JP2017053324A - 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法 - Google Patents

蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法 Download PDF

Info

Publication number
JP2017053324A
JP2017053324A JP2015179842A JP2015179842A JP2017053324A JP 2017053324 A JP2017053324 A JP 2017053324A JP 2015179842 A JP2015179842 A JP 2015179842A JP 2015179842 A JP2015179842 A JP 2015179842A JP 2017053324 A JP2017053324 A JP 2017053324A
Authority
JP
Japan
Prior art keywords
valve
command value
flow rate
opening
rate command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015179842A
Other languages
English (en)
Other versions
JP6625848B2 (ja
Inventor
都 二森
Miyako Nimori
都 二森
優一 中村
Yuichi Nakamura
優一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015179842A priority Critical patent/JP6625848B2/ja
Publication of JP2017053324A publication Critical patent/JP2017053324A/ja
Application granted granted Critical
Publication of JP6625848B2 publication Critical patent/JP6625848B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

【課題】定格負荷運転中の蒸気の圧力損失を低減し、プラント効率を向上させることができる蒸気加減弁制御装置を提供する。
【解決手段】実施の形態による蒸気加減弁制御装置30は、第1開度指令部31と、第2開度指令部32と、第3開度指令部33と、を備えている。第1開度指令部31は、第1開閉特性L1に従って先行大開度弁21a、21bに開度指令を与える。第2開度指令部32は、流量指令値が第1流量指令値Q1以上である場合に第1開閉特性L1の開度よりも小さい開度を有する第2開閉特性L2に従って、先行小開度弁21cに開度指令を与える。第3開度指令部33は、流量指令値が第2流量指令値Q2以上である場合に第2開閉特性L2の開度よりも小さい開度を有する第3開閉特性L3に従って後行弁21dに開度指令を与える。
【選択図】図3

