JP2017056373A - Purification method by microorganism - Google Patents

Purification method by microorganism Download PDF

Info

Publication number
JP2017056373A
JP2017056373A JP2015180536A JP2015180536A JP2017056373A JP 2017056373 A JP2017056373 A JP 2017056373A JP 2015180536 A JP2015180536 A JP 2015180536A JP 2015180536 A JP2015180536 A JP 2015180536A JP 2017056373 A JP2017056373 A JP 2017056373A
Authority
JP
Japan
Prior art keywords
contaminated
microorganisms
groundwater
ground
cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015180536A
Other languages
Japanese (ja)
Other versions
JP6599186B2 (en
Inventor
芳章 萩野
Yoshiaki Hagino
芳章 萩野
英一郎 今安
Eiichiro Imayasu
英一郎 今安
福永 和久
Kazuhisa Fukunaga
和久 福永
信彦 山下
Nobuhiko Yamashita
信彦 山下
知也 新村
Tomoya Niimura
知也 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fudo Tetra Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015180536A priority Critical patent/JP6599186B2/en
Publication of JP2017056373A publication Critical patent/JP2017056373A/en
Application granted granted Critical
Publication of JP6599186B2 publication Critical patent/JP6599186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a purification method by microorganisms which purifies by microorganisms an underground area contaminated with cyanogen compounds, shortens a purification period, and reduces construction cost.SOLUTION: In a purification method by microorganisms, a step is performed of adding nutrients to a contaminated underground area contaminated with cyanogen compounds and controlling the oxidation-reduction potential (ORP) of contaminated underground water to -250 mV or more and 100 mV or less, and propagating inhabitant cyanogen compound-decomposing microorganisms in situ to purify the contaminated underground area.SELECTED DRAWING: None

Description

本発明は、シアン化合物の有害物質で汚染された地下水又は地盤などの地下領域を、原位置に生息する微生物を利用して浄化する方法に関するものである。   The present invention relates to a method for purifying an underground region such as groundwater or ground contaminated with a toxic substance of cyanide using microorganisms that live in situ.

シアン化合物は、高い反応性を有し、医薬、農薬、プラスチック製造、電気メッキなどの化学製造工場、金属加工工場あるいはガス製造工場等において大量に使用され、あるいは副生成物として発生することから、これらの工場から不可避に地盤中に漏洩することがある。シアン化合物は毒性が高いことから、地下水中には検出されないことが法により定められている。すなわち、環境中に排出されたシアン化合物は、微生物等により速やかに分解除去されることが望ましい。   Cyanide compounds have high reactivity and are used in large quantities in chemical manufacturing plants such as pharmaceuticals, agricultural chemicals, plastic manufacturing, electroplating, metal processing plants or gas manufacturing plants, or are generated as by-products. Inevitable leakage from these factories into the ground. The law stipulates that cyanide is not detected in groundwater because it is highly toxic. That is, it is desirable that the cyanide discharged into the environment is quickly decomposed and removed by microorganisms or the like.

シアン化合物は高い水溶性を示すため、一度地下水中に放出されるとその流れによって汚染が短時間で広範囲に拡散する。このような場合、原位置での対策が、コスト面及び環境面から適切なものとなる。すなわち、シアン化合物の浄化方法としては、バイオレメディエーション手法を利用した方法が有効である。   Since cyanide is highly water-soluble, once it is released into the groundwater, the contamination spreads over a wide area in a short time due to its flow. In such a case, in-situ countermeasures are appropriate from the viewpoint of cost and environment. That is, a method using a bioremediation technique is effective as a method for purifying cyanide compounds.

一方、特開2005−21759号公報には、硝酸イオンを含んだ淡水を汚染土壌に添加した後の汚染土壌に含まれる水中のORP(酸化還元電位・銀/塩化銀電極基準)を測定し、測定されたORPを−100mV以上+300mV以下に維持するように、淡水の添加量を制御する汚染土壌の浄化方法が開示されている。   On the other hand, JP-A-2005-21759 measures ORP (oxidation reduction potential / silver / silver chloride electrode standard) in water contained in contaminated soil after adding fresh water containing nitrate ions to the contaminated soil, A method for purifying contaminated soil that controls the amount of fresh water added so as to maintain the measured ORP at -100 mV or higher and +300 mV or lower is disclosed.

特開2005−21759号公報JP-A-2005-21759

しかしながら、特開2005−21759号公報の汚染土壌の浄化方法は、油分、芳香族系炭化水素、含ハロゲン炭化水素を含有する汚染土壌の浄化であり、シアン化合物を対象としたものではない。   However, the method for purifying contaminated soil disclosed in JP-A-2005-21759 is purification of contaminated soil containing oil, aromatic hydrocarbons, and halogen-containing hydrocarbons, and is not intended for cyanide compounds.

従って、本発明の目的は、シアン化合物で汚染された地下領域を微生物により浄化する改良されたバイオスティミュレーション手法を提供することにある。   Accordingly, it is an object of the present invention to provide an improved biostimulation technique for purifying underground areas contaminated with cyanide with microorganisms.

かかる実情において、本発明者らは鋭意検討を行った結果、シアン化合物分解微生物は、酸化還元電位(ORP)が−250mV以上、100mV以下の条件下において、増殖し易いことを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, found that cyanide-decomposing microorganisms are likely to grow under conditions where the oxidation-reduction potential (ORP) is −250 mV or more and 100 mV or less. It came to be completed.

