JP2017049061A - Device and method for probing buried object - Google Patents

Device and method for probing buried object Download PDF

Info

Publication number
JP2017049061A
JP2017049061A JP2015171153A JP2015171153A JP2017049061A JP 2017049061 A JP2017049061 A JP 2017049061A JP 2015171153 A JP2015171153 A JP 2015171153A JP 2015171153 A JP2015171153 A JP 2015171153A JP 2017049061 A JP2017049061 A JP 2017049061A
Authority
JP
Japan
Prior art keywords
radio wave
buried object
dielectric
signal
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015171153A
Other languages
Japanese (ja)
Inventor
尾崎 健司
Kenji Ozaki
健司 尾崎
晃生 隅田
Akio Sumida
晃生 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015171153A priority Critical patent/JP2017049061A/en
Publication of JP2017049061A publication Critical patent/JP2017049061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect a position of an arbitrary buried object by discriminating it from another buried object, even when the buried object is approaching and embedded in a dielectric body.SOLUTION: Provided is a buried object probing device 10 for probing a buried object existing inside a concrete structure 1 by transmitting/receiving an electromagnetic wave 2 to/from the inside of the concrete structure. The buried object probing device includes: signal generating means 11 for generating a high frequency signal; electromagnetic wave transmitting means 12 comprising a plurality of electromagnetic wave transmitters 20 for dispatching and transmitting electromagnetic waves on the basis of the high frequency signal from the signal generating means and propagating the electromagnetic waves inside the concrete structure; electromagnetic wave receiving means 13 for receiving an electromagnetic wave reflected by a buried object, as a high frequency signal; and buried object position calculating means 16 for calculating a position of the buried object from a signal level of the high frequency signal from the electromagnetic wave receiving means and propagation time of the electromagnetic wave. In the buried object probing device, the electromagnetic wave transmitters 20 respectively is set by phase inputting means 18 so that timing at which the electromagnetic waves are dispatched is different, and a region with high intensity of the electromagnetic waves propagating inside the concrete structure is concentratedly distributed.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、コンクリートや土などの誘電体中に電波を送受信することで、誘電体内に存在する埋設物を探査する埋設物探査装置及び方法に関する。   Embodiments described herein relate generally to a buried object searching apparatus and method for searching a buried object existing in a dielectric by transmitting and receiving radio waves in a dielectric such as concrete and soil.

建物や橋などの建造物におけるコンクリート構造物中の鉄筋や電線管などの埋設物の配置は、設計図面がないものや、設計図面はあるものの、施工時の変更などで図面通りに施工されていない場合がある。また、道路などに埋設される水道管や電線などの埋設物も追加工事による変更があり、図面等で正確な位置を把握することが困難な場合がある。   Arrangement of buried objects such as reinforcing bars and conduits in concrete structures such as buildings and bridges are not designed or have design drawings, but they have been constructed according to the drawings due to changes during construction. There may not be. In addition, buried objects such as water pipes and electric wires buried in roads and the like are also changed by additional work, and it may be difficult to grasp an accurate position with drawings or the like.

そのため、埋設物の深さやサイズ、本数などを確認するために、電磁誘導法や電磁波レーダ法、X線透過撮影法などを使用した探査技術が適用され、これらのうち、電磁波を用いた探査技術が知られている。   Therefore, in order to confirm the depth, size, number, etc. of buried objects, exploration technology using electromagnetic induction method, electromagnetic wave radar method, X-ray transmission imaging method, etc. is applied, and among these, exploration technology using electromagnetic waves It has been known.

特開平9−88351号公報JP-A-9-88351

上述の電磁誘導、電磁波、超音波等を用いた探査技術では、探査面から最も浅い位置(一段目)にある埋設物の深さや水平位置は検出できるが、埋設物が近接している場合には、複数の埋設物からの反射波が検出されることになるため、それぞれの埋設物を分離して正確に検出することができない課題がある。また、X線等の放射線については、透過させる方式であるため、埋設物の深さ方向の位置を判別できない課題がある。   In the exploration technology using electromagnetic induction, electromagnetic wave, ultrasonic wave, etc., the depth and horizontal position of the buried object at the shallowest position (first stage) from the exploration surface can be detected, but when the buried object is close However, since reflected waves from a plurality of buried objects are detected, there is a problem that each buried object cannot be separated and accurately detected. Further, since radiation such as X-rays is transmitted, there is a problem that the position in the depth direction of the embedded object cannot be determined.

本発明における実施形態の目的は、上述の事情を考慮してなされたものであり、誘電体内に埋設物が近接して埋設されている場合であっても、任意の埋設物の位置を、他の埋設物と分離して正確に検出して探査できる埋設物探査装置及び方法を提供することにある。   The object of the embodiment of the present invention is made in consideration of the above-mentioned circumstances, and even when the embedded object is embedded in the dielectric, It is an object of the present invention to provide a buried object search apparatus and method which can be separately detected and searched separately from the buried object.

本発明の実施形態における埋設物探査装置は、コンクリートや土を含む誘電体中へ電波を送受信することで、前記誘電体内に存在する埋設物を探査する埋設物探査装置において、高周波信号を発生する信号発生手段と、この信号発生手段からの高周波信号に基づき電波を発信させてこの電波を前記誘電体中へ送信し伝搬させる複数の電波送信部を備えた電波送信手段と、前記埋設物にて反射した電波を受信して高周波信号とする電波受信手段と、この電波受信手段からの高周波信号の信号レベルと、前記電波送信手段により送信されてから前記電波受信手段により受信されるまでの電波の伝搬時間とから、前記誘電体内の前記埋設物の位置を算出する埋設物位置算出手段とを有し、前記電波送信部のそれぞれは、電波を発信するタイミングが異なるように位相入力手段により設定されて、前記誘電体中を伝搬する電波の強度の高い領域を集中して分布させるよう構成されたことを特徴とするものである。   An embedded object exploration apparatus according to an embodiment of the present invention generates a high-frequency signal in an embedded object exploration apparatus for exploring an embedded object existing in the dielectric by transmitting and receiving radio waves into and from a dielectric including concrete and soil. A signal generator, a radio wave transmitter having a plurality of radio wave transmitters for transmitting a radio wave based on a high-frequency signal from the signal generator and transmitting the radio wave into the dielectric, and the buried object A radio wave receiving means for receiving a reflected radio wave to obtain a high frequency signal, a signal level of the high frequency signal from the radio wave receiving means, and a radio wave signal from the transmission by the radio wave transmission means to the reception by the radio wave reception means. Embedded object position calculating means for calculating the position of the embedded object in the dielectric from the propagation time, and each of the radio wave transmitting units has a timing of transmitting a radio wave. So as to be set by the phase input means, is characterized in that the radio waves of high intensity regions propagating through the dielectric in configured to distribute a concentrated manner.

