JP2017052673A - Bonded body manufacturing method - Google Patents

Bonded body manufacturing method Download PDF

Info

Publication number
JP2017052673A
JP2017052673A JP2015179337A JP2015179337A JP2017052673A JP 2017052673 A JP2017052673 A JP 2017052673A JP 2015179337 A JP2015179337 A JP 2015179337A JP 2015179337 A JP2015179337 A JP 2015179337A JP 2017052673 A JP2017052673 A JP 2017052673A
Authority
JP
Japan
Prior art keywords
mixture
carbon
alloy
ceramic matrix
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015179337A
Other languages
Japanese (ja)
Inventor
貴彦 篠原
Takahiko Shinohara
貴彦 篠原
理絵 坂元
Rie Sakamoto
理絵 坂元
真吾 金澤
Shingo Kanazawa
真吾 金澤
佐藤 彰洋
Akihiro Sato
彰洋 佐藤
荒木 隆人
Takahito Araki
隆人 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015179337A priority Critical patent/JP2017052673A/en
Publication of JP2017052673A publication Critical patent/JP2017052673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonded body manufacturing method capable of improving operating efficiency.SOLUTION: A bonded body manufacturing method includes: preparing a mixture 10 in which a carbon adhesive 5 and a Si-Ti alloy powder 6 are mixed; placing the mixture 10 between bonding surfaces 2a, 3a of a pair of ceramic matrix composites (CMC) 2, 3 to be bonded; and after hardening the carbon adhesive 5 in the mixture 10 to bond the CMC 2, 3 to each other, reacting a carbon (C) component of the carbon adhesive 5 with a silicon (Si) powder and a titanium (Ti) powder by performing vacuum heat treatment to produce silicon carbide (SiC) and titanium carbide (TiC) to bond the CMC 2, 3 to each other.SELECTED DRAWING: Figure 2

Description

本発明は、複数のセラミックス基複合部材を接合した接合体を製造する接合体製造方法に関する。   The present invention relates to a joined body manufacturing method for manufacturing a joined body in which a plurality of ceramic matrix composite members are joined.

複数のセラミックス基複合部材(Ceramic Matrix Composites:以下CMCという)を接合する方法としては種々の手法が開発されている。   Various methods have been developed for joining a plurality of ceramic matrix composites (hereinafter referred to as CMC).

例えば、特許文献1では、炭化ケイ素(SiC)粉末と炭素(C)粉末とを含有させた接着剤をCMC間に配置して、当該接着剤を硬化させた後、熱処理を行うことで硬化物を炭化させて多孔質化させている。そして、この多孔質体に溶融シリコン(Si)を含浸させ、炭素(C)成分とシリコン(Si)の一部を反応させることで、CMC間に炭化ケイ素−シリコン複合体を生成している。   For example, in Patent Document 1, an adhesive containing silicon carbide (SiC) powder and carbon (C) powder is disposed between CMCs, the adhesive is cured, and then a heat treatment is performed to obtain a cured product. Is carbonized to make it porous. The porous body is impregnated with molten silicon (Si), and a carbon (C) component and a part of silicon (Si) are reacted to generate a silicon carbide-silicon composite between the CMCs.

つまり、特許文献1では、炭化ケイ素−シリコン複合体を生成する際に、接着剤に含有させた第1の炭化ケイ素(SiC)粒子と炭素(C)とを有する多孔質体に溶融シリコン(Si)を含浸させ、多孔質体中の炭素(C)を溶融シリコン(Si)と反応させて第2の炭化ケイ素(SiC)粒子を生成すると共に、溶融シリコン(Si)の一部をシリコン相として残存させている。   That is, in Patent Document 1, when a silicon carbide-silicon composite is produced, molten silicon (Si) is added to a porous body having first silicon carbide (SiC) particles and carbon (C) contained in an adhesive. ) And reacting carbon (C) in the porous body with molten silicon (Si) to produce second silicon carbide (SiC) particles, and a part of the molten silicon (Si) as a silicon phase It remains.