Description

本発明の実施形態は、蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法に関する。
一般的に、火力発電プラントなどの発電プラントは、ボイラーと、ボイラーから供給される蒸気を用いて回転駆動される高圧タービン、中圧タービンおよび低圧タービンと、を備えている。高圧タービン、中圧タービンおよび低圧タービンには発電機が連結されており、各タービンで得られた回転駆動力によって発電機が駆動されて発電が行われる。低圧タービンから排出された蒸気は、タービン排気として復水器に供給され、復水器において凝縮されて復水が生成される。生成された復水は、ボイラーに供給されて加熱され、蒸気が生成される。
高圧タービンの入口側には、ボイラーから供給される主蒸気の流量を制御する蒸気加減弁が設けられている。この蒸気加減弁によって主蒸気の流量が調整され、タービン回転数制御や発電機負荷制御が行われている。蒸気加減弁は、例えば4つの弁(第1弁〜第4弁)によって構成されており、各弁の出口は、高圧タービンの入口ノズルを4分割した部分にそれぞれ連結されている。このようにして、蒸気加減弁の各弁を通過した主蒸気は、入口ノズルの対応する部分に供給される。この間、蒸気加減弁の各弁の開度を調整することにより、高圧タービンの調速運転が行われる。
一般に、高圧タービンの調速運転の方式としては、2つの調速方式が挙げられる。一つは絞り調速方式(スロットルガバニング)であり、もう一つはノズル調速方式(ノズルガバニング)である。どちらの方式も利点と不利点とがある。例えば、絞り調速方式では、各弁を一様な開度とする運用が行われるため、高圧タービンの入口ノズルに均等に主蒸気を供給することができ、入口ノズルに温度差が生じて熱応力が発生することを抑制できる。しかしながら、絞り調速方式では、部分負荷運転時に主蒸気の流れの絞りによる圧力損失が発生してプラント効率が低下し得る。一方、ノズル調速方式では、各弁を順次開いていくという運用が行われるため、流れの圧力損失によるプラント効率の低下を抑制できる。しかしながら、ノズル調速方式では、入口ノズルに部分的に主蒸気が供給されるため、入口ノズルに温度差が生じて熱応力が発生し得る。このような利点と不利点とを加味しながら、高圧タービンと発電機に要求される負荷制御や運転条件に合わせていずれかの調速方式が選択される。
図8に、ノズル調速方式での蒸気加減弁の開閉特性(リフトカーブ)を示す。図8の横軸は、高圧タービンの要求流量に応じた蒸気加減弁の流量指令値(タービン負荷)を示しており、縦軸は、蒸気加減弁の開度指令値が示されている。リフトカーブは、高圧タービンに供給すべき主蒸気の流量と高圧タービンの熱応力とを考慮して定められており、開度指令値は、このリフトカーブから流量指令値に対する値として求めることができる。このようにして、流量指令値に対して図8に示すリフトカーブLa、Lbに従った開度指令値が各弁に与えられて、蒸気加減弁が運用されるようになっている。
図8に示す例では、タービン起動時などのような負荷上昇時には、低負荷から定格負荷の90%程度までの間、第1弁から第3弁をリフトカーブLaに従って同時に開き、互いに同一の開度で増大させていく。負荷が90%を超えた後、第4弁を開き、引き続き各弁の開度を増大させていく。第4弁の開度は、第1弁から第3弁のリフトカーブLaとは異なるリフトカーブLbに従って増大していく。このように、各弁を開くタイミングを2つに分けて蒸気加減弁を運用することは、2アドミッションと呼ばれている。また、各弁を開くタイミングを3つに分けて蒸気加減弁を運用することは、3アドミッションと呼ばれる。2アドミッションと3アドミッションは、蒸気タービンのノズルや動翼に発生する熱応力を考慮して適宜選択される。
特開2005−291113号公報 特開2001−263003号公報
蒸気タービンを通過する蒸気は、冷却水の温度上昇などで復水器の真空度が低下すると、膨張仕事をすることができず、設計値の定格負荷を確保することができない場合がある。このことにより、蒸気タービンは、設計値の定格負荷に対してマージンを加えた最大負荷が出力できるように設計されている。これに伴い、蒸気加減弁も、設計値の定格流量よりも多くの流量を流せるように設計されており、設計値の定格開度(図8に示す75%開度)に対してマージンを加えた最大開度(100%開度)まで開くようになっている。このことにより、定格負荷運転中、先行して開いていた第1弁〜第3弁の開度は最大開度よりも小さくなっており、蒸気加減弁は全体として絞り運用されている。このため、絞り運用に伴う圧力損失が発生し、プラント効率が低下し得る要因となっていた。
本発明は、このような点を考慮してなされたものであり、定格負荷運転中の蒸気の圧力損失を低減し、プラント効率を向上させることができる蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法を提供することを目的とする。
実施の形態による蒸気加減弁制御装置は、タービン負荷に応じた流量指令値に基づいて、先行大開度弁、先行小開度弁および後行弁を有する蒸気加減弁を制御する。この蒸気加減弁制御装置は、第1開度指令部と、第2開度指令部と、第3開度指令部と、を備えている。第1開度指令部は、第1開閉特性に従って先行大開度弁に開度指令を与える。第2開度指令部は、流量指令値が第1流量指令値よりも小さい場合に第1開閉特性の開度と同一の開度を有する第2開閉特性であって、流量指令値が第1流量指令値以上である場合に第1開閉特性の開度よりも小さい開度を有する第2開閉特性に従って、先行小開度弁に開度指令を与える。第3開度指令部は、流量指令値が第1流量指令値よりも大きな第2流量指令値よりも小さい場合に後行弁に0%開度指令を与えるとともに、流量指令値が第2流量指令値以上である場合に第2開閉特性の開度よりも小さい開度を有する第3開閉特性に従って後行弁に開度指令を与える。
また、実施の形態による発電プラントは、蒸気発生器と、蒸気発生器から供給される蒸気を用いて回転駆動される高圧タービンと、高圧タービンに供給される蒸気の流量を制御する蒸気加減弁と、蒸気加減弁を制御する上述した蒸気加減弁制御装置と、を備えている。
また、実施の形態による蒸気加減弁制御方法は、タービン負荷に応じた流量指令値に基づいて、先行大開度弁、先行小開度弁および後行弁を有する蒸気加減弁を制御する。この蒸気加減弁制御方法は、負荷上昇時に、まず、先行大開度弁および先行小開度弁を開き、流量指令値が第1流量指令値となるまで、先行大開度弁の開度を増大させていくとともに、先行大開度弁の開度と同一となるように先行小開度弁の開度を増大させていく。続いて、流量指令値が第1流量指令値となった場合に、先行小開度弁の開度を先行大開度弁の開度よりも小さくして、先行小開度弁の開度が先行大開度弁の開度よりも小さい関係を維持しながら先行大開度弁の開度および先行小開度弁の開度を増大させていく。次に、流量指令値が第1流量指令値よりも大きな第2流量指令値となった場合に、後行弁を開き、後行弁の開度が先行小開度弁の開度よりも小さい関係を維持しながら先行小開度弁の開度および後行弁の開度を増大させていく。
本発明によれば、定格負荷運転中の蒸気の圧力損失を低減し、プラント効率を向上させることができる。
図1は、第1の実施の形態における発電プラントの全体構成を示す概略系統図である。 図2は、図1の蒸気加減弁の構成の一例を説明するための概念図である。 図3は、図2の蒸気加減弁のリフトカーブを示す図である。 図4は、図3の蒸気加減弁を制御する蒸気加減弁制御装置の構成の一例を示すブロック図である。 図5は、第2の実施の形態における蒸気加減弁のリフトカーブを示す図である。 図6は、第3の実施の形態における蒸気加減弁のリフトカーブを示す図である。 図7は、図6の蒸気加減弁を制御する蒸気加減弁制御装置の構成の一例を示すブロック図である。 図8は、一般的な蒸気加減弁のリフトカーブを示す図である。
以下、図面を参照して、本発明の実施の形態における蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法について説明する。
(第1の実施の形態)
図1乃至図4を用いて、第1の実施の形態における蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法について説明する。ここではまず、図1を用いて、発電プラントの一例としての火力発電プラントについて説明する。