本発明の実施形態における埋設物探査方法は、コンクリートや土を含む誘電体中へ電波を送受信することで、前記誘電体内に存在する埋設物を探査する埋設物探査方法において、電波送信手段の複数の電波送信部が電波を発信することでこの電波が前記誘電体中に送信されて伝搬し、前記埋設物から反射した電波を電波受信手段が受信して高周波信号とし、この電波受信手段からの高周波信号の信号レベルと、前記電波送信手段により送信されてから前記電波受信手段により受信されるまでの電波の伝搬時間とから、前記誘電体内の前記埋設物の位置を算出して前記埋設物を検出して探査する際に、前記電波送信部のそれぞれから電波を発信するタイミングを異ならせるように設定して、前記誘電体中を伝搬する電波の強度の高い領域を集中して分布させることを特徴とするものである。   An embedded object exploration method according to an embodiment of the present invention includes a plurality of radio wave transmission means in an embedded object exploration method for exploring an embedded object existing in a dielectric by transmitting and receiving radio waves into a dielectric including concrete and soil. When the radio wave transmitting unit transmits a radio wave, the radio wave is transmitted and propagated in the dielectric, and the radio wave receiving means receives the radio wave reflected from the embedded object to obtain a high frequency signal. The position of the embedded object in the dielectric is calculated from the signal level of the high-frequency signal and the propagation time of the radio wave from the transmission by the radio wave transmitting means to the reception by the radio wave receiving means. When detecting and exploring, set different timings for transmitting radio waves from each of the radio wave transmitters, and concentrate high intensity areas of radio waves propagating in the dielectric Is characterized in that the distributing Te.

本発明の実施形態によれば、誘電体内に埋設物が近接して埋設されている場合であっても、任意の埋設物の位置を、他の埋設物と分離して正確に検出して探査できる。   According to the embodiment of the present invention, even when an embedded object is embedded close to the dielectric body, the position of an arbitrary embedded object is accurately detected separately from other embedded objects. it can.

第1実施形態に係る埋設物探査装置の構成を示すブロック図。The block diagram which shows the structure of the buried object search apparatus which concerns on 1st Embodiment. 図1の埋設物探査装置によるコンクリート構造物の探査例を示す斜視図。The perspective view which shows the example of a search of the concrete structure by the buried object search apparatus of FIG. 図2の探査例における電波送信手段及び電波受信手段とコンクリート構造物内の埋設物との位置関係を示す断面図。Sectional drawing which shows the positional relationship of the electromagnetic wave transmission means in the example of a search of FIG. 2, an electromagnetic wave reception means, and the embedded object in a concrete structure. 図1の埋設物探査装置による探査結果を2次元表示したコンタ図。The contour figure which displayed the search result by the buried object search apparatus of FIG. 1 two-dimensionally. 図1の電波送信手段の電波送信部に接続される位相入力手段等を示す構成図。The block diagram which shows the phase input means etc. which are connected to the electromagnetic wave transmission part of the electromagnetic wave transmission means of FIG. 図5の位相入力手段が設定する複数の電波送信部の電波発信タイミングの差(位相差)の例を示すグラフ。The graph which shows the example of the difference (phase difference) of the electromagnetic wave transmission timing of the some electromagnetic wave transmission part which the phase input means of FIG. 5 sets. 図1のコンクリート構造物中を伝搬する電波の強度分布を示し、複数の電波送信部からの電波発信タイミングが等しい場合を(A)に、電波発信タイミングが図6の曲線P1の場合を(B)にそれぞれ示す図。The intensity distribution of the electric wave which propagates in the concrete structure of FIG. 1 is shown, and the case where the radio wave transmission timings from the plurality of radio wave transmission parts are equal is (A), and the case where the radio wave transmission timing is the curve P1 of FIG. ) Respectively. (A)は図5の位相入力手段が設定する複数の電波送信部の電波発信タイミングの差(位相差)の他の例を示すグラフ、(B)は、複数の電波送信部からの電波発信タイミングが図8(A)の場合におけるコンクリート構造物中を伝搬する電波の強度分布を示す図。(A) is a graph showing another example of the difference (phase difference) in radio wave transmission timings of a plurality of radio wave transmission units set by the phase input means in FIG. 5, and (B) is a radio wave transmission from a plurality of radio wave transmission units. The figure which shows intensity distribution of the electromagnetic wave which propagates in the concrete structure in case a timing is FIG. 8 (A). 第2実施形態に係る埋設物探査装置における位相入力手段を電波送信手段等と共に示す構成図。The block diagram which shows the phase input means in the buried object search apparatus which concerns on 2nd Embodiment with a radio wave transmission means etc. FIG. 図9の位相入力手段における信号遅延手段の一例としての異なる長さの配線を示す説明図。Explanatory drawing which shows the wiring of different length as an example of the signal delay means in the phase input means of FIG. 図9の位相入力手段における信号遅延手段の他の例を示し、(A)は配線長を長くした場合を、(B)は配線長を短くした場合をそれぞれ示す説明図。FIG. 10 shows another example of the signal delay means in the phase input means of FIG. 9, (A) is an explanatory diagram showing a case where the wiring length is increased, and (B) is an explanatory diagram showing a case where the wiring length is reduced.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図8)
図1は、第1実施形態に係る埋設物探査装置の構成を示すブロック図である。また、図2は、図1の埋設物探査装置によるコンクリート構造物の探査例を示す斜視図である。これらの図1及び図2に示す埋設物探査装置10は、コンクリート構造物1等の誘電体中へ電波2を送受信することで、コンクリート構造物1内に存在する埋設物3を探査するものであり、信号発生手段11、電波送信手段12、電波受信手段13、アナログ・デジタル変換手段14、信号記録手段15、埋設物位置算出手段16、2次元信号処理・記録手段17及び位相入力手段18を有して構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 8)
FIG. 1 is a block diagram showing the configuration of the buried object searching apparatus according to the first embodiment. FIG. 2 is a perspective view showing an example of exploring a concrete structure by the buried object exploration device of FIG. The buried object exploration device 10 shown in FIGS. 1 and 2 is for exploring the buried object 3 existing in the concrete structure 1 by transmitting and receiving radio waves 2 to and from a dielectric such as the concrete structure 1. Yes, the signal generation means 11, the radio wave transmission means 12, the radio wave reception means 13, the analog / digital conversion means 14, the signal recording means 15, the buried object position calculation means 16, the two-dimensional signal processing / recording means 17, and the phase input means 18 are provided. It is configured.