すなわち、本発明は、上記課題を解決したものであり、シアン化合物で汚染された汚染地下領域に栄養源を投入し、且つ該汚染地下水の酸化還元電位(ORP)を−250mV以上、100mV以下とし、生息するシアン化合物分解微生物を原位置で増殖させて汚染地下領域を浄化する工程を行うことを特徴とする微生物による浄化方法を提供するものである。   That is, the present invention solves the above-mentioned problems, and a nutrient source is input to a contaminated underground area contaminated with cyanide, and the oxidation-reduction potential (ORP) of the contaminated groundwater is set to −250 mV or more and 100 mV or less. The present invention provides a microorganism purification method characterized by performing a step of purifying a contaminated underground region by growing indigenous cyanide-degrading microorganisms in situ.

また、本発明は、該汚染地下水の溶存酸素濃度(DO)を0〜1.0mg/lとすることを特徴とする前記微生物による浄化方法を提供するものである。   Moreover, this invention provides the purification method by the said microorganisms characterized by making dissolved oxygen concentration (DO) of this contaminated groundwater into 0-1.0 mg / l.

また、本発明は、該汚染地下領域に酸素水を投入することを特徴とする前記微生物による浄化方法を提供するものである。   Moreover, this invention provides the purification method by the said microorganisms characterized by supplying oxygen water to this contaminated underground area | region.

また、本発明は、該ORPが−200mV以上、100mV以下であることを特徴とする前記微生物による浄化方法を提供するものである。   In addition, the present invention provides the purification method using microorganisms, wherein the ORP is −200 mV or more and 100 mV or less.

また、本発明は、汚染領域に設置された揚水井戸から地下水を汲み上げ、地上にて該地下水のORPを−250mV以上、100mV以下として微生物の増殖培養を行い、増殖培養された培養液を汚染領域の地下水に注入することを特徴とする前記微生物による浄化方法を提供するものである。   The present invention also provides a method for pumping ground water from a pumping well installed in a contaminated area, performing an on-ground culturing of microorganisms with an ORP of −250 mV or more and 100 mV or less, and subjecting the grown culture to the contaminated area. The present invention provides a method for purifying with microorganisms, which is characterized by being injected into the groundwater.

また、本発明は、前記培養液の注入は、汚染領域に設置された注入井戸に注入するものであることを特徴とする前記微生物による浄化方法提供するものである。   The present invention also provides the purification method using microorganisms, wherein the culture solution is injected into an injection well installed in a contaminated area.

また、本発明は、前記培養液の注入は、地盤攪拌混合装置を用いて、地盤を攪拌しつつ添加注入するものであることを特徴とする前記微生物による浄化方法提供するものである。   In addition, the present invention provides the purification method using microorganisms, wherein the culture solution is added and injected while stirring the ground using a ground stirring and mixing device.

本発明によれば、地下水中のシアン化合物の分解が進む。このため、浄化期間が短縮され、施工コストを低減できる。   According to the present invention, decomposition of cyanide in groundwater proceeds. For this reason, a purification period is shortened and construction cost can be reduced.

本発明において、シアン化合物としては、無機シアン化合物及び有機シアン化合物が挙げられる。これらのシアン化合物には、ニトリル化合物、金属シアノ錯体等が含まれる。ニトリル化合物としては、例えば、アセトニトリル、ジニトリル類及びトリニトリル類が挙げられる。また、金属シアノ錯体としては、例えば、鉄シアノ錯体、銅シアノ錯体、銀シアノ錯体及びニッケルシアノ錯体が挙げられる。これら例示されたシアン化合物は、1種単独又は2種以上を含むものである。   In the present invention, examples of the cyan compound include inorganic cyan compounds and organic cyan compounds. These cyan compounds include nitrile compounds, metal cyano complexes and the like. Examples of nitrile compounds include acetonitrile, dinitriles and trinitriles. Examples of metal cyano complexes include iron cyano complexes, copper cyano complexes, silver cyano complexes, and nickel cyano complexes. These exemplified cyan compounds include one kind or two or more kinds.

本発明において、汚染された地下領域としては、汚染された地下水及び汚染された地下地盤が挙げられる。また、地下地盤としては、砂地盤、シルト地盤、粘土地盤あるいは砂分を含むシルト地盤又は粘土地盤である。砂分を含むシルト地盤又は粘土地盤としては、砂層とシルト・粘土層の互層地盤が挙げられる。互層地盤としては、砂層とシルト・粘土層の2層構造を含む地盤、特に、砂層とシルト・粘土層と砂層の3層構造を含む地盤が例示される。   In the present invention, the contaminated underground area includes contaminated ground water and contaminated underground ground. The underground ground is a sand ground, a silt ground, a clay ground, or a silt ground or clay ground containing sand. Examples of the silt ground or clay ground containing sand include an alternating layer ground of a sand layer and a silt / clay layer. Examples of the alternate layer ground include a ground including a two-layer structure of a sand layer and a silt / clay layer, and particularly a ground including a three-layer structure of a sand layer, a silt / clay layer and a sand layer.

本発明の微生物の浄化方法においては、先ず、汚染地下領域に栄養源を投入し、且つ該汚染地下水の酸化還元電位(ORP)(銀/塩化銀基準)を特定範囲内とし、生息するシアン化合物分解微生物を原位置で増殖させて汚染地下領域を浄化する工程(I工程)を行う。栄養源としては、公知のものでよく、例えば、酸素、空気、窒素源やリン源等の栄養塩、グルコース、フルクトース、スクロース等の糖類等が挙げられる。これらの添加により、汚染地下領域(汚染サイト)に存在する有害物質分解微生物を増殖、活性化することができる。栄養源の添加は、適宜の間隔で複数回行ってもよい。また、I工程において、栄養源の他に、pH調整剤を投入してもよい。   In the microorganism purification method of the present invention, first, a nutrient source is introduced into a contaminated underground region, and the oxidation-reduction potential (ORP) (silver / silver chloride standard) of the contaminated groundwater is within a specific range, and inhabiting cyanide compounds A process (I process) for purifying the contaminated underground area by growing the decomposed microorganisms in situ is performed. The nutrient source may be a known one, and examples thereof include nutrient salts such as oxygen, air, nitrogen source and phosphorus source, and sugars such as glucose, fructose and sucrose. By adding these, harmful substance-decomposing microorganisms present in the contaminated underground region (contaminated site) can be propagated and activated. The addition of the nutrient source may be performed a plurality of times at appropriate intervals. In step I, a pH adjuster may be added in addition to the nutrient source.