図1に示すように、火力発電プラント1は、ボイラー2と、蒸気タービン部3と、復水器4と、を備えている。
ボイラー2は、復水器4から供給された復水を加熱して蒸気を発生させる蒸気発生器5と、後述する高圧タービン7で膨張仕事を終えた主蒸気S1を過熱する再熱器6と、を有している。ボイラー2は、供給される燃料を、空気を混合させて燃焼させて燃焼ガスを生成し、生成された燃焼ガスの熱で、蒸気発生器5において復水から蒸気を発生させるとともに、再熱器6において蒸気を過熱している。
蒸気タービン部3は、高圧タービン7と、中圧タービン8と、低圧タービン9と、を有している。高圧タービン7、中圧タービン8および低圧タービン9の各タービンロータ(図示せず)は、互いに連結されている。
蒸気発生器5において発生した蒸気は、主蒸気S1として、主蒸気系10を介して高圧タービン7に供給される。高圧タービン7は、蒸気発生器5から供給される主蒸気S1を用いて回転駆動される。すなわち、高圧タービン7に供給された主蒸気S1は膨張仕事を行い、高圧タービン7は回転駆動力を得る。膨張仕事を終えた主蒸気S1は、逆止弁11を有する低温再熱系12を通って再熱器6に供給される。
再熱器6において過熱された蒸気は、再熱蒸気S2として、再熱蒸気系13を介して中圧タービン8に供給される。中圧タービン8に供給された再熱蒸気S2は膨張仕事を行い、中圧タービン8は回転駆動力を得る。膨張仕事を終えた再熱蒸気S2は、低圧タービン9に供給されて更に膨張仕事を行い、その後、タービン排気として復水器4に供給される。
復水器4に供給されたタービン排気は、凝縮されて復水となる。復水器4とボイラー2の蒸気発生器5は、復水給水系14によって連結されており、この復水給水系14が、給水ポンプ15を有している。このことにより、復水器4内の復水は、給水ポンプ15によって加圧されてボイラー2の蒸気発生器5に供給される。
このようにして、高圧タービン7、中圧タービン8および低圧タービン9は回転駆動力を得て、発電機16(図2参照)が駆動されて、発電が行われる。
上述した主蒸気系10は、主蒸気止め弁20と、主蒸気止め弁20の下流側に設けられた蒸気加減弁21と、を有している。このうち、主蒸気止め弁20は、主に負荷遮断時などの非常時に主蒸気S1の流れを止めるためのものであり、蒸気加減弁21は、主に高圧タービン7に供給される主蒸気S1の流量を調整(制御)するためのものである。主蒸気系10のうち主蒸気止め弁20の上流側の部分から、高圧タービンバイパス系22が分岐している。この高圧タービンバイパス系22は、高圧タービンバイパス弁23を有し、低温再熱系12に合流している。このようにして、主蒸気S1が、高圧タービン7に供給されることなく低温再熱系12に供給可能になっている。例えば、タービン起動時等の負荷上昇時に主蒸気S1の圧力や温度が所定の値に達していない場合、または負荷遮断時などの非常時に主蒸気S1の流量が過剰になった場合に、高圧タービンバイパス弁23を開いて、余剰の主蒸気S1を低温再熱系12に供給するという運用が行われる。
再熱蒸気系13は、再熱蒸気止め弁24と、再熱蒸気止め弁24の下流側に設けられた再熱蒸気加減弁25(インターセプト弁)と、を有している。このうち、再熱蒸気止め弁24は、主に非常時に再熱蒸気S2の流れを止めるためのものであり、再熱蒸気加減弁25は、主に中圧タービン8に供給される再熱蒸気S2の流量を調整(制御)するためのものである。再熱蒸気系13のうち再熱蒸気止め弁24の上流側の部分から、低圧タービンバイパス系26が分岐している。この低圧タービンバイパス系26は、低圧タービンバイパス弁27を有し、復水器4に連結されている。このようにして、再熱蒸気S2が、中圧タービン8および低圧タービン9に供給されることなく復水器4に供給可能になっている。例えば、高圧タービンバイパス弁23と同様に、負荷上昇時に主蒸気S1の圧力や温度が所定の値に達していない場合、または負荷遮断時などの非常時に主蒸気S1の流量が過剰になった場合に、低圧タービンバイパス弁27が開いて、余剰の再熱蒸気S2を復水器4に供給するという運用が行われる。
本実施の形態における蒸気加減弁制御装置30は、上述した主蒸気系10の蒸気加減弁21を制御するためのものである。より具体的には、蒸気加減弁制御装置30は、蒸気タービン部3のタービン負荷に応じた蒸気加減弁21の流量指令値に基づいて、蒸気加減弁21を制御する。流量指令値は、図1に示す火力発電プラント1のプラント制御装置(図示せず)から蒸気加減弁制御装置30に与えられる。以下に、この蒸気加減弁制御装置30によって制御される蒸気加減弁21についてより詳細に説明する。
図2に示すように、本実施の形態による蒸気加減弁21は、先行大開度弁と、先行小開度弁と、後行弁と、を有している。このうち、先行大開度弁は、第1先行大開度弁と、第2先行大開度弁と、を含んでいる。以下に述べる本実施の形態においては、第1先行大開度弁を第1弁21aとし、第2先行大開度弁を第2弁21bとし、先行小開度弁を第3弁21cとし、後行弁を第4弁21dとする。これらの第1弁21a、第2弁21b、第3弁21cおよび第4弁21dが、本実施の形態による蒸気加減弁制御装置30によって制御される。
図2に示すように、各弁21a〜21dの出口は、4分割された高圧タービン7の入口ノズル7aにそれぞれ連結されている。このことにより、各弁21a〜21dを通過した主蒸気S1は、入口ノズル7aの対応する部分に供給される。このようにして入口ノズル7aに主蒸気S1が供給されて、高圧タービン7において主蒸気S1が膨張仕事を行い、高圧タービン7が回転駆動力を得るように構成されている。
蒸気加減弁21の第1弁21a〜第4弁21dの開度は、図3に示すような開閉特性に従って調整される。より具体的には、第1弁21aの開度および第2弁21bの開度は、流量指令値に応じて第1リフトカーブL1(第1開閉特性)に従って調整される。第3弁21cの開度は、流量指令値に応じて第2リフトカーブL2(第2開閉特性)に従って調整され、第4弁21dの開度は、流量指令値に応じて第3リフトカーブL3(第3開閉特性)に従って調整される。なお、第4弁21dは、流量指令値が後述する第2流量指令値Q2よりも小さい間、閉じている。また、各リフトカーブL1〜L3は、流量指令値の増大に伴って加減弁開度指令値が75%となると、その後の開度指令値が75%に維持されるように、設定されている。ここで、75%開度は、各弁21a〜21dの定格開度を意味している。後述する100%開度は、各弁21a〜21dの最大開度を意味している。
第2リフトカーブL2は、流量指令値が第1流量指令値Q1よりも小さい場合に第1リフトカーブL1の開度と同一の開度を有するとともに、流量指令値が第1流量指令値Q1以上である場合に、第1リフトカーブL1の開度よりも小さい開度を有している。すなわち、第2リフトカーブL2は、流量指令値が第1流量指令値Q1となる点で、第1リフトカーブL1から分岐するような特性を有している。第3リフトカーブL3は、流量指令値が第2流量指令値Q2以上である場合に、第4弁21dを、第2リフトカーブL2の開度よりも小さい開度で開くような特性を有している。このように、本実施の形態による蒸気加減弁21は、2アドミッションで運用される。なお、定格負荷運転時の流量指令値を定格流量指令値Qrとすると、上述した第2流量指令値Q2は、定格流量指令値Qrよりも小さくなっている。
本実施の形態においては、図3に示すように、流量指令値が、第1流量指令値Q1よりも大きくかつ第2流量指令値Q2よりも小さい第3流量指令値Q3以上である場合、第1弁21aの開度および第2弁21bの開度は、第1リフトカーブL1から外れて、100%開度となるようにしてもよい。なお、本実施の形態による第3流量指令値Q3以上の範囲における第1リフトカーブL1は、図3では太破線で示されている。
次に、上述のような開閉特性を有する蒸気加減弁21を制御する蒸気加減弁制御装置30の構成について、図4を用いて説明する。
図4に示すように、蒸気加減弁制御装置30は、第1リフトカーブL1に従って第1弁21aおよび第2弁21bに開度指令を与える第1開度指令部31と、第2リフトカーブL2に従って第3弁21cに開度指令を与える第2開度指令部32と、第3リフトカーブL3に従って第4弁21dに開度指令を与える第3開度指令部33と、を備えている。