特開2014-15392号公報JP 2014-15392

しかしながら、上記特許文献1では、接着剤を硬化させた後、接着剤の硬化物を多孔質化するために400℃〜1300℃の熱処理を行い、その後さらに溶融シリコンの含浸の際にも1400℃〜1500℃の加熱を行っており、少なくとも2回の熱処理を行う必要があるが、接合体の製造においては、さらなる効率化が望まれている。   However, in the above-mentioned Patent Document 1, after the adhesive is cured, a heat treatment at 400 ° C. to 1300 ° C. is performed in order to make the cured product of the adhesive porous, and after that, also at the time of impregnation with molten silicon, 1400 ° C. Although heating at ˜1500 ° C. is required and heat treatment needs to be performed at least twice, further efficiency is desired in the manufacture of the joined body.

本発明はこのような問題を解決するためになされたもので、その目的とするところは、より作業効率を向上させることのできる接合体製造方法を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a joined body manufacturing method capable of further improving working efficiency.

上記した目的を達成するために、第1の発明に係る接合体製造方法は、複数のセラミックス基複合部材を接合した接合体を製造する接合体製造方法であって、カーボン接着剤にSi基合金を混合した混合物を生成するステップと、接合対象である一方のセラミックス基複合部材の接合面と他方のセラミックス基複合部材の接合面との間に、前記混合物を配置するステップと、前記混合物中のカーボン接着剤を硬化させ、当該混合物を介して前記一方及び他方のセラミックス基複合部材を接着するステップと、前記混合物を介して接着された前記一方及び他方のセラミックス基複合部材を、前記Si基合金の融点以上に加熱するステップと、を含む。   In order to achieve the above-described object, a joined body manufacturing method according to a first aspect of the present invention is a joined body manufacturing method for manufacturing a joined body in which a plurality of ceramic matrix composite members are joined. Generating a mixture, and placing the mixture between the bonding surface of one ceramic matrix composite member to be bonded and the bonding surface of the other ceramic matrix composite member; and in the mixture A step of curing the carbon adhesive and bonding the one and the other ceramic-based composite members through the mixture; and the one and the other ceramic-based composite members bonded through the mixture, the Si-based alloy Heating above the melting point of.

第2の発明に係る接合体製造方法は、前記第1の発明において、前記Si基合金はSi−Ti合金であり、前記加熱を行うステップでは、前記Si−Ti合金の融点以上に加熱し、前記カーボン接着剤のC成分と前記Si−Ti合金のSi成分及びTi成分とを反応させてSiC化及びTiC化させる。   In the joined body manufacturing method according to a second aspect of the present invention, in the first aspect, the Si-based alloy is a Si-Ti alloy, and in the heating step, heating is performed to a temperature equal to or higher than a melting point of the Si-Ti alloy. The C component of the carbon adhesive and the Si component and Ti component of the Si-Ti alloy are reacted to form SiC and TiC.

上記手段を用いる本発明によれば、カーボン接着剤とSi基合金を混合した混合物をCMC間に配置し、当該カーボン接着剤を硬化させてCMCを接着した後に熱処理を行うだけで、CMCの接合体を製造することができる。これにより、CMCの接合体の製造においてより作業効率を向上させることができる。   According to the present invention using the above means, a mixture of carbon adhesive and Si-based alloy is placed between the CMCs, the carbon adhesive is cured, the CMC is bonded, and then the heat treatment is performed. The body can be manufactured. Thereby, work efficiency can be improved more in manufacture of the joined body of CMC.

本発明に係る接合体製造方法により製造された接合体の一例を示す側面図である。It is a side view which shows an example of the conjugate | zygote manufactured by the conjugate | zygote manufacturing method which concerns on this invention. 本発明に係る接合体製造方法における(a)混合物生成工程を示す説明図、(b)混合物の配置及び乾燥工程を示す説明図、(c)熱処理工程を示す説明図である。It is explanatory drawing which shows the (a) mixture production | generation process in the conjugate | zygote manufacturing method which concerns on this invention, (b) Explanatory drawing which shows the arrangement | positioning and drying process of a mixture, (c) It is explanatory drawing which shows a heat treatment process.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す接合体1は、一対のセラミックス基複合部材(以下、CMCという)2、3に中間材4が介在した状態で接合されている。   A bonded body 1 shown in FIG. 1 is bonded to a pair of ceramic matrix composite members (hereinafter referred to as CMC) 2 and 3 with an intermediate material 4 interposed therebetween.