I工程において、汚染領域に分散して設置された揚水井戸(観測井戸)から地下水を採取し、揚水井戸毎に採取された地下水の酸化還元電位を測定し、必要により浄化レベルを測定する。揚水井戸の設置は、汚染領域において注入井戸近傍又はそれよりやや下流で、均等に分散して設置するのが好ましい。地下水の酸化還元電位は、公知の酸化還元電位計で測定できる。また、浄化レベルは、公知の方法で測定でき、地下水中の微生物濃度又は有害物質の濃度で判断する方法が好ましい。   In step I, groundwater is collected from pumping wells (observation wells) distributed in the contaminated area, the redox potential of the groundwater collected for each pumping well is measured, and the purification level is measured if necessary. The pumping wells are preferably installed evenly distributed in the contaminated area near the injection well or slightly downstream thereof. The oxidation-reduction potential of groundwater can be measured with a known oxidation-reduction potentiometer. In addition, the purification level can be measured by a known method, and a method of judging from the concentration of microorganisms or the concentration of harmful substances in groundwater is preferable.

I工程において、地下水の酸化還元電位は、−250mV以上、100mV以下、好ましくは−200mV以上、100mV以下であり、特に−200mV以上、80mV以下である。汚染地下水の酸化還元電位が、この範囲にあれば、シアン化合物分解微生物の増殖が進む。このような酸化還元電位は、地下水に酸素水を投入することで、制御することができる。一般的に地下水の酸化還元電位は、−400mV〜−300mVであり、これに酸素水を投入することで、酸化還元電位を高めることができる。本発明において、汚染地下水の酸化還元電位を−250mV以上、100mV以下とするには、酸素水を汚染地下水の対象領域に注入し、あわせて観測井戸で酸化還元電位を測定し、上記酸化還元電位の値となったところで酸素水の注入を停止すればよい。なお、酸素水の注入速度は、0.5〜3.0リットル/分の範囲で行うことが好ましい。また、継続して、地下水の酸化還元電位を−250mV以上、100mV以下とするには、例えば1週間毎あるいは1ヶ月毎に酸素水の再注入を開始すればよい。   In step I, the redox potential of groundwater is −250 mV or more and 100 mV or less, preferably −200 mV or more and 100 mV or less, and particularly −200 mV or more and 80 mV or less. If the oxidation-reduction potential of the contaminated groundwater is within this range, the growth of cyanide-decomposing microorganisms proceeds. Such a redox potential can be controlled by introducing oxygen water into groundwater. Generally, the oxidation-reduction potential of groundwater is -400 mV to -300 mV, and the oxidation-reduction potential can be increased by adding oxygen water thereto. In the present invention, in order to set the oxidation-reduction potential of the contaminated groundwater to −250 mV or more and 100 mV or less, oxygen water is injected into the target region of the contaminated groundwater, and the oxidation-reduction potential is measured in the observation well. The injection of oxygen water should be stopped when the value reaches the value of. The oxygen water injection rate is preferably in the range of 0.5 to 3.0 liters / minute. Moreover, in order to continue the oxidation-reduction potential of groundwater to be -250 mV or more and 100 mV or less, reinjection of oxygen water may be started, for example, every week or every month.

酸素水は、公知の酸素水を使用すればよい。すなわち、空気中に置いた水には平衡状態20℃で1リットル当たりおよそ9.3ミリグラムの酸素が溶解しているが、酸素水は、その2〜4倍の酸素が含まれているものである。また、I工程において、汚染地下水の溶存酸素濃度(DO)は、0〜1.0mg/lが好ましい。汚染地下水のDOが、当該範囲であれば、シアン化合物分解微生物の増殖は進む。   As the oxygen water, known oxygen water may be used. That is, the water placed in the air contains about 9.3 milligrams of oxygen per liter at 20 ° C in an equilibrium state, but oxygen water contains 2 to 4 times as much oxygen. is there. In Step I, the dissolved oxygen concentration (DO) of the contaminated groundwater is preferably 0 to 1.0 mg / l. If the contaminated groundwater DO is within the above range, the growth of cyanide-decomposing microorganisms proceeds.

本発明のI工程において、汚染地下領域に栄養源や酸素水を投入する方法としては、汚染領域に分散して設置された注入井戸から栄養源や酸素水を投入する方法および汚染領域に対して地盤攪拌混合装置を使用し、地盤を攪拌しつつ栄養源や酸素水を投入する方法が挙げられる。   In the process I of the present invention, as a method of feeding nutrient sources and oxygen water into the contaminated underground area, the method of feeding nutrient sources and oxygen water from the injection wells dispersed and installed in the contaminated area and the contaminated area A method in which a nutrient source and oxygen water is added while stirring the ground using a ground stirring and mixing device can be mentioned.

