of argon gas and hydrogen gas is used as a discharge gas introduced into the film forming chamber when forming the silicon film. 金属基材上にシリコン膜を膜厚10〜150nmの範囲で形成することを特徴とする請求項1または2に記載の有色シリコン薄膜の形成方法。   3. The method for forming a colored silicon thin film according to claim 1, wherein a silicon film is formed on the metal substrate in a thickness of 10 to 150 nm. スパッタリング装置の成膜室内に放電ガスを導入した後、シリコン膜の成膜前に金属基材に負の電圧を印加して基材表面のスパッタクリーニングを行うことを特徴とする請求項1〜3の何れか一つに記載の有色シリコン薄膜の形成方法。   4. The substrate surface is sputter-cleaned by applying a negative voltage to the metal substrate after introducing the discharge gas into the film-forming chamber of the sputtering apparatus and before forming the silicon film. The method for forming a colored silicon thin film according to any one of the above. 窒化シリコン膜の成膜時における金属基材の温度を200℃以上とすることを特徴とする請求項1〜4の何れか一つに記載の有色シリコン薄膜の形成方法。   The method for forming a colored silicon thin film according to any one of claims 1 to 4, wherein the temperature of the metal substrate during the formation of the silicon nitride film is 200 ° C or higher.
JP2015187495A 2015-09-24 2015-09-24 Forming method for a colored silicon thin film Pending JP2017061719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187495A JP2017061719A (en) 2015-09-24 2015-09-24 Forming method for a colored silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187495A JP2017061719A (en) 2015-09-24 2015-09-24 Forming method for a colored silicon thin film

Publications (2)

Publication Number Publication Date
JP2017061719A true JP2017061719A (en) 2017-03-30
JP2017061719A5 JP2017061719A5 (en) 2017-07-20

Family

ID=58429974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187495A Pending JP2017061719A (en) 2015-09-24 2015-09-24 Forming method for a colored silicon thin film

Country Status (1)

Country Link
JP (1) JP2017061719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359940A (en) * 2018-03-22 2018-08-03 中国计量大学 A kind of color metal product and preparation method
CN110396815A (en) * 2019-07-03 2019-11-01 北京欣荣尖端科技有限公司 A kind of colored fiber fabric and its production method
CN111479683A (en) * 2017-12-15 2020-07-31 株式会社Lg化学 Decorative member
CN113802099A (en) * 2021-08-06 2021-12-17 浙江上方电子装备有限公司 Degradable tableware and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362867A (en) * 1986-09-02 1988-03-19 Seikosha Co Ltd Colored article
US6065840A (en) * 1991-05-15 2000-05-23 Donnelly Corporation Elemental semiconductor mirror
JP2001144017A (en) * 2000-09-29 2001-05-25 Semiconductor Energy Lab Co Ltd Sputtering device
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2004279382A (en) * 2003-03-19 2004-10-07 Citizen Watch Co Ltd Decorative light pointer and its manufacturing method
JP2006289573A (en) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool having lubricating amorphous carbon-based coating film exhibiting superior abrasion resistance
JP2010228307A (en) * 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Decorative member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362867A (en) * 1986-09-02 1988-03-19 Seikosha Co Ltd Colored article
US6065840A (en) * 1991-05-15 2000-05-23 Donnelly Corporation Elemental semiconductor mirror
JP2001144017A (en) * 2000-09-29 2001-05-25 Semiconductor Energy Lab Co Ltd Sputtering device
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2004279382A (en) * 2003-03-19 2004-10-07 Citizen Watch Co Ltd Decorative light pointer and its manufacturing method
JP2006289573A (en) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool having lubricating amorphous carbon-based coating film exhibiting superior abrasion resistance
JP2010228307A (en) * 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Decorative member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479683A (en) * 2017-12-15 2020-07-31 株式会社Lg化学 Decorative member
CN108359940A (en) * 2018-03-22 2018-08-03 中国计量大学 A kind of color metal product and preparation method
CN110396815A (en) * 2019-07-03 2019-11-01 北京欣荣尖端科技有限公司 A kind of colored fiber fabric and its production method
CN113802099A (en) * 2021-08-06 2021-12-17 浙江上方电子装备有限公司 Degradable tableware and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2017061719A (en) Forming method for a colored silicon thin film
CN101628492B (en) Film coating material and preparation method thereof
JP2013040767A5 (en)
CN104831233B (en) One kind decoration blue ceramic coating and preparation method thereof
CN112281125B (en) Composite metal film and preparation method and application thereof
JP6847297B1 (en) How to make a decorative surface
JP2014156116A (en) Housing and method for manufacturing the same
TW201438541A (en) Housing and method for making the same
CN107186352A (en) A kind of laser color marking method for stainless steel
JP2014172398A (en) Housing and its manufacturing method
CN106319446A (en) Preparation method for decorative film bottoming vacuum coating
KR101674316B1 (en) Color-treated substrate and color-treatment method thereof
JP2017061719A5 (en)
TW201325367A (en) Housing and method for making same
JP2010265522A (en) Method of protecting colored metal
US2059053A (en) Coating metal
CN107604330A (en) A kind of non-crystaline amorphous metal colorful film of Color tunable and preparation method thereof
WO2009001634A1 (en) Low-refractive index film, method for forming the low-refractive index film, and antireflection film
CN109628880B (en) Anti-oxidation and anti-corrosion lens with patterns and preparation method thereof
CN108640530A (en) Cover sheet and its preparation method and application
SG134223A1 (en) Method and apparatus of manufacturing magnetic recording medium
CN110724919A (en) Colorful and green mobile phone back shell membrane and preparation method thereof
TW200724706A (en) A light metal with colorful surface coating and the manufacture method of the same
JP2018530665A (en) Color-treated substrate and method for color development therefor
KR101861449B1 (en) Color-treated substrate and color-treatment method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180802