JP2017054649A - Method of producing composition containing plural positive electrode active materials, conductive assistant, binder and solvent - Google Patents

Method of producing composition containing plural positive electrode active materials, conductive assistant, binder and solvent Download PDF

Info

Publication number
JP2017054649A
JP2017054649A JP2015176952A JP2015176952A JP2017054649A JP 2017054649 A JP2017054649 A JP 2017054649A JP 2015176952 A JP2015176952 A JP 2015176952A JP 2015176952 A JP2015176952 A JP 2015176952A JP 2017054649 A JP2017054649 A JP 2017054649A
Authority
JP
Japan
Prior art keywords
positive electrode
dispersion
electrode active
active material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015176952A
Other languages
Japanese (ja)
Other versions
JP6720488B2 (en
Inventor
金田 潤
Jun Kaneda
潤 金田
直彦 磯村
Naohiko Isomura
直彦 磯村
達哉 江口
Tatsuya Eguchi
達哉 江口
友哉 佐藤
Tomoya Sato
友哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015176952A priority Critical patent/JP6720488B2/en
Publication of JP2017054649A publication Critical patent/JP2017054649A/en
Application granted granted Critical
Publication of JP6720488B2 publication Critical patent/JP6720488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a composition containing a plurality of positive electrode active materials, a conductive assistant, a binder and a solvent, capable of preferably suppressing positive electrode resistance.SOLUTION: A method of producing a composition containing a first positive electrode active material, a second positive electrode active material, a conductive assistant, a binder and a solvent is characterized to include the steps of: A) mixing the conductive assistant, the binder and the solvent to produce a fluid dispersion A; and B) mixing the fluid dispersion A, the first positive electrode active material, the second positive electrode active material to produce a fluid dispersion B.SELECTED DRAWING: None

Description

本発明は、複数の正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法に関するものである。   The present invention relates to a method for producing a composition containing a plurality of positive electrode active materials, a conductive additive, a binder and a solvent.

二次電池の正極活物質には種々の材料が用いられることが知られており、さらに、正極活物質として複数の材料を採用した二次電池も知られている。   It is known that various materials are used for the positive electrode active material of the secondary battery, and further, secondary batteries adopting a plurality of materials as the positive electrode active material are also known.

例えば、特許文献1には、正極活物質としてオリビン構造のLiFePO及びリチウムニッケル複合酸化物のLiNi0.8Co0.15Al0.05を採用したリチウムイオン二次電池が具体的に開示されている。 For example, Patent Document 1 specifically describes a lithium ion secondary battery that employs LiFePO 4 having an olivine structure and LiNi 0.8 Co 0.15 Al 0.05 O 2 having a lithium nickel composite oxide as a positive electrode active material. It is disclosed.

さて、一般的にリチウムイオン二次電池の正極は、集電体と、該集電体上に形成された正極活物質を含む正極活物質層からなる。ここで、正極活物質層は、集電体上に正極活物質、導電助剤、結着剤及び溶剤を含む組成物(スラリー)を塗布し、該組成物から該溶剤を除去することにより製造される。そして、正極活物質、導電助剤、結着剤及び溶剤を含む組成物は、該組成物の構成成分の固形分を混合した後に溶剤を加えて混合することで製造されるか、又は、組成物の成分全てを一度に混合することで製造されるのが通常であった。   In general, a positive electrode of a lithium ion secondary battery includes a current collector and a positive electrode active material layer including a positive electrode active material formed on the current collector. Here, the positive electrode active material layer is manufactured by applying a composition (slurry) containing a positive electrode active material, a conductive additive, a binder and a solvent on a current collector, and removing the solvent from the composition. Is done. And the composition containing a positive electrode active material, a conductive additive, a binder and a solvent is produced by mixing the solid components of the composition and then adding the solvent and mixing, or the composition It was usually produced by mixing all the ingredients of the product at once.

実際に、特許文献1の正極活物質及び溶剤を含む組成物は、正極活物質のLiFePO及びLiNi0.8Co0.15Al0.05、結着剤のポリフッ化ビニリデン、導電助剤のカーボンを混合し、ここに溶剤のN−メチル−2−ピロリドンを加え混合する製造方法で製造されている(特許文献1の明細書0084段落を参照。)。 Actually, the composition containing the positive electrode active material and the solvent in Patent Document 1 includes LiFePO 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 as the positive electrode active material, polyvinylidene fluoride as the binder, conductive assistant. It is manufactured by a manufacturing method in which carbon of the agent is mixed, and N-methyl-2-pyrrolidone as a solvent is added thereto and mixed (see paragraph 0084 of the specification of Patent Document 1).

特開2012−190786号公報JP 2012-190786 A

本発明者は、複数の正極活物質、導電助剤、結着剤及び溶剤を含む組成物の物性が、その製造方法に因り、変化することを見出した。さらには、組成物から溶剤を除去することにより形成される正極活物質層を具備する正極の抵抗が、組成物の製造方法に因り、変化することを見出した。   The present inventor has found that the physical properties of a composition containing a plurality of positive electrode active materials, conductive assistants, binders and solvents vary depending on the production method. Furthermore, it has been found that the resistance of the positive electrode including the positive electrode active material layer formed by removing the solvent from the composition varies depending on the method for producing the composition.

本発明は、このような事情に鑑みて為されたものであり、正極の抵抗を一定程度抑制し得る、複数の正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a method for producing a composition containing a plurality of positive electrode active materials, conductive assistants, binders and solvents, which can suppress the resistance of the positive electrode to a certain extent. The purpose is to provide.

本発明者が鋭意検討した結果、まず、導電助剤、結着剤及び溶剤を混合して第1の分散液を製造し、次に、第1の分散液に複数の正極活物質を配合して第2の分散液を製造する製造方法で製造された組成物が、好適であることを見出した。   As a result of intensive studies by the inventor, first, a conductive auxiliary agent, a binder and a solvent are mixed to produce a first dispersion, and then a plurality of positive electrode active materials are blended in the first dispersion. It was found that the composition produced by the production method for producing the second dispersion was suitable.

すなわち、本発明の組成物の製造方法は、第1正極活物質、第2正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法であって、
A)前記導電助剤、前記結着剤及び前記溶剤を混合して、A分散液を製造する工程、
B)前記A分散液、前記第1正極活物質及び前記第2正極活物質を混合して、B分散液を製造する工程、
を含むことを特徴とする。
That is, the method for producing a composition of the present invention is a method for producing a composition comprising a first positive electrode active material, a second positive electrode active material, a conductive additive, a binder, and a solvent,
A) A step of producing a dispersion A by mixing the conductive assistant, the binder and the solvent,
B) A step of producing a B dispersion by mixing the A dispersion, the first positive electrode active material, and the second positive electrode active material,
It is characterized by including.

本発明の製造方法で得られた組成物を用いて製造された正極は、その抵抗が一定程度抑制される。   The resistance of the positive electrode manufactured using the composition obtained by the manufacturing method of the present invention is suppressed to a certain extent.

実施例7及び実施例8のB−1分散液の粒度分布チャートである。It is a particle size distribution chart of the B-1 dispersion liquid of Example 7 and Example 8.

以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x〜y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。   The best mode for carrying out the present invention will be described below. Unless otherwise specified, the numerical range “x to y” described in this specification includes the lower limit x and the upper limit y. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from the numerical value range can be used as upper and lower numerical values.

本発明の組成物の製造方法は、第1正極活物質、第2正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法であって、
A)前記導電助剤、前記結着剤及び前記溶剤を混合して、A分散液を製造する工程(以下、単に「A)工程」ということがある。)、
B)前記A分散液、前記第1正極活物質及び前記第2正極活物質を混合して、B分散液を製造する工程(以下、単に「B)工程」ということがある。)、
を含むことを特徴とする。
A method for producing a composition of the present invention is a method for producing a composition comprising a first positive electrode active material, a second positive electrode active material, a conductive additive, a binder, and a solvent,
A) The step of producing the dispersion A by mixing the conductive auxiliary agent, the binder and the solvent (hereinafter, simply referred to as “A step”). ),
B) The step of producing the B dispersion by mixing the A dispersion, the first positive electrode active material, and the second positive electrode active material (hereinafter, simply referred to as “B) step” may be referred to. ),
It is characterized by including.

本発明の製造方法で製造される組成物(以下、「本発明の組成物」ということがある。)は、溶剤及び溶剤以外の固形分からなる。溶剤以外の固形分とは、溶剤以外の正極活物質、導電助剤、結着剤並びに必要に応じて用いられる分散剤及びその他の添加剤をいう。本発明の組成物において、溶剤以外の固形分(以下、単に「固形分」ということがある。)の配合量は、30〜90質量%の範囲内が好ましく、50〜75質量%の範囲内がより好ましい。   The composition produced by the production method of the present invention (hereinafter sometimes referred to as “the composition of the present invention”) comprises a solvent and a solid content other than the solvent. Solid content other than a solvent means positive electrode active materials other than a solvent, a conductive support agent, a binder, a dispersant and other additives used as necessary. In the composition of the present invention, the blending amount of solids other than the solvent (hereinafter sometimes simply referred to as “solids”) is preferably in the range of 30 to 90% by mass, and in the range of 50 to 75% by mass. Is more preferable.

第1正極活物質は、二次電池において正極活物質として働く材料であればよく、例えば、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Zr、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表される材料、LiMn及び非化学量論組成LiMn等(a+b=2)のスピネル構造材料、並びに、層状岩塩構造の材料及びスピネル構造材料で構成される固溶体を挙げることができる。 The first positive active material may be any material which acts as a positive electrode active material in a secondary battery, for example, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, At least one element selected from Cu, Ca, Ir, Hf, Rh, Zr, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, V; 0.7 ≦ f ≦ 3), spinel structure material of LiMn 2 O 4 and non-stoichiometric composition Li a Mn b O 4 (a + b = 2), and layered rock salt structure material and spinel structure A solid solution composed of materials can be mentioned.

一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Zr、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100の範囲であることが好ましく、12/100<b<80/100、12/100<c<80/100、10/100<d<60/100の範囲であることがより好ましく、15/100<b<70/100、15/100<c<70/100、12/100<d<50/100の範囲であることがさらに好ましい。 General formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Zr, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, In at least one element selected from Bi, S, Si, Na, K, P, and V, 1.7 ≦ f ≦ 3), the values of b, c, and d are particularly those satisfying the above conditions Although there is no limitation, it is preferable that 0 <b <1, 0 <c <1, 0 <d <1, and at least one of b, c, d is 10/100 <b <90/100. 10/100 <c <90/100, preferably 5/100 <d <70/100, <B <80/100, 12/100 <c <80/100, 10/100 <d <60/100 are more preferable, and 15/100 <b <70/100, 15/100 <c. More preferably, the ranges are <70/100, 12/100 <d <50/100.

a、e、fについては一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1を例示することができる。   a, e, f may be any numerical value within the range defined by the general formula, and preferably 0.5 ≦ a ≦ 1.5, 0 ≦ e <0.2, 1.8 ≦ f ≦ 2.5 More preferably, 0.8 ≦ a ≦ 1.3, 0 ≦ e <0.1, 1.9 ≦ f ≦ 2.1 can be exemplified.

第1正極活物質はその形状が特に制限されるものではないが、平均粒子径でいうと、100μm以下が好ましく、0.1μm以上50μm以下がより好ましく、0.5μm以上20μm以下がさらに好ましく、1μm以上10μm以下が特に好ましい。0.1μm未満では、電極を製造した際に集電体との密着性が損なわれやすいなどの不具合を生じることがある。100μmを超えると電極の大きさに影響を与えたり、二次電池を構成するセパレータを損傷するなどの不具合を生じることがある。なお、本明細書における平均粒子径とは、特に規定が無い限り、一般的なレーザー回折式粒度分布測定装置で計測した場合のD50の値を意味する。   The shape of the first positive electrode active material is not particularly limited, but is preferably 100 μm or less, more preferably 0.1 μm or more and 50 μm or less, and even more preferably 0.5 μm or more and 20 μm or less in terms of the average particle diameter. 1 μm or more and 10 μm or less is particularly preferable. If the thickness is less than 0.1 μm, there may be a problem that, when the electrode is manufactured, the adhesion to the current collector is easily impaired. If it exceeds 100 μm, the size of the electrode may be affected, or the separator constituting the secondary battery may be damaged. In addition, the average particle diameter in this specification means the value of D50 when measured by a general laser diffraction type particle size distribution measuring device unless otherwise specified.

第2正極活物質は、第1正極活物質以外の材料であって、二次電池において正極活物質として働く材料である。   The second positive electrode active material is a material other than the first positive electrode active material and serves as a positive electrode active material in the secondary battery.

第2正極活物質としては、LiMn、LiMn等のスピネル構造化合物、一般式:LiMPO(MはMn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B、Te及びMoから選ばれる少なくとも1の元素、0<h<2)で表される化合物、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)で表されるポリアニオン系化合物、LiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiMBO(Mは遷移金属)で表されるボレート系化合物、LiMnOなどを挙げることができる。第2正極活物質としては、二次電池における充放電電位が第1正極活物質よりも低いLiFePOが特に好ましい。二次電池の正極活物質層にLiFePOが存在すると、電池の正極と負極の短絡時であっても、電池の発熱をある程度抑制することができる。なお、第2正極活物質としては、その表面をカーボンコートしたものを採用するのが好ましい。 As the second positive electrode active material, spinel structure compounds such as LiMn 2 O 4 and Li 2 Mn 2 O 4 , general formula: LiM h PO 4 (M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V , Ca, Sr, Ba, Ti, Al, Si, B, Te and Mo, a compound represented by 0 <h <2), LiMVO 4 or Li 2 MSiO 4 (M in the formula Is selected from at least one of Co, Ni, Mn, and Fe), a polyanion compound represented by LiMPO 4 F (M is a transition metal), LiMBO 3 (M is a transition metal) ) -Based borate compounds, Li 2 MnO 3 and the like. As the second positive electrode active material, LiFePO 4 whose charge / discharge potential in the secondary battery is lower than that of the first positive electrode active material is particularly preferable. When LiFePO 4 is present in the positive electrode active material layer of the secondary battery, heat generation of the battery can be suppressed to some extent even when the positive electrode and negative electrode of the battery are short-circuited. As the second positive electrode active material, it is preferable to employ a carbon coated surface.

第2正極活物質は形状が特に制限されるものではないが、第1正極活物質よりも平均粒子径が小さいものが好ましい。平均粒子径でいうと、100μm以下が好ましく、0.01μm以上30μm以下がより好ましく、0.1μm以上10μm以下がさらに好ましく、0.5μm以上5μm以下が特に好ましい。   The shape of the second positive electrode active material is not particularly limited, but a material having an average particle diameter smaller than that of the first positive electrode active material is preferable. In terms of the average particle diameter, 100 μm or less is preferable, 0.01 μm or more and 30 μm or less is more preferable, 0.1 μm or more and 10 μm or less is more preferable, and 0.5 μm or more and 5 μm or less is particularly preferable.