汚染領域に分散して設置された注入井戸としては、例えば、汚染領域に対してブロック毎に分け、該ブロック毎に均等に設置すること好ましい。すなわち、注入井戸の設置は、汚染領域全体に対して幾つかのブロックに平面視面積が略同じになるように分け、該ブロック内において、均等に設置することが好ましい。なお、一つのブロック内における注入井戸の設置ピッチは、8〜12m、好適には約10mである。一つのブロックは、注入井戸を結ぶことで形成される三角形以上の多角形又は円形であり、且つ平面視での面積が、概ね50〜300m、特に70〜150m程度のものである。すなわち、ブロックを形成する多角形状の各角又は円形の中心には、少なくとも注入井戸が設置されるか、あるいは地盤攪拌混合する位置である。 For example, the injection wells distributed in the contaminated area are preferably divided into blocks with respect to the contaminated area and installed equally for each block. That is, the injection well is preferably divided into several blocks so that the area in plan view is substantially the same with respect to the entire contaminated region, and the injection wells are preferably installed uniformly in the block. In addition, the installation pitch of the injection wells in one block is 8 to 12 m, preferably about 10 m. One block is a triangular or polygonal or circular which is formed by connecting the injection wells, and an area in plan view, is generally 50 to 300 m 2, particularly of about 70~150m 2. That is, at least the injection well is installed at the corner of each polygon or the center of the circle forming the block, or the ground is stirred and mixed.

汚染領域に対して地盤攪拌混合装置を使用し、地盤を攪拌しつつ栄養源や酸素水を投入する方法において、地盤攪拌混合装置としては、地盤改良分野における公知の装置を使用することができ、例えば、回転軸駆動手段により回転される中空の回転軸と、該回転軸の下方に放射状に設けた1以上の攪拌翼と、前記回転軸の中空部に配設され、一端が地上の供給手段に接続され他端が攪拌翼近傍の吐出口に接続される栄養源等供給管とを備える装置が挙げられる。また、地盤攪拌混合装置は、注入井戸の設置位置と同じ位置に設置して使用される。なお、地盤攪拌混合装置を使用する場合、注入井戸は設置しなくともよい。地盤攪拌混合装置は、汚染地盤に粘土層を含む砂層とシルト・粘土層の互層地盤において効果を発揮する。すなわち、互層地盤においては、粘土層に有害物質が溜まり易いが、この有害物質を含む部分を深さ方向に攪拌混合することで、帯水層を形成して浄化を促進することができる。I工程は、汚染地下領域の有害物質を微生物で分解浄化する所定の期間行う。   In the method of using the ground agitation and mixing device for the contaminated area and adding the nutrient source and oxygen water while stirring the ground, as the ground agitation and mixing device, a known device in the ground improvement field can be used, For example, a hollow rotary shaft that is rotated by a rotary shaft driving means, one or more stirring blades provided radially below the rotary shaft, and a ground supply means disposed at a hollow portion of the rotary shaft. And a nutrient source supply pipe connected at the other end to a discharge port near the stirring blade. In addition, the ground stirring and mixing device is installed and used at the same position as the injection well. In addition, when using a ground stirring mixing apparatus, it is not necessary to install an injection well. The ground agitation and mixing device is effective in the alternate ground of sand layer and silt / clay layer including clay layer in contaminated ground. That is, in the alternating layer ground, harmful substances are likely to be accumulated in the clay layer, but by mixing the parts containing the harmful substances in the depth direction, the aquifer can be formed to promote purification. The step I is performed for a predetermined period in which harmful substances in the contaminated underground area are decomposed and purified by microorganisms.

また、I工程において、酸素水の投入を行い、酸化還元電位を上記範囲としても、経過時間と共に、地下環境は変化するため、定期的に、酸素水を投入することが好ましい。そして、揚水井戸毎に採取された地下水の酸化還元電位が−250mV以下の場合、酸素水の投入回数を増やすなどの方法を採り、100mVを超える場合、酸素水の投入を暫く中止するなどの方法を採ればよい。酸素水の投入は、例えば数ヶ月間の浄化期間であれば、その期間中の4日間〜1週間程度の特定の期間であってもよく、この特定の期間は浄化期間中、1回又は複数回であってもよい。すなわち、長い浄化期間全般に亘り、地下水の酸化還元電位が上記範囲にあることが好ましいが、地下水の酸化還元電位が上記範囲から外れる期間が存在してもよい。   In addition, in step I, oxygen water is added, and even if the oxidation-reduction potential is within the above range, the underground environment changes with time, so it is preferable to periodically add oxygen water. And, when the redox potential of groundwater collected for each pumping well is -250 mV or less, a method such as increasing the number of times oxygen water is added is taken, and when it exceeds 100 mV, the oxygen water is stopped for a while. Should be taken. For example, if the oxygen water is supplied for a purification period of several months, the oxygen water may be supplied for a specific period of about 4 days to 1 week during the purification period. Times. That is, it is preferable that the redox potential of groundwater is in the above range over a long purification period, but there may be a period in which the redox potential of groundwater is outside the above range.

本発明において、I工程途中、汚染領域に設置された揚水井戸から地下水を汲み上げ、地上にて該地下水のORPを−250mV以上、100mV以下、好ましくは−200mV以上、100mV以下、特に好ましくは−200mV以上、80mV以下として微生物の増殖培養を行い、増殖培養された培養液を汚染領域の地下水に注入する工程を行うことが好ましい。この増殖培養工程を行うことで、シアン化合物分解微生物の増殖は一層進む。また、I工程と同様に、増殖培養工程においても、DOを0〜1.0mg/lとするのがよい。   In the present invention, during the process I, groundwater is pumped from a pumping well installed in a contaminated area, and the ORP of the groundwater is -250 mV or more and 100 mV or less, preferably -200 mV or more and 100 mV or less, particularly preferably -200 mV on the ground. As described above, it is preferable to carry out a step of incubating and culturing microorganisms at 80 mV or less and injecting the culture solution thus grown into groundwater in the contaminated area. By performing this growth culture process, the growth of cyanide-degrading microorganisms further proceeds. Moreover, it is good to make DO into 0-1.0 mg / l also in the growth culture process similarly to the I process.