第1開度指令部31は、流量指令値を変換して第1弁21aに与えるための開度指令値を作成する第1変換関数発生器34と、流量指令値を変換して第2弁21bに与えるための開度指令値を作成する第2変換関数発生器35と、を有している。
第1変換関数発生器34には、図3に示す第1リフトカーブL1が予め記憶されている。第1リフトカーブL1は、蒸気加減弁制御装置30に与えられた流量指令値と、第1弁21aおよび第2弁21bの開度指令値との関係を示している。蒸気加減弁制御装置30に流量指令値が与えられると、第1変換関数発生器34は、この流量指令値に対応する開度指令値を第1リフトカーブL1から求める。
第2変換関数発生器35は、第1変換関数発生器34と同様に構成されている。すなわち、第2変換関数発生器35には、図3に示す第1リフトカーブL1が予め記憶されており、この第1リフトカーブL1から開度指令値を求める。
第1開度指令部31は、負荷上昇時および負荷降下時のいずれにおいても、流量指令値が第3流量指令値Q3以上である場合に、第1弁21aおよび第2弁21bに100%開度を与えるように構成されている。
すなわち、第1開度指令部31は、流量指令値に基づいて、開度指令値にバイアスを付加するか否かを判断するバイアス判断部36と、バイアス判断部36の判断に基づいてバイアスを発生させるバイアス関数発生器37と、を更に有している。このうちバイアス判断部36は、蒸気加減弁制御装置30が受信する流量指令値が、第3流量指令値Q3以上であるか否かを判断し、流量指令値が第3流量指令値Q3以上であると判断した場合に、バイアス関数発生器37にバイアスを発生させるバイアス指令を与える。バイアス関数発生器37は、バイアス判断部36からバイアス指令が与えられた場合にバイアスを発生させる。
第1開度指令部31は、バイアス関数発生器37で発生したバイアスを、第1変換関数発生器34で作成された開度指令値に加算する第1加算器38と、バイアス関数発生器37で発生したバイアスを、第2変換関数発生器35で作成された開度指令値に加算する第2加算器39と、を更に有している。このことにより、バイアス関数発生器37で発生したバイアスは、第1変換関数発生器34で作成された開度指令値に加算され、第1弁21aに与えられる開度指令値は、100%開度指令値となる。同様に、バイアス関数発生器37で発生したバイアスは、第2変換関数発生器35で作成された開度指令値に加算され、第2弁21bに与えられる開度指令値は、100%開度となる。
上述のようにして作成された開度指令値は、第1弁21aおよび第2弁21bにそれぞれ与えられる。より具体的には、流量指令値が第3流量指令値Q3よりも小さい場合には、第1弁21aに第1変換関数発生器35で作成された開度指令値が与えられ、第2弁21bに第2変換関数発生器36で作成された開度指令値が与えられる。第1弁21aの図示しない弁体は、与えられた開度指令値に基づいて駆動され、第1弁21aの開度が、開度指令値で示す開度となるように調整される。第2弁21bも同様にして、第2弁21bの開度が、開度指令値で示す開度となる。流量指令値が第3流量指令値Q3以上である場合には、第1弁21aおよび第2弁2bに、100%開度指令値がそれぞれ与えられ、第1弁21aの開度および第2弁21bの開度が、それぞれ100%開度となる。
第2開度指令部32は、流量指令値を変換して第3弁21cに与えるための開度指令値を作成する第3変換関数発生器40を有している。第3変換関数発生器40には、図3に示す第2リフトカーブL2が予め記憶されている。第2リフトカーブL2は、蒸気加減弁制御装置30に与えられた流量指令値と、第3弁21cの開度指令値との関係を示している。蒸気加減弁制御装置30に流量指令値が与えられると、第3変換関数発生器40は、この流量指令値に対応する開度指令値を第2リフトカーブL2から求める。
第3開度指令部33は、流量指令値が第2流量指令値Q2以上である場合に、流量指令値を変換して第4弁21dに与えるための開度指令値を作成する第4変換関数発生器41を有している。第4変換関数発生器41には、図3に示す第3リフトカーブL3が予め記憶されている。第3リフトカーブL3は、蒸気加減弁制御装置30に与えられた流量指令値と、第4弁21dの開度指令値との関係を示している。蒸気加減弁制御装置30に流量指令値が与えられると、第4変換関数発生器41は、この流量指令値に対応する開度指令値を第3リフトカーブL3から求める。また、第3開度指令部33は、流量指令値が第2流量指令値Q2よりも小さい場合に第4弁21dに0%開度指令値を与える。この場合、第4弁21dは閉じられる。
次に、このような構成からなる本実施の形態の作用、すなわち蒸気加減弁制御方法について説明する。
ここではまず、タービン起動時などのような負荷上昇時における蒸気加減弁21の第1弁21a〜第4弁21dの開度の推移について説明する。この場合、蒸気加減弁21に与えられる流量指令値は増大していく。
まず、図3に示すように、第1弁21a、第2弁21bおよび第3弁21cが同時に開く。そして、流量指令値の増大に伴って、流量指令値が第1流量指令値Q1となるまで、第1弁21aの開度および第2弁21bの開度は、第1リフトカーブL1に従って増大していく。同様にして、第3弁21cの開度は、流量指令値が第1流量指令値Q1となるまで、第2リフトカーブL2に従って増大していく。この間、第3弁21cの開度は、第1弁21aの開度および第2弁21bの開度と同一となるように増大していく。このことにより、蒸気加減弁21を通過する主蒸気S1の流量を確保している。一方、この間、第4弁21dは閉じている。また、この間の蒸気加減弁21を通過する蒸気の流量は、絞り調速、すなわち、第1弁21aの開度、第2弁21bの開度および第3弁21cの開度の調整によって調整される。
続いて、流量指令値が第1流量指令値Q1となると、第3弁21cの開度は、第1弁21aの開度および第2弁21bの開度よりも小さくなる。そして、流量指令値の増大に伴って、第3弁21cの開度が第1弁21aの開度および第2弁21bの開度よりも小さい関係を維持しながら、第1弁21aの開度および第2弁21bの開度は、第1リフトカーブL1に従って増大していき、第3弁21cの開度は第2リフトカーブL2に従って増大していく。この間、第1弁21aの開度および第2弁21bの開度は、同一となっている。一方、この間、第4弁21dは、依然として閉じている。また、この間の蒸気加減弁21を通過する蒸気の流量は、絞り調速、すなわち、第1弁21aの開度、第2弁21bの開度および第3弁21cの開度の調整によって調整される。
次に、流量指令値が第3流量指令値Q3となると、第1弁21aおよび第2弁21bに100%開度指令が与えられる。このことにより、第1弁21aの開度および第2弁21bの開度は、100%開度となる。そして、流量指令値が第3流量指令値Q3以上となっている間、第1弁21aの開度および第2弁21bの開度は、100%開度に維持される。この間の蒸気加減弁21を通過する蒸気の流量は、絞り調速、すなわち、第3弁21cの開度の調整によって調整される。
続いて、流量指令値が第2流量指令値Q2となると、第4弁21dが開く。このことにより、本実施の形態による蒸気加減弁21は2アドミッションで運用され、ノズル調速が行われる。そして、流量指令値の増大に伴って、第4弁21dの開度は、第3弁21cの開度よりも小さい関係を維持しながら、第3弁21cの開度および第4弁21dの開度が第3リフトカーブL3に従って増大していく。この間、上述したように、第1弁21aの開度および第2弁21bの開度は、100%開度に維持される。このことにより、第1弁21aおよび第2弁21bを通過する主蒸気S1の絞りによる圧力損失が低減され得る。また、この間の蒸気加減弁21を通過する主蒸気S1の流量は、絞り調速、すなわち、第3弁21cの開度および第4弁21dの開度の調整によって調整されるが、第4弁21dの開度が第3弁21cの開度よりも小さいため、第3弁21cの開度よりも第4弁21dの開度の影響を受ける傾向にある。
その後、流量指令値が定格負荷に相当する定格流量指令値Qrに達し、蒸気加減弁21の全体としての開度が定格開度となる。この場合、蒸気加減弁21の定格負荷運転が行われる。この際、第1弁21aの開度および第2弁21bの開度は100%開度となっているため、第1弁21aおよび第2弁21bを通過する主蒸気S1の絞りによる圧力損失が低減され得る。第3弁21cは、100%開度よりもやや小さい開度となっているが、第4弁21dよりも大きな開度を有しており、第3弁21cを通過する主蒸気S1の絞りによる圧力損失も低減され得る。