本発明の組成物の固形分に対する、第1正極活物質と第2正極活物質の合計配合量は、60〜99.5質量%の範囲内が好ましく、70〜99質量%の範囲内がより好ましく、80〜98質量%の範囲内がさらに好ましく、90〜97質量%の範囲内が特に好ましい。また、本発明の組成物における第1正極活物質と第2正極活物質の配合質量比は、95:5〜50:50の範囲内が好ましく、90:10〜60:40の範囲内がより好ましく、85:15〜70:30の範囲内がさらに好ましく、82:18〜77:23の範囲内が特に好ましい。   The total amount of the first positive electrode active material and the second positive electrode active material with respect to the solid content of the composition of the present invention is preferably in the range of 60 to 99.5% by mass, and more preferably in the range of 70 to 99% by mass. Preferably, it is more preferably within the range of 80 to 98% by mass, and particularly preferably within the range of 90 to 97% by mass. Moreover, the blending mass ratio of the first positive electrode active material and the second positive electrode active material in the composition of the present invention is preferably in the range of 95: 5 to 50:50, more preferably in the range of 90:10 to 60:40. The range of 85:15 to 70:30 is more preferable, and the range of 82:18 to 77:23 is particularly preferable.

導電助剤は、電極の導電性を高めるために添加される。導電助剤としては化学的に不活性な電子伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて用いることができる。   The conductive assistant is added to increase the conductivity of the electrode. The conductive assistant may be a chemically inert electronic conductor, and examples thereof include carbon black, graphite, vapor grown carbon fiber (VGCF), and various metal particles. Is done. Examples of carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be used alone or in combination of two or more.

導電助剤はその形状が特に制限されるものではないが、その役割からみて、その平均粒子径は小さいほうが好ましい。第1正極活物質よりも平均粒子径が小さいものが好ましく、第1正極活物質及び第2正極活物質の両者よりも平均粒子径が小さいものがより好ましい。導電助剤の平均粒子径を挙げると、10μm以下が好ましく、0.01〜5μmの範囲内がより好ましく、0.02〜3μmの範囲内がさらに好ましく、0.03〜1μmの範囲内が特に好ましい。   The shape of the conductive auxiliary agent is not particularly limited, but it is preferable that the average particle diameter is small in view of its role. Those having an average particle size smaller than that of the first positive electrode active material are preferable, and those having an average particle size smaller than both of the first positive electrode active material and the second positive electrode active material are more preferable. When the average particle diameter of the conductive auxiliary agent is given, it is preferably 10 μm or less, more preferably within the range of 0.01 to 5 μm, further preferably within the range of 0.02 to 3 μm, and particularly preferably within the range of 0.03 to 1 μm. preferable.

本発明の組成物における導電助剤の配合量は、第1正極活物質と第2正極活物質の合計配合量又は本発明の組成物の固形分に対し、0.5〜20質量%の範囲内が好ましく、1〜10質量%の範囲内が特に好ましい。   The blending amount of the conductive additive in the composition of the present invention is in the range of 0.5 to 20% by mass with respect to the total blending amount of the first positive electrode active material and the second positive electrode active material or the solid content of the composition of the present invention. The inside is preferable, and the range of 1 to 10% by mass is particularly preferable.

結着剤は、正極活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基が例示される。親水基を有するポリマーの具体例として、ポリアクリル酸、カルボキシメチルセルロース、ポリメタクリル酸、ポリ(p−スチレンスルホン酸)を挙げることができる。   The binder serves to keep the positive electrode active material and the conductive auxiliary agent on the surface of the current collector and maintain the conductive network in the electrode. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to. Moreover, you may employ | adopt the polymer which has a hydrophilic group as a binder. Examples of the hydrophilic group of the polymer having a hydrophilic group include a carboxyl group, a sulfo group, a silanol group, an amino group, a hydroxyl group, and a phosphate group. Specific examples of the polymer having a hydrophilic group include polyacrylic acid, carboxymethylcellulose, polymethacrylic acid, and poly (p-styrenesulfonic acid).

本発明の組成物に含まれる固形分における結着剤の配合量は、第1正極活物質、第2正極活物質及び導電助剤の合計配合量又は本発明の組成物の固形分に対し、0.5〜20質量%の範囲内が好ましく、1〜10質量%の範囲内がより好ましく、2〜5質量%の範囲内が特に好ましい。結着剤の配合量が少なすぎると組成物を正極活物質層とした場合に当該層の成形性が低下するおそれがある。また、結着剤の配合量が多すぎると、正極活物質層における正極活物質の量が減少するため、好ましくない場合がある。   The blending amount of the binder in the solid content contained in the composition of the present invention is based on the total blending amount of the first positive electrode active material, the second positive electrode active material and the conductive additive, or the solid content of the composition of the present invention. The range of 0.5 to 20% by mass is preferable, the range of 1 to 10% by mass is more preferable, and the range of 2 to 5% by mass is particularly preferable. If the blending amount of the binder is too small, the moldability of the layer may be lowered when the composition is used as a positive electrode active material layer. Further, if the amount of the binder is too large, the amount of the positive electrode active material in the positive electrode active material layer decreases, which may not be preferable.

溶剤としては、具体的にN−メチル−2−ピロリドン(以下、「NMP」と略す場合がある。)、ジメチルホルムアミド、ジメチルアセトアミド、メタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、及びテトラヒドロフランを例示できる。これらの溶剤は、1種類を単独で本発明の組成物に用いてもよく、2種類以上を併用してもよい。   Specific examples of the solvent include N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as “NMP”), dimethylformamide, dimethylacetamide, methanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, acetic acid. Examples thereof include ethyl and tetrahydrofuran. One of these solvents may be used alone in the composition of the present invention, or two or more thereof may be used in combination.

本発明の組成物において、その全質量に対する上記溶剤の配合量は、10〜70質量%の範囲内が好ましく、25〜50質量%の範囲内が特に好ましい。   In the composition of the present invention, the blending amount of the solvent with respect to the total mass is preferably within the range of 10 to 70% by mass, and particularly preferably within the range of 25 to 50% by mass.

また、本発明の組成物には、分散剤が配合されるのが好ましい。分散剤の存在に因り、本発明の組成物中で正極活物質や導電助剤が好適に分散状態を維持でき、その結果、本発明の組成物の物性がより好適に維持される。分散剤としては、本発明の組成物中で正極活物質及び導電助剤を分散し得るものであればよい。   Moreover, it is preferable that a dispersing agent is mix | blended with the composition of this invention. Due to the presence of the dispersant, the positive electrode active material and the conductive additive can be suitably maintained in the dispersed state in the composition of the present invention, and as a result, the physical properties of the composition of the present invention are more favorably maintained. Any dispersant can be used as long as it can disperse the positive electrode active material and the conductive additive in the composition of the present invention.

本発明の組成物に含まれる分散剤の配合量は、本発明の組成物の固形分に対し、0.01〜1質量%の範囲内が好ましく、0.05〜0.7質量%の範囲内がより好ましく、0.1〜0.5質量%の範囲内が特に好ましい。   The blending amount of the dispersant contained in the composition of the present invention is preferably in the range of 0.01 to 1% by mass, and in the range of 0.05 to 0.7% by mass with respect to the solid content of the composition of the present invention. The inside is more preferable, and the inside of the range of 0.1 to 0.5% by mass is particularly preferable.

具体的な分散剤としては、例えば、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、スチレン、ビニルピロリドン、ビニルアルコール若しくはアルキレンオキサイドから選択される少なくとも1種のモノマーを用いた重合体又はその誘導体、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース若しくはヒドロキシプロピルメチルセルロース等のセルロース系ポリマー又はその塩、リン酸エステル若しくはその塩、ポリウレタン、脂肪酸アミド、アルキルアルコールアミン、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーを挙げることができる。分散剤が高分子の場合、その平均分子量は1000〜1000000の範囲内が好ましく、2000〜500000の範囲内がより好ましく、3000〜200000の範囲内が特に好ましい。   Specific examples of the dispersant include, for example, a polymer using at least one monomer selected from acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, styrene, vinyl pyrrolidone, vinyl alcohol, and alkylene oxide, or the like. Cellulose polymers such as derivatives, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose or hydroxypropylmethylcellulose or salts thereof, phosphate esters or salts thereof, polyurethanes, fatty acid amides, alkyl alcohol amines, anionic surfactants, cationic interfaces Activating agent, nonionic surfactant, amphoteric surfactant, comb-shaped polymer showing amine value and acid value, or comb-shaped acrylic block showing amine value Mention may be made of a polymer. When the dispersant is a polymer, the average molecular weight is preferably in the range of 1000 to 1000000, more preferably in the range of 2000 to 500000, and particularly preferably in the range of 3000 to 200000.

これらの分散剤は、1種類を単独で本発明の組成物に用いてもよく、2種類以上を併用してもよい。   One of these dispersants may be used alone in the composition of the present invention, or two or more thereof may be used in combination.

好ましい分散剤としては、ポリビニルピロリドン、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーから選択される1種以上を挙げることができる。アミン価及び酸価を示す櫛型構造のポリマーにおいて、アミン価の範囲としては5〜20mgKOH/gを、酸価の範囲としては10〜25mgKOH/gを、それぞれ例示できる。アミン価を示す櫛型構造のアクリル系ブロックコポリマーにおいて、アミン価の範囲としては3〜70mgKOH/gを例示できる。   Preferable dispersants include one or more selected from polyvinylpyrrolidone, a polymer having a comb structure exhibiting an amine value and an acid value, or an acrylic block copolymer having a comb structure exhibiting an amine value. In the comb structure polymer showing the amine value and the acid value, the range of the amine value may be 5 to 20 mgKOH / g, and the range of the acid value may be 10 to 25 mgKOH / g. In the acrylic block copolymer having a comb structure showing the amine value, the range of the amine value may be 3 to 70 mgKOH / g.

なお、櫛型構造とは、直鎖状の主鎖に対して、複数の側鎖が櫛の歯の様に結合したポリマーの構造を意味する。   The comb structure means a polymer structure in which a plurality of side chains are bonded like a comb tooth to a linear main chain.

より好ましい分散剤として、以下のものを具体的に挙げることができる。   Specific examples of more preferable dispersants include the following.

例えば商品名PVP K−30(株式会社日本触媒)、商品名PVP K−85(株式会社日本触媒)、商品名PVP K−15(ISPジャパン株式会社)として入手可能な、粘度平均分子量5000〜200000のポリビニルピロリドン。   For example, the viscosity average molecular weight 5000-200000 which can be obtained as a brand name PVP K-30 (Nippon Catalyst Co., Ltd.), a brand name PVP K-85 (Nippon Catalyst Co., Ltd.), and a brand name PVP K-15 (ISP Japan Corporation). Of polyvinylpyrrolidone.

例えば、商品名アジスパーPB821、アジスパーPB822、アジスパーPB824、アジスパーPB881(いずれも味の素ファインテクノ株式会社)として入手可能な、アミン価及び酸価を示す櫛型構造のポリマー。各商品のアミン価及び酸価は以下のとおりである。
アジスパーPB821:アミン価10mgKOH/g、酸価17mgKOH/g
アジスパーPB822:アミン価17mgKOH/g、酸価14mgKOH/g
アジスパーPB824:アミン価17mgKOH/g、酸価21mgKOH/g
アジスパーPB881:アミン価17mgKOH/g、酸価17mgKOH/g
For example, a polymer having a comb structure showing an amine value and an acid value, which are available as trade names Ajisper PB821, Ajisper PB822, Azisper PB824, and Azisper PB881 (all of which are Ajinomoto Fine Techno Co., Ltd.). The amine value and acid value of each product are as follows.
Azisper PB821: amine value 10 mgKOH / g, acid value 17 mgKOH / g
Azisper PB822: amine value 17 mgKOH / g, acid value 14 mgKOH / g
Azisper PB824: amine value 17 mgKOH / g, acid value 21 mgKOH / g
Ajisper PB881: amine value 17 mgKOH / g, acid value 17 mgKOH / g

例えば、商品名Efka PX4300、Efka PX4310、Efka PX4320、Efka PX4330、Efka PX4340、Efka PX4350、Efka PX4700、Efka PX4701、Efka PX4731、Efka PX4732(いずれもBASFジャパン株式会社)として入手可能な、アミン価を示す櫛型構造のアクリル系ブロックコポリマー。各商品のアミン価は以下のとおりである。
Efka PX4300:アミン価56mgKOH/g
Efka PX4310:アミン価19mgKOH/g
Efka PX4320:アミン価28mgKOH/g
Efka PX4330:アミン価28mgKOH/g
Efka PX4340:アミン価 4mgKOH/g
Efka PX4350:アミン価12mgKOH/g
Efka PX4700:アミン価60mgKOH/g
Efka PX4701:アミン価40mgKOH/g
Efka PX4731:アミン価25mgKOH/g
Efka PX4732:アミン価25mgKOH/g
For example, trade names Efka PX4300, Efka PX4310, Efka PX4320, Efka PX4330, Efka PX4340, Efka PX4350, Efka PX4700, Efka PX4701, Efka PX4731, Efka PX4732 Comb-shaped acrylic block copolymer. The amine value of each product is as follows.
Efka PX4300: amine value 56 mgKOH / g
Efka PX4310: amine value 19 mgKOH / g
Efka PX4320: amine value 28 mgKOH / g
Efka PX4330: amine value 28 mgKOH / g
Efka PX4340: amine value 4 mgKOH / g
Efka PX4350: amine value 12 mgKOH / g
Efka PX4700: amine value 60 mgKOH / g
Efka PX4701: amine value 40 mgKOH / g
Efka PX4731: amine value 25 mgKOH / g
Efka PX4732: amine value 25 mgKOH / g

次に、A)工程について説明する。A)工程は、導電助剤、結着剤及び溶剤を混合して、A分散液を製造する工程である。   Next, step A) will be described. Step A) is a step of producing a dispersion A by mixing a conductive additive, a binder and a solvent.

好ましいA)工程として、以下のA−1−1)工程及びA−1−2)工程を含む態様を挙げることができる。   As preferable A) process, the aspect containing the following A-1-1) process and A-1-2) process can be mentioned.

A−1−1)前記導電助剤及び前記溶剤を混合して、A−1分散液を製造する工程
A−1−2)前記A−1分散液及び前記結着剤を混合して、A分散液を製造する工程
A-1-1) A step of producing an A-1 dispersion by mixing the conductive assistant and the solvent. A-1-2) A-1 by mixing the A-1 dispersion and the binder. Process for producing dispersion

他の好ましいA)工程として、導電助剤、結着剤及び溶剤を一度に混合しA分散液を製造する工程を含む態様を挙げることができる。   As another preferable step A), there can be mentioned an embodiment including a step of producing a dispersion A by mixing a conductive additive, a binder and a solvent at a time.

