JP2017055534A - Stator for rotary electric machine and rotary electric machine - Google Patents

Stator for rotary electric machine and rotary electric machine Download PDF

Info

Publication number
JP2017055534A
JP2017055534A JP2015177139A JP2015177139A JP2017055534A JP 2017055534 A JP2017055534 A JP 2017055534A JP 2015177139 A JP2015177139 A JP 2015177139A JP 2015177139 A JP2015177139 A JP 2015177139A JP 2017055534 A JP2017055534 A JP 2017055534A
Authority
JP
Japan
Prior art keywords
insulating paper
stator
slot
insulating
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015177139A
Other languages
Japanese (ja)
Other versions
JP6539165B2 (en
Inventor
源三 岩城
Genzo Iwaki
源三 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015177139A priority Critical patent/JP6539165B2/en
Priority to EP16844074.1A priority patent/EP3349334A4/en
Priority to US15/754,424 priority patent/US10559992B2/en
Priority to PCT/JP2016/072255 priority patent/WO2017043210A1/en
Priority to CN201680046805.7A priority patent/CN107925292B/en
Publication of JP2017055534A publication Critical patent/JP2017055534A/en
Application granted granted Critical
Publication of JP6539165B2 publication Critical patent/JP6539165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stator having a high breakdown voltage insulation system that can be operated with a high driving voltage without increasing the thickness of slot insulation paper, and a rotary electric machine in which the stator is assembled.SOLUTION: A stator for a rotary electric machine includes a stator core having plural slots formed therein, a stator coil inserted in the slot, and insulating paper inserted in the slot to insulate the stator coil and the stator core from each other. The insulating paper includes a first insulating paper portion arranged at the outside of the end surface in the slot axis direction to be adjacent to the stator core, and at least a second insulating paper portion arranged between the first insulating paper portion and the stator coil. The insulating paper forms a resin reservoir portion in which insulating resin is disposed between the first insulating paper portion and the second insulating paper portion.SELECTED DRAWING: Figure 4

Description

本発明は、本発明は回転電機の固定子及び回転電機に関し、特に電動車両に搭載される回転電機に関する。   The present invention relates to a stator of a rotating electric machine and a rotating electric machine, and more particularly to a rotating electric machine mounted on an electric vehicle.

産業や生活に密着した回転電機は現代の社会を支える基盤機器である。特に地球環境保護の観点から普及しつつあるハイブリッド自動車や電気自動車においては搭載スペースの確保および軽量化による燃費向上の観点から、動力源のモータには小型・軽量化が要求される。   Rotating electric machines closely related to industry and daily life are basic equipment that supports modern society. In particular, in hybrid vehicles and electric vehicles that are spreading from the viewpoint of protecting the global environment, the motor of the power source is required to be smaller and lighter from the viewpoint of securing a mounting space and improving fuel efficiency by reducing the weight.

ハイブリッド自動車、電気自動車用動力モータのステータのスロット絶縁は、ステータコア/コイル間および異相コイル間に挿入されるスロット絶縁紙とそれらの空隙を充填しコイルおよびスロット絶縁紙をステータコアに固定する固着ワニスで構成される。   The slot insulation of the stator of the hybrid motor and the electric motor for the electric vehicle is made up of a slot insulating paper inserted between the stator core / coil and between the different phase coils and a fixed varnish that fills the gap and fixes the coil and the slot insulating paper to the stator core. Composed.

スロット絶縁では、ステータコアのスロット端部近傍において、スロット絶縁紙とステータコアとの間に存在する空気と、当該スロット絶縁紙との誘電率差が大きいために、スロット端部近傍の空気層に電界が集中し、スロット絶縁紙とステータコアとの間に低電圧で部分放電が発生する。この部分放電により絶縁層が潰食され、最終的にモータ運転中の絶縁破壊に至るため、ハイブリッド自動車、電気自動車用動力モータのステータスロット絶縁では、部分放電が起きないことが必須条件となっている。   In slot insulation, near the slot end of the stator core, there is a large difference in dielectric constant between the air between the slot insulation paper and the stator core and the slot insulation paper, so an electric field is generated in the air layer near the slot end. A partial discharge occurs at a low voltage between the slot insulating paper and the stator core. This partial discharge erodes the insulating layer and eventually leads to dielectric breakdown during motor operation. Therefore, in the status lot insulation of hybrid and electric vehicle power motors, it is essential that partial discharge does not occur. Yes.

動力モータの小型化の手段としては、高駆動電圧化が考えられるが、高電圧化に対して従来技術の延長線上で対処するには、スロット絶縁紙厚さを増大させ、作用電圧に対応した絶縁距離を確保する手法が考えられる。例えば特許文献1には、スロットライナの合計の厚さを分担電圧に応じて多層化することで調整する技術が開示されている。   As a means for reducing the size of the power motor, it is conceivable to increase the drive voltage, but in order to cope with the increase in voltage on the extension line of the prior art, the slot insulating paper thickness is increased to correspond to the working voltage. A method for securing the insulation distance can be considered. For example, Patent Document 1 discloses a technique for adjusting the total thickness of the slot liner by multilayering according to the shared voltage.

特開2006−60929号公報JP 2006-60929 A

上記のように、スロット絶縁紙厚さを増大させ、作用電圧に応じた絶縁距離を確保する手法では、スロット内のコイル占積率低下を招きコイル電流が低下する。この点を補うには、コイル電流密度を高くする必要があるが、コイル温度上昇が避けられず、スロット内絶縁構成材の熱劣化を加速させ、絶縁システムの信頼性が損なわれるおそれがある。   As described above, in the method of increasing the slot insulating paper thickness and securing the insulation distance according to the working voltage, the coil space factor in the slot is reduced and the coil current is reduced. In order to make up for this point, it is necessary to increase the coil current density. However, an increase in the coil temperature is unavoidable, which may accelerate the thermal deterioration of the insulating component in the slot and impair the reliability of the insulation system.

