JP2017054680A - Method of manufacturing electrode - Google Patents

Method of manufacturing electrode Download PDF

Info

Publication number
JP2017054680A
JP2017054680A JP2015177498A JP2015177498A JP2017054680A JP 2017054680 A JP2017054680 A JP 2017054680A JP 2015177498 A JP2015177498 A JP 2015177498A JP 2015177498 A JP2015177498 A JP 2015177498A JP 2017054680 A JP2017054680 A JP 2017054680A
Authority
JP
Japan
Prior art keywords
roll
active material
material film
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015177498A
Other languages
Japanese (ja)
Inventor
鈴木 繁
Shigeru Suzuki
繁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015177498A priority Critical patent/JP2017054680A/en
Publication of JP2017054680A publication Critical patent/JP2017054680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode, configured to prevent transfer failure in a step of transferring a film formed of an active material paste to a foil.SOLUTION: The method includes: forming a film-like active material paste 6 to generate an active material film 7; conveying the active material film 7 by a B roll 2; performing corona discharge to the outer peripheral surface of the active material film 7 on the B roll 2 by a corona treatment device 4 so that a water contact angle may be equal to or less than 30 degrees; conveying a metal foil 9 by a C roll 3 facing the B roll 2; and bringing the metal foil 9 conveyed by the C roll 3 into contact with the outer peripheral surface of the active material film 7 subjected to corona discharge, to transfer the active material film 7 to the metal foil 9.SELECTED DRAWING: Figure 1

Description

本発明は,箔の表面に活物質層を形成して電池用の電極を製造する製造方法に関する。   The present invention relates to a production method for producing an electrode for a battery by forming an active material layer on a surface of a foil.

従来から,例えば,リチウムイオン二次電池には,金属箔の表面に活物質層が形成されたシート状の電極が用いられている。シート状の電極を製造する製造方法として,活物質を含むペーストを膜状に成形してロールに付着させて搬送し,別のロールにて搬送される金属箔の表面に接触させて転写することによる製造方法がある。   Conventionally, for example, in a lithium ion secondary battery, a sheet-like electrode in which an active material layer is formed on the surface of a metal foil is used. As a manufacturing method for manufacturing a sheet-like electrode, a paste containing an active material is formed into a film shape, adhered to a roll, conveyed, and brought into contact with the surface of a metal foil conveyed by another roll for transfer. There is a manufacturing method.

電極の製造方法を開示した文献としては,例えば,特許文献1がある。特許文献1には,活物質が塗布されたシート電極を搬送しながらプレスする工程において,活物質層と接触する圧延ロール部材の表面に対して,コロナ放電器による放電処理を行う製造方法が開示されている。特許文献1では,コロナ放電によって圧延ロール部材の表面に付着した異物が変質し,ウエスで拭くことによって除去し易くなるとされている。   For example, Patent Document 1 discloses a document that discloses a method for manufacturing an electrode. Patent Document 1 discloses a manufacturing method in which a discharge process using a corona discharger is performed on the surface of a rolling roll member that is in contact with the active material layer in the step of pressing while transporting the sheet electrode coated with the active material. Has been. In Patent Document 1, foreign matter attached to the surface of a rolling roll member is altered by corona discharge, and is easily removed by wiping with a waste cloth.

特開2010−287545号公報JP 2010-287545 A

しかしながら,前記した従来の技術には,次のような問題があった。すなわち,膜状に成形した活物質を,ロール間で箔に転写する際,転写不良が発生することがある。コロナ放電による表面処理は,転写不良の抑制にも効果が有ると予測されるが,前述した特許文献には,転写不良の抑制のためにコロナ放電を行う場合における処理の詳細についての記載が無い。単にコロナ放電を行っても,転写不良を抑制する効果を十分に発揮できない可能性が高い。   However, the conventional technique described above has the following problems. That is, when the active material formed into a film is transferred to a foil between rolls, a transfer failure may occur. The surface treatment by corona discharge is expected to be effective in suppressing transfer defects, but the above-mentioned patent document does not describe details of the treatment in the case of performing corona discharge to suppress transfer defects. . Even if corona discharge is simply performed, there is a high possibility that the effect of suppressing transfer defects cannot be sufficiently exhibited.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,活物質ペーストを成膜して箔に転写する工程における転写不良を抑制する電極の製造方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, an object of the present invention is to provide an electrode manufacturing method that suppresses transfer failure in a process of forming an active material paste and transferring it to a foil.