一対のCMC2、3は、それぞれ円柱状又は角柱状をなした試験体であり、同軸上に配置されて接合されている。それぞれのCMC2、3は、セラミックス繊維とセラミックスマトリックスからなる。例えば、セラミックス繊維としては炭素(C)繊維や炭化ケイ素(SiC)繊維などからなる所定の繊維束を軸方向と円周方向に配向させた2次元織物や、ブレーディング織物、繊維束を互いに直交する3軸方向に配向させた3次元織物が用いられている。また、セラミックスマトリックスは、炭素(C)や炭化ケイ素(SiC)、窒化ケイ素(Si34)などからなるものであり、セラミックス繊維に付着されている。このようなCMCの中でも特に、セラミックス繊維とセラミックスマトリックスのいずれもが炭素(C)からなるものや炭化ケイ素(SiC)からなるもの、セラミックス繊維が炭素(C)からなり、セラミックスマトリックスが炭化ケイ素(SiC)からなるものなどを用いることが好ましい。 The pair of CMCs 2 and 3 are test bodies each having a columnar shape or a prismatic shape, and are arranged coaxially and joined. Each of the CMCs 2 and 3 includes a ceramic fiber and a ceramic matrix. For example, as ceramic fibers, a two-dimensional fabric in which a predetermined fiber bundle made of carbon (C) fiber, silicon carbide (SiC) fiber or the like is oriented in the axial direction and the circumferential direction, a braided fabric, or a fiber bundle is orthogonal to each other. A three-dimensional fabric oriented in three axial directions is used. The ceramic matrix is made of carbon (C), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), or the like, and is attached to ceramic fibers. Among such CMCs, in particular, both ceramic fibers and ceramic matrix are made of carbon (C) or silicon carbide (SiC), ceramic fibers are made of carbon (C), and the ceramic matrix is silicon carbide ( It is preferable to use a material made of SiC).

中間材4は、カーボン接着剤のC成分がSi−Ti合金中のSi成分と反応しSiC化したものである。また、Si−Ti合金中のTi成分についてもカーボン接着剤のC成分と反応しているため中間材4中にはTiC(炭化チタン)も含まれている。また、中間材4の外周は、両CMC2、3と同一面をなすよう加工されている。   The intermediate material 4 is obtained by reacting the C component of the carbon adhesive with the Si component in the Si—Ti alloy to form SiC. Further, since the Ti component in the Si—Ti alloy also reacts with the C component of the carbon adhesive, the intermediate material 4 contains TiC (titanium carbide). Further, the outer periphery of the intermediate material 4 is processed so as to be flush with both the CMCs 2 and 3.

当該本実施形態の接合体1は円柱状又は角柱状をなした試験体であるが、実際には例えば航空機エンジンのタービン翼等のような1000℃以上の高温下で十分な強度を必要とする構造体として使用される。   The joined body 1 of the present embodiment is a test body having a columnar shape or a prismatic shape, but actually requires a sufficient strength at a high temperature of 1000 ° C. or more such as a turbine blade of an aircraft engine. Used as a structure.

以下、図2に基づき本発明に係る接合体の具体的な製造方法の一例について説明する。   Hereinafter, an example of a specific manufacturing method of the joined body according to the present invention will be described with reference to FIG.

まず図2(a)に示すように、カーボン接着剤5とSi−Ti合金粉末6を混合した混合物10を準備する。当該混合物10はペースト状であり、当該ペーストの取扱性を調整するために溶媒7を添加してもよい。当該溶媒7としては例えばエタノールが好ましい。   First, as shown in FIG. 2A, a mixture 10 in which a carbon adhesive 5 and a Si—Ti alloy powder 6 are mixed is prepared. The mixture 10 is in the form of a paste, and a solvent 7 may be added to adjust the handleability of the paste. As the solvent 7, for example, ethanol is preferable.

次に図2(b)に示すように、一対のCMC2、3のそれぞれの接合面2a、3aの間に、混合物10を配置する。詳しくは、一方の接合面2aに混合物10を塗布し、両接合面2a、3a間の間隔が予め定めた値となるように、混合物10を介して他方の接合面3aを一方の接合面2a側に押し付ける。このとき混合物10が両CMC2、3の外周より外側にはみ出る程度の量を一方の接合面2aに塗布することで、両接合面2a、3aの全域に亘って混合物10を接触させることができる。また、混合物10はペースト状であるため、漏出したり、含浸したりし難い。   Next, as shown in FIG. 2 (b), the mixture 10 is disposed between the joint surfaces 2 a and 3 a of the pair of CMCs 2 and 3. Specifically, the mixture 10 is applied to one joint surface 2a, and the other joint surface 3a is connected to one joint surface 2a via the mixture 10 so that the distance between the joint surfaces 2a and 3a becomes a predetermined value. Press to the side. At this time, the mixture 10 can be brought into contact over the entire area of both the joint surfaces 2a and 3a by applying to the one joint surface 2a such an amount that the mixture 10 protrudes outside the outer periphery of both the CMCs 2 and 3. Moreover, since the mixture 10 is paste-like, it is difficult to leak out or impregnate.