本発明は、スロット絶縁紙厚さの増大を抑制しつつ、スロット端部の電界集中を緩和させ、高駆動電圧運転に耐える高耐電圧システムを具備したステータおよび当該ステータを組み込んだ回転電機を提供することを目的とする。   The present invention provides a stator having a high withstand voltage system that can withstand high drive voltage operation by reducing the electric field concentration at the end of the slot while suppressing an increase in slot insulating paper thickness, and a rotating electrical machine incorporating the stator. The purpose is to do.

本発明にかかる回転電機の固定子は、複数のスロットが形成された固定子コアと、前記スロットに挿通される固定子コイルと、前記スロットに挿通され前記固定子コイルと前記固定子コアとを絶縁する絶縁紙と、を備え、前記絶縁紙は、前記スロット軸方向端面よりも外側に固定子コアに隣接して配置される第1の絶縁紙部と、前記第1の絶縁紙部と前記固定子コイルの間に配置される少なくとも第2の絶縁紙部とを有し、前記絶縁紙は、前記第1の絶縁紙部と前記第2の絶縁紙部との間に、絶縁樹脂が配置される樹脂溜まり部を形成する。   A stator of a rotating electrical machine according to the present invention includes a stator core formed with a plurality of slots, a stator coil inserted into the slot, and the stator coil and the stator core inserted into the slot. Insulating paper that insulates, wherein the insulating paper is disposed outside the end surface in the slot axial direction and adjacent to the stator core; the first insulating paper portion; and And at least a second insulating paper portion disposed between the stator coils, and the insulating paper has an insulating resin disposed between the first insulating paper portion and the second insulating paper portion. A resin reservoir is formed.

本発明によれば、ステータコアのスロット端部近傍の空間領域に発生する電界集中を軽減でき、高駆動電圧な小型ステータおよびそれを用いた回転電機を提供することできる。   ADVANTAGE OF THE INVENTION According to this invention, the electric field concentration which generate | occur | produces in the space area | region near the slot edge part of a stator core can be reduced, and a small stator with a high drive voltage and a rotary electric machine using the same can be provided.

本発明実施例、比較例に用いた積層コア正面図Laminated core front view used in Examples and Comparative Examples of the present invention 本発明実施例1におけるスロット絶縁紙端部曲げ加工方法Slot insulation paper edge bending method in embodiment 1 of the present invention 本発明実施例1におけるスロット絶縁紙端部曲げ加工後の形状模式図Schematic diagram of shape after bending edge of slot insulating paper in Example 1 of the present invention 本発明実施例1の正面図Front view of the first embodiment of the present invention 本発明実施例1の側面図Side view of the first embodiment of the present invention 本発明実施例1のスロット端部近傍の図3A−A’拡大断面図FIG. 3A-A ′ enlarged cross-sectional view of the vicinity of the slot end of Example 1 of the present invention 本発明実施例1における樹脂溜まりの模式図Schematic diagram of resin reservoir in Example 1 of the present invention 本発明比較例の正面図Front view of the comparative example of the present invention 本発明比較例の側面図Side view of the comparative example of the present invention 本発明比較例のスロット端部近傍の図6B−B’拡大断面図6B-B 'enlarged sectional view of the vicinity of the slot end portion of the comparative example of the present invention 本発明第2の実施形態における樹脂溜まり模式図Schematic diagram of a resin reservoir in the second embodiment of the present invention 本発明第3の実施形態における多層スロット絶縁紙Multilayer slot insulating paper in the third embodiment of the present invention 本発明第3の実施形態における変形例Modified example of the third embodiment of the present invention

以下、外径245mm、内径200mm、スロット数72、コア積厚94mmのステータコアから切出したコアにコイル、絶縁紙をそれぞれの構成で組込んだ絶縁モデルの部分放電開始電圧測定結果により本発明による第1の実施形態について説明する。以下で説明する実施例、比較例は、回転電機ステータの部分モデルであるが、下記の説明から自明のように、実機の回転電機ステータと等価である。   Hereinafter, according to the results of partial discharge start voltage measurement of an insulation model in which a coil and insulating paper are incorporated in a core cut out from a stator core having an outer diameter of 245 mm, an inner diameter of 200 mm, a slot number of 72, and a core stack thickness of 94 mm, according to the invention. 1 is described. The examples and comparative examples described below are partial models of a rotating electrical machine stator, but as is obvious from the following description, it is equivalent to an actual rotating electrical machine stator.

図1は、絶縁モデル組立用に切り出したステータコアのコア端面形状を示す。上記略円筒形状のステータコアを中心角5°の扇形に切断したもので、略扇形コア1の中央に一つのスロット2が配置される。スロット端3の形状は、幅一定の略矩形形状であり、その幅、平行部深さを、それぞれ4.18mm、12.2mmである。積層コアには35A300相当の打ち抜き電磁鋼板が用いられる。ステータコアの積層コア間はワニスで固着されており、扇形コア1切断においてコアは分解しない。扇形コアの切断方法には、ワイヤーカットを用いた。   FIG. 1 shows a core end face shape of a stator core cut out for assembly of an insulation model. The substantially cylindrical stator core is cut into a sector shape with a central angle of 5 °, and one slot 2 is arranged at the center of the substantially sector core 1. The shape of the slot end 3 is a substantially rectangular shape with a constant width, and the width and the parallel part depth are 4.18 mm and 12.2 mm, respectively. For the laminated core, a punched electrical steel sheet equivalent to 35A300 is used. The laminated cores of the stator core are fixed with varnish, and the core is not disassembled when the sector core 1 is cut. Wire cutting was used for the cutting method of the fan-shaped core.

絶縁モデル組立では、コア1中央のスロット2内に模擬コイル6として4本の平角エナメル絶縁線7をスロット絶縁紙4、10を介して配置した。スロット内における模擬コイル、スロット絶縁紙およびステータコアはワニスで固着した。模擬コイル長さを160mmとし、両スロット端から均等に33mmはみ出させた。絶縁紙寸法は、幅30mm、長さ100mmとし、沿面放電防止の観点からスロット両端から3mmはみ出させた。   In the insulation model assembly, four rectangular enamel insulated wires 7 were arranged as simulated coils 6 in the slot 2 at the center of the core 1 through the slot insulation paper 4 and 10. The simulated coil, the slot insulating paper, and the stator core in the slot were fixed with varnish. The simulated coil length was 160 mm, and the length of the simulated coil protruded 33 mm from both slot ends. The dimensions of the insulating paper were 30 mm wide and 100 mm long, and 3 mm protruded from both ends of the slot from the viewpoint of preventing creeping discharge.