この課題の解決を目的としてなされた電極の製造方法は,箔の表面に活物質ペーストの層を形成する電極の製造方法であって,前記活物質ペーストを膜状に成形して活物質膜とし,前記活物質膜を第1ロールにて搬送する成膜工程と,前記第1ロール上の前記活物質膜の外周面に対して,水の接触角が30°以下となるようにコロナ放電を行うコロナ処理工程と,前記第1ロールに対向する第2ロールにて前記箔を搬送し,前記コロナ処理工程にてコロナ放電が行われた前記活物質膜の前記外周面と,前記第2ロールにて搬送されている前記箔とを接触させて,前記活物質膜を前記箔に転写する転写工程と,を有することを特徴としている。   An electrode manufacturing method for solving this problem is an electrode manufacturing method in which a layer of an active material paste is formed on the surface of a foil, and the active material paste is formed into a film to form an active material film. And a corona discharge so that the contact angle of water is 30 ° or less with respect to the outer peripheral surface of the active material film on the first roll, and the film forming step of conveying the active material film by the first roll. A corona treatment step to be performed; and the outer peripheral surface of the active material film on which the foil is conveyed by a second roll facing the first roll and subjected to corona discharge in the corona treatment step; and the second roll And a transfer step of bringing the active material film into the foil by bringing it into contact with the foil being conveyed in step (b).

上記態様における電極の製造方法では,活物質ペーストを成形して活物質膜とした後,活物質膜にコロナ放電を行う。特に,処理後の活物質膜における水の接触角が30°以下となるようにコロナ放電を設定する。これにより,活物質膜の外周面のぬれ性が十分高まる。そして,コロナ放電を行った活物質膜の外周面と箔とを接触させる。従って,活物質膜が箔に容易に転写され,転写不良の抑制が期待できる。   In the electrode manufacturing method according to the above aspect, after the active material paste is formed into an active material film, corona discharge is performed on the active material film. In particular, the corona discharge is set so that the contact angle of water in the treated active material film is 30 ° or less. This sufficiently increases the wettability of the outer peripheral surface of the active material film. Then, the outer peripheral surface of the active material film subjected to corona discharge is brought into contact with the foil. Therefore, the active material film can be easily transferred to the foil, and the transfer failure can be expected to be suppressed.

本発明によれば,活物質ペーストを成膜して箔に転写する工程における転写不良を抑制する電極の製造方法が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrode which suppresses the transfer defect in the process of forming an active material paste into a film and transferring to foil is implement | achieved.

本形態の電極の製造装置を示す説明図である。It is explanatory drawing which shows the manufacturing apparatus of the electrode of this form. 接触角による転写不良率の変化を示すグラフである。It is a graph which shows the change of the transfer defect rate by a contact angle. コロナ処理量と接触角との関係を示すグラフである。It is a graph which shows the relationship between a corona treatment amount and a contact angle.

以下,本発明を具体化した形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオン二次電池用の電極の製造に用いる成膜装置に,本発明を適用したものである。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a film forming apparatus used for manufacturing an electrode for a lithium ion secondary battery.

本形態の成膜装置100の概略構成を,図1に示す。本形態の成膜装置100は,金属箔の表面に電極活物質を含むペーストの層を形成した積層シート10を製造する装置である。例えば,リチウムイオン二次電池として,捲回型の電極体と電解液とがケースに封入されて構成されているものがある。捲回型の電極体は,例えば,アルミ箔に正極活物質層を形成したシート状の正極電極と,銅箔に負極活物質層を形成したシート状の負極電極とを,間にセパレータを挟んで捲回することにより製造される。本形態の成膜装置100にて製造された積層シート10は,乾燥,プレス等の工程を経て,このような二次電池用の電極となる。   A schematic configuration of the film forming apparatus 100 of this embodiment is shown in FIG. The film forming apparatus 100 of this embodiment is an apparatus for manufacturing a laminated sheet 10 in which a paste layer containing an electrode active material is formed on the surface of a metal foil. For example, there is a lithium ion secondary battery in which a wound electrode body and an electrolytic solution are enclosed in a case. For example, a wound electrode body includes a sheet-like positive electrode in which a positive electrode active material layer is formed on an aluminum foil and a sheet-like negative electrode in which a negative electrode active material layer is formed on a copper foil, with a separator interposed therebetween. It is manufactured by winding with. The laminated sheet 10 manufactured by the film forming apparatus 100 according to the present embodiment becomes an electrode for such a secondary battery through processes such as drying and pressing.