タービン停止時などのような負荷降下時、例えば定格負荷運転を行っていた蒸気加減弁21の負荷を降下させる際には、蒸気加減弁21の第1弁21a〜第4弁21dの開度の推移は、上述した負荷上昇時における第1弁21a〜第4弁21dの開度の推移を逆から辿ることになるため、ここでは詳細な説明は省略する。
このように本実施の形態によれば、流量指令値が第1流量指令値Q1以上である場合に、第3弁21cの開度が第1弁21aの開度および第2弁21bの開度より小さくなるように、蒸気加減弁21の第1弁21a、第2弁21bおよび第3弁21cに開度指令が与えられる。このことにより、定格負荷運転時、第1弁21aの開度および第2弁21bの開度を、第3弁21cの開度よりも大きくすることができ、第1弁21aおよび第2弁21bを通過する主蒸気S1の絞りによる圧力損失を低減することができる。このため、定格負荷運転中に蒸気加減弁21を通過する主蒸気S1の圧力損失を低減することができ、火力発電プラント1のプラント効率を向上させることができる。
また、本実施の形態によれば、流量指令値が、第3流量指令値Q3以上である場合に、蒸気加減弁21の第1弁21aおよび第2弁21bに100%開度指令が与えられる。このことにより、第1弁21aの開度および第2弁21bの開度を100%開度とすることができ、第1弁21aおよび第2弁21bを通過する主蒸気S1の絞りによる圧力損失をより一層低減することができる。このため、定格負荷運転中に蒸気加減弁21を通過する蒸気の圧力損失をより一層低減することができる。
なお、上述した本実施の形態においては、第1開度指令部31が第1変換関数発生器34と第2変換関数発生器35とを有し、第1弁21aおよび第2弁21bに別々に開度指令が与えられる例について説明した。しかしながら、このことに限られることはなく、第1弁21aおよび第2弁21bに開度指令を与えることができれば、第1開度指令部31は、いずれか一方の変換関数発生器から第1弁21aおよび第2弁21bに開度指令を与えるようにしてもよい。
また、上述した本実施の形態においては、先行大開度弁が第1リフトカーブL1に従う第1弁21aと第2弁21bとを有し、2アドミッションで運用される蒸気加減弁21を例にとって説明した。しかしながら、このことに限られることはない。例えば、第2弁21bが、第1リフトカーブL1に従うことなく、タービン起動時に第1弁21aおよび第3弁21cよりも後であって第4弁21dよりも先に開くようにして、3アドミッションで運用されるようにしてもよい。
また、上述した本実施の形態による蒸気加減弁21に、変圧運転を適用してもよい。ここで、変圧運転とは、部分負荷運転時に蒸気発生器5から発生する主蒸気S1の圧力をタービン負荷に見合うように減圧させてプラント熱効率の低下を改善させるための運転である。変圧運転を適用する場合、例えば、流量指令値が第1流量指令値Q1と第3流量指令値Q3との間の範囲のうち所望の範囲(例えば、負荷30%〜90%の範囲)において、変圧運転が行われることが好適である。
さらに、上述した本実施の形態においては、発電プラントの一例として火力発電プラント1を例にとって説明した。しかしながら、このことに限られることはなく、発電プラントは、例えば原子力発電プラントであってもよく、蒸気タービンが設置される任意の発電プラントに本実施の形態を適用することが可能である。
(第2の実施の形態)
次に、図5を用いて、第2の実施の形態における蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法について説明する。
図5に示す第2の実施の形態においては、負荷降下時に、第3流量指令値以上である流量指令値が第4流量指令値となるまで先行大開度弁に100%開度指令を与え、流量指令値が第4流量指令値未満となった場合に先行大開度弁の100%開度指令を解除する点が主に異なり、他の構成は、図1乃至図4に示す第1の実施の形態と略同一である。なお、図5において、図1乃至図4に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
本実施の形態においては、図5に示すように、負荷降下時に、第3流量指令値Q3以上である流量指令値が、第3流量指令値Q3よりも小さい第4流量指令値Q4となるまで、蒸気加減弁21の第1弁21aの開度および第2弁21bの開度が100%開度となる。そして、流量指令値が第4流量指令値Q4未満となった場合に、第1弁21aの開度および第2弁21bの開度が、第1リフトカーブL1に従う開度になっている。なお、第4流量指令値Q4は、第1流量指令値Q1よりも大きい流量指令値となっている。
この場合、蒸気加減弁制御装置30の第1開度指令部31は、第3流量指令値Q3以上である流量指令値が、第4流量指令値Q4未満に移行する過程において、流量指令値が第4流量指令値Q4となるまで第1弁21aおよび第2弁21bに100%開度指令を与え、流量指令値が第4流量指令値Q4未満となった場合に、第1弁21aおよび第2弁21bの100%開度指令を解除する。
すなわち、第1開度指令部31のバイアス判断部36は、蒸気加減弁制御装置30に与えられる流量指令値が、第3流量指令値Q3以上の流量指令値から第4流量指令値Q4未満に減少していくか否かを判断するとともに、流量指令値が第4流量指令値Q4以上であるか否かを判断する。そして、バイアス判断部36は、流量指令値が、第3流量指令値Q3以上の流量指令値から第4流量指令値Q4未満に減少していくと判断するとともに、流量指令値が第4流量指令値Q4以上であると判断した場合に、バイアス関数発生器37にバイアスを発生させるバイアス指令を与える。一方、バイアス判断部36は、流量指令値が第4流量指令値Q4未満になったと判断した場合に、バイアス関数発生器37へのバイアス指令を解除する。この場合、バイアス関数発生器37はバイアスを発生させないため、第1変換関数発生器34で作成された開度指令値には、バイアスが加算されることなく、第1弁21aおよび第2弁21bに与えられる。
図5に示すように、タービン停止時などのような負荷降下時、例えば、定格負荷運転を行っていた蒸気加減弁21の負荷を降下させる際には、蒸気加減弁21に与えられる流量指令値は減少していく。流量指令値が、第4流量指令値Q4となるまで第1弁21aおよび第2弁21bに100%開度指令が与えられる。すなわち、流量指令値が、第3流量指令値Q3未満となった場合であっても、第4流量指令値Q4以上である間、第1弁21aおよび第2弁21bに100%開度指令が与えられる。このことにより、第1弁21aの開度および第2弁21bの開度は、100%開度に維持される。
そして、流量指令値が第4流量指令値Q4未満となった場合に、第1弁21aのおよび第2弁21bの100%開度指令が解除される。このことにより、第1弁21aの開度および第2弁21bの開度は、第1リフトカーブL1に従う開度に低減し、第1リフトカーブL1に復帰する。その後、流量指令値の減少に伴って、第1弁21aの開度および第2弁21bの開度は、第1リフトカーブL1に従って低減していく。
このように本実施の形態によれば、負荷降下時に、流量指令値が第3流量指令値Q3未満となった場合であっても、第1弁21aの開度および第2弁21bの開度を100%開度とし、第4流量指令値Q4未満となったときに第1弁21aの開度および第2弁21bの開度を第1リフトカーブL1に従う開度に復帰させることができる。このことにより、第1弁21aの開度および第2弁21bの開度を100%開度にする(突き上げる)タイミングと、第1弁21aの開度および第2弁21bの開度を100%開度から第1リフトカーブL1に従う開度に復帰させる(突き下げる)タイミングとをずらすことができ、ヒステリシスを持たせることができる。このため、流量指令値が第3流量指令値Q3近辺で周波数変動等によって往復変動する場合であっても、第1弁21aの開度および第2弁21bの開度が、第1リフトカーブL1に従う開度と100%開度との間で往復変動することを防止できる。この結果、高圧タービン7に供給される主蒸気S1の流量が変動することを防止し、主蒸気S1の供給を安定化させることができる。