平角エナメル絶縁線7には、短辺2.7mm、長辺3.6mm、コーナー面取り半径0.5mmの平角銅導体72上に厚さ0.05mmのポリアミドイミド絶縁層71が被覆されたものを用いた。固着ワニスには、硬化条件が150℃×1時間、ガラス転移温度が125℃の2液混合タイプエポキシ系樹脂を用いた。混合後の粘度は、0.9mPa・sである。このワニスは、扇形積層コア1間の固着ワニスと同一である。   The flat enamel insulated wire 7 is formed by coating a 0.05 mm thick polyamideimide insulating layer 71 on a flat copper conductor 72 having a short side of 2.7 mm, a long side of 3.6 mm and a corner chamfer radius of 0.5 mm. Using. As the fixing varnish, a two-component mixed epoxy resin having a curing condition of 150 ° C. × 1 hour and a glass transition temperature of 125 ° C. was used. The viscosity after mixing is 0.9 mPa · s. This varnish is the same as the fixed varnish between the fan-shaped laminated cores 1.

絶縁モデル製作におけるワニス固着処理では、模擬コイルが鉛直方向となるように絶縁モデルを倒立させ、まずスロット上側片端からの固着ワニスを絶縁紙端上方から滴下しスロット内に流し込み、所定の温度に絶縁モデルを昇温、保持し固着ワニスを硬化させた。続いて、その絶縁モデルを上下反転させ、同じ方法にて固着ワニスを滴下、硬化させた。   In the varnish fixing process in manufacturing the insulation model, the insulation model is inverted so that the simulated coil is in the vertical direction. The model was heated and held to cure the fixed varnish. Subsequently, the insulation model was turned upside down, and the fixed varnish was dropped and cured by the same method.

表1に、評価した実施例、比較例の絶縁モデル構成を示す。実施例1、2では、絶縁紙に厚さがそれぞれ0.1mm、0.05mmのPET(ポリエチレンテレフタレート)、実施例3では、0.05mmのアラミド紙を用い、模擬コイル/コア間の空隙を最小とするようにそれらの絶縁紙厚さに応じて多層化した。絶縁紙の多層化では、単純に複数枚数の絶縁紙を重ねるのみとし、絶縁モデル組立時に多層化絶縁紙間の接着を目的とした処理は実施していない。また、各実施例では、絶縁紙端部をスロット端より外側に位置させるために、スロット端において絶縁紙端部を曲げ加工した。   Table 1 shows the insulation model configurations of the evaluated examples and comparative examples. In Examples 1 and 2, PET (polyethylene terephthalate) having a thickness of 0.1 mm and 0.05 mm, respectively, was used for the insulating paper. In Example 3, 0.05 mm aramid paper was used, and a gap between the simulated coil / core was formed. Multiple layers were formed according to the thickness of the insulating paper to minimize the thickness. In multilayering of insulating paper, a plurality of insulating papers are simply stacked, and a process for bonding the multilayered insulating papers is not performed at the time of assembling the insulating model. In each example, the end of the insulating paper was bent at the slot end in order to position the end of the insulating paper outside the end of the slot.

比較例は、従来技術で一般的に用いられる絶縁紙である厚さ0.18mmのアラミド紙/PET/アラミド紙の3層ラミネート紙を用いた。ラミネートの各層間は、ウレタン系接着剤により接着されている。比較例のスロット端部は、ストレートとした。   In the comparative example, a three-layer laminate paper of aramid paper / PET / aramid paper having a thickness of 0.18 mm, which is an insulating paper generally used in the prior art, was used. Each layer of the laminate is bonded with a urethane adhesive. The slot end of the comparative example was straight.

Figure 2017055534
Figure 2017055534

図2(a)及び図2(b)は、実施例1の絶縁紙端部の曲げ加工方法の模式図を示す。スロット内挿入形状に曲げ加工されたコアに隣接する第1の絶縁紙41と第1の絶縁紙41とコイル6間に配置される第2の絶縁紙42を共にスロット内に挿入後、先端にテーパが設けられた押し曲げ型5を絶縁紙が圧縮変形しない程度にスロット端部に押し付けることで絶縁紙端部に曲げくせを付け、絶縁紙端部をスロット端より外側に配置させた。スロット端での絶縁紙の曲げ加工終了後に、平角エナメル絶縁線7を挿入して模擬コイル6を形成する。   FIGS. 2A and 2B are schematic diagrams illustrating a method for bending an end portion of the insulating paper according to the first embodiment. The first insulating paper 41 adjacent to the core bent into the insertion shape in the slot and the second insulating paper 42 disposed between the first insulating paper 41 and the coil 6 are both inserted into the slot, and then at the tip. The end of the insulating paper was bent by pressing the pressing and bending die 5 provided with the taper to the slot end so that the insulating paper was not compressed and deformed, and the end of the insulating paper was arranged outside the slot end. After the insulating paper is bent at the end of the slot, the flat enamel insulated wire 7 is inserted to form the simulated coil 6.

本実施例に用いた押し曲げ型5のスロット開口部側には、テーパを付けていないが、これは、スロット開口部側の模擬コイル/コア間には、十分な絶縁距離が確保されているためである。   The slot opening side of the push-bending die 5 used in this embodiment is not tapered, but this ensures a sufficient insulation distance between the simulated coil / core on the slot opening side. Because.

図3(a)及び図3(b)に実施例1のワニスで固着処理された絶縁モデルの正面および側面の模式図をそれぞれ示す。第1の絶縁紙41、第2の絶縁紙42いずれの絶縁紙端部がスロット端より外側に位置していることが理解できる。   FIGS. 3A and 3B are schematic views of the front and side surfaces of an insulation model fixedly treated with the varnish of Example 1, respectively. It can be understood that the insulating paper edge of either the first insulating paper 41 or the second insulating paper 42 is located outside the slot end.