本形態の成膜装置100は,図1に示すように,Aロール1と,Bロール2と,Cロール3と,コロナ処理装置4と,を備えている。Bロール2は,第1ロールの一例であり,Cロール3は,第2ロールの一例である。本形態の成膜装置100は,成膜工程と,コロナ処理工程と,転写工程と,をこの順に連続して実行する。   As shown in FIG. 1, the film forming apparatus 100 of this embodiment includes an A roll 1, a B roll 2, a C roll 3, and a corona treatment apparatus 4. The B roll 2 is an example of a first roll, and the C roll 3 is an example of a second roll. The film forming apparatus 100 according to this embodiment sequentially executes a film forming process, a corona treatment process, and a transfer process in this order.

Aロール1とBロール2とCロール3とは,図1に示すように,互いに平行であって,この順に並べて配置されている。そして,Aロール1とBロール2とは,わずかに隙間を空けて対向している。また,Bロール2とCロール3とは,わずかに隙間を空けて対向している。Aロール1とCロール3とは,対向していない。コロナ処理装置4は,Bロール2の図中で下方の位置にてBロール2と平行に配置された放電電極を備え,Bロール2に向けてコロナ放電を行う。   As shown in FIG. 1, the A roll 1, the B roll 2 and the C roll 3 are parallel to each other and arranged in this order. The A roll 1 and the B roll 2 face each other with a slight gap. Further, the B roll 2 and the C roll 3 face each other with a slight gap. The A roll 1 and the C roll 3 are not opposed to each other. The corona treatment device 4 includes a discharge electrode disposed in parallel with the B roll 2 at a lower position in the drawing of the B roll 2, and performs corona discharge toward the B roll 2.

また,Aロール1とBロール2との間の図1中で上方には,軸方向の両側にそれぞれ仕切り板5が設けられている。そして,図1に示すように,活物質層の材料を含み,溶媒とともに混練されてペースト状となった活物質ペースト6が,Aロール1とBロール2との上方で,両側の仕切り板5の間に供給される。   In addition, partition plates 5 are provided on both sides in the axial direction at the upper side in FIG. 1 between the A roll 1 and the B roll 2. As shown in FIG. 1, the active material paste 6 containing the material of the active material layer and kneaded with the solvent into a paste form is separated above the A roll 1 and the B roll 2 by the partition plates 5 on both sides. Supplied during.

成膜装置100による積層シートの製造方法では,図1中に矢印で示すように,各ロール1,2,3が回転される。各ロールの回転方向は,2つのロールの対向位置では互いに順方向の回転となるように定められている。つまり,Aロール1とCロール3とは同じ回転方向に回転し,Bロール2は,Aロール1やCロール3とは逆方向に回転する。   In the method for manufacturing a laminated sheet by the film forming apparatus 100, the rolls 1, 2, and 3 are rotated as indicated by arrows in FIG. The rotation direction of each roll is determined so as to rotate in the forward direction with respect to each other at the position where the two rolls face each other. That is, the A roll 1 and the C roll 3 rotate in the same rotation direction, and the B roll 2 rotates in the opposite direction to the A roll 1 and the C roll 3.

