JP2017057455A - Electromagnetic steel sheet and manufacturing method therefor - Google Patents

Electromagnetic steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2017057455A
JP2017057455A JP2015182866A JP2015182866A JP2017057455A JP 2017057455 A JP2017057455 A JP 2017057455A JP 2015182866 A JP2015182866 A JP 2015182866A JP 2015182866 A JP2015182866 A JP 2015182866A JP 2017057455 A JP2017057455 A JP 2017057455A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
electrical steel
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015182866A
Other languages
Japanese (ja)
Other versions
JP6852965B2 (en
Inventor
脇坂 岳顕
Takeaki Wakizaka
岳顕 脇坂
俊介 谷口
Shunsuke Taniguchi
俊介 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015182866A priority Critical patent/JP6852965B2/en
Publication of JP2017057455A publication Critical patent/JP2017057455A/en
Application granted granted Critical
Publication of JP6852965B2 publication Critical patent/JP6852965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic steel sheet having improved strength without deteriorating electromagnetic property and thermal conductivity and a manufacturing method therefor.SOLUTION: There is provided an electromagnetic steel sheet containing, by mass%, Si:2 to 4%, Al:1 to 3%, Ni:1.5 to 4% and the balance Fe with inevitable impurities and having 30000/μmor more of intermetallic compounds of Al-Ni with an average of equivalent circle diameters calculated in terms of area of 1 to 10 nm and a standard deviation of 1 or less deposited. The electromagnetic steel sheet is manufactured by hot rolling, cold rolling and annealing a steel slab with the above described component, then adding a plastic deformation to make dislocation density 1×10/mor more and further conducting an aging treatment at 400 to 600°C.SELECTED DRAWING: Figure 1

Description

本発明は、強度を向上させた電磁鋼板とその製造方法に関し、特に高強度の無方向性電磁鋼板とその製造方法に関する。   The present invention relates to a magnetic steel sheet having improved strength and a method for producing the same, and more particularly to a high-strength non-oriented electrical steel sheet and a method for producing the same.

近年、ハイブリッド電気自動車(HEV)や電気自動車(EV)に使用される駆動モータの高速回転化が著しく、それらの駆動モータの鉄心などに用いられる無方向性電磁鋼板については、低鉄損などの電磁特性に加えて、高強度化の要求が高くなっている。鋼板の高強度化には、固溶強化、析出強化、結晶粒微細化強化、転位強化、変態強化等が適用されるが、固溶強化以外は磁気特性を劣化させるため、電磁鋼板には好ましくない。また、固溶強化は磁気特性劣化を回避した高強度化には大きな効果があるが、同時に圧延荷重増大や脆性破断の課題もあり、生産性の観点から添加量に上限がある。   In recent years, drive motors used in hybrid electric vehicles (HEV) and electric vehicles (EV) have been revolving at a high speed, and non-oriented electrical steel sheets used for iron cores of those drive motors have low iron loss. In addition to electromagnetic characteristics, there is an increasing demand for higher strength. For strengthening steel sheets, solid solution strengthening, precipitation strengthening, grain refinement strengthening, dislocation strengthening, transformation strengthening, etc. are applied. Absent. In addition, solid solution strengthening has a great effect on increasing the strength while avoiding deterioration of magnetic properties, but at the same time, there are problems of increased rolling load and brittle fracture, so that the addition amount has an upper limit from the viewpoint of productivity.

従来、このような無方向性電磁鋼板の高強度化に関し、特許文献1に示すように、質量%で、C:0.0400%以下、Si:0.2〜4.0%、Mn:0.05〜5.0%、P:0.30%以下、S:0.020%以下、Al:8.0%以下、N:0.0400%以下を含有し、残部Feおよび不可避的不純物からなり、組織が体積率でフェライト相:50%以上、マルテンサイト相:50%以下を満足する範囲で主としてフェライト相からなる電磁鋼板について、鋼材内部に直径0.050μm以下の金属間化合物を20個/μm3以上の密度で含有させることで強度を向上させる技術を開示している。 Conventionally, regarding the increase in strength of such a non-oriented electrical steel sheet, as shown in Patent Document 1, in mass%, C: 0.0400% or less, Si: 0.2-4.0%, Mn: 0.05-5.0%, P: It contains 0.30% or less, S: 0.020% or less, Al: 8.0% or less, N: 0.0400% or less, and is composed of the balance Fe and unavoidable impurities, and the structure is a volume fraction of ferrite phase: 50% or more, martensite phase: Disclosure of technology to improve strength of electrical steel sheet mainly composed of ferrite phase within the range satisfying 50% or less by containing an intermetallic compound with a diameter of 0.050 μm or less at a density of 20 / μm 3 or more inside the steel material. ing.

特開2005−264315号公報JP 2005-264315 A

しかしながら、金属間化合物を鋼材内部に析出させて高強度化をはかった電磁鋼板は熱伝導性が劣化しやすいという課題があった。上述のように近年の高速回転化に伴い発熱も大きくなるため、モータコアには優れた熱伝導性が求められており、駆動モータを高速回転化させるためには、熱伝導性を劣化させずに高強度化をはかった電磁鋼板の出現が望まれる。   However, there is a problem that the electrical conductivity of the electrical steel sheet in which the intermetallic compound is precipitated in the steel material to increase the strength tends to deteriorate. As described above, since heat generation increases with the recent high-speed rotation, the motor core is required to have excellent thermal conductivity. To drive the drive motor at high speed, the thermal conductivity is not deteriorated. The appearance of electrical steel sheets with increased strength is desired.