本発明の組成物が分散剤を含む場合には、A)工程は、導電助剤、結着剤、分散剤及び溶剤を混合しA分散液を製造する工程となる。   When the composition of the present invention contains a dispersant, step A) is a step of producing a dispersion A by mixing a conductive additive, a binder, a dispersant and a solvent.

本発明の組成物が分散剤を含む場合の好ましいA)工程として、以下のA−2−1)工程及びA−2−2)工程を含む態様を挙げることができる。   As a preferable A) step when the composition of the present invention contains a dispersant, an embodiment including the following steps A-2-1) and A-2-2) can be mentioned.

A−2−1)前記導電助剤、前記分散剤及び前記溶剤を混合して、A−2分散液を製造する工程
A−2−2)前記A−2分散液及び前記結着剤を混合して、A分散液を製造する工程
A-2-1) A step of producing an A-2 dispersion by mixing the conductive additive, the dispersant and the solvent. A-2-2) Mixing the A-2 dispersion and the binder. And the process for producing the A dispersion

本発明の組成物が分散剤を含む場合の他の好ましいA)工程として、導電助剤、結着剤、分散剤及び溶剤を一度に混合しA分散液を製造する工程を含む態様を挙げることができる。   As another preferable step A) in the case where the composition of the present invention contains a dispersing agent, an embodiment including a step of producing a dispersion A by mixing a conductive additive, a binder, a dispersing agent and a solvent at a time. Can do.

あらかじめ結着剤と分散剤及び溶剤を混合した混合液とすることで、結着剤が有する分散性能と分散剤が有する分散性能とを総合した分散性能を、導電助剤に好適に付与できると推定される。   By providing a mixed solution in which a binder, a dispersant, and a solvent are mixed in advance, a dispersion performance that combines the dispersion performance of the binder and the dispersion performance of the dispersant can be suitably imparted to the conductive additive. Presumed.

A)工程で製造されるA分散液、A−1分散液又はA−2分散液としては、その粒度分布につき、D50が0.6〜3μmの範囲内であって、D90が3〜7μmの範囲内であるものが好ましい。D50及びD90が過小又は過大であるA分散液、A−1分散液又はA−2分散液を使用した正極は、その抵抗値が高くなる場合がある。抵抗値が高い正極では、導電助剤による導電パスの形成が十分でないと推定される。   A) As A dispersion liquid, A-1 dispersion liquid or A-2 dispersion liquid produced in the step, D50 is in the range of 0.6 to 3 μm, and D90 is 3 to 7 μm. Those within the range are preferred. The positive electrode using the A dispersion, A-1 dispersion or A-2 dispersion in which D50 and D90 are too small or too large may have a high resistance value. In the positive electrode having a high resistance value, it is presumed that the formation of the conductive path by the conductive assistant is not sufficient.

なお、A分散液、A−1分散液又はA−2分散液の粒度分布の値は、各分散液を一般的なレーザー回折式粒度分布測定装置に供して、以下の条件で測定した値を意味する。実質的に、A分散液、A−1分散液又はA−2分散液の粒度分布の値は、A)工程、A−1−1)工程又はA−2−1)工程における、導電助剤の分散状態を示したものである。   In addition, the value of the particle size distribution of A dispersion liquid, A-1 dispersion liquid, or A-2 dispersion liquid is a value measured by applying each dispersion liquid to a general laser diffraction particle size distribution measuring apparatus under the following conditions. means. The value of the particle size distribution of the A dispersion, the A-1 dispersion, or the A-2 dispersion is substantially the same as that in the step A), the step A-1-1), or the step A-2-1). The dispersion state of is shown.

A分散液、A−1分散液又はA−2分散液の粒度分布の値は、何らかの分散工程を経ていない導電助剤のみを循環溶媒に分散して測定した値ではないこと、及び、導電助剤の各粒子同士を完全に分離した状態の粒子(いわゆる一次粒子)の分布の値でもないことを確認的に記載しておく。   The value of the particle size distribution of the A dispersion, the A-1 dispersion, or the A-2 dispersion is not a value measured by dispersing only the conductive assistant that has not undergone any dispersion step in the circulating solvent, and It should be confirmed that it is not the distribution value of particles (so-called primary particles) in a state where the particles of the agent are completely separated from each other.

<条件>
分散液を最適な測定濃度まで循環溶媒で希釈
循環溶媒:N−メチル−2−ピロリドン
循環速度:52mL/sec.
粒子屈折率:1.81
循環溶媒屈折率:1.479
<Conditions>
The dispersion is diluted with a circulating solvent to the optimum measured concentration. Circulating solvent: N-methyl-2-pyrrolidone Circulating rate: 52 mL / sec.
Particle refractive index: 1.81
Circulating solvent refractive index: 1.479

A分散液、A−1分散液又はA−2分散液において、溶剤以外の固形分の配合量としては、5〜30質量%、7〜20質量%、10〜15質量%の範囲を例示できる。   In the A dispersion, the A-1 dispersion, or the A-2 dispersion, examples of the solid content other than the solvent include 5 to 30% by mass, 7 to 20% by mass, and 10 to 15% by mass. .

A)工程に用いる混合装置としては、混合攪拌機、ボールミル、サンドミル、ビーズミル、分散機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー、遊星式攪拌脱泡装置を例示できる。具体的な混合装置としては、商品名ディスパーミキサー(プライミクス株式会社)、商品名クレアミックス(エム・テクニック株式会社)、商品名フィルミックス(プライミクス株式会社)、商品名ペイントコンディショナー(レッドデビル社)、商品名DYNO-MILL(株式会社シンマルエンタープライゼス)、商品名アイリッヒ インテンシブ ミキサー(日本アイリッヒ株式会社)、商品名脱泡機DP-200(エム・テクニック株式会社)、商品名あわとり練太郎(株式会社シンキー)、商品名スターミル(アシザワファインテック株式会社)、商品名ホモディスパー(プライミクス株式会社)を挙げることができる。   Examples of the mixing device used in the step A) include a mixing stirrer, a ball mill, a sand mill, a bead mill, a disperser, an ultrasonic disperser, a homogenizer, a homomixer, a planetary mixer, and a planetary stirring and defoaming device. Specific mixing devices include trade name Disper Mixer (Primics Co., Ltd.), trade name Claremix (M Technique Co., Ltd.), trade name Filmix (Primics Co., Ltd.), trade name Paint Conditioner (Red Devil Corporation), Product name DYNO-MILL (Shinmaru Enterprises Co., Ltd.), product name Eirich Intensive Mixer (Japan Eirich Co., Ltd.), product name defoaming machine DP-200 (M Technique Co., Ltd.), product name Awatori Netaro (stock) (Sinky Company), trade name Star Mill (Ashizawa Finetech Co., Ltd.), and trade name Homo Disper (Primics Co., Ltd.).

A)工程における混合速度及び混合時間は、各成分が好適に分散若しくは溶解できる速度及び時間を適宜設定すればよい。具体的な混合速度としては、例えば、回転数500〜50000rpmや、周速5〜70m/sなどの範囲内で適宜適切に設定すればよい。例えば、好適なA分散液として上述した、D50が0.6〜3μmの範囲内であって、D90が3〜7μmの範囲内である粒度分布を示すA分散液となるように、A)工程における混合速度及び混合時間を適宜設定するのが好ましい。混合速度や混合時間の違いにより、A分散液に含まれる導電助剤の凝集が促進又は解除されたり、導電助剤の形状が変化したりするため、A分散液の粒度分布は変動する。そのため、A分散液の粒度分布を適宜測定しつつ、混合速度や混合時間を決定するのが好ましい。   The mixing speed and mixing time in the step A) may be set as appropriate so that the respective components can be suitably dispersed or dissolved. A specific mixing speed may be appropriately set within a range of, for example, a rotational speed of 500 to 50000 rpm and a peripheral speed of 5 to 70 m / s. For example, as described above as a suitable A dispersion, the A50 process is performed so that the A dispersion exhibits a particle size distribution in which D50 is in the range of 0.6 to 3 μm and D90 is in the range of 3 to 7 μm. It is preferable to appropriately set the mixing speed and mixing time. Depending on the mixing speed and mixing time, aggregation of the conductive assistant contained in the dispersion A is promoted or canceled, or the shape of the conductive assistant changes, so that the particle size distribution of the dispersion A varies. Therefore, it is preferable to determine the mixing speed and mixing time while appropriately measuring the particle size distribution of the A dispersion.

A)工程において、正極活物質の配合の前に予め導電助剤を結着剤と共に分散しておくことで、本発明の組成物における導電助剤の分散性が好適化し、その結果、本発明の製造方法で得られた組成物を用いて製造された正極においても、導電助剤が好適に分散した状態となるため、正極の抵抗が好適に抑制されると推定される。   In step A), by dispersing the conductive additive together with the binder in advance before blending the positive electrode active material, the dispersibility of the conductive additive in the composition of the present invention is optimized. Also in the positive electrode manufactured using the composition obtained by this manufacturing method, since the conductive auxiliary agent is suitably dispersed, it is presumed that the resistance of the positive electrode is preferably suppressed.

次に、B)工程について説明する。B)工程は、A分散液、第1正極活物質及び第2正極活物質を混合して、B分散液を製造する工程である。   Next, step B) will be described. The step B) is a step for producing the B dispersion by mixing the A dispersion, the first positive electrode active material, and the second positive electrode active material.

第2正極活物質の平均粒子径が第1正極活物質の平均粒子径よりも小さい場合には、B)工程が、以下のB−1)工程及びB−2)工程を含む態様であるのが好ましい。
B−1)A分散液及び第2正極活物質を混合して、B−1分散液を製造する工程
B−2)B−1分散液及び第1正極活物質を混合して、B分散液を製造する工程
When the average particle size of the second positive electrode active material is smaller than the average particle size of the first positive electrode active material, the step B) includes the following steps B-1) and B-2). Is preferred.
B-1) A step of producing a B-1 dispersion by mixing the A dispersion and the second cathode active material B-2) A B dispersion by mixing the B-1 dispersion and the first cathode active material Manufacturing process

一般に粒子の凝集は、平均粒子径が小さいものほど比表面積が大きくなり、速やかに進行する。第1正極活物質、該第1正極活物質よりも平均粒子径が小さい第2正極活物質を含む組成物においては、第2正極活物質の凝集が第1正極活物質の凝集に優先して生じる。しかし、B−1)工程及びB−2)工程を含む本発明の製造方法においては、先にB−1)工程を実施して第2正極活物質粒子の周りに結着剤及び溶剤を存在させることで第2正極活物質粒子の凝集を抑制しているため、該凝集に伴う組成物の粘度増加及び不均一化を抑制することができる。なお、この原理は、導電助剤と正極活物質の関係においても成り立つ。   In general, the aggregation of particles proceeds more rapidly as the average particle size is smaller and the specific surface area is larger. In the composition including the first positive electrode active material and the second positive electrode active material having an average particle diameter smaller than that of the first positive electrode active material, the aggregation of the second positive electrode active material has priority over the aggregation of the first positive electrode active material. Arise. However, in the production method of the present invention including the steps B-1) and B-2), the binder and the solvent are present around the second positive electrode active material particles by performing the step B-1) first. Since the aggregation of the second positive electrode active material particles is suppressed, the increase in viscosity and non-uniformity of the composition accompanying the aggregation can be suppressed. This principle holds also in the relationship between the conductive additive and the positive electrode active material.

B−1)工程で製造されるB−1分散液としては、その粒度分布につき、D50が0.1〜3μmの範囲内であるB−1分散液が好ましい。D50が過小又は過大であるB−1分散液を使用した正極は、その抵抗値が高くなる場合がある。B−1分散液の粒度分布の値は、B−1分散液を一般的なレーザー回折式粒度分布測定装置に供して、以下の条件で測定した値を意味する。B−1分散液の粒度分布の値は、実質的に、B−1)工程における、導電助剤と第2正極活物質の分散状態を示したものである。   The B-1 dispersion produced in the step B-1) is preferably a B-1 dispersion having a D50 in the range of 0.1 to 3 μm with respect to the particle size distribution. The positive electrode using the B-1 dispersion having an excessively small or large D50 may have a high resistance value. The value of the particle size distribution of the B-1 dispersion means a value obtained by subjecting the B-1 dispersion to a general laser diffraction type particle size distribution measuring apparatus and measuring under the following conditions. The value of the particle size distribution of the B-1 dispersion substantially indicates the dispersion state of the conductive additive and the second positive electrode active material in the step B-1).

<条件>
B−1分散液を最適な測定濃度まで循環溶媒で希釈
循環溶媒:N−メチル−2−ピロリドン
循環速度:52mL/sec.
粒子屈折率:1.81
循環溶媒屈折率:1.479
<Conditions>
Dilute B-1 dispersion with circulating solvent to optimum measurement concentration Circulating solvent: N-methyl-2-pyrrolidone Circulating rate: 52 mL / sec.
Particle refractive index: 1.81
Circulating solvent refractive index: 1.479

基本的にB分散液が本発明の組成物となる。本発明の組成物には、正極活物質層に配合され得る公知の添加剤が配合されても良いし、また、第1正極活物質及び第2正極活物質以外の正極活物質が配合されても良い。   Basically, the B dispersion is the composition of the present invention. The composition of the present invention may be blended with known additives that can be blended in the positive electrode active material layer, or may be blended with a positive electrode active material other than the first positive electrode active material and the second positive electrode active material. Also good.

B)工程に用いる混合装置としては、A)工程で述べたものを用いれば良い。A)工程に用いる混合装置とB)工程に用いる混合装置とは、同一の混合装置でもよいし、他の種類の混合装置でもよい。B)工程における混合速度及び混合時間は、各成分が好適に分散できる速度及び時間を適宜設定すればよい。具体的な混合速度としては、例えば、回転数500〜50000rpmや、周速5〜70m/sなどの範囲内で適宜適切に設定すればよい。特に、B−1)工程を経る場合には、好適なB−1分散液として上述した、D50が0.1〜3μmの範囲内である粒度分布を示すB−1分散液となるように、適切な粒度分布を示す第2正極活物質を選択しつつ、B−1)工程における混合速度及び混合時間を適宜設定するのが好ましい。B−1)工程後のB−2)工程においても、各成分が好適に分散できる速度及び時間を適宜設定すればよい。一例として、B−1)工程及びB−2)工程において、同じ混合装置を使用し、同程度の混合速度としてもよい。   As the mixing apparatus used in the step B), the apparatus described in the step A) may be used. The mixing device used in the step A) and the mixing device used in the step B) may be the same mixing device or other types of mixing devices. The mixing speed and mixing time in step B) may be appropriately set at a speed and time at which each component can be suitably dispersed. A specific mixing speed may be appropriately set within a range of, for example, a rotational speed of 500 to 50000 rpm and a peripheral speed of 5 to 70 m / s. In particular, when undergoing step B-1), the B-1 dispersion described above as a suitable B-1 dispersion is a B-1 dispersion exhibiting a particle size distribution having a D50 in the range of 0.1 to 3 μm. It is preferable to appropriately set the mixing speed and mixing time in the step B-1) while selecting the second positive electrode active material showing an appropriate particle size distribution. In the step B-2) after the step B-1), the speed and time at which each component can be suitably dispersed may be appropriately set. As an example, the same mixing apparatus may be used in the steps B-1) and B-2), and the mixing speed may be the same.