そして,仕切り板5の間に供給された活物質ペースト6は,Aロール1とBロール2との回転により,Aロール1とBロール2との間の隙間から,図1中で下向きに押し出される。その結果,活物質ペースト6は,Aロール1とBロール2との対向位置にて,仕切り板5の間隔,および,Aロール1とBロール2との間の隙間の大きさによって規定される幅と厚さの連続した膜状に成形され,活物質膜7となる。この工程が,成膜工程に相当する。   Then, the active material paste 6 supplied between the partition plates 5 is pushed downward in FIG. 1 from the gap between the A roll 1 and the B roll 2 by the rotation of the A roll 1 and the B roll 2. It is. As a result, the active material paste 6 is defined by the distance between the partition plates 5 and the size of the gap between the A roll 1 and the B roll 2 at the position where the A roll 1 and the B roll 2 face each other. The active material film 7 is formed into a film having a continuous width and thickness. This process corresponds to a film forming process.

各ロール1,2,3の回転速度は,Aロール1の周速が最も遅く,Cロール3の周速が最も速い。Bロール2の周速は,Aロール1の周速より速く,Cロール3の周速より遅い。そして,Aロール1とBロール2との間で成形された活物質膜7は,Aロール1より周速の速いBロール2の表面に担持され,図1中で略右下へ向かって,Bロール2によって搬送される。   As for the rotational speeds of the rolls 1, 2, and 3, the peripheral speed of the A roll 1 is the slowest, and the peripheral speed of the C roll 3 is the fastest. The peripheral speed of the B roll 2 is faster than the peripheral speed of the A roll 1 and slower than the peripheral speed of the C roll 3. And the active material film | membrane 7 shape | molded between A roll 1 and B roll 2 is carry | supported by the surface of B roll 2 whose peripheral speed is faster than A roll 1, and toward FIG. It is conveyed by the B roll 2.

また,各部材の軸方向の長さ,つまり,図1中で奥行き方向の長さは,それぞれが担持する部材の幅より大きければよい。例えば,Aロール1の軸方向の長さ,Bロール2の軸方向の長さ,コロナ処理装置4の放電電極の長さは,いずれも,成形される活物質膜7の幅である仕切り板5の間隔よりも長い。また,Cロール3の軸方向の長さは,後述する金属箔9の幅よりも長い。金属箔9の幅は,活物質膜7の幅以上である。なお,省エネルギーの観点から,コロナ処理装置4の放電電極の長さは,Bロール2の軸方向の長さ以下であることが好ましい。また,各ロール1,2,3の径は,必ずしもすべて等しくなくてもよい。   Further, the length in the axial direction of each member, that is, the length in the depth direction in FIG. 1 only needs to be larger than the width of the member carried by each member. For example, a partition plate in which the length of the A roll 1 in the axial direction, the length of the B roll 2 in the axial direction, and the length of the discharge electrode of the corona treatment device 4 are the width of the active material film 7 to be formed. It is longer than the interval of 5. Further, the axial length of the C roll 3 is longer than the width of the metal foil 9 described later. The width of the metal foil 9 is not less than the width of the active material film 7. From the viewpoint of energy saving, it is preferable that the length of the discharge electrode of the corona treatment device 4 is not more than the length of the B roll 2 in the axial direction. Further, the diameters of the rolls 1, 2, 3 are not necessarily equal.

Bロール2にて搬送される活物質膜7は,図1に示すように,コロナ処理装置4に対向する位置を通過する。コロナ処理装置4は,対向する位置を一定の速度で通過する活物質膜7に対して,所定の放電電力にて連続してコロナ放電を行う。活物質膜7のうちのコロナ処理装置4に対向する面である外周面は,コロナ放電によって,ぬれ性が向上する。具体的には,活物質膜7の外周面は,コロナ放電のエネルギーを受けて活性化される。また,活物質膜7の樹脂成分の表面には,親水性の極性基ができる。本形態の成膜装置100では,コロナ処理装置4の出力は,処理後の活物質膜7の外周面における水の接触角が30°以下となるように設定されている。この工程が,コロナ処理工程に相当する。   The active material film 7 transported by the B roll 2 passes through a position facing the corona treatment device 4 as shown in FIG. The corona treatment device 4 continuously performs corona discharge at a predetermined discharge power on the active material film 7 that passes through the facing position at a constant speed. The wettability of the outer peripheral surface of the active material film 7 which is the surface facing the corona treatment device 4 is improved by corona discharge. Specifically, the outer peripheral surface of the active material film 7 is activated by receiving corona discharge energy. Further, a hydrophilic polar group is formed on the surface of the resin component of the active material film 7. In the film forming apparatus 100 of this embodiment, the output of the corona treatment apparatus 4 is set so that the contact angle of water on the outer peripheral surface of the active material film 7 after treatment is 30 ° or less. This process corresponds to a corona treatment process.