本発明は電磁特性と熱伝導性を劣化させずに強度を向上させた電磁鋼板とその製造方法を提供することを目的とする。   An object of the present invention is to provide an electrical steel sheet having improved strength without deteriorating electromagnetic characteristics and thermal conductivity, and a method for producing the electrical steel sheet.

本発明者らは、電磁特性と熱伝導性を劣化させずに強度を向上させた電磁鋼板を得るために種々実験し検討を重ねてきた。本発明者らは上記課題を解決するために主としてAl、Niからなる微細な金属間化合物を鋼中に析出させ、その円相当径の平均値と標準偏差、および、析出密度を適正に制御することで、電磁特性と熱伝導性を劣化させずに強度を向上できることを知見した。本発明の技術の要点は、焼鈍後において鋼板中に転位を生じさせ、その転位を析出サイトとして、鋼板中に大きさがなるべく均一なAl−Niの金属間化合物を分散させて析出させることで、電磁鋼板の電磁特性と熱伝導性を劣化させずに強度を向上させることにある。本発明によれば以下の電磁鋼板とその製造方法が提供される。   The present inventors have conducted various experiments and studies in order to obtain an electromagnetic steel sheet having improved strength without deteriorating electromagnetic characteristics and thermal conductivity. In order to solve the above-mentioned problems, the present inventors precipitate fine intermetallic compounds mainly composed of Al and Ni in steel, and appropriately control the average value and standard deviation of the equivalent circle diameter and the precipitation density. Thus, it has been found that the strength can be improved without deteriorating the electromagnetic characteristics and the thermal conductivity. The main point of the technology of the present invention is to cause dislocations in the steel sheet after annealing, and to disperse and precipitate a uniform intermetallic compound of Al-Ni as much as possible in the steel sheet using the dislocations as precipitation sites. It is to improve the strength without deteriorating the electromagnetic properties and thermal conductivity of the electrical steel sheet. According to the present invention, the following electrical steel sheet and its manufacturing method are provided.

(1)
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなり、
面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、電磁鋼板。
(2)
さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、(1)に記載の電磁鋼板。
(3)
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを、熱間圧延、冷間圧延および焼鈍をした後、転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、電磁鋼板の製造方法。
(4)
前記鋼スラブは、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、(3)に記載の電磁鋼板の製造方法。
(1)
In mass%, Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4%, comprising the balance Fe and inevitable impurities,
An electrical steel sheet having an average value of equivalent circle diameters determined on an area basis of 1 to 10 nm and an Al—Ni intermetallic compound having a standard deviation of 1 or less is deposited at 30000 / μm 3 or more.
(2)
The electrical steel sheet according to (1), further containing 1 or 2% by mass of Cr: 0.01 to 4%, Cu: 0.01 to 4%, Sn: 0.01 to 0.2%. .
(3)
A steel slab containing Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4% and consisting of the balance Fe and inevitable impurities in hot mass, cold rolling and A method for producing an electrical steel sheet, wherein after annealing, plastic deformation is performed so that the dislocation density is 1 × 10 14 / m 2 or more, and an aging treatment is further performed at 400 to 600 ° C.
(4)
The steel slab further contains 1% or more of Cr: 0.01 to 4%, Cu: 0.01 to 4%, Sn: 0.01 to 0.2% by mass%, (3) The manufacturing method of the electrical steel sheet as described in 2.

本発明によれば、磁気特性と熱伝導性に優れ、強度や疲労強度、耐磨耗性が向上した無方向性電磁鋼板を得ることができる。これにより、近年のハイブリッド電気自動車(HEV)や電気自動車(EV)などで求められている特性を満足する高速回転モータやロータに磁石を組み込んだモータが得られる。また、本発明によれば、モータ以外についても、例えば電磁開閉器用材料の高効率化、小型化、長寿命化などが達成される。   According to the present invention, it is possible to obtain a non-oriented electrical steel sheet that is excellent in magnetic properties and thermal conductivity and improved in strength, fatigue strength, and wear resistance. As a result, it is possible to obtain a high-speed rotating motor that satisfies the characteristics required for recent hybrid electric vehicles (HEV), electric vehicles (EV), and the like, and a motor in which a magnet is incorporated in a rotor. Further, according to the present invention, other than the motor, for example, high efficiency, downsizing, and long life of the electromagnetic switch material can be achieved.

実施例の粒内析出物TEM観察写真である。It is a TEM observation photograph of the intragranular precipitate of an Example.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

先ず、本発明の電磁鋼板における成分組成について説明する。本発明の電磁鋼板は、質量%で、Si:2〜4%、Al:1〜3%以下、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなることを基本とする。   First, the component composition in the electrical steel sheet of the present invention will be described. The electrical steel sheet according to the present invention is based on mass%, Si: 2 to 4%, Al: 1 to 3% or less, Ni: 1.5 to 4%, and the balance Fe and inevitable impurities. To do.

Si:2〜4%
Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低下せしめるとともに、抗張力を高めるが、添加量が2.0%未満ではその効果が小さい。また、添加により加工硬化能が高まるため、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。一方、Siが4%を超えると鋼を脆化させ、さらに製品の磁束密度を低下させるため4%以下とする。
Si: 2-4%
Si increases the specific resistance of steel, reduces eddy currents, lowers iron loss, and increases tensile strength, but the effect is small when the amount added is less than 2.0%. Moreover, since work hardening ability increases by addition, it also has the effect of increasing effectively the dislocation density by the process implemented before an aging heat processing. On the other hand, if Si exceeds 4%, the steel is embrittled and further the magnetic flux density of the product is lowered, so the content is made 4% or less.