汲み上げられた地下水中の微生物の増殖培養方法としては、例えば、反応槽を備える培養プラントで行う方法が挙げられる。図1は、汲み上げられた地下水中の微生物を培養プラント20で増殖培養する方法の一例を示す。培養プラント10は、反応槽12、一端が汲み上げポンプ13に接続し、他端が反応槽12に接続する地下水供給配管16、栄養源貯留槽11、栄養源を反応槽12に供給する栄養源供給配管17、酸素水貯留槽21、酸素水を反応槽12に供給する酸素水供給配管23、増殖培養された微生物を含む地下水を注入井戸1に供給する吐出配管18、栄養源供給ポンプ14、酸素水供給ポンプ22および吐出ポンプ15から構成される。なお、増殖培養液を注入井戸ではなく、地盤攪拌混合装置を用いる場合、吐出配管18は、I工程で説明した地盤攪拌混合装置の栄養源等供給配管に接続される。   Examples of the method for growing and culturing microorganisms in the groundwater pumped up include a method performed in a culture plant equipped with a reaction tank. FIG. 1 shows an example of a method for growing and culturing microorganisms in the groundwater pumped up in a culture plant 20. The culture plant 10 includes a reaction tank 12, one end connected to a pumping pump 13, and the other end connected to the reaction tank 12, a groundwater supply pipe 16, a nutrient source storage tank 11, and a nutrient source supply that supplies the nutrient source to the reaction tank 12. Pipe 17, oxygen water storage tank 21, oxygen water supply pipe 23 for supplying oxygen water to reaction tank 12, discharge pipe 18 for supplying ground water containing microorganisms grown and cultured to injection well 1, nutrient supply pump 14, oxygen It is composed of a water supply pump 22 and a discharge pump 15. In addition, when using a ground agitation mixing apparatus instead of an injection well for the growth culture solution, the discharge pipe 18 is connected to a nutrient source supply pipe of the ground agitation mixing apparatus described in the step I.

汚染領域の地下水は、揚水井戸2から汲み上げポンプ13および地下水供給配管16を介して反応槽12に供給される。一方、栄養源貯留槽11に貯留された栄養源は栄養源供給ポンプ14および栄養源供給配管17から反応槽12に供給される。また、酸素水貯留槽21に貯留された酸素水は酸素水供給ポンプ22および酸素水供給配管17から反応槽12に供給される。反応槽12では、酸化還元電位及びDOを上記範囲とし、pH調整剤を添加してpH9.0に調整し、25℃の温度で反応槽内の地下水表面が静かに揺れる程度に穏やかに攪拌して所定期間培養すればよい。ORP値及び微生物の増殖培養の判定は、反応槽12から適宜の時期にサンプリングを行い決定又は判定される。   Groundwater in the contaminated area is supplied from the pumping well 2 to the reaction tank 12 through the pump 13 and the groundwater supply pipe 16. On the other hand, the nutrient source stored in the nutrient source storage tank 11 is supplied to the reaction tank 12 from the nutrient source supply pump 14 and the nutrient source supply pipe 17. The oxygen water stored in the oxygen water storage tank 21 is supplied to the reaction tank 12 from the oxygen water supply pump 22 and the oxygen water supply pipe 17. In the reaction vessel 12, the oxidation-reduction potential and DO are within the above ranges, and a pH adjuster is added to adjust the pH to 9.0. And culturing for a predetermined period. The determination of the ORP value and the growth culture of the microorganism is determined or determined by sampling from the reaction tank 12 at an appropriate time.

増殖培養工程において、所定濃度まで微生物の増殖培養が行われた後、増殖培養された微生物を含む地下水を汚染地下領域に注入する工程を行う。増殖培養液中の分解微生物はシアン化合物の分解に適した微生物群であり、シアン化合物の浄化に有効である。増殖培養された微生物を含む地下水を汚染地下領域に注入する方法としては、注入井戸から注入する方法および地盤攪拌混合装置を使用し、地盤を攪拌しつつ添加、投入する方法が挙げられる。   In the growth culture step, after the microorganisms are grown to a predetermined concentration, a step of injecting groundwater containing the grown microorganisms into the contaminated underground region is performed. The decomposing microorganisms in the growth culture are a group of microorganisms suitable for decomposing cyanide compounds, and are effective for the purification of cyanide compounds. Examples of a method for injecting groundwater containing microorganisms grown and cultured into a contaminated underground region include a method of injecting from an injection well and a method of adding and introducing the ground while stirring the ground using a ground stirring and mixing device.