一方,Cロール3には,図1に示すように,金属箔9が巻き掛けられる。金属箔9は,供給ロール等の供給元から引き出され,Cロール3のうち,Bロール2との対向箇所よりも上流側で,Cロール3に巻き掛けられている。そして,金属箔9は,Cロール3の回転によって,Bロール2との対向箇所まで搬送される。   On the other hand, the metal foil 9 is wound around the C roll 3 as shown in FIG. The metal foil 9 is drawn from a supply source such as a supply roll, and is wound around the C roll 3 on the upstream side of the C roll 3 facing the B roll 2. And the metal foil 9 is conveyed to the location facing the B roll 2 by the rotation of the C roll 3.

Bロール2に搬送されている活物質膜7と,Cロール3に搬送されている金属箔9とが,Cロール3とBロール2との対向箇所において接触する。つまり,Cロール3とBロール2との間の隙間の大きさは,金属箔9の厚さと,活物質膜7の厚さと,の合計よりも小さい。そして,Cロール3とBロール2との対向箇所において,活物質膜7は,より周速の速いCロール3へ移動し,金属箔9に転写される。この工程が,転写工程に相当する。   The active material film 7 transported to the B roll 2 and the metal foil 9 transported to the C roll 3 come into contact with each other at a position where the C roll 3 and the B roll 2 face each other. That is, the size of the gap between the C roll 3 and the B roll 2 is smaller than the sum of the thickness of the metal foil 9 and the thickness of the active material film 7. Then, the active material film 7 moves to the C roll 3 having a faster peripheral speed at the location where the C roll 3 and the B roll 2 face each other, and is transferred to the metal foil 9. This process corresponds to a transfer process.

活物質膜7のうち,Cロール3とBロール2との対向箇所において金属箔9に接触する外周面は,コロナ放電によってぬれ性が向上された面であるので,活物質膜7の金属箔9への転写は良好に行われる。これにより,金属箔9の上に活物質膜7の層が形成された積層シート10が得られる。製造された積層シート10は,Cロール3によって搬送され,次工程へと送られる。   Of the active material film 7, the outer peripheral surface that contacts the metal foil 9 at the location where the C roll 3 and the B roll 2 face each other is a surface whose wettability is improved by corona discharge. The transfer to 9 is performed well. Thereby, the laminated sheet 10 in which the layer of the active material film 7 is formed on the metal foil 9 is obtained. The manufactured laminated sheet 10 is conveyed by the C roll 3 and sent to the next process.

次に,コロナ処理工程の詳細について説明する。本願の発明者は,成膜装置100にて,銅箔に負極用の活物質膜を転写する工程において,コロナ処理装置4の出力の大きさによる転写不良率の違いを調べた。発明者は,さらに,コロナ処理装置4の出力の大きさに対して,処理後の活物質膜7の表面における水の接触角を調べた。これらの結果から,発明者は,活物質膜7の表面の水の接触角と転写不良の発生の程度との間には,一定の関係があることを見いだした。つまり,コロナ放電を行って活物質膜7の接触角を所定の値以下とすることにより,活物質膜7の金属箔9への転写不良を抑制する十分な効果が得られることが分かった。   Next, details of the corona treatment process will be described. The inventor of the present application investigated the difference in transfer failure rate depending on the output level of the corona treatment device 4 in the step of transferring the active material film for the negative electrode to the copper foil by the film forming device 100. The inventor further investigated the contact angle of water on the surface of the active material film 7 after the treatment with respect to the magnitude of the output of the corona treatment device 4. From these results, the inventor found that there is a certain relationship between the contact angle of water on the surface of the active material film 7 and the degree of occurrence of transfer failure. In other words, it has been found that a sufficient effect of suppressing transfer failure of the active material film 7 to the metal foil 9 can be obtained by performing corona discharge to make the contact angle of the active material film 7 equal to or less than a predetermined value.