Al:1〜3%
本発明ではAlは金属間化合物の構成元素として積極的に添加される重要な元素であるが、3%を超えると脆化が問題になるため、上限を3%とする。Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。一方、金属間化合物の析出強化の効果を得るためには少なくとも1%は含有する。また、固溶Alは電気抵抗を高め鉄損を改善する効果が知られており、この目的でAl−Ni析出物を形成する以上のAlを含有させることは有効である。
Al: 1-3%
In the present invention, Al is an important element that is positively added as a constituent element of the intermetallic compound, but if it exceeds 3%, embrittlement becomes a problem, so the upper limit is made 3%. Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. On the other hand, in order to obtain the effect of precipitation strengthening of intermetallic compounds, at least 1% is contained. In addition, solute Al is known to have an effect of increasing electric resistance and improving iron loss. For this purpose, it is effective to contain more Al than that which forms Al—Ni precipitates.

Ni:1.5〜4%
従来一般的には、Niは主として固溶体強化元素または炭化物、窒化物等による析出強化元素として利用されていた。本発明では、NiはAlとの金属間化合物を形成し、Al−Niの金属間化合物による析出強化を発現させるために含有させられる。Al−Niの金属間化合物による析出強化を発現させるためには、1.5%以上のNiが必要である。一方、過剰な添加は鋼板の延性を劣化させ通板性が低下する他、磁束密度を低下させるとともに製造工程での金属間化合物の好ましい形成抑制が困難となる場合がある。添加コストも考え上限を4%とする。
Ni: 1.5-4%
Conventionally, Ni has been generally used as a solid solution strengthening element or a precipitation strengthening element such as carbide, nitride or the like. In the present invention, Ni is contained in order to form an intermetallic compound with Al and develop precipitation strengthening due to the intermetallic compound of Al-Ni. In order to develop precipitation strengthening by the intermetallic compound of Al—Ni, 1.5% or more of Ni is necessary. On the other hand, excessive addition deteriorates the ductility of the steel sheet and lowers the sheet-passability. In addition, the magnetic flux density is lowered and it is sometimes difficult to suppress preferable formation of intermetallic compounds in the production process. Considering the addition cost, the upper limit is made 4%.

また、本発明の電磁鋼板は、任意含有成分として、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有しても良い。これらの元素は、本発明が対象とする電磁鋼板において金属間化合物を形成する元素として知られており、必要に応じて1または2以上を含有することができる。しかし、過剰な含有は鋼板の延性を劣化させ通板性が低下する他、製造工程での金属間化合物の好ましい形成抑制が困難になる場合がある。また、添加コストを考え、Crについては0.01〜4%、Cuについては0.01〜4%、Snについては0.01〜0.2%とする。   Moreover, the electrical steel sheet of the present invention may further include, as an optional component, 1% by mass of Cr: 0.01-4%, Cu: 0.01-4%, Sn: 0.01-0.2%. You may contain 2 or more. These elements are known as elements forming an intermetallic compound in the electrical steel sheet targeted by the present invention, and can contain one or two or more as necessary. However, excessive content deteriorates the ductility of the steel sheet and lowers the sheet passability, and may make it difficult to suppress preferable formation of intermetallic compounds in the production process. Further, considering the addition cost, 0.01 to 4% for Cr, 0.01 to 4% for Cu, and 0.01 to 0.2% for Sn.

本発明の電磁鋼板は以上の成分組成を基本とし、残部Feおよび不可避的不純物からなる。   The electrical steel sheet of the present invention is based on the above component composition, and consists of the remaining Fe and inevitable impurities.

Cは磁気特性を劣化させる場合があるので0.0400%以下とすることが好ましい。一方、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利で、0.0030%以下とすれば磁気時効抑制の効果が著しく、高強度化の主たる手段として炭化物等の非金属析出物を用いない本発明鋼においては0.0020%以下とすることがさらに好ましく、0.0015%以下がさらに好ましい。0%であっても構わない。   C may degrade the magnetic properties, so 0.0400% or less is preferable. On the other hand, there is also an effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. From the viewpoint of manufacturing cost, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage, and if it is 0.0030% or less, the effect of suppressing magnetic aging is remarkable, and carbide etc. as the main means of increasing strength In the steel of the present invention that does not use this non-metallic precipitate, it is more preferably 0.0020% or less, and further preferably 0.0015% or less. It may be 0%.

Mnは、固溶による高強度化や電気抵抗を高め鉄損を改善する元素としても有効であり、本発明鋼でも公知技術に準じた使用が可能である。また、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。高強度化の観点では、微細金属間化合物を活用する本発明では特に必要としない。0%でも構わないが、鉄鉱石を原料とする工業的製法では、0.01%程度は不可避的に含有される。   Mn is effective as an element for increasing the strength by solid solution and increasing the electric resistance and improving the iron loss, and the steel of the present invention can also be used in accordance with known techniques. In addition, there is an effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. From the viewpoint of increasing the strength, this is not particularly necessary in the present invention using a fine intermetallic compound. Although it may be 0%, in the industrial production method using iron ore as a raw material, about 0.01% is inevitably contained.

NはCと同様に磁気特性を劣化させるので0.0400%以下とすることが好ましい。含有により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。特に本発明ではAlとの強い窒化物の生成を避けるためNは低い方が好ましく、0.0027%以下とすれば磁気時効や微細な窒化物形成による特性劣化の抑制効果は顕著で、さらに好ましくは0.0022%、さらに好ましくは0.0015%以下、0%であっても構わない。   N, like C, degrades the magnetic properties, so 0.0400% or less is preferable. The inclusion has the effect of increasing the work hardening ability and effectively increasing the dislocation density by the processing performed before the aging heat treatment. In particular, in the present invention, N is preferably low in order to avoid the formation of strong nitrides with Al, and if it is 0.0027% or less, the effect of suppressing property deterioration due to magnetic aging and fine nitride formation is remarkable, and more preferable. May be 0.0022%, more preferably 0.0015% or less, and 0%.