図4は、図3(a)に示されるA−A’断面のスロット端近傍の拡大図を示した図である。コア1と第1の絶縁紙41間、第1の絶縁紙41と第2の絶縁紙42間および第2の絶縁紙42と模擬コイル6のエナメル絶縁層71間には、空間が形成されている。部分放電開始電圧の低下を引き起こすコア端部の電界集中が、コイル導体72とコア1間に複数形成される絶縁紙で分割された空間に電界が生じることで低減される。   FIG. 4 is an enlarged view of the vicinity of the slot end of the A-A ′ cross section shown in FIG. Spaces are formed between the core 1 and the first insulating paper 41, between the first insulating paper 41 and the second insulating paper 42, and between the second insulating paper 42 and the enamel insulating layer 71 of the simulated coil 6. Yes. The concentration of the electric field at the end of the core that causes a decrease in the partial discharge start voltage is reduced by generating an electric field in a space divided by a plurality of insulating papers formed between the coil conductor 72 and the core 1.

図5は、図4における第1の絶縁紙41と第2の絶縁紙42間に形成される空間の両絶縁紙の交差線9近傍の拡大模式図を示したものである。交差線を底部として第1の絶縁紙41と第2の絶縁紙42を連結する形で固着ワニスが充填され、ワニス溜まり8が形成されていることが確認された。このワニス溜まりにより、スロット端部絶縁における絶縁設計上の留意しなければならない導体コイルとコア間の絶縁距離を長くすることができ、その結果として電界が低減する。なお、このようなワニス溜まりが、他の実施例いずれにも形成されていることを確認した。   FIG. 5 is an enlarged schematic view of the space between the first insulating paper 41 and the second insulating paper 42 in FIG. It was confirmed that the fixed varnish was filled in such a manner that the first insulating paper 41 and the second insulating paper 42 were connected with the crossing line as the bottom, and the varnish reservoir 8 was formed. By this varnish accumulation, the insulation distance between the conductor coil and the core, which must be noted in the insulation design in the slot end insulation, can be increased, and as a result, the electric field is reduced. It was confirmed that such a varnish reservoir was formed in any of the other examples.

図6、図7は、図3、図4との対比を目的に比較例として製作した絶縁モデルの形態を示したものである。図6(a)のB−B’スロット端近傍の拡大断面図である図7の比較例から、コイル導体72とコア1間には、3層ラミネート従来絶縁紙10とコア1により形成される連続空間が存在し、従来絶縁紙と空気の誘電率差により、スロット端近傍の空気層に電界が集中する。なお、図示しないが、表1の実施例、比較例として製作した絶縁モデルの模擬コイルと絶縁紙間、絶縁紙とコア間、および実施例の多層絶縁紙間には、固着ワニスが浸透し、各絶縁モデルのスロット構成材がワニスで固着されていることを確認している。   6 and 7 show the form of an insulation model manufactured as a comparative example for the purpose of comparison with FIGS. 3 and 4. From the comparative example of FIG. 7, which is an enlarged cross-sectional view in the vicinity of the BB ′ slot end of FIG. 6A, the three-layer laminated conventional insulating paper 10 and the core 1 are formed between the coil conductor 72 and the core 1. There is a continuous space, and the electric field concentrates in the air layer near the slot end due to the dielectric constant difference between the conventional insulating paper and air. Although not shown in the drawings, the fixed varnish permeates between the examples in Table 1, between the simulated coil and insulating paper of the insulation model manufactured as a comparative example, between the insulating paper and the core, and between the multilayer insulating papers of the examples. It is confirmed that the slot components of each insulation model are fixed with varnish.

表2に表1に示した実施例、比較例として製作した絶縁モデルの50Hzにおける部分放電開始電圧測定結果を示す。部分放電開始電圧は、各絶縁モデルのコア1を接地し、模擬コイル6に電圧を印加して測定した結果であり、部分放電電荷量が100pCに達した電圧を部分放電開始電圧とした。表2の測定値は、各実施例、比較例共に5回測定を行い、その平均値で示してある。   Table 2 shows the measurement results of the partial discharge start voltage at 50 Hz of the insulation model manufactured as an example and a comparative example shown in Table 1. The partial discharge start voltage is a result of measurement by grounding the core 1 of each insulation model and applying a voltage to the simulated coil 6, and the voltage at which the partial discharge charge amount reached 100 pC was defined as the partial discharge start voltage. The measured values in Table 2 are shown as average values obtained by measuring five times in each example and comparative example.

コア1のコアバック部を周回する形でアルミの導電性接着テープを2周巻き付け、その上に接地ケーブルを導電テープで貼り付け固定した。模擬コイル6につては、4本の平角エナメル絶縁線7の両端部のエナメル絶縁層71を約10mm幅で除去し、導体72を露出させ、その部分にアルミ箔を巻き付け、片側のアルミ箔電極に課電ケーブルを取り付けた。コア側の接地電極および模擬コイルの課電電極形成は、ワニス固着前に実施した。形成した電極については、ワニス固着時にワニスが付着するのを防止するために、テフロン(登録商標)粘着テープで被覆し、固着後に被覆テープを取り外した。   An aluminum conductive adhesive tape was wound twice around the core back portion of the core 1, and a grounding cable was attached and fixed thereon with a conductive tape. For the simulated coil 6, the enamel insulation layers 71 at both ends of the four flat enamel insulation wires 7 are removed with a width of about 10 mm, the conductor 72 is exposed, an aluminum foil is wound around that portion, and an aluminum foil electrode on one side A power cable was attached. The formation of the core-side ground electrode and the simulated coil voltage-applying electrode was carried out before the varnish was fixed. The formed electrode was covered with a Teflon (registered trademark) adhesive tape to prevent the varnish from adhering when the varnish was fixed, and the coated tape was removed after fixing.