本発明の組成物を用いて正極活物質層を製造でき、さらに、該正極活物質層を具備する正極、及び該正極を具備する二次電池を製造できる。以下、二次電池の代表としてリチウムイオン二次電池を例に挙げて、説明する。   A positive electrode active material layer can be manufactured using the composition of the present invention, and a positive electrode including the positive electrode active material layer and a secondary battery including the positive electrode can be manufactured. Hereinafter, a lithium ion secondary battery will be described as an example of a representative secondary battery.

正極は、集電体と、集電体の表面に結着させた正極活物質層で構成される。   The positive electrode includes a current collector and a positive electrode active material layer bound to the surface of the current collector.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。   The current collector refers to a chemically inert electronic conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, magnesium, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Examples of such a metal material can be given. The current collector may be covered with a known protective layer.

集電体は箔、シート、フィルム、線状、棒状などの形態をとることができる。そのため、集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが10μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a line, a bar, and the like. Therefore, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably as a collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 10 μm to 100 μm.

集電体の表面に正極活物質層を形成させる方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に本発明の組成物を塗布すればよい。具体的には、本発明の組成物を集電体の表面に塗布する塗布工程後、乾燥により溶剤を除去して正極活物質層を形成させ、正極とする。必要に応じて電極密度を高めるべく、乾燥後の正極を圧縮しても良い。なお、本発明の組成物は、比較的経時安定性に優れているので、必ずしもその調製直後に塗布工程に用いる必要はない。   As a method of forming the positive electrode active material layer on the surface of the current collector, a current collector is used by using a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method. The composition of the present invention may be applied to the surface. Specifically, after the coating step of applying the composition of the present invention to the surface of the current collector, the solvent is removed by drying to form a positive electrode active material layer to obtain a positive electrode. If necessary, the positive electrode after drying may be compressed to increase the electrode density. In addition, since the composition of this invention is comparatively excellent in aging stability, it is not necessarily used for the application | coating process immediately after the preparation.

リチウムイオン二次電池は、電池構成要素として、正極、負極、セパレータ及び電解液を含む。   The lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolytic solution as battery components.

負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。   The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.

負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。   The negative electrode active material layer includes a negative electrode active material and, if necessary, a binder and / or a conductive aid.

集電体、結着剤及び導電助剤は、正極又は本発明の組成物で説明したものを採用すればよい。また、負極活物質層用の結着剤としてスチレン−ブタジエンゴムを採用しても良い。   What is necessary is just to employ | adopt what was demonstrated with the positive electrode or the composition of this invention for a collector, a binder, and a conductive support agent. Moreover, you may employ | adopt a styrene-butadiene rubber as a binder for negative electrode active material layers.

負極活物質としては、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを例示することができる。   Examples of the negative electrode active material include a carbon-based material capable of inserting and extracting lithium, an element that can be alloyed with lithium, a compound having an element that can be alloyed with lithium, a polymer material, and the like.

炭素系材料としては、難黒鉛化性炭素、天然黒鉛、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。   Examples of the carbon-based material include non-graphitizable carbon, natural graphite, artificial graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.

リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、珪素(Si)または錫(Sn)が好ましい。   Specifically, elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si. Ge, Sn, Pb, Sb, Bi can be exemplified, and silicon (Si) or tin (Sn) is particularly preferable.

リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、 CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiO あるいはLiSnOを例示でき、特に、SiO(0.3≦x≦1.6)が好ましい。また、リチウムと合金化反応可能な元素を有する化合物として、スズ合金(Cu−Sn合金、Co−Sn合金等)などの錫化合物を例示できる。 Specific examples of compounds having elements that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO 2 or LiSnO, and SiO x (0.3 ≦ x ≦ 1.6) is particularly preferable. Moreover, tin compounds, such as a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.), can be illustrated as a compound which has an element which can be alloyed with lithium.

高分子材料としては、具体的にポリアセチレン、ポリピロールを例示できる。   Specific examples of the polymer material include polyacetylene and polypyrrole.

また、負極活物質として、CaSiと酸とを反応させてCaを除去したポリシランを主成分とする層状シリコン化合物を合成し、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる方法で製造されるシリコン材料を挙げることができる。当該シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。この構造は、走査型電子顕微鏡などによる観察で確認できる。当該シリコン材料を、リチウムイオン二次電池の活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm〜100nmの範囲内のものが好ましく、20nm〜50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm〜50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2〜1000の範囲内であるのが好ましい。 Also, a method of synthesizing a layered silicon compound mainly composed of polysilane obtained by reacting CaSi 2 and acid to remove Ca as a negative electrode active material, and releasing the hydrogen by heating the layered silicon compound at 300 ° C. or higher. The silicon material manufactured by can be mentioned. The silicon material has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. This structure can be confirmed by observation with a scanning electron microscope or the like. In consideration of using the silicon material as an active material of a lithium ion secondary battery, the plate-like silicon body has a thickness in the range of 10 nm to 100 nm for efficient insertion and desorption reaction of lithium ions. Those within the range are preferable, and those within the range of 20 nm to 50 nm are more preferable. The length of the plate-like silicon body in the major axis direction is preferably in the range of 0.1 μm to 50 μm. The plate-like silicon body preferably has a (length in the major axis direction) / (thickness) range of 2 to 1000.

当該シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。シリコン結晶子のサイズは、0.5nm〜300nmの範囲内が好ましく、1nm〜100nmの範囲内がより好ましく、1nm〜50nmの範囲内がさらに好ましく、1nm〜10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。   The silicon material preferably includes amorphous silicon and / or silicon crystallites. The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. The size of the silicon crystallite is calculated from the Scherrer equation using X-ray diffraction measurement (XRD measurement) on the silicon material and using the half-value width of the diffraction peak on the Si (111) surface of the obtained XRD chart. Is done.

一般的なレーザー回折式粒度分布測定装置で測定した場合における、シリコン材料の好ましい粒度分布としては、平均粒子径(D50)が1〜30μmの範囲内であることを例示でき、より好ましくは平均粒子径(D50)が1〜10μmの範囲内であることを例示できる。   As a preferable particle size distribution of the silicon material when measured with a general laser diffraction particle size distribution measuring apparatus, it can be exemplified that the average particle diameter (D50) is in the range of 1 to 30 μm, and more preferably the average particle It can be exemplified that the diameter (D50) is in the range of 1 to 10 μm.

必要に応じ、負極活物質はカーボンコートを施されてもよい。   If necessary, the negative electrode active material may be carbon coated.

セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、例えばポリテトラフルオロエチレン、ポリプロピレン若しくはポリエチレンなどの合成樹脂を1種又は複数用いた多孔質膜、またはセラミックス製の多孔質膜が例示できる。   The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes. Examples of the separator include a porous film using one or more synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, or a ceramic porous film.

電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。   The electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.

溶媒としては、環状エステル類、鎖状エステル類、エーテル類等が使用できる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。また、溶媒として、上記の具体的な溶媒の化学構造を構成する水素の一部又は全部がフッ素で置換された溶媒を採用しても良い。電解液には、これらの溶媒を単独で用いてもよいし、又は、複数を併用してもよい。   As the solvent, cyclic esters, chain esters, ethers and the like can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. Further, as the solvent, a solvent in which a part or all of hydrogen constituting the chemical structure of the above specific solvent is substituted with fluorine may be employed. In the electrolytic solution, these solvents may be used alone or in combination.

電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .

電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , and LiCF 3 SO 3 are added in a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate to 0.5 mol / l to 1.7 mol / l. A solution dissolved at a concentration of about can be exemplified.

リチウムイオン二次電池の製造方法としては、本発明の組成物を用いて製造された正極を配置する工程を有していればよい。以下、リチウムイオン二次電池の具体的な製造方法を例示する。正極および負極にセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。   As a manufacturing method of a lithium ion secondary battery, what is necessary is just to have the process of arrange | positioning the positive electrode manufactured using the composition of this invention. Hereinafter, a specific method for producing a lithium ion secondary battery will be exemplified. A separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a lead for current collection, etc., an electrolyte is added to the electrode body and a lithium ion secondary Use batteries.

リチウムイオン二次電池は車両に搭載することができる。リチウムイオン二次電池は、大きな充放電容量を維持し、かつ優れたサイクル性能を有するため、これを搭載した車両は、高性能の車両となる。   The lithium ion secondary battery can be mounted on a vehicle. Since a lithium ion secondary battery maintains a large charge / discharge capacity and has excellent cycle performance, a vehicle equipped with the lithium ion secondary battery is a high-performance vehicle.

車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、実施例、比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited by these Examples.

(実施例1)
結着剤としてのポリフッ化ビニリデン(ポリフッ化ビニリデン8質量%含有のNMP溶液(株式会社クレハ・バッテリー・マテリアルズ・ジャパン製のL#7208)を使用)、分散剤としてのPVP K―30(株式会社日本触媒、平均分子量80000〜120000)、及び、溶剤としてのNMPを混合装置で混合して混合液とした。
Example 1
Polyvinylidene fluoride as a binder (using NMP solution containing 8% by mass of polyvinylidene fluoride (L # 7208 manufactured by Kureha Battery Materials Japan Co., Ltd.)), PVP K-30 (stock) Company Nippon Catalyst, average molecular weight of 80,000 to 120,000) and NMP as a solvent were mixed with a mixing device to obtain a mixed solution.

上記混合液に導電助剤としてのアセチレンブラック(電気化学工業株式会社製のデンカブラック粒状品:一次粒径35nm)を加え、混合装置で混合して実施例1のA分散液を製造した。実施例1のA分散液における、溶剤以外の固形分の配合量は13質量%であった。また、実施例1のA分散液における、結着剤と導電助剤と分散剤との質量比は、結着剤:導電助剤:分散剤=3:2.9:0.1であった。   Acetylene black (Denka Black granular product manufactured by Denki Kagaku Kogyo Co., Ltd .: primary particle size: 35 nm) as a conductive additive was added to the above mixed solution, and mixed with a mixing apparatus to produce an A dispersion of Example 1. The compounding quantity of solids other than a solvent in A dispersion liquid of Example 1 was 13 mass%. Moreover, in the A dispersion liquid of Example 1, the mass ratio of the binder, the conductive additive, and the dispersant was binder: conductive auxiliary agent: dispersant = 3: 2.9: 0.1. .

実施例1のA分散液に、第2正極活物質として、表面をカーボンコートしたLiFePOを添加して、混合装置で混合し、実施例1のB−1分散液を製造した。使用した第2正極活物質のD50は2.6μmであった。 To the A dispersion liquid of Example 1, LiFePO 4 whose surface was coated with carbon was added as a second positive electrode active material, and mixed with a mixing apparatus to produce the B-1 dispersion liquid of Example 1. The D50 of the second positive electrode active material used was 2.6 μm.

次いで、実施例1のB−1分散液に、第1正極活物質として層状岩塩構造のLiNi5/10Co2/10Mn3/10を添加して、混合装置で混合し、実施例1のB分散液を製造した。使用した第1正極活物質のD50は6μmであった。実施例1のB分散液を実施例1の組成物とした。 Next, the layered rock salt structure LiNi 5/10 Co 2/10 Mn 3/10 O 2 was added to the B-1 dispersion of Example 1 as the first positive electrode active material, and mixed in a mixing apparatus. 1 B dispersion was prepared. The D50 of the first positive electrode active material used was 6 μm. The B dispersion of Example 1 was used as the composition of Example 1.

実施例1の組成物における、溶剤以外の固形分の配合量は65質量%であった。また、実施例1の組成物における、正極活物質と結着剤と導電助剤と分散剤との質量比は、正極活物質:結着剤:導電助剤:分散剤=94:3:2.9:0.1であり、第1正極活物質と第2正極活物質との質量比は、第1正極活物質:第2正極活物質=79:21であった。   The compounding quantity of solid content other than a solvent in the composition of Example 1 was 65 mass%. Further, in the composition of Example 1, the mass ratio of the positive electrode active material, the binder, the conductive additive, and the dispersant is as follows: positive electrode active material: binder: conductive auxiliary agent: dispersant = 94: 3: 2. .9: 0.1, and the mass ratio of the first positive electrode active material to the second positive electrode active material was first positive electrode active material: second positive electrode active material = 79: 21.

実施例1の正極を以下のように製造した。   The positive electrode of Example 1 was manufactured as follows.

正極用集電体として厚み15μmのアルミニウム箔を準備した。該アルミニウム箔の表面に実施例1の組成物をのせ、ドクターブレードを用いて該組成物が膜状になるように塗布した。   An aluminum foil having a thickness of 15 μm was prepared as a positive electrode current collector. The composition of Example 1 was placed on the surface of the aluminum foil, and the composition was applied in a film using a doctor blade.

組成物を塗布したアルミニウム箔を100℃で10分間乾燥することで、NMPを揮発により除去し、アルミニウム箔表面に正極活物質層を形成させた。表面に正極活物質層を形成させたアルミニウム箔を、ロ−ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、実施例1の正極を得た。   The aluminum foil coated with the composition was dried at 100 ° C. for 10 minutes, whereby NMP was removed by volatilization, and a positive electrode active material layer was formed on the aluminum foil surface. The aluminum foil having the positive electrode active material layer formed on the surface was compressed using a roll press machine, and the aluminum foil and the positive electrode active material layer were firmly bonded. The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours to obtain a positive electrode of Example 1.

実施例1の正極の製造には複数日を要したが、製造条件を特段変更することもなく、作業を完了することができた。   The production of the positive electrode of Example 1 required a plurality of days, but the operation could be completed without changing the production conditions.

(実施例2)
A分散液に第1正極活物質及び第2正極活物質を同時に添加して、混合装置で混合し、B分散液を製造した以外は、実施例1と同様の方法で、実施例2の組成物、実施例2の正極を製造した。ただし、実施例2の正極を製造する際の組成物の塗布作業においては、製造時間の経過に伴い、製造条件の修正が必要であった。
(Example 2)
The composition of Example 2 was prepared in the same manner as in Example 1 except that the first positive electrode active material and the second positive electrode active material were simultaneously added to the A dispersion and mixed with a mixing apparatus to produce the B dispersion. The positive electrode of Example 2 was manufactured. However, in the application | coating operation | work of the composition at the time of manufacturing the positive electrode of Example 2, correction of manufacturing conditions was needed with progress of manufacturing time.