Cuは鉄の飽和磁束密度Bsを大幅に低下させ、B50(磁化力が5000[A/m]における磁束密度[T])も大幅に低下させる。BsやB50の低下はモータトルクの低下につながるため、本発明ではCuの含有を必須とすることなく、BsやB50の低下を伴わずに、高強度かつ低鉄損な無方向性電磁鋼板及びその製造方法を実現できる。一方でCu析出による高強度化なども知られており、本発明鋼でも公知技術に準じた使用が可能である。   Cu significantly reduces the saturation magnetic flux density Bs of iron, and B50 (magnetic flux density [T] when the magnetizing force is 5000 [A / m]). Since lowering of Bs and B50 leads to lowering of motor torque, in the present invention, non-oriented electrical steel sheets having high strength and low iron loss without requiring the inclusion of Cu, and without lowering of Bs and B50, and The manufacturing method can be realized. On the other hand, increasing strength by Cu precipitation is also known, and the steel according to the present invention can also be used according to known techniques.

Nbは、NbCなどの析出物は高強度化には有効であるが、これら析出物が磁壁移動を阻害し、鉄損を大幅に劣化させるため、この目的であえて添加する必要はない。一方で、固溶Nbは固溶強化のみならず結晶粒微細化による高強度化や高周波特性改善にも有効であり、本発明鋼でも公知技術に準じた使用が可能である。   For Nb, precipitates such as NbC are effective for increasing the strength, but these precipitates inhibit the domain wall movement and greatly deteriorate the iron loss. Therefore, it is not necessary to add Nb for this purpose. On the other hand, solid solution Nb is effective not only for solid solution strengthening but also for increasing strength and improving high-frequency characteristics by refining crystal grains, and can be used in the steel of the present invention in accordance with known techniques.

Pは固溶体強化により抗張力を高める効果の著しい元素であるが、この目的ではあえて添加する必要はない。0%であっても構わない。一方、添加により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。0.3%を超えると脆化が激しく、工業的規模での熱延、冷延等の処理が困難になるため、上限を0.30%とすることが好ましく、さらに好ましくは0.10%以下である。   P is an element having a remarkable effect of increasing the tensile strength by strengthening the solid solution, but it is not necessary to add it for this purpose. It may be 0%. On the other hand, the work hardening ability is enhanced by the addition, and there is also an effect of effectively increasing the dislocation density by the processing performed before the aging heat treatment. If it exceeds 0.3%, brittleness is severe, and it is difficult to perform hot rolling and cold rolling on an industrial scale, so the upper limit is preferably set to 0.30%, more preferably 0.10%. It is as follows.

Sは硫化物を形成し磁気特性、特に鉄損を劣化させる場合があるので、Sの含有量はできるだけ低いことが好ましく0%であっても構わない。本発明では0.020%以下が好ましく、さらに好ましくは0.0040%以下、さらに好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。   Since S forms sulfides and may deteriorate magnetic properties, particularly iron loss, the S content is preferably as low as possible and may be 0%. In this invention, 0.020% or less is preferable, More preferably, it is 0.0040% or less, More preferably, it is 0.0020% or less, More preferably, it is 0.0010% or less.

次に、本発明の電磁鋼板の製造方法について説明する。先ず、前記成分を含む鋼を、通常の電磁鋼板と同様に転炉で溶製し、連続鋳造で鋼スラブとし、ついで熱間圧延、冷間圧延および焼鈍をした後、転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う。これらの工程に加え絶縁皮膜の形成や脱炭工程などを経ることも本発明の効果を何ら損なうものではない。 Next, the manufacturing method of the electrical steel sheet of this invention is demonstrated. First, the steel containing the above components is melted in a converter in the same manner as a normal electromagnetic steel sheet, and steel slab is formed by continuous casting, followed by hot rolling, cold rolling and annealing, and then the dislocation density is 1 × 10. A plastic deformation of 14 / m 2 or more is added, and an aging treatment is further performed at 400 to 600 ° C. In addition to these steps, the formation of an insulating film and a decarburization step do not impair the effects of the present invention.

焼鈍後の鋼板を転位密度1×1014/m以上とする塑性変形は、例えばスキンパス圧延、レベラー矯正によって行うことができる。また、モータコア形状に打抜く際の加工により、転位密度1×1014/m以上とすることもできる。そして、これらスキンパス圧延、レベラー矯正、打抜き加工などによって鋼板を転位密度1×1014/m以上とした後、さらに400〜600℃で時効処理を行う。このような塑性変形と時効処理を行うことにより、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出した、低鉄損、高磁束密度といった優れた電磁特性と高強度を兼ね備え、熱伝導性も劣化していない無方向性電磁鋼板を得ることができる。 The plastic deformation which makes the steel plate after annealing a dislocation density of 1 × 10 14 / m 2 or more can be performed by, for example, skin pass rolling or leveler correction. Further, the dislocation density can be set to 1 × 10 14 / m 2 or more by processing when punching into a motor core shape. And after making a steel plate the dislocation density of 1 * 10 < 14 > / m < 2 > or more by these skin pass rolling, leveler correction, a punching process, etc., aging treatment is further performed at 400-600 degreeC. By performing such plastic deformation and aging treatment, the average value of equivalent circle diameters determined on an area basis is 1 to 10 nm, and the Al—Ni intermetallic compound having a standard deviation of 1 or less is 30000 / μm. It is possible to obtain a non-oriented electrical steel sheet having both excellent electromagnetic properties such as low iron loss and high magnetic flux density and high strength, which is deposited three or more times, and having no deteriorated thermal conductivity.