そして、混合物10中のカーボン接着剤5を硬化させるべく乾燥を行う。乾燥の温度条件や時間は混合物10中のカーボン接着剤5に設定された条件に従う。また、溶媒7を添加している場合には、この溶媒7は乾燥時に蒸発して混合物10から除去される。混合物10中のカーボン接着剤5が硬化すると、両接合面2a、3a間の間隔が固定された状態でCMC2、3が接着される。   Then, drying is performed to cure the carbon adhesive 5 in the mixture 10. Drying temperature conditions and time follow the conditions set for the carbon adhesive 5 in the mixture 10. In addition, when the solvent 7 is added, the solvent 7 evaporates at the time of drying and is removed from the mixture 10. When the carbon adhesive 5 in the mixture 10 is cured, the CMCs 2 and 3 are bonded together with the distance between the joint surfaces 2a and 3a fixed.

続いて、図2(c)に示すように、混合物10を介して接着されたCMC2、3を真空炉20内に配置し、減圧した状態で加熱するいわゆる真空熱処理を行う。ここでは、Si−Ti合金の融点以上の温度にまで加熱することで、混合物10中のカーボン接着剤5の炭素(C)成分と、Si−Ti合金粉末6とが反応し、炭化ケイ素(SiC)及び炭化チタン(TiC)が生成されてCMC2、3が接合される。このように、混合物10が炭化ケイ素(SiC)及び炭化チタン(TiC)と化して中間材4が形成される。そして熱処理後、真空炉20から取り出したCMC2、3の接合体に対して、最終外形加工を施す。例えば、図1に示した接合体1の場合は、この最終外形加工により中間材4の外周を、両CMC2、3と同一面とする。   Subsequently, as shown in FIG. 2C, so-called vacuum heat treatment is performed in which the CMCs 2 and 3 bonded via the mixture 10 are placed in the vacuum furnace 20 and heated in a reduced pressure state. Here, by heating to a temperature equal to or higher than the melting point of the Si—Ti alloy, the carbon (C) component of the carbon adhesive 5 in the mixture 10 and the Si—Ti alloy powder 6 react to form silicon carbide (SiC). ) And titanium carbide (TiC) are produced and the CMCs 2 and 3 are joined. In this way, the mixture 10 is converted into silicon carbide (SiC) and titanium carbide (TiC) to form the intermediate material 4. Then, after the heat treatment, final outer shape processing is performed on the joined body of CMCs 2 and 3 taken out from the vacuum furnace 20. For example, in the case of the joined body 1 shown in FIG. 1, the outer periphery of the intermediate material 4 is made flush with both the CMCs 2 and 3 by this final outer shape processing.

次に、CMC同士を上記製造方法により接合してなる接合体の強度試験を行った。   Next, the strength test of the joined body formed by joining the CMCs by the above manufacturing method was performed.

具体的には、カーボン接着剤と、Si−Ti合金粉末と、エタノール溶媒を、カーボン接着剤:Si−Ti合金粉末:エタノール溶媒=2:2:1の割合で混合して混合物を生成した。なお、Si−Ti合金粉末は、Si−16at%Tiの割合とした。そして、混合物を接合面間に配置したCMCを129℃の環境下で4時間乾燥させた後、260℃の環境下でさらに2時間乾燥させた。そして、混合物により接着されたCMCに対し、真空炉によりSi−16at%Tiの融点から+50℃以内の温度で20分間の熱処理を行った。   Specifically, a carbon adhesive, a Si—Ti alloy powder, and an ethanol solvent were mixed at a ratio of carbon adhesive: Si—Ti alloy powder: ethanol solvent = 2: 2: 1 to form a mixture. In addition, Si-Ti alloy powder was made into the ratio of Si-16at% Ti. And after drying CMC which has arrange | positioned a mixture between joining surfaces in 129 degreeC environment for 4 hours, it was further dried in 260 degreeC environment for 2 hours. Then, the CMC bonded by the mixture was heat-treated for 20 minutes at a temperature within + 50 ° C. from the melting point of Si-16 at% Ti in a vacuum furnace.