(比較例1)
組成物の製造方法を以下のとおりとした以外は、実施例1と同様の方法で、比較例1の組成物、比較例1の正極を製造した。ただし、比較例1の正極を製造する際の組成物の塗布作業においては、製造時間の経過に伴い、製造条件の修正が必要であった。
(Comparative Example 1)
A composition of Comparative Example 1 and a positive electrode of Comparative Example 1 were produced in the same manner as in Example 1 except that the production method of the composition was as follows. However, in the application | coating operation | work of the composition at the time of manufacturing the positive electrode of the comparative example 1, correction of manufacturing conditions was needed with progress of manufacturing time.

分散剤及び溶剤を混合装置で混合して混合液とした。当該混合液に導電助剤を加え、混合装置で混合し比較例1のA′分散液を製造した。比較例1のA′分散液における、溶剤以外の固形分の配合量は15質量%であった。また、比較例1のA′分散液における、導電助剤と分散剤との質量比は、導電助剤:分散剤=2.9:0.1であった。   The dispersant and the solvent were mixed with a mixing device to obtain a mixed solution. A conductive additive was added to the mixed solution and mixed with a mixing apparatus to produce an A ′ dispersion of Comparative Example 1. The blending amount of solids other than the solvent in the A ′ dispersion of Comparative Example 1 was 15% by mass. Moreover, the mass ratio of the conductive additive to the dispersant in the A ′ dispersion of Comparative Example 1 was conductive additive: dispersant = 2.9: 0.1.

比較例1のA′分散液に、結着剤含有のNMP溶液及び第2正極活物質を添加して、混合装置で混合し、比較例1のB−1′分散液を製造した。   The NMP solution containing the binder and the second positive electrode active material were added to the A ′ dispersion of Comparative Example 1 and mixed with a mixing apparatus to produce the B-1 ′ dispersion of Comparative Example 1.

次いで、比較例1のB−1′分散液に、第1正極活物質を添加して、混合装置で混合し、比較例1のB′分散液を製造した。比較例1のB′分散液を比較例1の組成物とした。比較例1の組成物における溶剤以外の固形分の配合量、正極活物質と結着剤と導電助剤と分散剤との質量比、及び、第1正極活物質と第2正極活物質との質量比は、実施例1と同じである。   Next, the first positive electrode active material was added to the B-1 ′ dispersion of Comparative Example 1 and mixed with a mixing apparatus to produce the B ′ dispersion of Comparative Example 1. The B ′ dispersion of Comparative Example 1 was used as the composition of Comparative Example 1. The blending amount of solids other than the solvent in the composition of Comparative Example 1, the mass ratio of the positive electrode active material, the binder, the conductive additive, and the dispersant, and the first positive electrode active material and the second positive electrode active material The mass ratio is the same as in Example 1.

(評価例1)
実施例1、実施例2、比較例1の正極をΦ16mmの大きさにそれぞれ切断した。Φ16mmの大きさの正極を電気抵抗測定器(型式IMC−0240:株式会社井元製作所)に配置し、5kgの荷重をかけた状態で30秒後の抵抗値を測定した。抵抗値と正極の体積から、正極の体積抵抗率(Ω・cm)を算出した。結果を表1に示す。なお、表1以降の表においては、体積抵抗率が200Ω・cm未満の正極を◎、体積抵抗率が200〜400Ω・cmの正極を○、体積抵抗率が400超〜600Ω・cmの正極を△、体積抵抗率が600Ω・cm超の正極を×で示す。
(Evaluation example 1)
The positive electrodes of Example 1, Example 2, and Comparative Example 1 were each cut to a size of Φ16 mm. A positive electrode having a size of Φ16 mm was placed in an electric resistance measuring instrument (model IMC-0240: Imoto Seisakusho Co., Ltd.), and the resistance value after 30 seconds was measured with a 5 kg load applied. From the resistance value and the volume of the positive electrode, the volume resistivity (Ω · cm) of the positive electrode was calculated. The results are shown in Table 1. In Table 1 and subsequent tables, the positive electrode having a volume resistivity of less than 200 Ω · cm is indicated by ◎, the positive electrode having a volume resistivity of 200 to 400 Ω · cm is indicated by ○, and the positive electrode having a volume resistivity of more than 400 to 600 Ω · cm is indicated. (Triangle | delta) and the positive electrode whose volume resistivity exceeds 600 ohm * cm are shown by x.

実施例1、実施例2の正極の体積抵抗率が好適に抑制されていることが確認できた。特に、実施例1の正極の体積抵抗率は著しく好適に抑制されていた。組成物の製造方法の違いが、正極の抵抗に影響を与えたといえる。   It has confirmed that the volume resistivity of the positive electrode of Example 1 and Example 2 was suppressed suitably. In particular, the volume resistivity of the positive electrode of Example 1 was significantly suppressed. It can be said that the difference in the manufacturing method of the composition influenced the resistance of the positive electrode.

(評価例2)
実施例1、実施例2、比較例1の組成物につき、製造直後の粘度を測定した。さらに、室温密閉状態で製造から3日経過後のそれぞれの組成物につき、粘度を測定した。粘度は、ブルックフィールドB型粘度計DV−II +Proにて、スピンドル64を用い、スピンドル回転速度20rpm、25℃の条件で測定した。以下の計算式で粘度増加率を算出した。
粘度増加率(%)=100×(3日後粘度−製造直後粘度)/製造直後粘度
(Evaluation example 2)
About the composition of Example 1, Example 2, and the comparative example 1, the viscosity immediately after manufacture was measured. Furthermore, the viscosity was measured for each composition after 3 days from manufacture in a sealed state at room temperature. The viscosity was measured with a Brookfield B-type viscometer DV-II + Pro using a spindle 64 under conditions of a spindle rotation speed of 20 rpm and 25 ° C. The viscosity increase rate was calculated by the following formula.
Viscosity increase rate (%) = 100 × (viscosity after 3 days−viscosity immediately after production) / viscosity immediately after production

また、各組成物の塗布性につき、製造条件を特段変更することなく塗布作業を完了することができた組成物を◎、時間の経過に伴い製造条件の修正が必要であった組成物を○、塗布作業を完了できない組成物を×で示した。   In addition, for coating properties of each composition, ◎ for a composition that could complete the coating operation without changing the manufacturing conditions, and ○ for a composition that required correction of manufacturing conditions over time The composition which cannot complete the coating operation is indicated by x.

各組成物の粘度増加率と塗布性の結果を表2に示す。   Table 2 shows the results of increase in viscosity and coatability of each composition.

実施例1の組成物の粘度増加率が著しく低く抑えられ、かつ、実施例1の組成物の塗布性が著しく優れていることがわかる。組成物の製造方法の違いが、組成物の粘度増加率と塗布性に影響を与えたといえる。   It can be seen that the viscosity increase rate of the composition of Example 1 is remarkably low and the applicability of the composition of Example 1 is remarkably excellent. It can be said that the difference in the production method of the composition affected the rate of increase in viscosity and the coating property of the composition.

(評価例3)
実施例1、実施例2、比較例1の正極につき、JIS Z 0237に準拠した剥離強度試験を行った。試験方法について詳細に述べる。まず、正極の正極活物質層を引張試験機の台座に固定した。次に、集電体を台座に対して上向きに90°の角度で引張り、集電体から正極活物質層が剥離した荷重を測定した。測定された荷重と試験に用いた正極の幅から、剥離強度(N/cm)を算出した。結果を表3に示す。
(Evaluation example 3)
For the positive electrodes of Example 1, Example 2, and Comparative Example 1, a peel strength test based on JIS Z 0237 was performed. The test method will be described in detail. First, the positive electrode active material layer of the positive electrode was fixed to the base of a tensile tester. Next, the current collector was pulled upward at an angle of 90 ° with respect to the pedestal, and the load at which the positive electrode active material layer peeled from the current collector was measured. The peel strength (N / cm) was calculated from the measured load and the width of the positive electrode used in the test. The results are shown in Table 3.

実施例1の正極の剥離強度が高いことがわかる。組成物の製造方法の違いが、正極の剥離強度に影響を与えたといえる。   It can be seen that the peel strength of the positive electrode of Example 1 is high. It can be said that the difference in the manufacturing method of the composition influenced the peel strength of the positive electrode.

(実施例3)
分散剤としてのPVP K―30(株式会社日本触媒、平均分子量80000〜120000)及び溶剤としてのNMPを混合装置で混合して混合液とした。当該混合液に導電助剤としてのアセチレンブラック(電気化学工業株式会社製のデンカブラック粒状品:一次粒径35nm)を加え、混合装置で混合し実施例3のA−2分散液を製造した。
(Example 3)
PVP K-30 (Nippon Shokubai Co., Ltd., average molecular weight 80000-120000) as a dispersant and NMP as a solvent were mixed with a mixing device to obtain a mixed solution. Acetylene black (Denka black granular product manufactured by Denki Kagaku Kogyo Co., Ltd .: primary particle size: 35 nm) as a conductive auxiliary was added to the mixed solution, and mixed with a mixing apparatus to produce an A-2 dispersion of Example 3.

実施例3のA−2分散液における、溶剤以外の固形分の配合量は15質量%であった。また、実施例3のA−2分散液における、導電助剤と分散剤との質量比は、導電助剤:分散剤=2.9:0.1であった。   The compounding quantity of solids other than a solvent in the A-2 dispersion liquid of Example 3 was 15 mass%. Moreover, in the A-2 dispersion liquid of Example 3, the mass ratio of the conductive auxiliary agent to the dispersing agent was conductive auxiliary agent: dispersant = 2.9: 0.1.

実施例3のA−2分散液を最適な測定濃度までNMPで希釈し、レーザー回折式粒度分布測定装置(マイクロトラックMT3300EXII、日機装株式会社)に供して、以下の条件で、粒度分布を測定した。
循環速度:52mL/sec.
粒子屈折率:1.81
循環溶媒屈折率:1.479
The A-2 dispersion liquid of Example 3 was diluted with NMP to an optimal measurement concentration, and subjected to a laser diffraction particle size distribution measuring device (Microtrac MT3300EXII, Nikkiso Co., Ltd.), and the particle size distribution was measured under the following conditions. .
Circulation rate: 52 mL / sec.
Particle refractive index: 1.81
Circulating solvent refractive index: 1.479

実施例3のA−2分散液の粒度分布は、D50:0.8μm、D90:3.5μmであった。   The particle size distribution of the A-2 dispersion liquid of Example 3 was D50: 0.8 μm and D90: 3.5 μm.

実施例3のA−2分散液及び結着剤としてのポリフッ化ビニリデン(ポリフッ化ビニリデン8質量%含有のNMP溶液(株式会社クレハ・バッテリー・マテリアルズ・ジャパン製のL#7208)を使用)を混合して、実施例3のA分散液を製造した。実施例3のA分散液における、溶剤以外の固形分の配合量は13質量%であった。また、実施例3のA分散液における、結着剤と導電助剤と分散剤との質量比は、結着剤:導電助剤:分散剤=3:2.9:0.1であった。   The A-2 dispersion of Example 3 and polyvinylidene fluoride as a binder (using NMP solution containing 8% by mass of polyvinylidene fluoride (L # 7208 manufactured by Kureha Battery Materials Japan Co., Ltd.)) The A dispersion liquid of Example 3 was produced by mixing. The compounding quantity of solids other than a solvent in A dispersion liquid of Example 3 was 13 mass%. In the A dispersion liquid of Example 3, the mass ratio of the binder, the conductive additive, and the dispersant was binder: conductive auxiliary agent: dispersant = 3: 2.9: 0.1. .

上述の条件で、実施例3のA分散液の粒度分布を測定したところ、D50:0.8μm、D90:3.5μmであった。   When the particle size distribution of the A dispersion liquid of Example 3 was measured under the above-mentioned conditions, they were D50: 0.8 μm and D90: 3.5 μm.

以後、A分散液として実施例3のA分散液を用いた以外は、実施例1と同様の方法で、実施例3の組成物、実施例3の正極を製造した。   Thereafter, the composition of Example 3 and the positive electrode of Example 3 were produced in the same manner as in Example 1, except that the A dispersion of Example 3 was used as the A dispersion.

(実施例4)
結着剤、導電助剤、分散剤及び溶剤を、一度に混合し、A分散液を製造した以外は、実施例3と同様の方法で、実施例4のA分散液、実施例4の組成物、実施例4の正極を製造した。実施例4のA分散液の粒度分布を測定したところ、D50:0.8μm、D90:3.5μmであった。
Example 4
The composition of the A dispersion of Example 4 and the composition of Example 4 were the same as in Example 3, except that the binder, conductive additive, dispersant and solvent were mixed at a time to produce the A dispersion. The positive electrode of Example 4 was manufactured. The particle size distribution of the A dispersion liquid of Example 4 was measured and found to be D50: 0.8 μm and D90: 3.5 μm.

(実施例5)
A−2分散液及びA分散液を製造する際の混合速度と混合時間を減じた以外は、実施例3と同様の方法で、実施例5のA−2分散液、実施例5のA分散液、実施例5の組成物、実施例5の正極を製造した。
(Example 5)
The A-2 dispersion of Example 5 and the A dispersion of Example 5 were the same as in Example 3, except that the mixing speed and mixing time in producing the A-2 dispersion and A dispersion were reduced. The liquid, the composition of Example 5, and the positive electrode of Example 5 were produced.

実施例5のA−2分散液の粒度分布は、D50:1.5μm、D90:4.5μmであった。実施例5のA分散液の粒度分布は、D50:1.5μm、D90:4.5μmであった。   The particle size distribution of the A-2 dispersion liquid of Example 5 was D50: 1.5 μm and D90: 4.5 μm. The particle size distribution of the dispersion A of Example 5 was D50: 1.5 μm and D90: 4.5 μm.

(実施例6)
A分散液を製造する際の混合速度と混合時間を減じた以外は、実施例4と同様の方法で、実施例6のA分散液、実施例6の組成物、実施例6の正極を製造した。
(Example 6)
A dispersion of Example 6, the composition of Example 6, and the positive electrode of Example 6 were produced in the same manner as in Example 4 except that the mixing speed and mixing time in producing the A dispersion were reduced. did.

実施例6のA分散液の粒度分布は、D50:1.5μm、D90:4.5μmであった。   The particle size distribution of the dispersion A of Example 6 was D50: 1.5 μm and D90: 4.5 μm.

(比較例2)
A−2分散液及びA分散液を製造する際の混合装置を変えて、混合条件を激しい条件とした以外は、実施例3と同様の方法で、比較例2のA−2分散液、比較例2のA分散液、比較例2の組成物、比較例2の正極を製造した。
(Comparative Example 2)
A-2 dispersion liquid and A-2 dispersion liquid of Comparative Example 2 were compared in the same manner as in Example 3 except that the mixing apparatus for producing the A dispersion liquid and the A dispersion liquid was changed and the mixing conditions were changed to violent conditions. The A dispersion of Example 2, the composition of Comparative Example 2, and the positive electrode of Comparative Example 2 were produced.