従来、電磁鋼板で高強度化のために利用されている殆どの元素は添加コストが問題視されるだけではなく磁気特性に少なからず悪影響を及ぼす割に、高強度化効果が小さくコストパフォーマンスに問題があった。本発明でも高強度化の目的のためにSi、Al、Niを含有するが、その技術的効果および技術的目的は従来とは全く異なる。つまり、従来の添加元素は主として固溶体強化元素または炭化物、窒化物等による析出強化元素として利用されていたのに対し、本発明ではAl−Niの金属間化合物を形成し、それによる析出強化効果を発現させるために含有するのである。   Conventionally, most of the elements used to increase the strength of electrical steel sheets are not only problematic in terms of the cost of addition, but also have an adverse effect on the magnetic properties, but the effect of increasing the strength is small and there is a problem in cost performance. was there. In the present invention, Si, Al, and Ni are contained for the purpose of increasing the strength, but their technical effects and technical purposes are completely different from those of the prior art. In other words, the conventional additive elements were mainly used as solid solution strengthening elements or precipitation strengthening elements such as carbides and nitrides, whereas in the present invention, an intermetallic compound of Al-Ni is formed and the precipitation strengthening effect thereby is achieved. It is contained for expression.

なお、Niによる固溶強化や結晶粒の微細化では、鉄損が少なからず劣化する。また、結晶粒を微細化させずに、固溶強化のみで顧客の満足する強度を確保するためには、Si、Al、Niの含有量を増加しなければならず、合金コストが上昇し、さらに圧延荷重の増加、脆化に伴う生産性低下等の課題がある。   In addition, solid solution strengthening by Ni or refinement of crystal grains causes a considerable deterioration of iron loss. In addition, in order to ensure the strength that the customer satisfies only by solid solution strengthening without refining the crystal grains, the content of Si, Al, Ni must be increased, the alloy cost increases, Furthermore, there are problems such as an increase in rolling load and a decrease in productivity due to embrittlement.

塑性加工後の鋼板の転位密度を1×1014/m以上とするのは、塑性加工によって鋼板中に転位を十分に生じさせ、その転位を析出サイトとして、鋼板中に大きさがなるべく均一なAl−Niの金属間化合物を分散させて析出させるためである。転位密度が1×1014/m未満では、金属間化合物の析出サイトが不十分であり、時効後において個数密度が30000個/μm以上のAl−Niの金属間化合物が得られなくなってしまう。また、Al−Niの金属間化合物の個数密度が少ないと、金属間化合物の円相当径の平均値が10nmよりも大きくなり、さらに個々の金属間化合物の大きさのばらつきも大きくなり、標準偏差が1を超えてしまう。なお、焼鈍後の鋼板の転位密度が3×1016/mを超えてしまうと却って電磁特性が劣化し、さらに時効後においてAl−Niの金属間化合物の大きさや標準偏差、個数密度が本発明の範囲内から外れる恐れがある。そのため、焼鈍後の鋼板の転位密度は3×1016/m以下であることが望ましい。 The reason why the dislocation density of the steel sheet after plastic working is 1 × 10 14 / m 2 or more is that enough dislocations are generated in the steel sheet by plastic working, and the dislocation is used as a precipitation site to make the size as uniform as possible in the steel sheet. This is because an intermetallic compound of Al—Ni is dispersed and precipitated. If the dislocation density is less than 1 × 10 14 / m 2 , the precipitation site of the intermetallic compound is insufficient, and an Al—Ni intermetallic compound having a number density of 30000 / μm 3 or more cannot be obtained after aging. End up. In addition, when the number density of Al—Ni intermetallic compounds is small, the average value of the equivalent circle diameter of the intermetallic compounds is larger than 10 nm, and the variation in the size of each intermetallic compound is also increased. Will exceed 1. In addition, when the dislocation density of the steel sheet after annealing exceeds 3 × 10 16 / m 2 , the electromagnetic characteristics deteriorate, and the size, standard deviation, and number density of the Al—Ni intermetallic compound after aging are further reduced. There is a risk of deviating from the scope of the invention. Therefore, it is desirable that the dislocation density of the steel plate after annealing is 3 × 10 16 / m 2 or less.

また時効処理は、400〜600℃で行う。400℃未満では、十分な金属間化合物が得られず、一方、600℃を超えると形成される金属間化合物が粗大となってしまう。この際の保持時間は1〜120分とすることが好ましい。短過ぎると十分な金属間化合物が得られず、一方、長過ぎると形成される金属間化合物が粗大となってしまう。この他、加熱速度や冷却速度なども、本発明の特徴である析出物の状態に影響を及ぼす可能性がある。これらの熱処理条件は目的とする特性に応じて成分や生産性なども考慮して決定される。当業者であれば、本発明の技術思想に従い、数度の試行により適切な条件を決定することは容易である。   The aging treatment is performed at 400 to 600 ° C. When the temperature is lower than 400 ° C., sufficient intermetallic compounds cannot be obtained. On the other hand, when the temperature exceeds 600 ° C., the formed intermetallic compounds become coarse. In this case, the holding time is preferably 1 to 120 minutes. If it is too short, a sufficient intermetallic compound cannot be obtained. On the other hand, if it is too long, the formed intermetallic compound becomes coarse. In addition, the heating rate, the cooling rate, and the like may affect the state of precipitates that is a feature of the present invention. These heat treatment conditions are determined in consideration of components, productivity and the like according to the target characteristics. A person skilled in the art can easily determine appropriate conditions by several trials in accordance with the technical idea of the present invention.