上記条件で製造した接合体に対して強度試験を行った結果、25MPa程度の強度を得ることができた。   As a result of conducting a strength test on the joined body manufactured under the above conditions, a strength of about 25 MPa could be obtained.

以上のように、本実施形態では、カーボン接着剤にSi−Ti合金粉末を混合した混合物をCMC間に配置し、当該カーボン接着剤を硬化させてCMCを接着した後、1度の熱処理を行うだけで、十分な強度のCMCの接合体を製造することができる。Si単体での融点は通常1400℃以上となるがSi−Ti合金粉末を使用することで融点を降下させることができ、真空炉による熱処理温度も低下させることができる。   As described above, in the present embodiment, a mixture obtained by mixing a carbon adhesive with Si—Ti alloy powder is disposed between CMCs, the carbon adhesive is cured, and the CMC is bonded, and then a single heat treatment is performed. It is possible to produce a CMC bonded body with sufficient strength. Although the melting point of Si alone is usually 1400 ° C. or higher, the melting point can be lowered by using Si—Ti alloy powder, and the heat treatment temperature in a vacuum furnace can also be lowered.

このようなことから、本実施形態のCMC接合体の製造方法によれば、より効率よくCMCの接合体を製造することができる。そして、当該製造方法により製造されたCMCの接合体は十分な強度を有することができる。   For this reason, according to the method for manufacturing a CMC assembly of the present embodiment, a CMC assembly can be manufactured more efficiently. And the joined body of CMC manufactured by the said manufacturing method can have sufficient intensity | strength.

以上で本発明に係る接合体製造方法の実施形態についての説明を終えるが、実施形態は上記実施形態に限られるものではない。   Although the description about the embodiment of the joined body manufacturing method according to the present invention is finished as above, the embodiment is not limited to the above embodiment.

上記実施形態の混合物10はカーボン接着剤5とSi−Ti合金粉末6を混合したものであるが、カーボン接着剤と混合する粉末はSi単体の融点よりも低い融点となるSi基合金粉末であればよく、Si−Ti合金粉末以外にもSi−Hf(ハフニウム)合金粉末、Si−Y(イットリウム)合金粉末であってもよい。なお、Si基合金は粉末状が取扱性に優れているため好ましいが、例えば塗布した際に流れ出ない程度の粘度を有するSi合金粉末のペーストをカーボン接着剤に混合してもよい。   The mixture 10 of the above embodiment is a mixture of the carbon adhesive 5 and the Si—Ti alloy powder 6, but the powder mixed with the carbon adhesive may be a Si-based alloy powder having a melting point lower than the melting point of Si alone. What is necessary is just Si-Hf (hafnium) alloy powder and Si-Y (yttrium) alloy powder besides Si-Ti alloy powder. The Si-based alloy is preferable because its powder form is excellent in handleability. For example, a paste of Si alloy powder having a viscosity that does not flow out when applied may be mixed with the carbon adhesive.

1 接合体
2、3 セラミックス基複合部材
2a、3a 接合面
4 中間材
5 カーボン接着剤
6 Si−Ti合金粉末
7 溶媒
10 混合物
20 真空炉
DESCRIPTION OF SYMBOLS 1 Bonding body 2, 3 Ceramics base composite member 2a, 3a Bonding surface 4 Intermediate material 5 Carbon adhesive 6 Si-Ti alloy powder 7 Solvent 10 Mixture 20 Vacuum furnace

Claims (2)