比較例2のA−2分散液の粒度分布は、D50:0.4μm、D90:2.0μmであった。比較例2のA分散液の粒度分布は、D50:0.4μm、D90:2.0μmであった   The particle size distribution of the A-2 dispersion liquid of Comparative Example 2 was D50: 0.4 μm and D90: 2.0 μm. The particle size distribution of the dispersion A of Comparative Example 2 was D50: 0.4 μm and D90: 2.0 μm.

(比較例3)
A分散液を製造する際の混合装置を変えて、混合条件を激しい条件とした以外は、実施例4と同様の方法で、比較例3のA分散液、比較例3の組成物、比較例3の正極を製造した。
(Comparative Example 3)
A dispersion liquid of Comparative Example 3, the composition of Comparative Example 3 and Comparative Example were the same as in Example 4 except that the mixing apparatus for producing the A dispersion was changed and the mixing conditions were changed to intense conditions. 3 positive electrodes were produced.

比較例3のA分散液の粒度分布は、D50:0.4μm、D90:2.0μmであった。   The particle size distribution of the dispersion A of Comparative Example 3 was D50: 0.4 μm and D90: 2.0 μm.

(評価例4)
実施例3〜実施例6、比較例2〜比較例3の正極につき、評価例1と同様の方法で、正極の体積抵抗率(Ω・cm)を算出した。結果を、分散液の粒度分布と共に、表4に示す。
(Evaluation example 4)
With respect to the positive electrodes of Examples 3 to 6 and Comparative Examples 2 to 3, the volume resistivity (Ω · cm) of the positive electrode was calculated in the same manner as in Evaluation Example 1. The results are shown in Table 4 together with the particle size distribution of the dispersion.

実施例3〜6の正極は、体積抵抗率が好適に抑制されていた。A−2分散液の粒度分布及びA分散液の粒度分布が、正極の体積抵抗率に影響を与えたことがわかる。A−2分散液のD50及びD90が過小であると、正極の体積抵抗率が高くなるといえる。   In the positive electrodes of Examples 3 to 6, the volume resistivity was suitably suppressed. It can be seen that the particle size distribution of the A-2 dispersion and the particle size distribution of the A dispersion affected the volume resistivity of the positive electrode. If D50 and D90 of the A-2 dispersion are too small, it can be said that the volume resistivity of the positive electrode is increased.

(実施例7)
結着剤としてのポリフッ化ビニリデン(ポリフッ化ビニリデン8質量%含有のNMP溶液(株式会社クレハ・バッテリー・マテリアルズ・ジャパン製のL#7208)を使用)、分散剤としてのPVP K―30(株式会社日本触媒、平均分子量80000〜120000)、及び、溶剤としてのNMPを混合装置で混合して混合液とした。
(Example 7)
Polyvinylidene fluoride as a binder (using NMP solution containing 8% by mass of polyvinylidene fluoride (L # 7208 manufactured by Kureha Battery Materials Japan Co., Ltd.)), PVP K-30 (stock) Company Nippon Catalyst, average molecular weight of 80,000 to 120,000) and NMP as a solvent were mixed with a mixing device to obtain a mixed solution.

上記混合液に導電助剤としてのアセチレンブラック(電気化学工業株式会社製のデンカブラック粒状品:一次粒径35nm)を加え、混合装置で混合して実施例7のA分散液を製造した。実施例7のA分散液における、溶剤以外の固形分の配合量は13質量%であった。また、実施例7のA分散液における、結着剤と導電助剤と分散剤との質量比は、結着剤:導電助剤:分散剤=3:2.9:0.1であった。   Acetylene black (Denka Black granular product manufactured by Denki Kagaku Kogyo Co., Ltd .: primary particle size: 35 nm) as a conductive additive was added to the above mixed solution, and mixed with a mixing apparatus to produce an A dispersion of Example 7. The compounding quantity of solids other than a solvent in A dispersion liquid of Example 7 was 13 mass%. Moreover, in the A dispersion liquid of Example 7, the mass ratio of the binder, the conductive additive, and the dispersant was binder: conductive auxiliary agent: dispersant = 3: 2.9: 0.1. .

実施例7のA分散液に、第2正極活物質として、表面をカーボンコートしたLiFePOを添加して、混合装置で混合し、実施例7のB−1分散液を製造した。使用した第2正極活物質のD50は0.8μmであった。また、実施例7のB−1分散液における溶剤以外の固形分の配合量は35.5質量%であった。 To the A dispersion liquid of Example 7, LiFePO 4 whose surface was coated with carbon was added as the second positive electrode active material, and mixed with a mixing apparatus to produce the B-1 dispersion liquid of Example 7. The D50 of the second positive electrode active material used was 0.8 μm. Moreover, the compounding quantity of solid content other than the solvent in the B-1 dispersion liquid of Example 7 was 35.5 mass%.

実施例7のB−1分散液を最適な測定濃度までNMPで希釈し、レーザー回折式粒度分布測定装置(マイクロトラックMT3300EXII、日機装株式会社)に供して、以下の条件で、粒度分布を測定した。図1に粒度分布チャートを載せる。
循環速度:52mL/sec.
粒子屈折率:1.81
循環溶媒屈折率:1.479
The B-1 dispersion of Example 7 was diluted with NMP to an optimal measurement concentration, and subjected to a laser diffraction particle size distribution measuring device (Microtrac MT3300EXII, Nikkiso Co., Ltd.), and the particle size distribution was measured under the following conditions. . FIG. 1 shows a particle size distribution chart.
Circulation rate: 52 mL / sec.
Particle refractive index: 1.81
Circulating solvent refractive index: 1.479

実施例7のB−1分散液の粒度分布は、D50が0.6μmであった。   Regarding the particle size distribution of the B-1 dispersion of Example 7, D50 was 0.6 μm.

実施例7のB−1分散液に、第1正極活物質として層状岩塩構造のLiNi5/10Co2/10Mn3/10を添加して、混合装置で混合し、実施例7のB分散液を製造した。使用した第1正極活物質のD50は6μmであった。実施例7のB分散液を実施例7の組成物とした。 To the B-1 dispersion of Example 7, LiNi 5/10 Co 2/10 Mn 3/10 O 2 having a layered rock salt structure as a first positive electrode active material was added and mixed using a mixing apparatus. A B dispersion was prepared. The D50 of the first positive electrode active material used was 6 μm. The B dispersion of Example 7 was used as the composition of Example 7.

実施例7の組成物における溶剤以外の固形分の配合量は65質量%であった。また、実施例7の組成物における、正極活物質と結着剤と導電助剤と分散剤との質量比は、正極活物質:結着剤:導電助剤:分散剤=94:3:2.9:0.1であり、第1正極活物質と第2正極活物質との質量比は、第1正極活物質:第2正極活物質=79:21であった。   The compounding quantity of solid content other than the solvent in the composition of Example 7 was 65 mass%. In the composition of Example 7, the mass ratio of the positive electrode active material, the binder, the conductive auxiliary agent, and the dispersant is as follows: positive electrode active material: binder: conductive auxiliary agent: dispersant = 94: 3: 2. .9: 0.1, and the mass ratio of the first positive electrode active material to the second positive electrode active material was first positive electrode active material: second positive electrode active material = 79: 21.

以後、組成物として実施例7の組成物を用いた以外は、実施例1と同様の方法で、実施例7の正極を製造した。なお、実施例7の正極の正極活物質層の密度は、2.30g/cmであった。 Thereafter, the positive electrode of Example 7 was produced in the same manner as in Example 1 except that the composition of Example 7 was used as the composition. In addition, the density of the positive electrode active material layer of the positive electrode of Example 7 was 2.30 g / cm 3 .

(実施例8)
第2正極活物質としてD50が2.6μmのものを用いた以外は、実施例7と同様の方法で、実施例8のB−1分散液、実施例8の組成物、実施例8の正極を製造した。実施例8のB−1分散液の粒度分布は、D50が2.4μmであった。図1に粒度分布チャートを載せる。なお、実施例8の正極の正極活物質層の密度は、2.25g/cmであった。
(Example 8)
The B-1 dispersion of Example 8, the composition of Example 8 and the positive electrode of Example 8 were the same as in Example 7, except that a second positive electrode active material having a D50 of 2.6 μm was used. Manufactured. As for the particle size distribution of the B-1 dispersion of Example 8, D50 was 2.4 μm. FIG. 1 shows a particle size distribution chart. In addition, the density of the positive electrode active material layer of the positive electrode of Example 8 was 2.25 g / cm 3 .

(比較例4)
第2正極活物質としてD50が10μmのものを用いた以外は、実施例7と同様の方法で、比較例4のB−1分散液、比較例4の組成物、比較例4の正極を製造した。比較例4のB−1分散液の粒度分布は、D50が3.5μmであった。なお、比較例4の正極の正極活物質層の密度は、2.00g/cmであった。
(Comparative Example 4)
A B-1 dispersion of Comparative Example 4, a composition of Comparative Example 4, and a positive electrode of Comparative Example 4 were produced in the same manner as in Example 7, except that a second positive electrode active material having a D50 of 10 μm was used. did. As for the particle size distribution of the B-1 dispersion liquid of Comparative Example 4, D50 was 3.5 μm. In addition, the density of the positive electrode active material layer of the positive electrode of Comparative Example 4 was 2.00 g / cm 3 .

(評価例5)
実施例7、実施例8、比較例4の正極につき、評価例1と同様の方法で、正極の体積抵抗率(Ω・cm)を算出した。結果を、B−1分散液の粒度分布、及び、正極活物質層の密度と共に、表5に示す。
(Evaluation example 5)
For the positive electrodes of Example 7, Example 8, and Comparative Example 4, the volume resistivity (Ω · cm) of the positive electrode was calculated in the same manner as in Evaluation Example 1. The results are shown in Table 5 together with the particle size distribution of the B-1 dispersion and the density of the positive electrode active material layer.

実施例7、実施例8の正極は、体積抵抗率が好適に抑制されていた。B−1分散液の粒度分布が、正極活物質層の密度及び正極の体積抵抗率に影響を与えたことがわかる。B−1分散液のD50が適切な範囲であると、正極活物質層の密度が高くなることにより、導電パスが好適に形成され、その結果、正極の体積抵抗率が低くなると推定される。ここで、正極活物質層の高密度化は、集電体の単位面積に対する正極活物質層の形成量(いわゆる目付量)の実質的な増加をもたらすため、二次電池の高容量化が期待できる。また、第1正極活物質と第2正極活物質の平均粒子径の関係が、(第1正極活物質の平均粒子径)>(第2正極活物質の平均粒子径)であることが好適であるともいえる。   In the positive electrodes of Examples 7 and 8, the volume resistivity was suitably suppressed. It can be seen that the particle size distribution of the B-1 dispersion affected the density of the positive electrode active material layer and the volume resistivity of the positive electrode. When D50 of the B-1 dispersion is in an appropriate range, the density of the positive electrode active material layer is increased, whereby a conductive path is suitably formed. As a result, it is estimated that the volume resistivity of the positive electrode is decreased. Here, the increase in the density of the positive electrode active material layer results in a substantial increase in the amount of the positive electrode active material layer formed (so-called basis weight) with respect to the unit area of the current collector. it can. The relationship between the average particle diameters of the first positive electrode active material and the second positive electrode active material is preferably (average particle diameter of the first positive electrode active material)> (average particle diameter of the second positive electrode active material). It can be said that there is.

(実施例9)
結着剤としてのポリフッ化ビニリデン(ポリフッ化ビニリデン8質量%含有のNMP溶液(株式会社クレハ・バッテリー・マテリアルズ・ジャパン製のL#7208)を使用)、分散剤としてのアミン価及び酸価を示す櫛型構造のポリマー(アジスパーPB821、味の素ファインテクノ株式会社)、及び、溶剤としてのNMPを混合装置で混合して混合液とした。
Example 9
Polyvinylidene fluoride as a binder (using NMP solution containing 8% by mass of polyvinylidene fluoride (L # 7208 manufactured by Kureha Battery Materials Japan Co., Ltd.)), amine value and acid value as a dispersant A comb-shaped polymer (Ajisper PB821, Ajinomoto Fine Techno Co., Ltd.) and NMP as a solvent were mixed with a mixing device to obtain a mixed solution.

上記混合液に導電助剤としてのアセチレンブラック(電気化学工業株式会社製のデンカブラック粒状品:一次粒径35nm)を加え、混合装置で混合して実施例9のA分散液を製造した。実施例9のA分散液における、溶剤以外の固形分の配合量は13質量%であった。また、実施例9のA分散液における、導電助剤と結着剤と分散剤との質量比は、導電助剤:結着剤:分散剤=3:2.85:0.15であった。   Acetylene black (Denka Black granular product manufactured by Denki Kagaku Kogyo Co., Ltd .: primary particle size: 35 nm) as a conductive auxiliary agent was added to the above mixed solution, and mixed with a mixing apparatus to produce an A dispersion of Example 9. The compounding quantity of solid content other than a solvent in A dispersion liquid of Example 9 was 13 mass%. Moreover, the mass ratio of the conductive additive, the binder, and the dispersant in the dispersion A of Example 9 was conductive additive: binder: dispersant = 3: 2.85: 0.15. .

実施例9のA分散液に、第2正極活物質として、表面をカーボンコートしたLiFePOを添加して、混合装置で混合し、実施例9のB−1分散液を製造した。使用した第2正極活物質のD50は2.6μmであった。 To the A dispersion liquid of Example 9, LiFePO 4 having a surface coated with carbon as a second positive electrode active material was added and mixed with a mixing apparatus to produce the B-1 dispersion liquid of Example 9. The D50 of the second positive electrode active material used was 2.6 μm.

実施例9のB−1分散液に、第1正極活物質として層状岩塩構造のLiNi5/10Co2/10Mn3/10を添加して、混合装置で混合し、実施例9のB分散液を製造した。使用した第1正極活物質のD50は6μmであった。実施例9のB分散液を実施例9の組成物とした。 To the B-1 dispersion of Example 9, LiNi 5/10 Co 2/10 Mn 3/10 O 2 having a layered rock salt structure as the first positive electrode active material was added and mixed with a mixing apparatus. A B dispersion was prepared. The D50 of the first positive electrode active material used was 6 μm. The B dispersion of Example 9 was used as the composition of Example 9.

実施例9の組成物における、溶剤以外の固形分の配合量は65質量%であった。また、実施例9の組成物における、第1正極活物質と第2正極活物質と導電助剤と結着剤と分散剤との質量比は、第1正極活物質:第2正極活物質:導電助剤:結着剤:分散剤=69:25:3:2.85:0.15であった。   The compounding quantity of solid content other than a solvent in the composition of Example 9 was 65 mass%. The mass ratio of the first positive electrode active material, the second positive electrode active material, the conductive additive, the binder, and the dispersant in the composition of Example 9 is as follows: first positive electrode active material: second positive electrode active material: Conductive aid: binder: dispersant = 69: 25: 3: 2.85: 0.15.

実施例9の正極及び実施例9のリチウムイオン二次電池を以下のように製造した。   The positive electrode of Example 9 and the lithium ion secondary battery of Example 9 were manufactured as follows.