表2から、従来技術では、1.06kVrms程度の部分放電開始電圧であるのに対し、本発明の実施例では、いずれの実施例においても部分放電開始電圧が上昇しており、本発明の効果を検証できた。また、実施例1に対し実施例2、3ではより部分放電開始電圧が高くなっており、より多層化することで、絶縁紙間に形成される空間数の増加およびワニス溜まりの体積が増大したためである。   From Table 2, the partial discharge start voltage is about 1.06 kVrms in the prior art, whereas in the examples of the present invention, the partial discharge start voltage is increased in any of the examples. We were able to verify. Further, the partial discharge start voltage is higher in Examples 2 and 3 than in Example 1, and by increasing the number of layers, the number of spaces formed between the insulating papers and the volume of the varnish reservoir increased. It is.

Figure 2017055534
Figure 2017055534

本実施例では、PETおよびアラミド紙を用いて、効果を検証したが、本発明に用い得る絶縁樹脂シートは、PETあるいはアラミド紙に限定されないことは、上記の本発明効果の発現機構から容易に理解される。   In this example, the effect was verified using PET and aramid paper, but the insulating resin sheet that can be used in the present invention is not limited to PET or aramid paper. Understood.

次に、図8により、本発明の第2の実施形態について説明する。表1の実施例1で製作した絶縁モデルの絶縁紙両端部に室温硬化型の粘度0.6Pa・sのシリコーン樹脂を充填させ、その効果を検証した。図8は、シリコーン樹脂充填、硬化後の第1の絶縁紙41と第2の絶縁紙間42の交差線9近傍の拡大模式図を示したものである。第1の樹脂溜まり層である固着ワニス溜まり層8上に新たに第2の樹脂溜まり層11が形成されている。   Next, a second embodiment of the present invention will be described with reference to FIG. A room temperature-curing type silicone resin having a viscosity of 0.6 Pa · s was filled at both ends of the insulating paper of the insulation model manufactured in Example 1 of Table 1, and the effect was verified. FIG. 8 is an enlarged schematic view of the vicinity of the intersection line 9 between the first insulating paper 41 and the second insulating paper 42 after filling and curing the silicone resin. A second resin reservoir layer 11 is newly formed on the fixed varnish reservoir layer 8 which is the first resin reservoir layer.

シリコーン樹脂の追加充填後の部分放電開始電圧を表2と同様に測定したところ、第2の樹脂溜まりがなく、第1の樹脂溜まりである固着ワニス溜まりのみの場合は、表2に示すように1.28kVrmsであった部分放電開始電圧を1.62kVrmsまで高めることができ、第2樹脂溜まり形成の効果を確認できた。   When the partial discharge start voltage after the additional filling of the silicone resin was measured in the same manner as in Table 2, when there was no second resin reservoir and only the fixed varnish reservoir as the first resin reservoir, as shown in Table 2. The partial discharge start voltage, which was 1.28 kVrms, could be increased to 1.62 kVrms, and the effect of forming the second resin pool could be confirmed.

本発明の第2の実施形態では、上述したように第2の樹脂溜まりをシリコーン樹脂で形成したが、本発明に用い得る第2の樹脂溜まり形成用樹脂は、シリコーン樹脂に限定されない。   In the second embodiment of the present invention, the second resin reservoir is formed of a silicone resin as described above, but the second resin reservoir forming resin that can be used in the present invention is not limited to a silicone resin.

また、第2の実施形態では、異なる樹脂溜まりで形成された実施例によりその効果を説明したが、第1の固着ワニスによる樹脂溜まりが形成されずに固着ワニスが浸透してスロット内構成材が固着される場合も、上記した第2の樹脂溜まり形成方法を用いることで、コイル/絶縁紙間、コア/絶縁紙間および多層絶縁紙間に樹脂溜まりを形成することができる。   Further, in the second embodiment, the effect is explained by examples formed with different resin reservoirs. However, the resin varnish is not formed by the first adhesive varnish, but the adhesive varnish penetrates and the in-slot component is formed. Even in the case of fixing, the resin pool can be formed between the coil / insulating paper, between the core / insulating paper, and between the multilayer insulating paper by using the second resin pool forming method described above.

図9は、本発明における多層絶縁紙形成に関する別の実施形態を示したもので、表1の実施例では、お互いに接着されない単純積層構造で絶縁モデルを製作した。表1では、多層絶縁紙間に固着ワニスが浸透してスロット内絶縁構成物の固着性が損なわれる事態が発生することはなかったが、より多層化して部分放電開始電圧向上を図る場合には、絶縁紙間に固着ワニスが浸透しづらくなるため、多層絶縁紙間をあらかじめ接合しておく必要がある。   FIG. 9 shows another embodiment relating to the formation of multilayer insulation paper in the present invention. In the example of Table 1, an insulation model was manufactured with a simple laminated structure that is not bonded to each other. In Table 1, there was no situation where the fixing varnish permeated between the multilayer insulating papers and the fixing property of the insulating component in the slot was impaired. Since it is difficult for the fixed varnish to penetrate between the insulating papers, it is necessary to join the multilayer insulating papers in advance.

そのために実施した形態が図9に示されており、表1の実施例2の絶縁紙構成を用いた場合の多層絶縁紙12の形成法を示したものである。所定寸法に切断され、積層した0.05mmのPETシート13を重ねた後、スロット内に配置される部位をスロット軸と直交する形で超音波接合したものである。超音波接合により各層が固定される。超音波接合後、スロット挿入のための曲げ加工が施され、スロット挿入後に図2の方法によりスロット端部の非接合の多層化層が実施例2と同様に押し曲げて、第3の実施形態における実施例となる絶縁モデルを製作し、その部分放電開始電圧を上記手法と同様に測定した。模擬コイルの平角エナメル絶縁線の挿入後の固着ワニス処理は、実施例2と同一方法である。   FIG. 9 shows an embodiment implemented for this purpose, and shows a method of forming the multilayer insulating paper 12 when the insulating paper configuration of Example 2 in Table 1 is used. After stacking 0.05 mm PET sheets 13 cut to a predetermined size and stacked, the parts disposed in the slots are ultrasonically bonded in a form perpendicular to the slot axis. Each layer is fixed by ultrasonic bonding. After ultrasonic bonding, bending processing for slot insertion is performed, and after insertion of the slot, the non-bonded multilayered layer at the end of the slot is pushed and bent in the same manner as in the second embodiment by the method of FIG. An insulation model serving as an example was manufactured, and the partial discharge start voltage was measured in the same manner as in the above method. The fixing varnish treatment after insertion of the flat enamel insulated wire of the simulated coil is the same method as in the second embodiment.