複数のセラミックス基複合部材を接合した接合体を製造する接合体製造方法であって、
カーボン接着剤にSi基合金を混合した混合物を生成するステップと、
接合対象である一方のセラミックス基複合部材の接合面と他方のセラミックス基複合部材の接合面との間に、前記混合物を配置するステップと、
前記混合物中のカーボン接着剤を硬化させ、当該混合物を介して前記一方及び他方のセラミックス基複合部材を接着するステップと、
前記混合物を介して接着された前記一方及び他方のセラミックス基複合部材を、前記Si基合金の融点以上に加熱するステップと、
を含む接合体製造方法。
A joined body manufacturing method for manufacturing a joined body obtained by joining a plurality of ceramic matrix composite members,
Generating a mixture of a carbon adhesive and a Si-based alloy;
Disposing the mixture between the bonding surface of one ceramic matrix composite member to be bonded and the bonding surface of the other ceramic matrix composite member;
Curing the carbon adhesive in the mixture and bonding the one and other ceramic matrix composite members through the mixture; and
Heating the one and other ceramic matrix composite members bonded through the mixture to a melting point or higher of the Si-based alloy;
A method for manufacturing a joined body.
前記Si基合金はSi−Ti合金であり、前記加熱を行うステップでは、前記Si−Ti合金の融点以上に加熱し、前記カーボン接着剤のC成分と前記Si−Ti合金のSi成分及びTi成分とを反応させてSiC化及びTiC化させる請求項1記載の接合体製造方法。   The Si-based alloy is a Si-Ti alloy, and in the heating step, the Si-Ti alloy is heated to a temperature equal to or higher than the melting point of the Si-Ti alloy, and the C component of the carbon adhesive and the Si component and Ti component of the Si-Ti alloy. The bonded body manufacturing method according to claim 1, wherein the reaction is made into SiC and TiC.
JP2015179337A 2015-09-11 2015-09-11 Bonded body manufacturing method Pending JP2017052673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179337A JP2017052673A (en) 2015-09-11 2015-09-11 Bonded body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179337A JP2017052673A (en) 2015-09-11 2015-09-11 Bonded body manufacturing method

Publications (1)

Publication Number Publication Date
JP2017052673A true JP2017052673A (en) 2017-03-16

Family

ID=58320302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179337A Pending JP2017052673A (en) 2015-09-11 2015-09-11 Bonded body manufacturing method

Country Status (1)

Country Link
JP (1) JP2017052673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172534A (en) * 2018-03-29 2019-10-10 イビデン株式会社 Heat-resistant component and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172534A (en) * 2018-03-29 2019-10-10 イビデン株式会社 Heat-resistant component and manufacturing method therefor
JP7063675B2 (en) 2018-03-29 2022-05-09 イビデン株式会社 Heat-resistant parts and their manufacturing methods

Similar Documents

Publication Publication Date Title
US10696600B2 (en) Method for producing a ceramic component composed of a plurality of joined preforms and component obtained by the method
CN105384454B (en) A kind of method for fast mfg of labyrinth high tenacity SiC base composite material parts
CN101224993A (en) SiC based composite material component and on-line jointing preparation method thereof
CN104010992A (en) Process of producing ceramic matrix composites and ceramic matrix composites formed thereby
JP2014001723A5 (en)
JP4389128B2 (en) Method for producing ceramic matrix composite material
JP6276514B2 (en) Method of making internal cavities and mandrels therefor in ceramic matrix composites
CN102173815A (en) Method for preparing ceramic material by process steps of powder green body dipping and precursor cracking
CN107074668A (en) The manufacture method of ceramic matric composite
JP2013256436A5 (en)
CN107082651A (en) A kind of coat of silicon carbide and preparation method thereof
JP5773331B2 (en) Manufacturing method of ceramic joined body
Wang et al. The preparation and mechanical properties of carbon/carbon composite joints using Ti–Si–SiC–C filler as interlayer
JP4517334B2 (en) Composite material and manufacturing method thereof
JP2017052673A (en) Bonded body manufacturing method
CN113174206B (en) High-temperature-resistant high-strength ceramic high-temperature glue, and preparation method and application thereof
CN104496511A (en) Online reaction connection method of ceramic blanks
US20190329532A1 (en) Preceramic adhesive composition
CN105585325A (en) Si and C element in-situ reaction connection technology for SiC ceramic matrix composite
CN107673764B (en) It is a kind of for binding agent of carborundum joining in green state and preparation method thereof
KR20110019038A (en) Binder for rbsc assembly and method of binding rbsc assembly using the same
KR101054863B1 (en) Method of preparing rbsc assembly and rbsc assembly prepared thereby
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
KR20180007142A (en) Reaction bonded silicon carbide joining and preparing method of the same
JP2015224152A (en) Method for joining silicon carbide ceramics