ここで、電波2が送受信される誘電体は、コンクリート構造物(コンクリート)1の他に、土、アスファルト、砂、ゴム、塩化ビニール樹脂、プラスチック、セラミックを少なくとも1つ備えたものである。また、埋設物3としては、誘電体がコンクリート構造物1の場合には鉄筋や電線管などであり、誘電体が土や砂、アスファルトの場合には水道管や電線などである。   Here, in addition to the concrete structure (concrete) 1, the dielectric that transmits and receives the radio wave 2 includes at least one of soil, asphalt, sand, rubber, vinyl chloride resin, plastic, and ceramic. The buried object 3 is a reinforcing bar or a conduit when the dielectric is the concrete structure 1, and is a water pipe or an electric wire when the dielectric is soil, sand, or asphalt.

信号発生手段11は、数GHz(例えば1GHz〜6GHz)の周波数の高周波信号(正確には高周波電圧信号)を発生するものであり、発生した高周波信号をケーブルまたは無線で電波送信手段12へ出力する。   The signal generation means 11 generates a high frequency signal (more precisely, a high frequency voltage signal) with a frequency of several GHz (for example, 1 GHz to 6 GHz), and outputs the generated high frequency signal to the radio wave transmission means 12 by a cable or wirelessly. .

電波送信手段12は、複数個(例えば16個)の電波送信部20が例えばコンクリート構造物1の探査面1Aに平行に並列して構成される。電波送信部20のそれぞれは、信号発生手段15から位相入力手段18(後に詳説)を介して入力した高周波信号に基づいて、数GHz(例えば1GHz〜6GHz)の周波数の電波2を発信する。更に、これらの信号送信部20は、コンクリート構造物1の探査面1Aに接触し、この探査面1Aに対して略垂直方向にコンクリート構造物1中へ電波2を送信し、このコンクリート構造物1中に電波2を伝搬させる。   The radio wave transmission means 12 is configured by a plurality of (for example, 16) radio wave transmission units 20 arranged in parallel to the exploration surface 1A of the concrete structure 1, for example. Each of the radio wave transmitting units 20 transmits a radio wave 2 having a frequency of several GHz (for example, 1 GHz to 6 GHz) based on a high frequency signal input from the signal generating unit 15 via the phase input unit 18 (detailed later). Furthermore, these signal transmission parts 20 contact the exploration surface 1A of the concrete structure 1 and transmit the radio wave 2 into the concrete structure 1 in a direction substantially perpendicular to the exploration surface 1A. The radio wave 2 is propagated inside.

電波受信手段13は、図3に示すように、電波送信手段12と所定の間隔を隔てて、例えばコンクリート構造物1の探査面1Aに平行に配置され、この電波送信手段12と共にアンテナ21を構成する。電波送信手段12によりコンクリート構造物1中に送信された電波2は、コンクリート構造物1中を伝搬して埋設物3で反射し、この反射方向にコンクリート構造物1中を伝搬する。電波受信手段13は、この反射方向に伝搬した電波2を受信して、高周波信号(正確には波形データを表す高周波電圧信号)に変換する。   As shown in FIG. 3, the radio wave receiving means 13 is arranged, for example, in parallel with the exploration surface 1 </ b> A of the concrete structure 1 at a predetermined interval from the radio wave transmission means 12, and constitutes an antenna 21 together with the radio wave transmission means 12. To do. The radio wave 2 transmitted into the concrete structure 1 by the radio wave transmission means 12 propagates through the concrete structure 1 and is reflected by the buried object 3, and propagates through the concrete structure 1 in this reflection direction. The radio wave receiving means 13 receives the radio wave 2 propagated in the reflection direction and converts it into a high frequency signal (more precisely, a high frequency voltage signal representing waveform data).