部分放電開始電圧は、1.65kVrmsと表2に示した実施例2の測定結果より高い値を示した。これは、スロット軸方向に直交して存在する超音波接合部14が、固着ワニスを堰き止めることで、ワニス溜まり体積が実施例2より増えたためと考えられる。   The partial discharge start voltage was 1.65 kVrms, which was higher than the measurement result of Example 2 shown in Table 2. This is presumably because the ultrasonic bonding portion 14 existing perpendicular to the slot axis direction dams up the fixed varnish, so that the varnish accumulation volume is increased from that in the second embodiment.

図9では、スロット軸に直交する直線状に超音波接合部14を設けたが、図10に示す形態でも同様の効果を得られる。図10では、多層絶縁紙15を超音波によるスポット接合16した場合の模式図である。   In FIG. 9, the ultrasonic bonding portion 14 is provided in a straight line perpendicular to the slot axis, but the same effect can be obtained with the embodiment shown in FIG. 10. FIG. 10 is a schematic diagram when the multilayer insulating paper 15 is spot-bonded 16 by ultrasonic waves.

また、多層絶縁紙の接合化を述べた上記第3の実施形態では、超音波接合を接合方法に用いたが、高周波接合、熱融着接合、接着剤の部分塗布による接着接合法を用いることができる。   In the third embodiment, which describes the joining of multi-layer insulating paper, ultrasonic bonding is used as the bonding method. However, high-frequency bonding, thermal fusion bonding, or adhesive bonding by partial application of an adhesive is used. Can do.

本実施例では、絶縁モデル製作であるため、絶断絶縁紙を重ねてから超音波接合したが、本発明を用いたステータコアを量産する場合は、スロット長に合わせ、所定の位置、間隔で接合されたロール状に巻き取られた多層絶縁紙を切断して用いることができる。   In this embodiment, since the insulation model was produced, ultrasonic insulation was performed after stacking the cut insulation paper. However, in the case of mass production of the stator core using the present invention, it is joined at predetermined positions and intervals according to the slot length. The multilayer insulating paper wound up in the form of a rolled roll can be cut and used.

本発明は、ハイブリッド自動車、電気自動車駆動モータ等の高出力密度モータの小型化、高駆動電圧化に対応した高耐電圧絶縁システム開発を目的に実施したステータコアスロット端部での高部分放電開始電圧化について鋭意検討した結果得られたものである。ステータコアのスロット端部近傍におけるコイル/ステータコア間に設置されるスロット絶縁紙を多層化し、多層絶縁紙間に樹脂溜まりを形成することによりステータコア近傍の電界集中が軽減されることを見出し、本発明に至った。   The present invention provides a high partial discharge starting voltage at the end of a stator core slot, which is implemented for the purpose of developing a high withstand voltage insulation system corresponding to downsizing and high driving voltage of high power density motors such as hybrid vehicles and electric vehicle drive motors. It was obtained as a result of diligent examination of the conversion. The present invention has found that electric field concentration in the vicinity of the stator core is reduced by multilayering the slot insulating paper installed between the coil / stator core in the vicinity of the slot end of the stator core and forming a resin reservoir between the multilayer insulating paper. It came.

ステータコアのスロット端部では、スロット絶縁紙の絶縁紙とステータコア間の空気の誘電率差により、スロット端近傍の空気層に電界集中し、部分放電開始電圧を高めることが困難であった。従って、ステータコア端部の電界集中を軽減させることで、部分放電開始電圧を高めることが可能となる。   At the slot end of the stator core, due to the dielectric constant difference between the insulating paper of the slot insulating paper and the stator core, the electric field is concentrated on the air layer near the slot end, and it is difficult to increase the partial discharge start voltage. Therefore, the partial discharge start voltage can be increased by reducing the electric field concentration at the end of the stator core.

その手段として、本発明では、スロット端部近傍のスロット絶縁紙を多層化させることで、電界集中を起こすスロット絶縁紙、ステータコア間空間を分割し、スロット端部近傍の電界集中を緩和させ、加えて、多層化絶線紙間に樹脂溜まりを形成させることで、コイル/コア間の電界を低減させ、その結果、スロット端部近傍の電界集中を大幅に軽減させることができ、高部分放電開始電圧化が可能になる。   As a means for this, in the present invention, the slot insulating paper in the vicinity of the slot end is multilayered to divide the space between the slot insulating paper and the stator core that causes electric field concentration, thereby relaxing the electric field concentration in the vicinity of the slot end. In addition, by forming a resin reservoir between the multilayered insulated paper, the electric field between the coil and the core is reduced, and as a result, the electric field concentration near the slot end can be greatly reduced, and high partial discharge is started. Voltageization is possible.

1:コア
2:スロット
3:スロット端
4:実施例1のスロット絶縁紙
41:第1の絶縁紙
41:第2の絶縁紙
5:押し曲げ型
6:模擬コイル
7:平角エナメル絶縁線
71:ポリイミド絶縁層
72:銅導体
8:ワニス溜まり
9:第1、第2の絶縁紙交差線
10:比較例のスロット絶縁紙
11:第2の樹脂溜まり
12:接合多層絶縁紙
13:PETシート
14:超音波接合部
15:別形態の接合多層絶縁紙
16:スポット超音波接合部
1: Core 2: Slot 3: Slot end 4: Slot insulating paper 41 of Example 1: First insulating paper 41: Second insulating paper 5: Push-bending die 6: Simulated coil 7: Flat enamel insulated wire 71: Polyimide insulating layer 72: Copper conductor 8: Varnish reservoir 9: First and second insulating paper intersecting lines 10: Comparative slot insulating paper 11: Second resin reservoir 12: Bonded multilayer insulating paper 13: PET sheet 14: Ultrasonic bonding portion 15: Another form of bonding multilayer insulating paper 16: Spot ultrasonic bonding portion