I工程又はI工程と増殖培養工程の併用工程において、汚染地下領域は、増殖培養された微生物によるシアン化合物の分解浄化が行われる。なお、I工程途中、増殖培養された微生物を含む培養液は適宜の時期に複数回に分けて添加を行ってもよい。増殖培養工程後の分解浄化において、増殖培養された微生物は、原位置で生息する有害物質分解能を有する微生物であり、シアン化合物の分解浄化が期待できる。   In the process I or the combined process of the process I and the growth culture process, the contaminated underground region is subjected to decomposition and purification of cyanide compounds by the microorganisms grown and cultured. In addition, the culture solution containing the microorganisms grown and cultured during the step I may be added in a plurality of times at an appropriate time. In the decomposition and purification after the growth and culture step, the microorganisms that have been grown and cultured are microorganisms that have the ability to decompose harmful substances that live in situ, and can be expected to decompose and purify cyanide compounds.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1)
図2に示すように、地下水がシアン濃度4〜6mg/lのシアン化合物で汚染されている地下領域Xに、注入井戸を3箇所設け(IW-1〜IW-3)、注入井戸の11m又は22m下流にそれぞれ揚水井戸を設けた(OW-1〜OW-4)。矢板20で囲まれた汚染領域Xに対する浄化は、8月18日から開始し、10月15日に終了した。この期間中、表1に示すように、8月18日から連続して毎日4日間、10月9日から10月15日の間の4日間、酸素水を注入井戸(IW-1〜IW-3)から注入した。酸素水の注入量は、1本の井戸に対して、700リットルであり、一日約8時間継続して注入した。栄養源は浄化期間中、適宜の時期で添加した。酸素水の添加量は、予め実験室試験において求めておいた。また、揚水井戸(OW-1〜OW-4)から汲み上げられた地下水の酸化還元電位(mV)と地下水中のシアン濃度(mg/l)を常法により測定した。その結果をそれぞれ表1と表2に示した。なお、地下水中のシアン濃度は表2に示す月日に測定した。また、当該月日に溶存酸素(DO)を測定したが、OW-1〜OW-4から汲み上げられた地下水中のDOは0〜1.0mg/lの範囲であった。なお、符号「-」は「測定せず」である。
Example 1
As shown in FIG. 2, three injection wells (IW-1 to IW-3) are provided in the underground region X in which groundwater is contaminated with cyanide having a cyan concentration of 4 to 6 mg / l. A pumping well was provided 22m downstream (OW-1 to OW-4). Purification of the contaminated area X surrounded by the sheet pile 20 started from August 18 and ended on October 15. During this period, as shown in Table 1, oxygen water was injected into wells (IW-1 to IW- for 4 days every day from August 18 to 4 days from October 9 to October 15). Injected from 3). The injection amount of oxygen water was 700 liters per well, and was continuously injected for about 8 hours per day. Nutrient sources were added at appropriate times during the purification period. The amount of oxygen water added was previously determined in a laboratory test. Moreover, the oxidation-reduction potential (mV) of the groundwater pumped from the pumping wells (OW-1 to OW-4) and the cyanide concentration (mg / l) in the groundwater were measured by a conventional method. The results are shown in Tables 1 and 2, respectively. The cyan concentration in the groundwater was measured on the date shown in Table 2. Moreover, although dissolved oxygen (DO) was measured on the said month, DO in the groundwater pumped up from OW-1 to OW-4 was the range of 0-1.0 mg / l. Note that the symbol “-” is “not measured”.

(比較例1)
図2中、符号PW1〜3で示す位置にバリア井戸を設け、バリア井戸から酸素水の投入をしなかった以外は、実施例1と同様の方法で行い、地下水の酸化還元電位(mV)と地下水中のシアン濃度(mg/l)を測定した。すなわち、比較例1は浄化の対象外であるバリア井戸から汲み上げられた地下水のORP等を測定した。その結果を表1及び表2に示す。
(Comparative Example 1)
In FIG. 2, except that a barrier well is provided at a position indicated by reference signs PW1 to PW3 and oxygen water is not supplied from the barrier well, the same method as in Example 1 is used, Cyanide concentration (mg / l) in groundwater was measured. That is, the comparative example 1 measured the ORP etc. of the groundwater pumped up from the barrier well which is not the object of purification. The results are shown in Tables 1 and 2.

Figure 2017056373
Figure 2017056373

Figure 2017056373
Figure 2017056373

表1及び表2の結果から、汲み上げられた地下水の酸化還元電位が−250mV以上、100mV以下、DOが0〜1.0mg/lの井戸においては、地下水のシアン濃度が、4〜6mg/lのものが、0.8〜1.8mg/lまで減少した。これは、上記のORP条件下において、シアン化合物分解微生物の増殖が進んだものである。一方、汲み上げられた地下水の酸化還元電位が−325mV以下の井戸においては、地下水のシアン濃度の減少は認められなかった。   From the results of Table 1 and Table 2, in the well where the redox potential of the pumped-up groundwater is −250 mV or more and 100 mV or less and the DO is 0 to 1.0 mg / l, the groundwater cyanide concentration is 4 to 6 mg / l. Decreased to 0.8-1.8 mg / l. This is the progress of the growth of cyanide-decomposing microorganisms under the above ORP conditions. On the other hand, in the well where the redox potential of the pumped-up groundwater was −325 mV or less, no decrease in the cyanide concentration of the groundwater was observed.

(参考例)
<室内試験(集積培養)>
シアン化合物で汚染された汚染領域に設置された4地点の揚水井戸からそれぞれ地下水を揚水し、該地下水を混合して試験水として、下記に示すA、B及びCの各条件において、シアン分解微生物の活性を評価した。評価は、7日目、14日目、21日目及び28日目とし、それぞれシアン濃度及びORPを測定した。結果を表3に示した。なお、地下水の性状は表4に示した。4地点の揚水井戸から汲み上げられた地下水は原位置において浄化中のものであり、その混合地下水のシアン濃度は、1.0mg/lであった。そして、この室内試験の28日間の試験結果において、ORPが−250mV以上、100mV以下のA条件は、ORPが100mVを超えるB条件や、ORPが−250mVを下回るC条件に比べて、シアン分解微生物の活性は高く、シアン濃度は40%減少できた。
(Reference example)
<In-house test (accumulation culture)>
Cyanogen-degrading microorganisms are obtained under the conditions A, B, and C shown below by pumping groundwater from four pumping wells installed in a contaminated area contaminated with cyanide and mixing the groundwater as test water. The activity of was evaluated. Evaluation was made on the 7th, 14th, 21st and 28th days, and the cyan density and ORP were measured, respectively. The results are shown in Table 3. The properties of groundwater are shown in Table 4. The groundwater pumped up from the four pumping wells was being purified in situ, and the cyanide concentration of the mixed groundwater was 1.0 mg / l. And in the 28-day test results of this laboratory test, the A condition where the ORP is −250 mV or more and 100 mV or less is a cyanolytic microorganism compared to the B condition where the ORP exceeds 100 mV or the C condition where the ORP is less than −250 mV. Activity was high and the cyan density could be reduced by 40%.