アナログ・デジタル変換手段14は、電波受信手段13からのアナログ信号としての高周波信号をデジタル信号に変換する。また、信号記録手段15は、アナログ・デジタル変換手段14にてデジタル信号に変換された高周波信号を波形データ信号として記録する。更に、信号記録手段15には、信号発生手段11が発生した高周波信号を位相入力手段18が、電波送信手段12の複数の電波送信部20のうち最初の電波送信部20に入力させるときのタイミング情報、または電波送信手段12の複数の電波送信部20のうち最初に電波2を送信する電波送信部20からの電波送信のタイミング情報が記録される。   The analog / digital conversion means 14 converts a high frequency signal as an analog signal from the radio wave reception means 13 into a digital signal. The signal recording means 15 records the high frequency signal converted into a digital signal by the analog / digital conversion means 14 as a waveform data signal. Further, in the signal recording means 15, the timing when the phase input means 18 inputs the high frequency signal generated by the signal generation means 11 to the first radio wave transmission section 20 among the plurality of radio wave transmission sections 20 of the radio wave transmission means 12. Information or timing information of radio wave transmission from the radio wave transmission unit 20 that first transmits the radio wave 2 among the plurality of radio wave transmission units 20 of the radio wave transmission unit 12 is recorded.

埋設物位置算出手段16は、信号記録手段15に記録された高周波信号(波形データ信号)の信号レベルと、電波送信手段12の電波送信部20により送信されてから電波受信手段13により受信されるまでの電波2の時間差(即ち伝搬時間)とから、コンクリート構造物1内の埋設物3の位置を算出する。つまり、埋設物位置算出手段16は、信号記録手段15に記録された高周波信号の信号レベルが一定以上の強度を有するときに、この高周波信号が埋設物3から反射された電波2に基づくものであると判断する。   The buried object position calculating means 16 receives the signal level of the high frequency signal (waveform data signal) recorded in the signal recording means 15 and the radio wave receiving means 13 after being transmitted by the radio wave transmitting unit 20 of the radio wave transmitting means 12. The position of the buried object 3 in the concrete structure 1 is calculated from the time difference (that is, the propagation time) of the radio wave 2 until. That is, the buried object position calculating means 16 is based on the radio wave 2 reflected from the buried object 3 when the signal level of the high frequency signal recorded in the signal recording means 15 has a certain level or higher. Judge that there is.

また、埋設物位置算出手段16は、信号記録手段15に記録された上述のタイミング情報と電波受信手段13が受信した電波2の受信情報とから、電波送信手段12の電波送信部20から電波2が送信されてから電波受信手段13により電波が受信されるまでの電波2の伝搬時間(時間差)を算出する。ここで、一般に、電波2は、誘電体の誘電率に依存した速度で伝搬されるため、コンクリート構造物1の誘電率から電波2の伝搬速度が予め算出されている。従って、埋設物位置算出手段16は、この電波2の伝搬速度と電波2の伝搬時間(時間差)とから、アンテナ21が配置されたコンクリート構造物1の探査面1Aから埋設物3までの距離を算出することで、コンクリート構造物1内に存在する埋設物3の位置、つまり埋設物3の深さ情報を算出する。   Further, the embedded object position calculating means 16 receives the radio wave 2 from the radio wave transmitting unit 20 of the radio wave transmitting means 12 from the timing information recorded in the signal recording means 15 and the reception information of the radio wave 2 received by the radio wave receiving means 13. The propagation time (time difference) of the radio wave 2 from when the radio wave is transmitted until the radio wave receiving means 13 receives the radio wave is calculated. Here, since the radio wave 2 is generally propagated at a speed depending on the dielectric constant of the dielectric, the propagation speed of the radio wave 2 is calculated in advance from the dielectric constant of the concrete structure 1. Therefore, the buried object position calculating means 16 calculates the distance from the exploration surface 1A of the concrete structure 1 where the antenna 21 is arranged to the buried object 3 from the propagation speed of the radio wave 2 and the propagation time (time difference) of the radio wave 2. By calculating, the position of the buried object 3 existing in the concrete structure 1, that is, the depth information of the buried object 3 is calculated.

2次元信号処理・記録手段17は、電波送信手段12と電波受信手段13との少なくとも一方を、図3の走査方向Sに示すようにコンクリート構造物1の探査面1Aと平行に走査(位置変更)させ、そのときの位置変更毎の記録点において、埋設物3にて反射されて電波受信手段13により受信された電波2に基づく高周波信号の信号レベル(信号強度)と、埋設物位置算出手段16により算出された埋設物3の位置(深さ情報)とを取得する。更に、2次元信号処理・記録手段17は、これらの取得した信号強度と深さ情報とを処理して、コンクリート構造物1内における埋設物3の位置を示す2次元情報を求め、この2次元情報を2次元信号処理・記録手段17の図示しない表示装置に、図4に示すコンタ図22として表示し、記録する。このコンタ図22では、電波受信手段13からの高周波信号の強度の大小が濃淡で表現されるので、このコンタ図22の濃い部分23に埋設物3が存在していることが示される。   The two-dimensional signal processing / recording means 17 scans at least one of the radio wave transmission means 12 and the radio wave reception means 13 in parallel with the exploration surface 1A of the concrete structure 1 as shown in the scanning direction S of FIG. The signal level (signal intensity) of the high-frequency signal based on the radio wave 2 reflected by the buried object 3 and received by the radio wave receiving means 13 at the recording point for each position change at that time, and the buried object position calculating means The position (depth information) of the embedded object 3 calculated by 16 is acquired. Further, the two-dimensional signal processing / recording means 17 processes the acquired signal intensity and depth information to obtain two-dimensional information indicating the position of the buried object 3 in the concrete structure 1, and this two-dimensional signal The information is displayed and recorded as a contour diagram 22 shown in FIG. 4 on a display device (not shown) of the two-dimensional signal processing / recording means 17. In this contour diagram 22, since the magnitude of the strength of the high-frequency signal from the radio wave receiving means 13 is expressed by shading, it is indicated that the embedded object 3 exists in the dark portion 23 of this contour diagram 22.