図1は、絶縁モデル組立用に切り出したステータコアのコア端面形状を示す。上記略円筒形状のステータコアを中心角5°の扇形に切断したもので、略扇形コア1の中央に一つのスロット2が配置される。スロット端3の形状は、幅一定の略矩形形状であり、その幅、平行部深さ、それぞれ4.18mm、12.2mmである。積層コアには35A300相当の打ち抜き電磁鋼板が用いられる。ステータコアの積層コア間はワニスで固着されており、扇形コア1切断においてコアは分解しない。扇形コアの切断方法には、ワイヤーカットを用いた。 FIG. 1 shows a core end face shape of a stator core cut out for assembly of an insulation model. The substantially cylindrical stator core is cut into a sector shape with a central angle of 5 °, and one slot 2 is arranged at the center of the substantially sector core 1. The shape of slot section 3 is a constant width substantially rectangular, its width, the parallel portion depth, respectively 4.18, is 12.2 mm. For the laminated core, a punched electrical steel sheet equivalent to 35A300 is used. The laminated cores of the stator core are fixed with varnish, and the core is not disassembled when the sector core 1 is cut. Wire cutting was used for the cutting method of the fan-shaped core.

絶縁モデル製作におけるワニス固着処理では、模擬コイルが鉛直方向となるように絶縁モデルを倒立させ、まず固着ワニスを絶縁紙端上方から滴下しスロット内に流し込み、所定の温度に絶縁モデルを昇温、保持し固着ワニスを硬化させた。続いて、その絶縁モデルを上下反転させ、同じ方法にて固着ワニスを滴下、硬化させた。
In varnish fixing process in the insulating model fabrication, simulated coil is inverted insulation model such that the vertical direction, the solid adhesive varnish not a or poured into a dropping and the slot from the insulation sheet edge upward, raising insulation model to a predetermined temperature The adhesive varnish was cured by maintaining the temperature. Subsequently, the insulation model was turned upside down, and the fixed varnish was dropped and cured by the same method.

Claims (6)

複数のスロットが形成された固定子コアと、
前記スロットに挿通される固定子コイルと、
前記スロットに挿通され前記固定子コイルと前記固定子コアとを絶縁する絶縁紙と、を備えた回転電機の固定子において、
前記絶縁紙は、前記スロット軸方向端面よりも外側に固定子コアに隣接して配置される第1の絶縁紙部と、前記第1の絶縁紙部と前記固定子コイルの間に配置される少なくとも第2の絶縁紙部とを有し、
前記絶縁紙は、前記第1の絶縁紙部と前記第2の絶縁紙部との間に、絶縁樹脂が配置される樹脂溜まり部を形成する回転電機の固定子。
A stator core formed with a plurality of slots;
A stator coil inserted into the slot;
In the stator of the rotating electrical machine, including the insulating paper that is inserted into the slot and insulates the stator coil and the stator core,
The insulating paper is disposed outside the end surface in the slot axial direction and adjacent to the stator core, and is disposed between the first insulating paper portion and the stator coil. And at least a second insulating paper portion,
The insulating paper is a stator of a rotating electrical machine in which a resin reservoir portion in which an insulating resin is disposed is formed between the first insulating paper portion and the second insulating paper portion.
請求項1に記載の回転電機の固定子において、
前記第2の絶縁紙部の軸方向端部は、前記第1絶縁紙の軸方向端部よりも前記固定子コイルに近くなるように配置される回転電機の固定子。
The stator of the rotating electrical machine according to claim 1,
A stator of a rotating electrical machine in which an axial end portion of the second insulating paper portion is disposed closer to the stator coil than an axial end portion of the first insulating paper.
請求項1又は2のいずれかに記載の回転電機の固定子において、
前記樹脂溜まり部は、固着ワニスが配置される第1の樹脂溜まり部と、前記第1の樹脂溜まり部の上に形成される第2の樹脂溜まり部と、を有する回転電機の固定子。
In the stator of the rotating electrical machine according to claim 1 or 2,
The said resin reservoir part is a stator of the rotary electric machine which has the 1st resin reservoir part by which the fixed varnish is arrange | positioned, and the 2nd resin reservoir part formed on the said 1st resin reservoir part.
請求項1乃至3のいずれかに記載の回転電機の固定子において、
前記第1の絶縁紙部と第2の絶縁紙部がスロット内部において、接合部を有する回転電機の固定子。
In the stator of the rotating electrical machine according to any one of claims 1 to 3,
A stator of a rotating electrical machine in which the first insulating paper portion and the second insulating paper portion have a joint portion inside the slot.
請求項1乃至4のいずれかに記載の回転電機の固定子において、
前記固定子コイルは、1ターンを構成するセグメント巻線から構成される回転電機の固定子。
In the stator of the rotating electrical machine according to any one of claims 1 to 4,
The stator coil is a stator of a rotating electric machine composed of segment windings constituting one turn.
請求項1乃至4のいずれかに記載の回転電機の固定子と、
前記固定子と所定のギャップを介して配置される回転子と、を備える回転電機。
A stator for a rotating electrical machine according to any one of claims 1 to 4,
A rotating electrical machine comprising: the stator and a rotor disposed through a predetermined gap.
JP2015177139A 2015-09-09 2015-09-09 Stator of rotating electric machine and rotating electric machine Active JP6539165B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015177139A JP6539165B2 (en) 2015-09-09 2015-09-09 Stator of rotating electric machine and rotating electric machine
EP16844074.1A EP3349334A4 (en) 2015-09-09 2016-07-29 Stator of rotating electrical machine, and rotating electrical machine
US15/754,424 US10559992B2 (en) 2015-09-09 2016-07-29 Stator of rotating electrical machine, and rotating electrical machine
PCT/JP2016/072255 WO2017043210A1 (en) 2015-09-09 2016-07-29 Stator of rotating electrical machine, and rotating electrical machine
CN201680046805.7A CN107925292B (en) 2015-09-09 2016-07-29 The stator and rotating electric machine of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177139A JP6539165B2 (en) 2015-09-09 2015-09-09 Stator of rotating electric machine and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2017055534A true JP2017055534A (en) 2017-03-16
JP6539165B2 JP6539165B2 (en) 2019-07-03