以上のような製造工程を経ることで、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出し、磁気特性と熱伝導性を殆ど損なわず高強度の電磁鋼板を得ることができる。本発明の電磁鋼板は硬質化のための時効熱処理により引張強度が100MPa以上上昇し、または硬度が1.1倍以上増加する。また、時効処理後の最終的な強度は600MPa以上となるものを本発明の対象とする。 By passing through the manufacturing process as described above, the average value of the equivalent circle diameter determined on an area basis is 1 to 10 nm, and the Al—Ni intermetallic compound having a standard deviation of 1 or less is 30,000 / μm 3 or more. A high strength electrical steel sheet can be obtained without depositing and substantially impairing the magnetic properties and thermal conductivity. The tensile strength of the electrical steel sheet of the present invention is increased by 100 MPa or more, or the hardness is increased by 1.1 times or more by aging heat treatment for hardening. Moreover, the thing whose final intensity | strength after an aging treatment will be 600 Mpa or more is made into the object of this invention.

金属間化合物の円相当径の平均値が10nmを超える粗大な化合物が多量に生成すると高強度化の効率が低下し、磁気特性も劣化させる恐れがある。本発明ではサイズの細かい金属間化合物を高密度に生成させることで、優れた磁気特性と熱伝導性を維持しつつ、電磁鋼板の強度を向上させる。一方、金属間化合物の円相当径の平均値が1nm未満と微細では強化能が小さくなる。さらに高強度化を確実に達成するためには、円相当径の標準偏差が1以下となるように個々の金属間化合物の大きさが揃っていることが必要である。この標準偏差が1を超えると、金属間化合物の大きさが不均一となり、磁気特性と熱伝導性を維持しつつ、電磁鋼板の強度を向上させることが困難となる。なお、鉄鋼材料中に形成するAl−Niの金属間化合物としては、NiAl、NiAlなどが通常知られている。また、これらの化合物の元素比は相当に変動することは知られており、また何らかの不純物元素を含んだものも本発明に相当する。 If a large amount of coarse compounds having an average equivalent circle diameter of an intermetallic compound exceeding 10 nm is formed, the efficiency of increasing the strength is lowered and the magnetic properties may be deteriorated. In the present invention, the strength of the electrical steel sheet is improved while maintaining excellent magnetic properties and thermal conductivity by generating fine intermetallic compounds with high density. On the other hand, if the average value of the equivalent circle diameter of the intermetallic compound is less than 1 nm, the strengthening ability is small. Furthermore, in order to reliably achieve high strength, it is necessary that the sizes of the individual intermetallic compounds are uniform so that the standard deviation of the equivalent circle diameter is 1 or less. If this standard deviation exceeds 1, the size of the intermetallic compound becomes non-uniform, and it becomes difficult to improve the strength of the electrical steel sheet while maintaining the magnetic properties and the thermal conductivity. As the intermetallic compounds of Al-Ni to form in the steel material, NiAl, such as Ni 3 Al it is commonly known. In addition, it is known that the element ratio of these compounds varies considerably, and those containing some impurity elements also correspond to the present invention.

高強度化の観点から、金属間化合物の数密度は30000個/μm以上の析出が必要である。金属間化合物サイズと数密度の制御は、優れた高強度化と磁気特性を両立し、熱伝導性の劣化を防ぐ観点から非常に重要である。その理由は、これらが強度および磁気特性と熱伝導性にそれぞれ影響するのみならず、これらを変化させたときの強度、磁気特性および熱伝導性が変化する挙動がそれぞれ異なるためである。すなわち、強度上昇効果が高く、磁気特性劣化と熱伝導性の劣化が少ない領域に制御する必要がある。このためには前述のように成分および熱処理条件、さらには時効処理前の転位密度を適切に制御し、金属間化合物のサイズと数密度を所望の範囲とすることが有効である。 From the viewpoint of increasing the strength, the number density of intermetallic compounds needs to be deposited at 30000 / μm 3 or more. Control of the intermetallic compound size and number density is very important from the viewpoint of achieving both high strength and magnetic properties and preventing deterioration of thermal conductivity. This is because they not only affect the strength, magnetic properties, and thermal conductivity, but also the behavior in which the strength, magnetic properties, and thermal conductivity change when they are changed. That is, it is necessary to control to a region where the effect of increasing the strength is high and the magnetic property deterioration and the thermal conductivity deterioration are small. For this purpose, it is effective to appropriately control the components and heat treatment conditions, as well as the dislocation density before the aging treatment as described above, so that the size and number density of the intermetallic compound are within a desired range.

本発明では高強度化の主要な手段として結晶組織の微細化を利用しないため、結晶粒径は磁気特性の観点から最適な範囲に調整が可能である。高強度化に寄与する金属間化合物のサイズや密度は成分のみならず、最終的な熱処理により制御が可能であるため結晶粒径はこの熱処理以前の、例えば再結晶焼鈍の最高到達温度およびその温度域での保持時間等により金属間化合物の制御とは独立に制御が可能となる。結晶粒径は通常は300μm以下であり、好ましくは30〜250μmに制御される。さらに好ましくは60〜200μmである。一般的には鋼板を使用する際の励磁電流の周波数が高い場合には結晶粒は微細にしておくことが好ましい。また、方向性電磁鋼板のように二次再結晶等を利用して数cmにまで結晶粒径を粗大化させても本発明の効果は何ら損なわれるものではない。   In the present invention, since the refinement of the crystal structure is not used as a main means for increasing the strength, the crystal grain size can be adjusted to an optimum range from the viewpoint of magnetic properties. Since the size and density of the intermetallic compounds that contribute to high strength can be controlled not only by the components but also by the final heat treatment, the crystal grain size can be controlled before the heat treatment. The control can be performed independently of the control of the intermetallic compound by the holding time in the region. The crystal grain size is usually 300 μm or less, preferably 30 to 250 μm. More preferably, it is 60-200 micrometers. In general, when the frequency of exciting current when using a steel plate is high, it is preferable to keep the crystal grains fine. Further, the effect of the present invention is not impaired at all even if the crystal grain size is increased to several centimeters using secondary recrystallization or the like as in the case of grain-oriented electrical steel sheets.