なお、上述した本実施の形態による蒸気加減弁21に、変圧運転を適用してもよい。この場合、例えば、流量指令値が第4流量指令値Q4と第3流量指令値Q3との間の範囲のうち所望の範囲(例えば、負荷30%〜90%の範囲)において、変圧運転が行われることが好適である。
(第3の実施の形態)
次に、図6および図7を用いて、第3の実施の形態における蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法について説明する。
図6および図7に示す第3の実施の形態においては、負荷降下時に、流量指令値が第4流量指令値以上かつ第3流量指令値以下である間、第2開閉特性の開度よりも小さい開度を有する分岐開閉特性に従って先行小開度弁に分岐開度指令を与える点が主に異なり、他の構成は、図5に示す第2の実施の形態と略同一である。なお、図6および図7において、図5に示す第2の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
本実施の形態においては、図6に示すように、負荷降下時に、流量指令値が第4流量指令値Q4以上かつ第3流量指令値Q3以下である間、分岐カーブL4(分岐開閉特性)に従って第3弁21cに分岐開度指令を与える。分岐カーブL4は、第2リフトカーブL2の開度よりも小さい開度を有しており、第2リフトカーブL2から分岐するような特性を有している。図6に示す分岐カーブL4は、流量指令値の減少に伴って、開度指令値が徐々に低減するようになっている。そして、流量指令値が、第4流量指令値Q4未満となった場合に、第3弁21cの開度が、第2リフトカーブL2に従う開度になっている。
この場合、蒸気加減弁制御装置30の第2開度指令部32は、第3流量指令値Q3以上である流量指令値が第4流量指令値Q4未満に移行する過程において、流量指令値が第4流量指令値Q4以上かつ第3流量指令値Q3以下である間、分岐カーブL4に従って第3弁21cに分岐開度指令を与える。また、第2開度指令部32は、流量指令値が第4流量指令値Q4未満となった場合に、第3弁21cの分岐開度指令を解除する。
すなわち、第2開度指令部32は、流量指令値に基づいて、開度指令値を、第2リフトカーブL2から分岐した分岐カーブL4に従わせるか否かを判断する分岐判断部42と、分岐判断部42の判断に基づいて流量指令値を変換して第3弁21cに与えるための分岐開度指令値を作成する分岐関数発生器43と、を更に有している。このうち分岐判断部42は、蒸気加減弁制御装置30に与えられた流量指令値が、第4流量指令値Q4以上かつ第3流量指令値Q3以下であるか否かを判断し、流量指令値が、第4流量指令値Q4以上かつ第3流量指令値Q3以下であると判断した場合に、分岐関数発生器43に分岐指令を与える。分岐関数発生器43には、図6に示す分岐カーブL4が予め記憶されている。分岐カーブL4は、蒸気加減弁制御装置30に与えられる流量指令値と、第3弁21cの開度指令値との関係を示している。蒸気加減弁制御装置30に流量指令値が与えられると、分岐関数発生器43は、この流量指令値に対応する分岐開度指令値を分岐カーブL4から求める。
第2開度指令部32は、分岐関数発生器で分岐開度指令値が作成された場合に、第3変換関数発生器40で作成された開度指令値を、分岐関数発生器43で作成された分岐開度指令値に切り替える関数切替器44を更に有している。このことにより、第3弁21cには分岐開度指令値が与えられる。このようにして、流量指令値が第4流量指令値Q4以上第3流量指令値Q3以下である場合、第3弁21cに分岐開度指令が与えられる。
一方、第2開度指令部32は、流量指令値が第4流量指令値Q4未満となった場合に、第3弁21cの分岐開度指令を解除する。より具体的には、分岐判断部42は、流量指令値が第4流量指令値Q4未満であると判断した場合に、分岐関数発生器43への分岐指令を解除する。この場合、分岐関数発生器43は分岐開度指令値を作成しないため、第3変換関数発生器40で作成された開度指令値は、分岐開度指令値に切り替えられることなく、第3弁21cに与えられる。
第2開度指令部32は、流量指令値が第4流量指令値Q4となってから所定時間経過後に第3弁21cの分岐開度指令を解除することが好適である。例えば、第2開度指令部32の分岐判断部42は、復帰タイマー45を有していてもよく、この復帰タイマー45が、流量指令値が第4流量指令値Q4となってから所定時間経過後に分岐指令を解除するようにしてもよい。この場合、第2開度指令部32による分岐開度指令が、流量指令値が第4流量指令値Q4となってから所定時間経過後(例えば、数秒〜10秒程度)に解除され得る。このことにより、第3弁21cの開度が増大するタイミングと、第1弁21aの開度および第2弁21bの開度が低減するタイミングとをずらすことができ、蒸気加減弁21を通過する主蒸気S1の流量が一時的に増大することを抑制できる。
図6に示すように、タービン停止時などのような負荷降下時、例えば、定格負荷運転を行っていた蒸気加減弁21の負荷を降下させる際には、蒸気加減弁21に与えられる流量指令値は減少していく。流量指令値が、第4流量指令値Q4以上かつ第3流量指令値Q3以下である間、第3弁21cに分岐開度指令が与えられる。具体的には、流量指令値が減少していき第3流量指令値Q3となると、第3弁21cに分岐カーブL4に従う分岐開度指令が与えられる。このことにより、第3弁21cには、第2リフトカーブL2の開度よりも小さい開度指令値が与えられ、第3弁21cの開度が、負荷上昇時の開度よりも小さくなる。この分岐開度指令は、流量指令値が第4流量指令値Q4となるまで継続される。
そして、流量指令値が第4流量指令値Q4未満となった場合に、第3弁21cの分岐開度指令が解除される。この場合、上述したように、流量指令値が第4流量指令値Q4となってから所定時間経過後に第3弁21cの分岐開度指令が解除されるようにしてもよい。分岐開度指令が解除されると、第3弁21cの開度は、第2リフトカーブL2に従う開度に増大し、第2リフトカーブL2に復帰する。その後、流量指令値の減少に伴って、第3弁21cの開度は、第2リフトカーブL2に従って低減していく。
このように本実施の形態によれば、負荷降下時に、流量指令値が第4流量指令値Q4以上かつ第3流量指令値Q3以下である間、第2リフトカーブL2の開度よりも小さい開度を有する分岐カーブL4に従って第3弁21cに分岐開度指令が与えられる。このことにより、この間における第3弁21cの開度を小さくすることができる。第1弁21aの開度および第2弁21bの開度が100%開度となっていることにより蒸気加減弁21を通過する主蒸気S1の流量が過剰になるおそれがあるが、第3弁21cの開度を小さくすることにより、蒸気加減弁21を通過する主蒸気S1の流量が過剰になることを抑制できる。
また、本実施の形態によれば、負荷降下時、流量指令値が第4流量指令値Q4未満となった場合に、第3弁21cの分岐開度指令が解除される。このことにより、第3弁21cの開度を第2リフトカーブL2に従う開度に復帰させることができる。このため、第1弁21aの開度および第2弁21bの開度を100%開度から第1リフトカーブL1に従う開度に復帰させるタイミングに合わせて、第3弁21cの開度を第2リフトカーブL2に従う開度に復帰させることができる。とりわけ、本実施の形態によれば、復帰タイマー45によって、流量指令値が第4流量指令値Q4となってから所定時間経過後に第3弁21cの分岐開度指令が解除される。このことにより、復帰タイマー45の設定を調整することにより、負荷変動を効果的に抑制することができ、主蒸気S1の供給を安定化させることができる。
以上述べた実施の形態によれば、定格負荷運転中の蒸気の圧力損失を低減し、プラント効率を向上させることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、当然のことながら、本発明の要旨の範囲内で、これらの実施の形態を、部分的に適宜組み合わせることも可能である。
1:火力発電プラント、2:ボイラー、5:蒸気発生器、7:高圧タービン、21:蒸気加減弁、21a:第1弁、21b:第2弁、21c:第3弁、21d:第4弁、30:蒸気加減弁制御装置、31:第1開度指令部、32:第2開度指令部、33:第3開度指令部、L1:第1リフトカーブ、L2:第2リフトカーブ、L3:第3リフトカーブ、L4:分岐カーブ、Q1:第1流量指令値、Q2:第2流量指令値、Q3:第3流量指令値、Q4:第4流量指令値、S1:主蒸気