(A条件)
三角フラスコに、揚水した地下水300ml、栄養剤を0.5%、pH調整剤を0.7%添加し密封した。次いで、三角フラスコを100回転/分で振とうし混合液を攪拌した。混合液の表面は僅かに揺れていた。なお、栄養剤は1週間毎に同量を逐次添加し、25℃で養生した。この混合液の毎週のORPは、−250mV以上、100mV以下であった。
(Condition A)
The Erlenmeyer flask was sealed by adding 300 ml of pumped ground water, 0.5% of a nutrient, and 0.7% of a pH adjuster. Next, the Erlenmeyer flask was shaken at 100 rpm to stir the mixed solution. The surface of the mixed solution was slightly shaken. In addition, the nutrient was added in the same amount every week and cured at 25 ° C. The weekly ORP of this mixture was −250 mV or more and 100 mV or less.

(B条件)
三角フラスコに、揚水した地下水150ml、栄養剤を0.5%、pH調整剤を0.7%添加し密封した。次いで、三角フラスコを100回転/分で振とうし混合液を攪拌した。混合液の表面は大きく揺れていた。なお、栄養剤は1週間毎に同量を逐次添加し、25℃で養生した。この混合液の毎週のORPは、100mVを超えたものであった。
(Condition B)
The Erlenmeyer flask was sealed by adding 150 ml of pumped ground water, 0.5% of a nutrient, and 0.7% of a pH adjuster. Next, the Erlenmeyer flask was shaken at 100 rpm to stir the mixed solution. The surface of the mixed solution was greatly shaken. In addition, the nutrient was added in the same amount every week and cured at 25 ° C. The weekly ORP of this mixture exceeded 100 mV.

(C条件)
三角フラスコに、揚水した地下水500ml、栄養剤を0.5%、pH調整剤を0.7%添加し密封し、静置した。なお、栄養剤は1週間毎に同量を逐次添加し、25℃で養生した。この混合液の毎週のORPは、−400mV〜−300mVであった。
(C condition)
In an Erlenmeyer flask, 500 ml of pumped ground water, 0.5% of a nutrient, and 0.7% of a pH adjuster were added and sealed, and left standing. In addition, the nutrient was added in the same amount every week and cured at 25 ° C. The weekly ORP of this mixture was -400 mV to -300 mV.

Figure 2017056373
Figure 2017056373

Figure 2017056373
Figure 2017056373

本発明によれば、原位置に生息するシアン化合物分解能を有する微生物の増殖が進み、地下水のシアン化合物が微生物分解される。このため、汚染領域全体の浄化期間が短縮され、施工コストを低減できる。   According to the present invention, the growth of microorganisms capable of decomposing cyanide in situ proceeds, and the cyanide in groundwater is decomposed by microorganisms. For this reason, the purification period of the whole contaminated area is shortened, and construction costs can be reduced.

本発明の浄化方法における増殖培養プラントを示す図である。It is a figure which shows the proliferation culture plant in the purification method of this invention. 本発明の浄化方法において、実施例及び比較例が行われた汚染領域を示す図である。It is a figure which shows the contamination area | region where the Example and the comparative example were performed in the purification method of this invention.

1 注水井戸
2 揚水井戸
10 培養プラント
11 栄養源貯留槽
12 反応槽
18 吐出配管
20 矢板
21 酸素水貯留槽
OW-1〜4 揚水井戸
IW-1〜3 注入井戸
PW-1〜3 バリア井戸
X 汚染領域
DESCRIPTION OF SYMBOLS 1 Injection well 2 Pumping well 10 Culture plant 11 Nutrient source storage tank 12 Reaction tank 18 Discharge piping 20 Sheet pile 21 Oxygen water storage tank OW-1-4 Pumping well IW-1-3 Injection well PW-1-3 Barrier well X Contamination region

Claims (7)

シアン化合物で汚染された汚染地下領域に栄養源を投入し、且つ該汚染地下水の酸化還元電位(ORP)を−250mV以上、100mV以下とし、生息するシアン化合物分解微生物を原位置で増殖させて汚染地下領域を浄化する工程を行うことを特徴とする微生物による浄化方法。   Nutrient sources are introduced into the contaminated underground area contaminated with cyanide, and the oxidation-reduction potential (ORP) of the contaminated groundwater is set to -250 mV to 100 mV, and the indigenous cyanide-degrading microorganisms are propagated in situ and contaminated. A purification method using microorganisms, comprising performing a step of purifying an underground region. 該汚染地下水の溶存酸素濃度(DO)を0〜1.0mg/lとすることを特徴とする請求項1記載の微生物による浄化方法。   The method for purifying microorganisms according to claim 1, wherein the dissolved oxygen concentration (DO) of the contaminated groundwater is 0 to 1.0 mg / l. 該汚染地下領域に酸素水を投入することを特徴とする請求項1又は2記載の微生物による浄化方法。   The method for purifying with microorganisms according to claim 1 or 2, wherein oxygen water is poured into the contaminated underground region. 該ORPが−200mV以上、100mV以下であることを特徴とする請求項1〜3のいずれか1項に記載の微生物による浄化方法。   The ORP is -200 mV or more and 100 mV or less, and the purification method using microorganisms according to any one of claims 1 to 3. 汚染領域に設置された揚水井戸から地下水を汲み上げ、地上にて該地下水のORPを−250mV以上、100mV以下として微生物の増殖培養を行い、増殖培養された培養液を汚染領域の地下水に注入することを特徴とする請求項1〜4のいずれか1項に記載の微生物による浄化方法。   Pumping groundwater from a pumping well installed in the contaminated area, and growing the microorganism on the ground with the ORP of the groundwater set to -250 mV or more and 100 mV or less, and injecting the grown and cultured medium into the groundwater in the contaminated area The purification method by microorganisms of any one of Claims 1-4 characterized by these. 前記培養液の注入は、汚染領域に設置された注入井戸に注入するものであることを特徴とする請求項5に記載の微生物による浄化方法。   6. The method according to claim 5, wherein the culture solution is injected into an injection well installed in a contaminated area. 前記培養液の注入は、地盤攪拌混合装置を用いて、地盤を攪拌しつつ添加注入するものであることを特徴とする請求項5に記載の微生物による浄化方法。

The method for purifying with microorganisms according to claim 5, wherein the culture solution is added and injected while stirring the ground using a ground stirring and mixing device.