なお、本発明の効果は通常電磁鋼板の表面に形成されている表面皮膜の有無および種類によらず、さらに製造工程にはよらないため無方向性または方向性の電磁鋼板に適用できる。また、用途も特に限定されるものではなく、家電または自動車等で用いられるモータのロータ用途の他、強度と磁気特性が求められる全ての用途に適用される。   The effect of the present invention can be applied to a non-oriented or directional electrical steel sheet because it does not depend on the manufacturing process, regardless of the presence and type of the surface coating usually formed on the surface of the electrical steel sheet. Further, the use is not particularly limited, and it is applied to all uses where strength and magnetic properties are required, in addition to the use of a rotor of a motor used in home appliances or automobiles.

表1に示す真空溶解した熱延鋼板を、酸洗後、0.20mm厚に冷延し、焼鈍した。その後、転位密度を表1に示す条件とする塑性変形を加え、350〜750℃×2時間の時効処理を行い、磁気特性、機械特性を評価した。その結果を表1に示す。なお、表1において、本発明の範囲外の数値には下線を付した。   The hot-rolled steel sheet melted in vacuum shown in Table 1 was pickled, cold-rolled to a thickness of 0.20 mm, and annealed. Thereafter, plastic deformation with the dislocation density shown in Table 1 was added, an aging treatment was performed at 350 to 750 ° C. for 2 hours, and magnetic properties and mechanical properties were evaluated. The results are shown in Table 1. In Table 1, numerical values outside the range of the present invention are underlined.

成分が本発明範囲の材料は、通常の仕上焼鈍後に550℃×2時間の時効処理を行うことで、YP:140〜160MPa、TS:160〜180MPaの上昇を、鉄損劣化なしに得た(到達YP:570〜910MPa、TS:710〜1130MPa)。図1に示すように、高分解能TEMを用いて、α−Feとβ’−NiAlの結晶構造の違いを考慮した暗視野TEM観察を行うことで、結晶粒内に5nm程度の微細析出物が3,000個/μmの密度で大量に観察され、これが強度上昇の原因である事が分かった。図1中、白く見える析出物は直径約5nmのAl−Ni金属間化合物であり、個数密度は約3,000個/μmであった。これは、本観察技術を用いることで初めて判明した強度上昇のメカニズムである。なお、暗視野TEM観察の観察部位の厚さは約0.1μmであり、3,000個/μmは30,000個/μmに相当する。 The material whose component is within the range of the present invention was obtained by performing an aging treatment at 550 ° C. × 2 hours after normal finish annealing, thereby increasing YP: 140 to 160 MPa, TS: 160 to 180 MPa without deterioration of iron loss ( Reaching YP: 570 to 910 MPa, TS: 710 to 1130 MPa). As shown in FIG. 1, by using dark field TEM observation in consideration of the difference in crystal structure between α-Fe and β′-NiAl using a high-resolution TEM, fine precipitates of about 5 nm are formed in the crystal grains. A large amount was observed at a density of 3,000 / μm 2 , and it was found that this was the cause of the strength increase. In FIG. 1, precipitates that appear white are Al—Ni intermetallic compounds having a diameter of about 5 nm, and the number density is about 3,000 / μm 2 . This is the mechanism of strength increase that was first found by using this observation technique. The thickness of the observation region of the dark field TEM observation is about 0.1 [mu] m, 3,000 pieces / [mu] m 2 is equivalent to 30,000 / [mu] m 3.

塑性変形後の転位密度が約5×1013/mの場合には、析出物の円相当平均径は約3nmと小さかったが標準偏差が1よりも大きく、個数密度は約5000個/μmと非常に少なくなった。この場合、時効処理後の強度上昇は得られず、YP=480MPaであった。塑性変形後の転位密度が約1×1014/mの場合でも、時効処理温度が350℃の場合には、Al−Ni析出物はほとんど観察されず、時効処理後の強度上昇が得られなかった。一方で、塑性変形後の転位密度が約1×1014/mで、時効処理温度が750℃の場合、円相当平均径10nm以上の析出物が増加し、個数密度は約20000個/μmと少なかった。この場合、時効処理後の強度上昇が得られなかっただけではなく、鉄損W10/800も32.0W/kgと大きく劣化した。 When the dislocation density after plastic deformation is about 5 × 10 13 / m 2 , the average equivalent circle diameter of the precipitate was as small as about 3 nm, but the standard deviation was larger than 1, and the number density was about 5000 / μm. It became very few with 3 . In this case, the strength increase after the aging treatment was not obtained, and YP = 480 MPa. Even when the dislocation density after plastic deformation is about 1 × 10 14 / m 2 , when the aging treatment temperature is 350 ° C., almost no Al—Ni precipitates are observed, and an increase in strength after aging treatment is obtained. There wasn't. On the other hand, when the dislocation density after plastic deformation is about 1 × 10 14 / m 2 and the aging treatment temperature is 750 ° C., precipitates having an equivalent circle average diameter of 10 nm or more increase, and the number density is about 20000 / μm. It was few with 3 . In this case, not only the increase in strength after the aging treatment was not obtained, but also the iron loss W10 / 800 was greatly deteriorated to 32.0 W / kg.