Claims (14)

  1. タービン負荷に応じた流量指令値に基づいて、先行大開度弁、先行小開度弁および後行弁を有する蒸気加減弁を制御する蒸気加減弁制御装置であって、
    第1開閉特性に従って前記先行大開度弁に開度指令を与える第1開度指令部と、
    前記流量指令値が第1流量指令値よりも小さい場合に前記第1開閉特性の開度と同一の開度を有する第2開閉特性であって、前記流量指令値が前記第1流量指令値以上である場合に前記第1開閉特性の開度よりも小さい開度を有する第2開閉特性に従って、前記先行小開度弁に開度指令を与える第2開度指令部と、
    前記流量指令値が前記第1流量指令値よりも大きな第2流量指令値よりも小さい場合に前記後行弁に0%開度指令を与えるとともに、前記流量指令値が前記第2流量指令値以上である場合に前記第2開閉特性の開度よりも小さい開度を有する第3開閉特性に従って前記後行弁に開度指令を与える第3開度指令部と、を備えたことを特徴とする蒸気加減弁制御装置。
  2. 前記第1開度指令部は、前記流量指令値が、前記第1流量指令値よりも大きくかつ前記第2流量指令値よりも小さい第3流量指令値以上である場合に、前記先行大開度弁に100%開度指令を与えることを特徴とする請求項1に記載の蒸気加減弁制御装置。
  3. 前記第1開度指令部は、前記第3流量指令値以上である前記流量指令値が、前記第3流量指令値よりも小さい第4流量指令値未満に移行する過程において、前記流量指令値が前記第4流量指令値となるまで前記先行大開度弁に前記100%開度指令を与え、前記流量指令値が前記第4流量指令値未満となった場合に、前記先行大開度弁の前記100%開度指令を解除することを特徴とする請求項2に記載の蒸気加減弁制御装置。
  4. 前記第2開度指令部は、前記過程において、前記流量指令値が前記第4流量指令値以上かつ前記第3流量指令値以下である間、前記第2開閉特性の開度よりも小さい開度を有する分岐開閉特性に従って前記先行小開度弁に分岐開度指令を与えることを特徴とする請求項3に記載の蒸気加減弁制御装置。
  5. 前記第2開度指令部は、前記過程において、前記流量指令値が前記第4流量指令値未満となった場合に、前記先行小開度弁の前記分岐開度指令を解除することを特徴とする請求項4に記載の蒸気加減弁制御装置。
  6. 前記第2開度指令部は、前記過程において、前記流量指令値が前記第4流量指令値となってから所定時間経過後に前記先行小開度弁の前記分岐開度指令を解除することを特徴とする請求項5に記載の蒸気加減弁制御装置。
  7. 前記先行大開度弁は、第1先行大開度弁と第2先行大開度弁とを含んでおり、
    前記第1開度指令部は、前記第1開閉特性に従って前記第1先行大開度弁および前記第2先行大開度弁に開度指令を与えることを特徴とする請求項1乃至6のいずれか一項に記載の蒸気加減弁制御装置。
  8. 蒸気発生器と、
    前記蒸気発生器から供給される蒸気を用いて回転駆動される高圧タービンと、
    前記高圧タービンに供給される蒸気の流量を制御する蒸気加減弁と、
    前記蒸気加減弁を制御する請求項1乃至7のいずれか一項に記載の蒸気加減弁制御装置と、を備えたことを特徴とする発電プラント。
  9. タービン負荷に応じた流量指令値に基づいて、先行大開度弁、先行小開度弁および後行弁を有する蒸気加減弁を制御する蒸気加減弁制御方法であって、
    負荷上昇時に、
    前記先行大開度弁および前記先行小開度弁を開き、前記流量指令値が第1流量指令値となるまで、前記先行大開度弁の開度を増大させていくとともに、前記先行大開度弁の開度と同一となるように前記先行小開度弁の開度を増大させていく工程と、
    前記流量指令値が前記第1流量指令値となった場合に、前記先行小開度弁の開度を前記先行大開度弁の開度よりも小さくして、前記先行小開度弁の開度が前記先行大開度弁の開度よりも小さい関係を維持しながら前記先行大開度弁の開度および前記先行小開度弁の開度を増大させていく工程と、
    前記流量指令値が前記第1流量指令値よりも大きな第2流量指令値となった場合に、前記後行弁を開き、前記後行弁の開度が前記先行小開度弁の開度よりも小さい関係を維持しながら前記先行小開度弁の開度および前記後行弁の開度を増大させていく工程と、を備えたことを特徴とする蒸気加減弁制御方法。
  10. 負荷上昇時および負荷降下時に、前記流量指令値が、前記第1流量指令値よりも大きくかつ前記第2流量指令値よりも小さい第3流量指令値である場合に、前記先行大開度弁に100%開度指令が与えられることを特徴とする請求項9に記載の蒸気加減弁制御方法。
  11. 負荷降下時に、前記流量指令値が、前記第3流量指令値よりも小さい第4流量指令値となるまで前記先行大開度弁に前記100%開度指令が与えられ、前記流量指令値が前記第4流量指令値未満となった場合に前記先行大開度弁の前記100%開度指令が解除されることを特徴とする請求項10に記載の蒸気加減弁制御方法。
  12. 負荷降下時に、前記流量指令値が前記第4流量指令値以上かつ前記第3流量指令値以下である間、前記先行小開度弁に、負荷上昇時の前記先行小開度弁の開度よりも小さい関係を維持しながら開度を減少させる分岐開度指令が与えられることを特徴とする請求項11に記載の蒸気加減弁制御方法。
  13. 負荷降下時に、前記流量指令値が前記第4流量指令値未満となった場合に、前記先行小開度弁の前記分岐開度指令が解除されることを特徴とする請求項12に記載の蒸気加減弁制御方法。
  14. 負荷降下時に、前記流量指令値が前記第4流量指令値未満となってから所定時間経過後に前記先行小開度弁の前記分岐開度指令が解除されることを特徴とする請求項13に記載の蒸気加減弁制御方法。
JP2015179842A 2015-09-11 2015-09-11 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法 Active JP6625848B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179842A JP6625848B2 (ja) 2015-09-11 2015-09-11 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179842A JP6625848B2 (ja) 2015-09-11 2015-09-11 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法