位相入力手段18は、図5に示すように電波送信部20に対応して複数設けられ、それぞれが1個の電波送信部20に接続されると共に、信号発生手段11に接続される。コンクリート構造物1中の埋設物3を探査する際に、電波送信手段12の電波送信部20のそれぞれは、位相入力手段18によって、電波2を発信するタイミング(位相)が異なるように設定される。これにより、コンクリート構造物1中を伝搬する電波2は重なりがあるほど電波が強くなる。この電波2の強度の高い領域が、コンクリート構造物1内の任意の位置(後述の電波集束点)へ向かって集中して分布し、コンクリート構造物1中を伝搬する電波2が指向性の高い伝搬特性となるように構成される。すなわち、全ての電波送信部20から発信される電波2の波形は、設定した距離を伝搬したときに重なるように、それらの位相差が位相入力手段18によって設定される。
As shown in FIG. 5, a plurality of phase input means 18 are provided corresponding to the radio wave transmission unit 20, and each is connected to one radio wave transmission unit 20 and to the signal generation unit 11. When exploring the buried object 3 in the concrete structure 1, each of the radio wave transmission units 20 of the radio wave transmission unit 12 is set by the phase input unit 18 so that the timing (phase) of transmitting the radio wave 2 is different. . Thereby, the radio wave 2 propagating through the concrete structure 1 becomes stronger as there is an overlap. The high-intensity region of the radio wave 2 is concentrated and distributed toward an arbitrary position (a radio wave focusing point described later) in the concrete structure 1, and the radio wave 2 propagating through the concrete structure 1 has high directivity. It is configured to have propagation characteristics. That is, the phase input means 18 sets the phase difference between the waveforms of the radio waves 2 transmitted from all the radio wave transmission units 20 so as to overlap when propagating a set distance.

つまり、位相入力手段18は、信号発生手段11からの高周波信号に遅延時間を設定して信号発生手段11からの高周波信号を電波送信部20に入力させる例えば遅延回路であり、この遅延からの遅延設定時間をそれぞれの電波送信部20で異なった値に設定することで複数の電波送信部20に電波2を発信するタイミング(位相)を異ならせるものである。例えば、位相入力手段18は、図6の曲線P1に示すように、複数の電波送信部20のそれぞれが電波2を発信するタイミング(位相)を、電波送信部20の配列方向の中央位置Oに対して対称となるように異ならせて(ずらして)設定する。   That is, the phase input unit 18 is, for example, a delay circuit that sets a delay time for the high-frequency signal from the signal generation unit 11 and inputs the high-frequency signal from the signal generation unit 11 to the radio wave transmission unit 20. The timing (phase) at which the radio wave 2 is transmitted to the plurality of radio wave transmission units 20 is made different by setting the set time to a different value in each radio wave transmission unit 20. For example, the phase input unit 18 sets the timing (phase) at which each of the plurality of radio wave transmission units 20 transmits the radio wave 2 to the central position O in the arrangement direction of the radio wave transmission units 20 as indicated by a curve P1 in FIG. Set differently (shifted) so that they are symmetrical.

位相をずらして発信されてコンクリート構造物1中に送信された電波2は、位相が一致した部分で強度が高まり、位相が反転した部分で強度がゼロとなる。従って、電波送信部20のそれぞれが電波2を発信するタイミング(位相)が、図6の曲線P1に示すように、電波送信部20の配列方向の中心位置Oに対して対称となるように設定されたときには、コンクリート構造物1中を伝搬する電波2は、図7(B)に示すように、電波送信部20の配列方向の中心位置O上に焦点Aを有する略三角形Mの領域内に電波強度の高い部分が集中し、上記略三角形Mの領域外では電波強度が低く、焦点Aが電波2の集まる電波集束位置となって指向性の高い伝搬特性となる。コンクリート構造物1の探査面1Aから上記電波集束位置Aまでの距離が電波集束深さLaである。   The radio wave 2 transmitted with the phase shifted and transmitted into the concrete structure 1 has an increased intensity at a portion where the phases coincide with each other, and an intensity of zero at the portion where the phases are inverted. Accordingly, the timing (phase) at which each of the radio wave transmitting units 20 transmits the radio wave 2 is set to be symmetric with respect to the center position O in the arrangement direction of the radio wave transmitting units 20 as shown by a curve P1 in FIG. When this is done, the radio waves 2 propagating through the concrete structure 1 are within a region of a substantially triangle M having a focal point A on the center position O in the arrangement direction of the radio wave transmitters 20 as shown in FIG. The portions with high radio wave intensity are concentrated, and the radio wave intensity is low outside the area of the substantially triangle M, and the focal point A becomes a radio wave converging position where the radio waves 2 gather, and the propagation characteristics have high directivity. The distance from the search surface 1A of the concrete structure 1 to the radio wave focusing position A is the radio wave focusing depth La.

ここで、図7(A)は、複数の電波送信部20が同一のタイミング(位相)で電波2を送信したときに、これらの電波送信部20からコンクリート構造物1中へ送信された電波2の強度分布である。この場合、電波2の強度は、コンクリート構造物1における同一の深さで同一レベルとなり、電波2は、コンクリート構造物1中を探査面1Aと平行に拡がった状態で伝搬し、集束しない。   Here, FIG. 7A shows the radio wave 2 transmitted from the radio wave transmitting units 20 into the concrete structure 1 when the radio wave transmitting units 20 transmit the radio waves 2 at the same timing (phase). Intensity distribution. In this case, the intensity of the radio wave 2 becomes the same level at the same depth in the concrete structure 1, and the radio wave 2 propagates in the concrete structure 1 in a state of spreading in parallel with the exploration surface 1A and does not converge.

また、電波送信部20のそれぞれが電波2を発信するタイミングのずれ(位相差)を、図6の曲線P1よりも大きな曲線P2、P3のようにそれぞれ設定すると、コンクリート構造物1中を伝搬する電波2の伝搬特性は、図7(B)の点B、点Cをそれぞれ電波集束位置とする指向性の高い伝搬特性となる。このように複数の電波送信部20による電波2の発信タイミングのずれ(位相差)を変更することで、コンクリート構造物1中における電波集束位置、つまり電波集束深さLaを任意に設定することが可能になる。   Moreover, if each of the radio wave transmission units 20 sets a timing shift (phase difference) at which the radio wave 2 is transmitted as shown by curves P2 and P3 larger than the curve P1 in FIG. The propagation characteristic of the radio wave 2 is a high directivity propagation characteristic with the point B and the point C in FIG. Thus, by changing the deviation (phase difference) of the transmission timing of the radio wave 2 by the plurality of radio wave transmission units 20, it is possible to arbitrarily set the radio wave focusing position in the concrete structure 1, that is, the radio wave focusing depth La. It becomes possible.