正極用集電体として厚み15μmのアルミニウム箔を準備した。該アルミニウム箔の表面に実施例9の組成物をのせ、ドクターブレードを用いて該組成物が膜状になるように塗布した。   An aluminum foil having a thickness of 15 μm was prepared as a positive electrode current collector. The composition of Example 9 was placed on the surface of the aluminum foil, and the composition was applied to form a film using a doctor blade.

組成物を塗布したアルミニウム箔を100℃で10分間乾燥することで、NMPを揮発により除去し、アルミニウム箔表面に正極活物質層を形成させた。表面に正極活物質層を形成させたアルミニウム箔を、ロ−ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させた。接合物を120℃で6時間、真空乾燥機で加熱し、矩形状に切り取り、実施例9の正極を得た。   The aluminum foil coated with the composition was dried at 100 ° C. for 10 minutes, whereby NMP was removed by volatilization, and a positive electrode active material layer was formed on the aluminum foil surface. The aluminum foil having the positive electrode active material layer formed on the surface was compressed using a roll press machine, and the aluminum foil and the positive electrode active material layer were firmly bonded. The joined product was heated in a vacuum dryer at 120 ° C. for 6 hours, cut into a rectangular shape, and the positive electrode of Example 9 was obtained.

負極は以下のように製造した。   The negative electrode was manufactured as follows.

負極活物質として、平均粒子径D50が4μmのSiO及び平均粒子径D50が20μmの天然黒鉛を準備した。結着剤としてポリアミドイミド樹脂を準備した。導電助剤としてアセチレンブラックを準備した。 As the negative electrode active material, SiO having an average particle diameter D 50 of 4 μm and natural graphite having an average particle diameter D 50 of 20 μm were prepared. A polyamide-imide resin was prepared as a binder. Acetylene black was prepared as a conductive aid.

上記負極活物質、導電助剤及び結着剤を、SiO:黒鉛:導電助剤:結着剤=32:50:8:10の重量比で混合した。上記混合物に、溶媒としてNMPを適量入れて混合して、負極用スラリーとした。   The negative electrode active material, the conductive auxiliary agent, and the binder were mixed at a weight ratio of SiO: graphite: conductive auxiliary agent: binder = 32: 50: 8: 10. An appropriate amount of NMP was added as a solvent to the above mixture and mixed to prepare a slurry for negative electrode.

このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように片面塗布した。スラリーを塗布した集電体を100℃、10分で乾燥後、プレスして接合物とした。接合物を120℃で6時間、真空乾燥機で加熱し、矩形状に切り取り、負極とした。   This slurry was applied on one side so as to form a film using a doctor blade on a copper foil having a thickness of 20 μm which is a current collector for negative electrode. The current collector coated with the slurry was dried at 100 ° C. for 10 minutes and then pressed to obtain a bonded product. The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a rectangular shape, and used as a negative electrode.

上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の樹脂膜からなる厚さ25μmの矩形状シートを挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉された実施例9のリチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。 A laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet having a thickness of 25 μm made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, LiPF 6 was added to a solvent obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at EC: EMC: DMC = 3: 3: 4 (volume ratio). A solution dissolved so as to be mol / l was used. Thereafter, the remaining one side was sealed, whereby the four sides were hermetically sealed, and the lithium ion secondary battery of Example 9 in which the electrode plate group and the electrolyte solution were sealed was obtained. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery.

(実施例10)
導電助剤と結着剤と分散剤との質量比を導電助剤:結着剤:分散剤=3:2.95:0.05とした以外は、実施例9と同様の方法で、実施例10のA分散液、実施例10のB−1分散液、実施例10の組成物、実施例10の正極、実施例10のリチウムイオン二次電池を製造した。
(Example 10)
Implemented in the same manner as in Example 9 except that the mass ratio of the conductive additive, the binder, and the dispersant was changed to conductive additive: binder: dispersant = 3: 2.95: 0.05. The A dispersion liquid of Example 10, the B-1 dispersion liquid of Example 10, the composition of Example 10, the positive electrode of Example 10, and the lithium ion secondary battery of Example 10 were produced.

(実施例11)
導電助剤と結着剤と分散剤との質量比を導電助剤:結着剤:分散剤=3:2.7:0.3とした以外は、実施例9と同様の方法で、実施例11のA分散液、実施例11のB−1分散液、実施例11の組成物、実施例11の正極、実施例11のリチウムイオン二次電池を製造した。
(Example 11)
Implemented in the same manner as in Example 9 except that the mass ratio of the conductive additive, the binder, and the dispersant was changed to conductive additive: binder: dispersant = 3: 2.7: 0.3. The A dispersion liquid of Example 11, the B-1 dispersion liquid of Example 11, the composition of Example 11, the positive electrode of Example 11, and the lithium ion secondary battery of Example 11 were produced.

(実施例12)
導電助剤と結着剤と分散剤との質量比を導電助剤:結着剤:分散剤=5:2.75:0.25とし、第1正極活物質と第2正極活物質と導電助剤と結着剤と分散剤との質量比を第1正極活物質:第2正極活物質:導電助剤:結着剤:分散剤=67.5:24.5:5:2.75:0.25とした以外は、実施例9と同様の方法で、実施例12のA分散液、実施例12のB−1分散液、実施例12の組成物、実施例12の正極、実施例12のリチウムイオン二次電池を製造した。
(Example 12)
The mass ratio of the conductive auxiliary agent, the binder, and the dispersant is set to conductive auxiliary agent: binder agent: dispersant = 5: 2.75: 0.25, and the first positive electrode active material, the second positive electrode active material, and the conductive material are electrically conductive. The mass ratio of the auxiliary agent, the binder, and the dispersing agent is the first positive electrode active material: the second positive electrode active material: the conductive auxiliary agent: the binder: the dispersing agent = 67.5: 24.5: 5: 2.75. : A dispersion of Example 12, B-1 dispersion of Example 12, composition of Example 12, positive electrode of Example 12, except for 0.25 The lithium ion secondary battery of Example 12 was manufactured.

(実施例13)
分散剤として、アミン価を示す櫛型構造のアクリル系ブロックコポリマー(Efka PX4732、BASFジャパン株式会社)を用いた以外は、実施例9と同様の方法で、実施例13のA分散液、実施例13のB−1分散液、実施例13の組成物、実施例13の正極、実施例13のリチウムイオン二次電池を製造した。
(Example 13)
The dispersion A of Example 13 and Example were the same as Example 9 except that an acrylic block copolymer having a comb structure (Efka PX4732, BASF Japan Ltd.) showing an amine value was used as the dispersant. 13 B-1 dispersion, the composition of Example 13, the positive electrode of Example 13, and the lithium ion secondary battery of Example 13 were produced.

(実施例14)
分散剤として、アミン価を示す櫛型構造のアクリル系ブロックコポリマー(Efka PX4732、BASFジャパン株式会社)を用いた以外は、実施例10と同様の方法で、実施例14のA分散液、実施例14のB−1分散液、実施例14の組成物、実施例14の正極、実施例14のリチウムイオン二次電池を製造した。
(Example 14)
The dispersion A of Example 14 and Example were the same as Example 10 except that an acrylic block copolymer (Efka PX4732, BASF Japan Ltd.) having a comb structure showing an amine value was used as the dispersant. 14 B-1 dispersion, the composition of Example 14, the positive electrode of Example 14, and the lithium ion secondary battery of Example 14 were produced.

(実施例15)
分散剤として、アミン価を示す櫛型構造のアクリル系ブロックコポリマー(Efka PX4732、BASFジャパン株式会社)を用いた以外は、実施例11と同様の方法で、実施例15のA分散液、実施例15のB−1分散液、実施例15の組成物、実施例15の正極、実施例15のリチウムイオン二次電池を製造した。
(Example 15)
The dispersion A of Example 15 and Example were the same as Example 11 except that an acrylic block copolymer having a comb structure (Efka PX4732, BASF Japan Ltd.) showing an amine value was used as the dispersant. 15 B-1 dispersion, the composition of Example 15, the positive electrode of Example 15, and the lithium ion secondary battery of Example 15 were produced.

(実施例16)
分散剤として、アミン価を示す櫛型構造のアクリル系ブロックコポリマー(Efka PX4732、BASFジャパン株式会社)を用いた以外は、実施例12と同様の方法で、実施例16のA分散液、実施例16のB−1分散液、実施例16の組成物、実施例16の正極、実施例16のリチウムイオン二次電池を製造した。
(Example 16)
The dispersion A of Example 16 and Example were the same as Example 12 except that an acrylic block copolymer (Efka PX4732, BASF Japan Ltd.) having a comb structure showing an amine value was used as the dispersant. 16 B-1 dispersion, the composition of Example 16, the positive electrode of Example 16, and the lithium ion secondary battery of Example 16 were produced.

(実施例17)
分散剤として、ポリビニルピロリドン(PVP K―30、株式会社日本触媒、平均分子量80000〜120000)を用いた以外は、実施例9と同様の方法で、実施例17のA分散液、実施例17のB−1分散液、実施例17の組成物、実施例17の正極、実施例17のリチウムイオン二次電池を製造した。
(Example 17)
Except for using polyvinylpyrrolidone (PVP K-30, Nippon Shokubai Co., Ltd., average molecular weight 80000-120000) as a dispersant, the same procedure as in Example 9 was followed. The B-1 dispersion, the composition of Example 17, the positive electrode of Example 17, and the lithium ion secondary battery of Example 17 were manufactured.

(比較例5)
分散剤を用いず、導電助剤と結着剤との質量比を導電助剤:結着剤=3:3とし、第1正極活物質と第2正極活物質と導電助剤と結着剤との質量比を第1正極活物質:第2正極活物質:導電助剤:結着剤=69:25:3:3とした以外は、実施例9と同様の方法で、比較例5の組成物を製造した。なお、比較例5の組成物を用いて、実施例9と同様の方法で、正極を製造しようとしたが、比較例5の組成物の粘度が高すぎたため、正極の製造が出来なかった。
(Comparative Example 5)
Without using a dispersant, the mass ratio of the conductive auxiliary agent to the binder is set to conductive auxiliary agent: binder = 3: 3, and the first positive electrode active material, the second positive electrode active material, the conductive auxiliary agent, and the binder. And the mass ratio of the first positive electrode active material: the second positive electrode active material: the conductive auxiliary agent: the binder = 69: 25: 3: 3. A composition was prepared. In addition, although it tried to manufacture a positive electrode by the method similar to Example 9 using the composition of the comparative example 5, since the viscosity of the composition of the comparative example 5 was too high, manufacture of the positive electrode was not able to be performed.

(評価例6)
実施例9〜実施例17のリチウムイオン二次電池につき、電位差3.6Vまで充電し、この状態から10秒間放電させたときの電池の抵抗を測定した。結果を表6に示す。表6以降で用いる略号の意味は、以下のとおりである。
PB821:アジスパーPB821
PX4732:Efka PX4732
PVP:PVP K―30
(Evaluation example 6)
The lithium ion secondary batteries of Examples 9 to 17 were charged to a potential difference of 3.6 V, and the resistance of the batteries when discharged from this state for 10 seconds was measured. The results are shown in Table 6. The meanings of the abbreviations used in Table 6 and after are as follows.
PB821: Addisper PB821
PX4732: Efka PX4732
PVP: PVP K-30

実施例9〜実施例17のリチウムイオン二次電池のうち、実施例9、10、12、13、14、16のリチウムイオン二次電池の抵抗が比較的低く、特に、実施例12、16のリチウムイオン二次電池の抵抗が著しく低いことがわかる。   Among the lithium ion secondary batteries of Examples 9 to 17, the resistances of the lithium ion secondary batteries of Examples 9, 10, 12, 13, 14, and 16 are relatively low. It can be seen that the resistance of the lithium ion secondary battery is extremely low.

(評価例7)
実施例9〜17、比較例5の組成物につき、製造直後の粘度を測定した。さらに、室温密閉状態で製造から1週間経過後のそれぞれの組成物につき、粘度を測定した。粘度は、ブルックフィールドB型粘度計DV−II +Proにて、スピンドル64を用い、スピンドル回転速度20rpm、25℃の条件で測定した。以下の計算式で粘度増加率を算出した。結果を表7に示す。
粘度増加率(%)=100×(1週間後粘度−製造直後粘度)/製造直後粘度
(Evaluation example 7)
About the composition of Examples 9-17 and the comparative example 5, the viscosity immediately after manufacture was measured. Furthermore, the viscosity was measured for each composition after one week had passed since production in a sealed state at room temperature. The viscosity was measured with a Brookfield B-type viscometer DV-II + Pro using a spindle 64 under conditions of a spindle rotation speed of 20 rpm and 25 ° C. The viscosity increase rate was calculated by the following formula. The results are shown in Table 7.
Viscosity increase rate (%) = 100 × (viscosity after 1 week−viscosity immediately after production) / viscosity immediately after production

比較例5の組成物は、著しく初期粘度が高かった。実施例9〜実施例17の組成物のうち、実施例9、11〜13、15〜17の組成物の初期粘度は低かった。1週間後の組成物については、実施例17と比較例5の組成物はゲル化したため粘度の測定ができなかった。実施例9、11〜13、15の組成物の粘度増加率は低く、特に、実施例11、15の組成物の粘度増加率は顕著に低かった。   The composition of Comparative Example 5 had an extremely high initial viscosity. Of the compositions of Examples 9 to 17, the initial viscosities of the compositions of Examples 9, 11 to 13, and 15 to 17 were low. With respect to the composition after one week, the compositions of Example 17 and Comparative Example 5 were gelled, so the viscosity could not be measured. The viscosity increase rate of the compositions of Examples 9, 11 to 13 and 15 was low, and in particular, the viscosity increase rate of the compositions of Examples 11 and 15 was remarkably low.

組成物の経時安定性の点では、分散剤として、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーを選択するのが有利といえる。   From the viewpoint of stability of the composition over time, it may be advantageous to select a comb-shaped polymer exhibiting an amine value and an acid value or an acrylic block copolymer having a comb-shaped structure exhibiting an amine value as a dispersant.