Publications (2)

Publication Number Publication Date
JP2017053324A true JP2017053324A (ja) 2017-03-16
JP6625848B2 JP6625848B2 (ja) 2019-12-25

Family

ID=58317607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179842A Active JP6625848B2 (ja) 2015-09-11 2015-09-11 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法

Country Status (1)

Country Link
JP (1) JP6625848B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131307A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Steam turbine governing system for voltage transformation running
JPS6153407A (ja) * 1984-08-23 1986-03-17 Hitachi Ltd 調速方式切換装置
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
JPS6257704U (ja) * 1985-09-30 1987-04-10
JP2001147293A (ja) * 1999-11-24 2001-05-29 Mitsubishi Heavy Ind Ltd 蒸気タービン発電設備及びその運転方法
JP2013124583A (ja) * 2011-12-14 2013-06-24 Toshiba Corp 蒸気弁制御装置及び方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131307A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Steam turbine governing system for voltage transformation running
JPS6153407A (ja) * 1984-08-23 1986-03-17 Hitachi Ltd 調速方式切換装置
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
JPS6257704U (ja) * 1985-09-30 1987-04-10
JP2001147293A (ja) * 1999-11-24 2001-05-29 Mitsubishi Heavy Ind Ltd 蒸気タービン発電設備及びその運転方法
JP2013124583A (ja) * 2011-12-14 2013-06-24 Toshiba Corp 蒸気弁制御装置及び方法

Also Published As

Publication number Publication date
JP6625848B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5734792B2 (ja) 蒸気タービンプラントおよびその運転方法
JP5604074B2 (ja) 給水ポンプサイズを縮小するために燃料ガス加熱器の排水を使用する蒸気温度調節用装置
US10287921B2 (en) Combined cycle plant, method for controlling same, and device for controlling same
EP2770172B1 (en) Method for providing a frequency response for a combined cycle power plant
JP2015081589A (ja) 蒸気タービンプラントの起動方法
TW201540936A (zh) 控制裝置及起動方法
JP6071421B2 (ja) コンバインドサイクルプラント、及びその停止方法、及びその制御装置
JP2010242673A (ja) 蒸気タービンシステム及びその運転方法
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
CN104074560A (zh) 用于燃气轮机联合循环发电机组蒸汽旁路控制的方法
JP6625848B2 (ja) 蒸気加減弁制御装置、発電プラントおよび蒸気加減弁制御方法
JP7269098B2 (ja) 蒸気加減弁システム、発電プラントおよび蒸気加減弁の運転方法
JP4183653B2 (ja) 火力発電プラントおよび運転方法
KR101887971B1 (ko) 복합 화력 발전 설비들의 저 부하 턴다운
CA2909159C (en) Method for flexible operation of a power plant
JP6744243B2 (ja) 発電プラント及び発電プラントの制御方法
JP2019173697A (ja) コンバインドサイクル発電プラント及びその運転方法
US20180094546A1 (en) Fast Frequency Response Systems with Thermal Storage for Combined Cycle Power Plants
KR101818090B1 (ko) 증기 터빈의 단기간 출력 상승의 조절 방법
JPH05209503A (ja) 蒸気ドラムを有する複合発電プラント

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191128

R150 Certificate of patent or registration of utility model

Ref document number: 6625848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150