実際の埋設物探査装置10による探査では、電波送信部20のそれぞれによる電波発信タイミングのずれ(位相差)を、例えば図6の曲線P1とする位相入力手段18、図6の曲線P2とする位相入力手段18、図6の曲線P3とする位相入力手段18のように、位相入力手段18を複数種類用意する。そして、電波送信手段12と電波受信手段13の少なくとも一方の走査の度毎に位相入力手段18の種類を変更することで、電波送信手段10から送信される電波2の電波集束位置A、B、C…が異なる走査を実施する。これにより、電波集束位置A、B、C…に存在する埋設物3のみを、他の位置に存在する埋設物3から分離してピンポイントで検出することが可能になる。   In the actual exploration by the buried object exploration device 10, the phase input means 18 for setting the deviation (phase difference) of the radio wave transmission timing by each of the radio wave transmission units 20 to the curve P1 in FIG. 6, for example, and the phase to the curve P2 in FIG. A plurality of types of phase input means 18 are prepared like the input means 18 and the phase input means 18 having the curve P3 in FIG. Then, by changing the type of the phase input means 18 every time at least one of the radio wave transmission means 12 and the radio wave reception means 13 is scanned, the radio wave focusing positions A, B, C ... performs different scans. As a result, only the buried object 3 existing at the radio wave focusing positions A, B, C... Can be separated from the buried object 3 existing at other positions and detected pinpointed.

尚、上述の埋設物探査装置10による探査においては、位相入力手段18を複数種類用意する代わりに、電波送信部20による電波発信タイミングのずれ(位相差)を、例えば図6の曲線P1、P2、P3…と変更して調整可能な位相入力手段18を用いてもよい。具体的には、位相入力手段18が遅延回路である場合、遅延設定時間を走査の度毎に変化させることで、電波送信部20のそれぞれによる電波送信タイミングのずれ(位相差)を変更して各走査を実行してもよい。   Incidentally, in the exploration by the above-described buried object exploration device 10, instead of preparing a plurality of types of phase input means 18, the deviation (phase difference) of the radio wave transmission timing by the radio wave transmission unit 20 is represented by, for example, the curves P1, P2 in FIG. , P3... May be used to adjust the phase input means 18 that can be adjusted. Specifically, when the phase input means 18 is a delay circuit, the delay setting time is changed for each scan to change the radio wave transmission timing shift (phase difference) by each of the radio wave transmission units 20. Each scan may be performed.

また、本実施形態では、図7(B)に示すように、コンクリート構造物1中を伝搬する電波2の伝搬特性は、電波送信部20の配列方向の中央位置Oからコンクリート構造物1の探査面1Aに対して垂直な深さ方向に沿う指向性を有している。これに対し、電波送信部20のそれぞれが電波2を発信するタイミングのずれ(位相差)を例えば図8(A)の曲線Qのように変えることで、コンクリート構造物1中を伝搬する電波2の指向性を、コンクリート構造物1の深さ方向に対して斜め方向としてもよい。   Further, in this embodiment, as shown in FIG. 7B, the propagation characteristics of the radio wave 2 propagating through the concrete structure 1 is the exploration of the concrete structure 1 from the central position O in the arrangement direction of the radio wave transmitter 20. It has directivity along the depth direction perpendicular to the surface 1A. On the other hand, the radio wave 2 propagating through the concrete structure 1 is obtained by changing the timing shift (phase difference) at which each of the radio wave transmission units 20 transmits the radio wave 2 as indicated by a curve Q in FIG. The directivity may be oblique to the depth direction of the concrete structure 1.

ここで、上記曲線Qは、図6の曲線P1、P2、P3に対して、電波2を最初に発信する電波送信部20が、電波送信部20の配列方向の中央位置Oから片側に所定距離だけ離れた位置R付近の電波送信部20であり、複数の他の電波送信部20が上記位置R付近の電波送信部20から離れるに従って、電波2の発信タイミングを順次ずらした場合の電波発信タイミングのずれ(位相差)を示す。   Here, the curve Q is a predetermined distance from the center position O in the arrangement direction of the radio wave transmitting units 20 to the one side with respect to the curves P1, P2, and P3 in FIG. The radio wave transmission unit 20 in the vicinity of the position R that is far away from the radio wave transmission timing when the transmission timings of the radio waves 2 are sequentially shifted as the plurality of other radio wave transmission units 20 move away from the radio wave transmission unit 20 in the vicinity of the position R. Deviation (phase difference).

以上のように構成されたことから、第1実施形態によれば、次の効果(1)及び(2)を奏する。
(1)図5〜図8に示すように、電波送信手段12における複数の電波送信部20のそれぞれは、対応する位相入力手段18によって電波2を発信するタイミング(位相)が異なるように設定されたので、コンクリート構造物1中を伝搬する電波2の強度の高い領域を、例えば図7(B)の略三角形M内に集中して分布させ、電波集束位置A、B、C…に電波2を集束させることができる。このため、コンクリート構造物1中を伝搬する電波2に高い指向性を持たせることができるので、コンクリート構造物1内の上記電波集束位置A、B、C…に存在する埋設物3のみを検出できる。この結果、コンクリート構造物1内に埋設物3が近接して埋設されている場合であっても、任意の埋設物3の深さ及び水平位置を他の埋設物3と分離して、高い分解能で正確に検出して探査できる。
With the configuration as described above, according to the first embodiment, the following effects (1) and (2) are obtained.
(1) As shown in FIGS. 5 to 8, each of the plurality of radio wave transmission units 20 in the radio wave transmission unit 12 is set so that the timing (phase) at which the radio wave 2 is transmitted by the corresponding phase input unit 18 is different. Therefore, the high intensity region of the radio wave 2 propagating through the concrete structure 1 is concentrated and distributed in, for example, the approximate triangle M in FIG. 7B, and the radio wave 2 is transmitted to the radio wave focusing positions A, B, C. Can be focused. For this reason, since the radio wave 2 propagating through the concrete structure 1 can be given high directivity, only the buried object 3 existing at the radio wave focusing positions A, B, C... In the concrete structure 1 is detected. it can. As a result, even if the embedded object 3 is embedded in the concrete structure 1 in close proximity, the depth and the horizontal position of the arbitrary embedded object 3 are separated from the other embedded objects 3 and high resolution is achieved. Can be detected and explored accurately.