Claims (21)

第1正極活物質、第2正極活物質、導電助剤、結着剤及び溶剤を含む組成物の製造方法であって、
A)前記導電助剤、前記結着剤及び前記溶剤を混合して、A分散液を製造する工程、
B)前記A分散液、前記第1正極活物質及び前記第2正極活物質を混合して、B分散液を製造する工程、
を含むことを特徴とする組成物の製造方法。
A method for producing a composition comprising a first positive electrode active material, a second positive electrode active material, a conductive additive, a binder and a solvent,
A) A step of producing a dispersion A by mixing the conductive assistant, the binder and the solvent,
B) A step of producing a B dispersion by mixing the A dispersion, the first positive electrode active material, and the second positive electrode active material,
A method for producing a composition, comprising:
A)工程が、
A−1−1)前記導電助剤及び前記溶剤を混合して、A−1分散液を製造する工程、
A−1−2)前記A−1分散液及び前記結着剤を混合して、A分散液を製造する工程、
を含む請求項1に記載の組成物の製造方法。
A) The process is
A-1-1) mixing the conductive auxiliary agent and the solvent to produce an A-1 dispersion,
A-1-2) mixing the A-1 dispersion and the binder to produce an A dispersion;
The manufacturing method of the composition of Claim 1 containing this.
A)工程が、前記導電助剤、前記結着剤及び前記溶剤を一度に混合しA分散液を製造する工程、
を含む請求項1に記載の組成物の製造方法。
A) is a step in which the conductive auxiliary agent, the binder and the solvent are mixed at a time to produce an A dispersion,
The manufacturing method of the composition of Claim 1 containing this.
前記組成物が分散剤を含んでおり、
A)工程が、前記導電助剤、前記結着剤、前記分散剤及び前記溶剤を混合しA分散液を製造する工程、である請求項1に記載の組成物の製造方法。
The composition includes a dispersant;
The method for producing a composition according to claim 1, wherein the step A) is a step of producing the dispersion A by mixing the conductive additive, the binder, the dispersant and the solvent.
前記分散剤が、ポリビニルピロリドン、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーの少なくとも1種である請求項4に記載の組成物の製造方法。   5. The composition according to claim 4, wherein the dispersant is at least one of polyvinyl pyrrolidone, a comb-shaped polymer exhibiting an amine value and an acid value, or an acrylic block copolymer having a comb-shaped structure exhibiting an amine value. Production method. A)工程が、
A−2−1)前記導電助剤、前記分散剤及び前記溶剤を混合して、A−2分散液を製造する工程、
A−2−2)前記A−2分散液及び前記結着剤を混合して、A分散液を製造する工程、
を含む請求項4又は5に記載の組成物の製造方法。
A) The process is
A-2-1) A step of producing an A-2 dispersion by mixing the conductive additive, the dispersant and the solvent,
A-2-2) A step of producing the A dispersion by mixing the A-2 dispersion and the binder.
The manufacturing method of the composition of Claim 4 or 5 containing this.
A)工程が、前記導電助剤、前記結着剤、前記分散剤及び前記溶剤を一度に混合しA分散液を製造する工程、
を含む請求項4又は5に記載の組成物の製造方法。
A) is a step in which the conductive auxiliary agent, the binder, the dispersant, and the solvent are mixed at a time to produce an A dispersion.
The manufacturing method of the composition of Claim 4 or 5 containing this.
前記A分散液、前記A−1分散液又は前記A−2分散液の粒度分布は、D50が0.6〜3μmの範囲内であって、D90が3〜7μmの範囲内である、請求項1〜7のいずれか1項に記載の組成物の製造方法。   The particle size distribution of the A dispersion, the A-1 dispersion, or the A-2 dispersion is such that D50 is in the range of 0.6 to 3 μm and D90 is in the range of 3 to 7 μm. The manufacturing method of the composition of any one of 1-7. 前記第2正極活物質の平均粒子径が前記第1正極活物質の平均粒子径よりも小さく、
前記B)工程が、
B−1)前記A分散液及び前記第2正極活物質を混合して、B−1分散液を製造する工程、
B−2)前記B−1分散液及び前記第1正極活物質を混合して、B分散液を製造する工程、
を含む請求項1〜8のいずれかに記載の組成物の製造方法。
An average particle size of the second positive electrode active material is smaller than an average particle size of the first positive electrode active material;
Step B)
B-1) A step of mixing the A dispersion and the second positive electrode active material to produce a B-1 dispersion,
B-2) A step of mixing the B-1 dispersion and the first positive electrode active material to produce a B dispersion,
The manufacturing method of the composition in any one of Claims 1-8 containing these.
前記B−1分散液の粒度分布は、D50が0.1〜3μmの範囲内である、請求項9に記載の組成物の製造方法。   The particle size distribution of the said B-1 dispersion is a manufacturing method of the composition of Claim 9 whose D50 exists in the range of 0.1-3 micrometers. 前記第1正極活物質が、一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Zr、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表される請求項1〜10のいずれか1項に記載の組成物の製造方法。 The first positive electrode active material has a general formula: Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Zr, Fe, Ge, Zn, Ru, 11. At least one element selected from Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V, 1.7 ≦ f ≦ 3). A method for producing the composition according to item. 前記第2正極活物質が、一般式:LiMPO(MはMn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B、Te及びMoから選ばれる少なくとも1の元素、0<h<2)で表される請求項1〜11のいずれか1項に記載の組成物の製造方法。 The second positive electrode active material has a general formula: LiM h PO 4 (M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, Te and The manufacturing method of the composition of any one of Claims 1-11 represented by the at least 1 element chosen from Mo, 0 <h <2). 請求項1〜12のいずれか1項に記載の製造方法で製造された組成物を、集電体に塗布する塗布工程、を含む正極の製造方法。   The manufacturing method of a positive electrode including the application | coating process which apply | coats the composition manufactured with the manufacturing method of any one of Claims 1-12 to a collector. 請求項13に記載の製造方法で製造された正極を配置する工程、を含む二次電池の製造方法。   A method for producing a secondary battery, comprising: arranging a positive electrode produced by the production method according to claim 13. 導電助剤及び溶剤で構成され、D50が0.6〜3μmの範囲内であって、D90が3〜7μmの範囲内である分散液。   A dispersion comprising a conductive auxiliary agent and a solvent, wherein D50 is in the range of 0.6 to 3 μm and D90 is in the range of 3 to 7 μm. さらに分散剤及び/又は結着剤を含む請求項15に記載の分散液。   Furthermore, the dispersion liquid of Claim 15 containing a dispersing agent and / or a binder. 導電助剤、結着剤、一般式:LiMPO(MはMn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B、Te及びMoから選ばれる少なくとも1の元素、0<h<2)で表される正極活物質及び溶剤を含み、D50が0.1〜3μmの範囲内である分散液。 Conductive aid, binder, general formula: LiM h PO 4 (M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, Te and A dispersion comprising at least one element selected from Mo, a positive electrode active material represented by 0 <h <2), and a solvent, wherein D50 is in the range of 0.1 to 3 μm. さらに分散剤を含む請求項17に記載の分散液。   Furthermore, the dispersion liquid of Claim 17 containing a dispersing agent. 第1正極活物質、第2正極活物質、導電助剤、結着剤、分散剤及び溶剤を含む組成物であって、
前記分散剤が、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーの少なくとも1種であることを特徴とする組成物。
A composition comprising a first positive electrode active material, a second positive electrode active material, a conductive additive, a binder, a dispersant, and a solvent,
The said dispersing agent is at least 1 sort (s) of the polymer of the comb structure which shows an amine value and an acid value, or the acrylic block copolymer of the comb structure which shows an amine value.
第1正極活物質、第2正極活物質、導電助剤、結着剤及び分散剤を含む正極活物質層であって、
前記分散剤が、アミン価及び酸価を示す櫛型構造のポリマー、又は、アミン価を示す櫛型構造のアクリル系ブロックコポリマーの少なくとも1種であることを特徴とする正極活物質層。
A positive electrode active material layer including a first positive electrode active material, a second positive electrode active material, a conductive additive, a binder, and a dispersant;
The positive electrode active material layer, wherein the dispersant is at least one of a comb-shaped polymer exhibiting an amine value and an acid value, or an acrylic block copolymer having a comb-shaped structure exhibiting an amine value.
請求項20に記載の正極活物質層を具備するリチウムイオン二次電池。   A lithium ion secondary battery comprising the positive electrode active material layer according to claim 20.
JP2015176952A 2015-09-08 2015-09-08 Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent Active JP6720488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176952A JP6720488B2 (en) 2015-09-08 2015-09-08 Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176952A JP6720488B2 (en) 2015-09-08 2015-09-08 Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent

Publications (2)

Publication Number Publication Date
JP2017054649A true JP2017054649A (en) 2017-03-16
JP6720488B2 JP6720488B2 (en) 2020-07-08

Family

ID=58320913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176952A Active JP6720488B2 (en) 2015-09-08 2015-09-08 Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent

Country Status (1)

Country Link
JP (1) JP6720488B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145401A (en) * 2018-02-22 2019-08-29 株式会社豊田自動織機 METHOD FOR PRODUCING COMPOSITION CONTAINING POSITIVE ELECTRODE ACTIVE MATERIAL, Li5FeO4, BINDER, AND SOLVENT
CN110431697A (en) * 2017-03-22 2019-11-08 株式会社Lg化学 Prepare the method for anode of secondary battery paste compound, using the anode of secondary cell of this method preparation and comprising the lithium secondary battery of the anode
WO2020054210A1 (en) 2018-09-14 2020-03-19 ダイキン工業株式会社 Composition and multilayer body
WO2020059806A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
JP2020053269A (en) * 2018-09-27 2020-04-02 プライムアースEvエナジー株式会社 Positive electrode mixture, positive electrode mixture slurry and lithium ion secondary battery
US11239458B2 (en) 2016-09-07 2022-02-01 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
US11283058B2 (en) 2017-03-22 2022-03-22 Lg Energy Solution, Ltd. Method of preparing slurry composition for secondary battery positive electrode, positive electrode for secondary battery prepared by using the same, and lithium secondary battery including the positive electrode
JP2022536580A (en) * 2019-04-26 2022-08-18 ダウ グローバル テクノロジーズ エルエルシー Polyvinylpyrrolidone as a dispersant for lithium-ion battery cathode production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265709A (en) * 1998-03-17 1999-09-28 Hitachi Maxell Ltd Manufacture of paste composition for positive electrode and manufacture of positive electrode and lithium secondary battery
JP2010049903A (en) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2013045761A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Lithium secondary battery
JP2013084525A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Manufacturing method for secondary battery electrode
JP2014194001A (en) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion and use thereof
WO2015006058A1 (en) * 2013-07-09 2015-01-15 Dow Global Technologies Llc Mixed positive active material comprising lithium metal oxide and lithium metal phosphate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265709A (en) * 1998-03-17 1999-09-28 Hitachi Maxell Ltd Manufacture of paste composition for positive electrode and manufacture of positive electrode and lithium secondary battery
JP2010049903A (en) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd Composition for battery
JP2013045761A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Lithium secondary battery
JP2013084525A (en) * 2011-10-12 2013-05-09 Toyota Motor Corp Manufacturing method for secondary battery electrode
JP2014194001A (en) * 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion and use thereof
WO2015006058A1 (en) * 2013-07-09 2015-01-15 Dow Global Technologies Llc Mixed positive active material comprising lithium metal oxide and lithium metal phosphate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11239458B2 (en) 2016-09-07 2022-02-01 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
CN110431697B (en) * 2017-03-22 2022-07-19 株式会社Lg化学 Method for preparing slurry composition for secondary battery positive electrode, positive electrode prepared by the method, and lithium secondary battery comprising the positive electrode
CN110431697A (en) * 2017-03-22 2019-11-08 株式会社Lg化学 Prepare the method for anode of secondary battery paste compound, using the anode of secondary cell of this method preparation and comprising the lithium secondary battery of the anode
US11283058B2 (en) 2017-03-22 2022-03-22 Lg Energy Solution, Ltd. Method of preparing slurry composition for secondary battery positive electrode, positive electrode for secondary battery prepared by using the same, and lithium secondary battery including the positive electrode
JP2019145401A (en) * 2018-02-22 2019-08-29 株式会社豊田自動織機 METHOD FOR PRODUCING COMPOSITION CONTAINING POSITIVE ELECTRODE ACTIVE MATERIAL, Li5FeO4, BINDER, AND SOLVENT
JP7010054B2 (en) 2018-02-22 2022-02-10 株式会社豊田自動織機 A method for producing a composition containing a positive electrode active material, Li5FeO4, a binder and a solvent.
KR20210041605A (en) 2018-09-14 2021-04-15 다이킨 고교 가부시키가이샤 Composition and laminate
WO2020054210A1 (en) 2018-09-14 2020-03-19 ダイキン工業株式会社 Composition and multilayer body
JPWO2020059806A1 (en) * 2018-09-19 2021-06-03 株式会社村田製作所 Secondary battery
CN112567548A (en) * 2018-09-19 2021-03-26 株式会社村田制作所 Secondary battery
WO2020059806A1 (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Secondary battery
JP7107382B2 (en) 2018-09-19 2022-07-27 株式会社村田製作所 secondary battery
US11929485B2 (en) 2018-09-19 2024-03-12 Murata Manufacturing Co., Ltd. Secondary battery
JP2020053269A (en) * 2018-09-27 2020-04-02 プライムアースEvエナジー株式会社 Positive electrode mixture, positive electrode mixture slurry and lithium ion secondary battery
JP7058203B2 (en) 2018-09-27 2022-04-21 プライムアースEvエナジー株式会社 Positive electrode mixture, positive electrode mixture slurry, and lithium ion secondary battery
JP2022536580A (en) * 2019-04-26 2022-08-18 ダウ グローバル テクノロジーズ エルエルシー Polyvinylpyrrolidone as a dispersant for lithium-ion battery cathode production
JP7349508B2 (en) 2019-04-26 2023-09-22 ダウ グローバル テクノロジーズ エルエルシー Polyvinylpyrrolidone as a dispersant for lithium ion battery cathode production

Also Published As

Publication number Publication date
JP6720488B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6720488B2 (en) Method for producing a composition containing a plurality of positive electrode active materials, a conductive auxiliary agent, a binder and a solvent
JP6213315B2 (en) Composition comprising surface-treated positive electrode active material, dispersant and solvent
JP6413242B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP5861896B2 (en) A composition comprising a first positive electrode active material, a second positive electrode active material, a dispersant and a solvent
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
WO2015098116A1 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP6743596B2 (en) Lithium ion secondary battery
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP2017068958A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20200115362A (en) Electrode and secondary battery comprising the same
JP2014203625A (en) Collector for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018026314A (en) Positive electrode and lithium ion secondary battery
JP2018174150A (en) Method for manufacturing slurry for secondary battery positive electrode, method for manufacturing positive electrode for secondary battery, and method for manufacturing secondary battery
JP2015118865A (en) Method for forming protection layer on collector main body, collector for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20210040796A (en) Electrode and secondary battery comprising the same
JP2017054650A (en) Composition containing positive electrode active material, dispersant and solvent
JP6365181B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6056685B2 (en) Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6136849B2 (en) Positive electrode containing surface-modified active material and high-resistance metal compound
WO2015162838A1 (en) Positive electrode for non-aqueous secondary cell, and non-aqueous secondary cell
WO2014112329A1 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary battery
JP6048751B2 (en) Current collector for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6187824B2 (en) Method for producing composition comprising first positive electrode active material, second positive electrode active material, conductive additive, binder and solvent
JP7010054B2 (en) A method for producing a composition containing a positive electrode active material, Li5FeO4, a binder and a solvent.
JP6703751B2 (en) Composition containing positive electrode active material and solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151