各材料から直径10mmの円板試料をそれぞれ10枚切り出し、レーザフラッシュ法にて熱伝導率を測定したところ、本発明の材料に比べて、比較例では熱伝導率測定値のばらつきが大きくなった。これは析出物のサイズ分布が大きいためと推定され、特に標準偏差が1を超えるものは、熱伝導率測定値のばらつきが平均値±10%程度と大きくなった。   Ten disc samples each having a diameter of 10 mm were cut from each material, and the thermal conductivity was measured by the laser flash method. As a result, the variation in the measured thermal conductivity was larger in the comparative example than in the material of the present invention. . This is presumed to be due to the large size distribution of the precipitates. In particular, when the standard deviation exceeds 1, the variation in the measured values of thermal conductivity is as large as about ± 10% on average.

さらに、Cuを質量%で0.01%以上添加することでYPが向上し、本発明例では1%または2%の添加でYP830MPa以上が得られた。Cr添加は鉄損W10/800低減に効果があり、Sn添加は磁束密度B50が向上した。それぞれ質量%で0.01%以上添加することで効果が得られた。   Further, YP was improved by adding 0.01% or more by mass of Cu, and in the examples of the present invention, YP830 MPa or more was obtained by addition of 1% or 2%. Addition of Cr was effective in reducing iron loss W10 / 800, and addition of Sn improved the magnetic flux density B50. The effect was acquired by adding 0.01% or more by mass%, respectively.

Claims (4)

質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなり、
面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、電磁鋼板。
In mass%, Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4%, comprising the balance Fe and inevitable impurities,
An electrical steel sheet having an average value of equivalent circle diameters determined on an area basis of 1 to 10 nm and an Al—Ni intermetallic compound having a standard deviation of 1 or less is deposited at 30000 / μm 3 or more.
さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、請求項1に記載の電磁鋼板。   The electrical steel sheet according to claim 1, further comprising one or more of Cr: 0.01 to 4%, Cu: 0.01 to 4%, Sn: 0.01 to 0.2% in mass%. . 質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを、熱間圧延、冷間圧延および焼鈍をした後、転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、電磁鋼板の製造方法。 A steel slab containing Si: 2 to 4%, Al: 1 to 3%, Ni: 1.5 to 4% and consisting of the balance Fe and inevitable impurities in hot mass, cold rolling and A method for producing an electrical steel sheet, wherein after annealing, plastic deformation is performed so that the dislocation density is 1 × 10 14 / m 2 or more, and an aging treatment is further performed at 400 to 600 ° C. 前記鋼スラブは、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有する、請求項3に記載の電磁鋼板の製造方法。   The steel slab further contains, by mass%, one or more of Cr: 0.01 to 4%, Cu: 0.01 to 4%, and Sn: 0.01 to 0.2%. The manufacturing method of the electrical steel sheet as described in 2.
JP2015182866A 2015-09-16 2015-09-16 Electrical steel sheet and its manufacturing method Active JP6852965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182866A JP6852965B2 (en) 2015-09-16 2015-09-16 Electrical steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182866A JP6852965B2 (en) 2015-09-16 2015-09-16 Electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017057455A true JP2017057455A (en) 2017-03-23
JP6852965B2 JP6852965B2 (en) 2021-03-31

Family

ID=58391191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182866A Active JP6852965B2 (en) 2015-09-16 2015-09-16 Electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6852965B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
JP2005264315A (en) * 2004-02-17 2005-09-29 Nippon Steel Corp Electromagnetic steel sheet, and manufacturing method therefor
JP2006213975A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp Non-oriented electromagnetic steel plate having excellent magnetic property, method for producing the same, and method for stress relieving annealing
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP2005113185A (en) * 2003-10-06 2005-04-28 Nippon Steel Corp High strength silicon steel sheet excellent in magnetic property, and its production method
JP2005264315A (en) * 2004-02-17 2005-09-29 Nippon Steel Corp Electromagnetic steel sheet, and manufacturing method therefor
JP2006213975A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp Non-oriented electromagnetic steel plate having excellent magnetic property, method for producing the same, and method for stress relieving annealing
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
JP2014503685A (en) * 2010-12-23 2014-02-13 ポスコ Low iron loss high strength non-oriented electrical steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP6852965B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
JP5000136B2 (en) High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
JP5263363B2 (en) Method for producing non-oriented electrical steel sheet
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
KR101705235B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP5267747B2 (en) High strength non-oriented electrical steel sheet
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP4833523B2 (en) Electrical steel sheet and manufacturing method thereof
JP2004084053A (en) Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP2016138316A (en) Nonoriented magnetic steel sheet
JP2007186791A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
JP6763148B2 (en) Non-oriented electrical steel sheet
JP4510559B2 (en) High-strength electrical steel sheet and manufacturing method and processing method thereof
KR101653142B1 (en) Non-orinented electrical steel sheet and method for manufacturing the same
JP5397252B2 (en) Electrical steel sheet and manufacturing method thereof
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP4660474B2 (en) Non-oriented electrical steel sheet with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP5445194B2 (en) Manufacturing method and processing method of high strength electrical steel sheet
JP2018111865A (en) Nonoriented electromagnetic steel sheet
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2004339603A (en) High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
JP2005113184A (en) High strength silicon steel sheet, and its production method
JP4740400B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191227

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200107

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200818

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20201208

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20210113

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210209

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6852965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150