JP2015180536A 2015-09-14 2015-09-14 Purification method using microorganisms Active JP6599186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015180536A JP6599186B2 (en) 2015-09-14 2015-09-14 Purification method using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180536A JP6599186B2 (en) 2015-09-14 2015-09-14 Purification method using microorganisms

Publications (2)

Publication Number Publication Date
JP2017056373A true JP2017056373A (en) 2017-03-23
JP6599186B2 JP6599186B2 (en) 2019-10-30

Family

ID=58389284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180536A Active JP6599186B2 (en) 2015-09-14 2015-09-14 Purification method using microorganisms

Country Status (1)

Country Link
JP (1) JP6599186B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216457A (en) * 1998-01-29 1999-08-10 Canon Inc Purification of contaminated soil
JP2003071430A (en) * 2001-08-30 2003-03-11 Shimizu Corp Method for biochemically cleaning polluted soil
JP2004066193A (en) * 2002-08-09 2004-03-04 Nippon Steel Corp Contaminated soil cleaning method
JP2008238027A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Method of cleaning soil and ground water
JP2010051930A (en) * 2008-08-29 2010-03-11 Kokusai Environmental Solutions Co Ltd Oxygen generating agent and method of cleaning one or both of contaminated soil and groundwater
JP2010235796A (en) * 2009-03-31 2010-10-21 Ecocycle Corp Detoxifying agent and detoxifying method of cyanide
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2012040476A (en) * 2010-08-16 2012-03-01 Shimizu Corp Method and device for purifying contaminated soil or groundwater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216457A (en) * 1998-01-29 1999-08-10 Canon Inc Purification of contaminated soil
JP2003071430A (en) * 2001-08-30 2003-03-11 Shimizu Corp Method for biochemically cleaning polluted soil
JP2004066193A (en) * 2002-08-09 2004-03-04 Nippon Steel Corp Contaminated soil cleaning method
JP2008238027A (en) * 2007-03-27 2008-10-09 Matsushita Electric Ind Co Ltd Method of cleaning soil and ground water
JP2010051930A (en) * 2008-08-29 2010-03-11 Kokusai Environmental Solutions Co Ltd Oxygen generating agent and method of cleaning one or both of contaminated soil and groundwater
JP2010235796A (en) * 2009-03-31 2010-10-21 Ecocycle Corp Detoxifying agent and detoxifying method of cyanide
JP2011005371A (en) * 2009-06-23 2011-01-13 Arthur:Kk System for cleaning soil and groundwater
JP2012040476A (en) * 2010-08-16 2012-03-01 Shimizu Corp Method and device for purifying contaminated soil or groundwater

Also Published As

Publication number Publication date
JP6599186B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
Okabe et al. N2O emission from a partial nitrification–anammox process and identification of a key biological process of N2O emission from anammox granules
Stucki et al. Experiences of a large-scale application of 1, 2-dichloroethane degrading microorganisms for groundwater treatment
Dybas et al. Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation
AU2018400240B2 (en) A soil-based flow-through rhizosphere system for treatment of contaminated water and soil
CN102774965A (en) In-situ repair system for treating pollution of underground water
Van Tendeloo et al. Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox
Zhao et al. Bioturbation by the razor clam Sinonovacula constricta affects benthic nutrient fluxes in aquaculture wastewater treatment ecosystems
WO2010076794A1 (en) Method of denitrifying brine and systems capable of same
Yang et al. Nitrogen removal enhanced by benthic bioturbation coupled with biofilm formation: A new strategy to alleviate freshwater eutrophication
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
US20230055262A1 (en) Method for Treating Reducible Compound Residues Using Iron-Containing Bioreactor
EP3433211B1 (en) Remediation and/or restoration of an anoxic body of water
JP6599186B2 (en) Purification method using microorganisms
JP5155619B2 (en) Soil and groundwater purification promoter and purification method
CN106927574A (en) A kind of methods and applications of the drowned flow artificial wet land containing natural minerals and its treatment glyphosate waste water
He et al. Use of additives in bioremediation of contaminated groundwater and soil
JP6599185B2 (en) Purification method using microorganisms
Dutta et al. In situ biofilm barriers: Case study of a nitrate groundwater plume, Albuquerque, New Mexico
JP2011173037A (en) Method for cleaning soil or underground water and method for confirming concentration of microbial nutritive composition
Pham et al. Biogeochemical process approach to the design and construction of a pilot-scale wetland treatment system for an oil field-produced water
Horn et al. Use of degradable, non-oxidizing biocides and biodispersants for the maintenance of capacity in nutrient injection wells
Qu et al. Perchlorate removal by a combined heterotrophic and bio-electrochemical hydrogen autotrophic system
JP3458688B2 (en) Method and apparatus for repairing groundwater contamination
Sun et al. Effect of eco-remediation and microbial community using multilayer solar planted floating island (MS-PFI) in the drainage channel
KR101449194B1 (en) The continuous monitoring device for biological reactor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191002

R150 Certificate of patent or registration of utility model

Ref document number: 6599186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250