(2)図8(A)に示すように、電波2を最初に発信する電波送信部20が、電波送信部20の配列方向の中央位置Oから片側に所定距離だけ離れた位置R付近の任意の電波送信部20であり、複数の他の電波送信部20が上記位置R付近の電波送信部20から離れるに従って電波2の発信タイミングを順次ずらした場合には、図8(B)に示すように、これら複数の電波送信部20からコンクリート構造物1中へ伝搬する電波2は、コンクリート構造物1の探査面1Aに垂直な深さ方向に対して斜め方向に指向性を有する。   (2) As shown in FIG. 8 (A), the radio wave transmitting unit 20 that first transmits the radio wave 2 is arbitrarily positioned near a position R that is a predetermined distance away from the central position O in the arrangement direction of the radio wave transmitting units 20 on one side. When the transmission timing of the radio wave 2 is sequentially shifted as the plurality of other radio wave transmission parts 20 move away from the radio wave transmission part 20 near the position R, as shown in FIG. In addition, the radio wave 2 propagating from the plurality of radio wave transmitting units 20 into the concrete structure 1 has directivity in an oblique direction with respect to the depth direction perpendicular to the exploration surface 1A of the concrete structure 1.

電波送信手段12と電波受信手段12の少なくともに一方をコンクリート構造物1に対して走査させたとき、電波送信手段12の電波送信部20から送信されてコンクリート構造物1中を伝搬する電波2が、上述の如くコンクリート構造物1の深さ方向に対して斜めの指向性を有することで、コンクリート構造物1の深さ方向に存在する複数の埋設物3を、1回の走査で同時に検出して探査できる。   When at least one of the radio wave transmission means 12 and the radio wave reception means 12 is scanned with respect to the concrete structure 1, the radio wave 2 transmitted from the radio wave transmission unit 20 of the radio wave transmission means 12 and propagating through the concrete structure 1 is generated. As described above, by having an oblique directivity with respect to the depth direction of the concrete structure 1, a plurality of buried objects 3 existing in the depth direction of the concrete structure 1 are simultaneously detected by one scanning. Can be explored.

[B]第2実施形態(図9〜図11)
図9は、第2実施形態に係る埋設物探査装置における位相入力手段を電波送信手段等と共に示す構成図である。この第2実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 9 to 11)
FIG. 9 is a block diagram showing the phase input means together with the radio wave transmission means etc. in the buried object searching apparatus according to the second embodiment. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

第2実施形態の埋設物探査装置30が第2実施形態と異なる点は位相入力手段31の構成であり、この位相入力手段31は信号分割部32及び信号遅延手段33を有して構成される。   The embedded object searching device 30 of the second embodiment is different from the second embodiment in the configuration of the phase input means 31, and this phase input means 31 is configured to include a signal dividing unit 32 and a signal delay means 33. .

つまり、信号分割部32は、電波送信手段12の電波送信部20に対応して複数設けられると共に、それぞれが信号発生手段11に接続される。これらの信号分割部32は、信号発生手段11から入力した高周波信号を電波送信部20のそれぞれに応じて分割する。   That is, a plurality of signal division units 32 are provided corresponding to the radio wave transmission unit 20 of the radio wave transmission unit 12, and each is connected to the signal generation unit 11. These signal dividers 32 divide the high-frequency signal input from the signal generator 11 according to each of the radio wave transmitters 20.

また、電波遅延手段33は、電波送信手段12の電波送信部20に対応して複数設けられると共に、それぞれが信号分割部32の各々と電波送信部20の各々に接続される。この信号遅延手段33は、信号発生手段11から信号分割部32を経て入力した高周波信号を電波送信部20に到達させる際に、その到達時刻に遅延を生じさせるものである。この遅延を電波送信部20のそれぞれにおいて異ならせることで、電波送信部20のそれぞれが電波2を発信するタイミング(位相)が異なったものになる。   A plurality of radio wave delay units 33 are provided corresponding to the radio wave transmission unit 20 of the radio wave transmission unit 12, and each is connected to each of the signal dividing unit 32 and each of the radio wave transmission units 20. The signal delay means 33 delays the arrival time when the high-frequency signal input from the signal generation means 11 via the signal division section 32 is made to reach the radio wave transmission section 20. By making this delay different in each radio wave transmission unit 20, the timing (phase) at which each radio wave transmission unit 20 transmits the radio wave 2 becomes different.