処理後の活物質膜の接触角と転写不良率の変化の程度との関係を図2に示す。この図は,コロナ放電を施さなかった場合である非処理時の転写不良率を100として,処理後の接触角の大きさと,非処理時の転写不良率に対する処理後の転写不良率の割合を,グラフ化して示したものである。そして,図2に示すように,コロナ放電を行った後の活物質膜の接触角が30°以下であれば,転写不良率が非処理時の10分の1以下となって,転写不良を適切に抑制できることが分かった。   FIG. 2 shows the relationship between the contact angle of the active material film after the treatment and the degree of change in the transfer defect rate. This figure shows the size of the contact angle after processing and the ratio of the transfer failure rate after processing to the transfer failure rate during non-processing, assuming that the transfer failure rate during non-processing when corona discharge is not performed is 100. , Is shown in a graph. As shown in FIG. 2, if the contact angle of the active material film after corona discharge is 30 ° or less, the transfer failure rate becomes 1/10 or less of that during non-processing, and transfer failure is caused. It turned out that it can suppress appropriately.

また,発明者は,負極用の活物質ペーストを実験用に成形した活物質膜を用意し,5段階の処理量にてコロナ放電を行い,処理後の接触角を測定した。なお,負極用の活物質ペーストは,黒鉛等の炭素材料と結着剤とを含む。この実験により,コロナ処理装置の処理量と処理後の活物質膜の接触角との関係について,図3に示すような結果が得られた。つまり,図3に示したように,コロナ放電を行った後の活物質膜の接触角は,コロナ処理装置の処理量が大きいほど,より小さくなった。   In addition, the inventor prepared an active material film obtained by molding an active material paste for a negative electrode for an experiment, performed corona discharge at a five-step treatment amount, and measured the contact angle after the treatment. Note that the active material paste for the negative electrode includes a carbon material such as graphite and a binder. As a result of this experiment, the results shown in FIG. 3 were obtained for the relationship between the throughput of the corona treatment apparatus and the contact angle of the active material film after treatment. That is, as shown in FIG. 3, the contact angle of the active material film after the corona discharge is smaller as the treatment amount of the corona treatment device is larger.

コロナ処理装置の処理量は,単位面積,単位時間あたりの放電電力量であり,放電電力(W)を,放電幅(m)と搬送速度(m/min)との乗算値で割ることで求められる値である。成膜装置100では,放電幅は,例えば,活物質膜7の図1中で奥行き方向の幅,または,コロナ処理装置4の放電電極の長さに相当する。また,搬送速度は,コロナ処理装置と処理対象物との相対速度であって,成膜装置100では,例えば,活物質膜7の搬送速度,または,Bロール2上での活物質膜7の表面の周速に相当する。   The throughput of the corona treatment device is the amount of discharge power per unit area and unit time, and is obtained by dividing the discharge power (W) by the product of the discharge width (m) and the conveyance speed (m / min). Value. In the film forming apparatus 100, the discharge width corresponds to, for example, the width in the depth direction of the active material film 7 in FIG. 1 or the length of the discharge electrode of the corona treatment apparatus 4. Further, the transport speed is a relative speed between the corona treatment apparatus and the object to be treated. In the film forming apparatus 100, for example, the transport speed of the active material film 7 or the active material film 7 on the B roll 2 is measured. Corresponds to the peripheral speed of the surface.

この実験では,活物質膜の搬送速度を変更してコロナ処理装置の処理量を変化させ,各処理量における処理後の活物質膜の水の接触角を測定した。実験では,放電幅0.25mでセラミック電極式のコロナ処理装置を用いて,最大出力4kWの放電電力にてコロナ放電を行った。このとき,活物質膜の搬送速度を変更して,それぞれの搬送速度での処理量を算出した。さらに,処理後の活物質膜の表面の3箇所にて水の接触角を測定し,その平均値を算出した。水の接触角は,画像処理による一般的な測定器を用いて測定した。なお,測定箇所による接触角の差は小さかった。   In this experiment, the amount of corona treatment was changed by changing the conveying speed of the active material film, and the water contact angle of the active material film after treatment at each treatment amount was measured. In the experiment, corona discharge was performed with a discharge power of a maximum output of 4 kW using a ceramic electrode type corona treatment apparatus with a discharge width of 0.25 m. At this time, the processing speed at each transport speed was calculated by changing the transport speed of the active material film. Furthermore, the contact angle of water was measured at three locations on the surface of the treated active material film, and the average value was calculated. The contact angle of water was measured using a general measuring device using image processing. The difference in contact angle depending on the measurement location was small.