Family

ID=58240763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177139A Active JP6539165B2 (en) 2015-09-09 2015-09-09 Stator of rotating electric machine and rotating electric machine

Country Status (5)

Country Link
US (1) US10559992B2 (en)
EP (1) EP3349334A4 (en)
JP (1) JP6539165B2 (en)
CN (1) CN107925292B (en)
WO (1) WO2017043210A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220115515A (en) * 2021-02-10 2022-08-17 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Stator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280687B2 (en) * 2018-11-09 2023-05-24 サンデン株式会社 ELECTRIC COMPRESSOR MOTOR AND ELECTRIC COMPRESSOR INCLUDING THE SAME
WO2020146740A1 (en) 2019-01-10 2020-07-16 Iovance Biotherapeutics, Inc. System and methods for monitoring adoptive cell therapy clonality and persistence
WO2021100287A1 (en) * 2019-11-22 2021-05-27 アイシン・エィ・ダブリュ株式会社 Stator and method for manufacturing stator
US12095326B2 (en) * 2021-09-30 2024-09-17 Nissan Motor Co., Ltd. Inter-phase insulating paper, motor, and assembly method for inter-phase insulating paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140100U (en) * 1977-04-12 1978-11-06
JP2008289284A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Insulating sheet for insulating stator core and coil
JP2013009499A (en) * 2011-06-24 2013-01-10 Toyota Motor Corp Insulation member for rotary electric machine, stator for rotary electric machine, and method of manufacturing stator for rotary electric machine
JP2014168330A (en) * 2013-02-28 2014-09-11 Denso Corp Stator of dynamo-electric machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109161A (en) * 1979-02-14 1980-08-22 Toshiba Corp Method for manufacture of insulating film for iron core
JPS58100443U (en) 1981-12-28 1983-07-08 株式会社東芝 Slot insulation for rotating electric machines
JP2000125498A (en) * 1998-10-12 2000-04-28 Yaskawa Electric Corp Insulation structure of three-phase ac dynamoelectric machine stator coil
JP4186872B2 (en) 2004-05-24 2008-11-26 株式会社デンソー Four-layer segment sequential joining stator coil and manufacturing method thereof
JP2006060929A (en) 2004-08-20 2006-03-02 Yaskawa Electric Corp Dynamo-electric machine
CN1889336A (en) * 2006-07-20 2007-01-03 施之英 Method for one-time forming glass ribbon protective layer at high-voltage motor stator coil end
CN201185359Y (en) * 2008-04-24 2009-01-21 上海电气集团上海电机厂有限公司 10kV safety brushless excitation synchronous motor stator coil
JP4402734B1 (en) * 2008-07-30 2010-01-20 株式会社日立エンジニアリング・アンド・サービス Adhesive-free aramid-polyphenylene sulfide laminate manufacturing method, rotating electrical machine insulating member and insulating structure
JP5861616B2 (en) 2012-11-14 2016-02-16 トヨタ自動車株式会社 Slot insulation paper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140100U (en) * 1977-04-12 1978-11-06
JP2008289284A (en) * 2007-05-17 2008-11-27 Toyota Motor Corp Insulating sheet for insulating stator core and coil
JP2013009499A (en) * 2011-06-24 2013-01-10 Toyota Motor Corp Insulation member for rotary electric machine, stator for rotary electric machine, and method of manufacturing stator for rotary electric machine
JP2014168330A (en) * 2013-02-28 2014-09-11 Denso Corp Stator of dynamo-electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220115515A (en) * 2021-02-10 2022-08-17 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Stator
JP2022122831A (en) * 2021-02-10 2022-08-23 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト stator
US11901786B2 (en) 2021-02-10 2024-02-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Stator for an electric machine having insulation paper for a stator winding
KR102663063B1 (en) * 2021-02-10 2024-05-17 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Stator

Also Published As

Publication number Publication date
WO2017043210A1 (en) 2017-03-16
EP3349334A1 (en) 2018-07-18
US20180233982A1 (en) 2018-08-16
US10559992B2 (en) 2020-02-11
CN107925292B (en) 2019-10-29
CN107925292A (en) 2018-04-17
JP6539165B2 (en) 2019-07-03
EP3349334A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2017043210A1 (en) Stator of rotating electrical machine, and rotating electrical machine
EP2963778B1 (en) Stator for a rotary electric machine
JP5816567B2 (en) Rotating electric machine
US10230281B2 (en) Rotating electrical machine
EP2963786B1 (en) Stator for rotary electric machine
JP5157296B2 (en) Stator for motor and manufacturing method thereof
JP6299729B2 (en) Rotating electrical machine stator
US11469639B2 (en) Stator having an insulation layer
WO2018190124A1 (en) Coil and motor using same
US9130430B2 (en) Electric machine with fully enclosed in-slot conductors
US8575814B2 (en) Conductor insulation arrangement for electric machine winding
JP2017163666A (en) Stator wiring and stator
JP2016086508A (en) Armature core and method of manufacturing armature core
CN104518579A (en) Pole unit and stator assembly for a wind turbine generator, and methods of manufacturing the same
WO2012158236A1 (en) Conductor insulation arrangement for electric machine winding
WO2016035534A1 (en) Stator for rotary electric machine and rotary electric machine provided with same
JP5991011B2 (en) Motor stator structure and manufacturing method thereof
JP2009021127A (en) Cluster conductor
JPH10229665A (en) Electric rotating machine and manufacture of coil therefor
CN109861427A (en) A kind of high power density disc type motor winding construction and its bending preparation method
JP2015089162A (en) Rotary electric machine stator
JP2018126029A (en) Stator for rotary electric machine
KR101328640B1 (en) Manufacturing method of a coil with conductive ink
JP2021168585A (en) Coil of rotary electric machine and stator of rotary electric machine
JP2008221257A (en) Metal joining method, manufacturing method of commutator, and manufacturing method of armature

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250