図3に示すように,コロナ放電を施す前の活物質膜の接触角は,約42°であった。そして,コロナ処理装置の処理量を250W・min/m2以上とすれば,処理後の接触角を30°以下とできることが分かった。30°は,前述したように,転写不良率を,非処理時の10分の1以下とできる良好な接触角である。 As shown in FIG. 3, the contact angle of the active material film before the corona discharge was about 42 °. It was found that the contact angle after the treatment could be 30 ° or less if the treatment amount of the corona treatment device was 250 W · min / m 2 or more. As described above, 30 ° is a good contact angle at which the transfer failure rate can be reduced to 1/10 or less of that during non-processing.

そこで,本形態の成膜装置100では,処理後の活物質膜7における水の接触角が30°以下となるように,コロナ処理装置4の使用条件を設定する。この使用条件は,コロナ処理装置4の処理量が250W・min/m2以上の所定値となるように,放電電力,放電幅,搬送速度の組合せを設定することで満たされる。従って,コロナ処理装置4によるコロナ放電によって,処理しない場合に比較して,転写不良は10分の1程度となることが期待できる。 Therefore, in the film forming apparatus 100 of this embodiment, the use conditions of the corona treatment apparatus 4 are set so that the contact angle of water in the processed active material film 7 is 30 ° or less. This use condition is satisfied by setting the combination of discharge power, discharge width, and conveyance speed so that the processing amount of the corona treatment device 4 becomes a predetermined value of 250 W · min / m 2 or more. Therefore, it can be expected that the transfer failure is about 1/10 compared to the case where the corona discharge by the corona treatment device 4 is not performed.

以上詳細に説明したように本形態の電極の製造方法によれば,成膜装置100にて,Aロール1とBロール2とによって,活物質ペースト6を膜状に成形して活物質膜7とし,活物質膜7をBロール2にて搬送する。さらに,Bロール2上の活物質膜7の外周面に,水の接触角が30°以下となるようにコロナ放電による処理を施す。そして,コロナ放電による処理を施された外周面と,Cロール3にて搬送されている金属箔9とを接触させて,活物質膜7を金属箔9に転写する。接触角が30°以下となるようにぬれ性が向上された活物質膜7と,金属箔9とを接触させるので,活物質ペーストを成膜して箔に転写する工程における転写不良の抑制が期待できる。   As described in detail above, according to the electrode manufacturing method of the present embodiment, the active material paste 6 is formed into a film shape by the A roll 1 and the B roll 2 in the film forming apparatus 100, and the active material film 7. Then, the active material film 7 is conveyed by the B roll 2. Further, the outer peripheral surface of the active material film 7 on the B roll 2 is treated by corona discharge so that the contact angle of water is 30 ° or less. Then, the active material film 7 is transferred to the metal foil 9 by bringing the outer peripheral surface treated by corona discharge into contact with the metal foil 9 conveyed by the C roll 3. Since the active material film 7 whose wettability is improved so that the contact angle is 30 ° or less and the metal foil 9 are brought into contact with each other, transfer defects can be suppressed in the process of forming the active material paste and transferring it to the foil. I can expect.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.

例えば,本発明は,正極用の電極にも適用可能である。また,金属板に活物質ペーストによる層を形成してシート状の電極を製造する製造方法であれば,リチウムイオン二次電池用の電極に限らず,各種の電池の電極の製造方法に適用可能である。また,例えば,活物質ペーストを膜状に成形する成膜方法は,ロールの空隙によるものに限らない。   For example, the present invention can also be applied to a positive electrode. In addition, the manufacturing method for forming a sheet-like electrode by forming a layer of an active material paste on a metal plate can be applied not only to an electrode for a lithium ion secondary battery but also to an electrode manufacturing method for various batteries. It is. Further, for example, the film forming method for forming the active material paste into a film shape is not limited to the method using the gap of the roll.

2 Bロール
3 Cロール
4 コロナ処理装置
6 活物質ペースト
7 活物質膜
9 金属箔
2 B roll 3 C roll 4 Corona treatment device 6 Active material paste 7 Active material film 9 Metal foil

Claims (1)

箔の表面に活物質ペーストの層を形成する電極の製造方法であって,
前記活物質ペーストを膜状に成形して活物質膜とし,前記活物質膜を第1ロールにて搬送する成膜工程と,
前記第1ロール上の前記活物質膜の外周面に対して,水の接触角が30°以下となるようにコロナ放電を行うコロナ処理工程と,
前記第1ロールに対向する第2ロールにて前記箔を搬送し,前記コロナ処理工程にてコロナ放電が行われた前記活物質膜の前記外周面と,前記第2ロールにて搬送されている前記箔とを接触させて,前記活物質膜を前記箔に転写する転写工程と,
を有することを特徴とする電極の製造方法。
An electrode manufacturing method for forming an active material paste layer on a surface of a foil, comprising:
A film forming step of forming the active material paste into a film to form an active material film, and transporting the active material film by a first roll;
A corona treatment step of performing corona discharge so that the contact angle of water is 30 ° or less with respect to the outer peripheral surface of the active material film on the first roll;
The foil is transported by the second roll facing the first roll, and is transported by the outer peripheral surface of the active material film subjected to corona discharge in the corona treatment step, and by the second roll. A transfer step of contacting the foil and transferring the active material film to the foil;
A method for producing an electrode, comprising:
JP2015177498A 2015-09-09 2015-09-09 Method of manufacturing electrode Pending JP2017054680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177498A JP2017054680A (en) 2015-09-09 2015-09-09 Method of manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177498A JP2017054680A (en) 2015-09-09 2015-09-09 Method of manufacturing electrode

Publications (1)

Publication Number Publication Date
JP2017054680A true JP2017054680A (en) 2017-03-16

Family

ID=58321143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177498A Pending JP2017054680A (en) 2015-09-09 2015-09-09 Method of manufacturing electrode

Country Status (1)

Country Link
JP (1) JP2017054680A (en)

Similar Documents

Publication Publication Date Title
JP6354698B2 (en) Electrode plate manufacturing method
JP6455498B2 (en) Electrode plate manufacturing apparatus, positive electrode plate manufacturing method, and negative electrode plate manufacturing method
US20120204787A1 (en) Double-sided coating apparatus
WO2021079580A1 (en) Coating film production method and coating film production device
JP2017098029A (en) Electrode plate manufacturing method
JP2011181459A (en) Method of manufacturing of coating type separator
JP6455403B2 (en) Electrode manufacturing method
JP2020087856A (en) Electrode for lithium ion secondary battery and manufacturing installation of electrode for lithium ion secondary battery
JP2016147244A (en) Double side coating device, coating film formation system, and double side coating method
KR101913476B1 (en) Battery separator producing method and battery separator producing apparatus
JP6054803B2 (en) Secondary battery electrode manufacturing apparatus and electrode manufacturing method
US10035278B2 (en) Device and method for producing separator roll
JP6819438B2 (en) Electrode plate manufacturing equipment
JP2010212143A (en) Electrode manufacturing method and electrode manufacturing device
CN106953048B (en) Membrane manufacturing method
KR20170074830A (en) Method and apparatus for manufacturing functional film
JP2017054680A (en) Method of manufacturing electrode
JP2017084598A (en) Manufacturing device for electrode plate
JP2015044138A (en) Web coating device
JP2005199190A (en) Coating method and coating apparatus
JP2015044132A (en) Coating film forming device
JP2018010822A (en) Device of manufacturing electrode
JP2016139561A (en) Press apparatus and manufacturing method of electrode
JP2017098176A (en) Electrode manufacturing method
WO2024070092A1 (en) Manufacturing device for mixture sheet