この信号遅延手段33は、図10に示すように、信号分割部32と電波送信部20とを接続する長さの異なる信号線やケーブルなどの配線34である。この信号遅延手段33は、図10の配線34のように長さが一定であって、電波送信部20が電波2を発信するタイミング(位相)が固定して設定されるものでもよい。また、信号遅延手段33は、図11に示すように、配線34の長さが変化可能に構成されて、電波送信部20が電波2を発信するタイミング(位相)が変更して調整されるものでもよい。ここで、図11に示す配線34は、例えば中空ケーブル35A内に中実ケーブル35Bが出入することで、配線34の配線長が長くなったり(図11(A))、短くなったり(図11(B))するように構成されたものである。   As shown in FIG. 10, the signal delay means 33 is a wiring 34 such as a signal line or a cable having a different length for connecting the signal division unit 32 and the radio wave transmission unit 20. The signal delay means 33 may have a fixed length as in the wiring 34 in FIG. 10 and may be set with a fixed timing (phase) at which the radio wave transmission unit 20 transmits the radio wave 2. Further, as shown in FIG. 11, the signal delay means 33 is configured such that the length of the wiring 34 can be changed, and the timing (phase) at which the radio wave transmission unit 20 transmits the radio wave 2 is changed and adjusted. But you can. Here, in the wiring 34 shown in FIG. 11, for example, when the solid cable 35B goes in and out of the hollow cable 35A, the wiring length of the wiring 34 becomes longer (FIG. 11A) or shorter (FIG. 11). (B)).

以上のように、位相入力手段31における信号遅延手段33のそれぞれが、信号発生手段11からの高周波信号を電波送信部20のそれぞれに到達させる時刻を異ならせることで、電波送信部20のそれぞれによる電波2の発信タイミング(位相)が異なるように設定されている。このため、電波送信部20から送信されてコンクリート構造物1中を伝搬する電波2の強度の高い領域を集中して分布させ、電波集束位置A、B、C…に電波2を集束させることができる。この結果、この第2実施形態においても、第1実施形態の効果(1)及び(2)と同様な効果を奏する。   As described above, each of the signal delay means 33 in the phase input means 31 changes the time at which the high-frequency signal from the signal generation means 11 reaches each of the radio wave transmission sections 20, so that each of the radio wave transmission sections 20 The transmission timing (phase) of the radio wave 2 is set to be different. For this reason, the high intensity | strength area | region of the radio wave 2 transmitted from the radio wave transmission unit 20 and propagating through the concrete structure 1 is concentrated and distributed, and the radio wave 2 is focused on the radio wave focusing positions A, B, C. it can. As a result, this second embodiment also has the same effects as the effects (1) and (2) of the first embodiment.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. Is included in the scope and gist of the invention, and is included in the invention described in the claims and the equivalents thereof.

1 コンクリート構造物(誘電体)
2 電波
3 埋設物
10 埋設物探査装置
11 信号発生装置
12 電波送信手段
13 電波受信手段
16 埋設物位置算出手段
18 位相入力手段
20 電波送信部
30 埋設物探査装置
31 位相入力手段
32 信号分割部
33 信号遅延手段
34 配線
1 Concrete structure (dielectric)
2 Radio wave 3 Embedded object 10 Embedded object exploration device 11 Signal generator 12 Radio wave transmission means 13 Radio wave reception means 16 Embedded object position calculation means 18 Phase input means 20 Radio wave transmission unit 30 Embedded object exploration device 31 Phase input means 32 Signal division unit 33 Signal delay means 34 wiring

Claims (6)

コンクリートや土を含む誘電体中へ電波を送受信することで、前記誘電体内に存在する埋設物を探査する埋設物探査装置において、
高周波信号を発生する信号発生手段と、
この信号発生手段からの高周波信号に基づき電波を発信させてこの電波を前記誘電体中へ送信し伝搬させる複数の電波送信部を備えた電波送信手段と、
前記埋設物にて反射した電波を受信して高周波信号とする電波受信手段と、
この電波受信手段からの高周波信号の信号レベルと、前記電波送信手段により送信されてから前記電波受信手段により受信されるまでの電波の伝搬時間とから、前記誘電体内の前記埋設物の位置を算出する埋設物位置算出手段とを有し、
前記電波送信部のそれぞれは、電波を発信するタイミングが異なるように位相入力手段により設定されて、前記誘電体中を伝搬する電波の強度の高い領域を集中して分布させるよう構成されたことを特徴とする埋設物探査装置。
In the buried object exploration device for exploring the buried object existing in the dielectric by transmitting and receiving radio waves into the dielectric including concrete and soil,
Signal generating means for generating a high-frequency signal;
Radio wave transmission means comprising a plurality of radio wave transmission units for transmitting radio waves based on high frequency signals from the signal generation means and transmitting and transmitting the radio waves into the dielectric,
Radio wave receiving means for receiving a radio wave reflected by the buried object and making it a high frequency signal;
The position of the buried object in the dielectric is calculated from the signal level of the high-frequency signal from the radio wave receiving means and the propagation time of the radio wave from the transmission by the radio wave sending means to the reception by the radio wave receiving means. Embedded object position calculating means
Each of the radio wave transmitters is configured by phase input means so that the timing of transmitting radio waves is different, and is configured to concentrate and distribute high intensity areas of radio waves propagating in the dielectric. A buried object exploration device.
前記位相入力手段は、誘電体中を伝搬する電波の強度の高い領域が前記誘電体内の任意の位置へ向かって集中して分布し指向性を有するように、電波送信部のそれぞれにおける電波の発信タイミングを異ならせて設定するよう構成されたことを特徴とする請求項1に記載の埋設物探査装置。   The phase input means transmits radio waves in each of the radio wave transmitters so that regions having high intensity of radio waves propagating in the dielectric are concentrated and distributed toward arbitrary positions in the dielectric and have directivity. The buried object searching device according to claim 1, wherein the setting device is configured to set the timings differently. 前記位相入力手段は、信号発生手段からの高周波信号に遅延時間を設定して複数の電波送信部へ前記高周波信号を入力させる遅延回路、または、前記信号発生手段と前記電波送信部のそれぞれとを接続する長さの異なる配線であることを特徴とする請求項1または2に記載の埋設物探査装置。 The phase input means includes a delay circuit that sets a delay time for the high-frequency signal from the signal generation means and inputs the high-frequency signal to a plurality of radio wave transmission units, or each of the signal generation unit and the radio wave transmission unit. The buried object exploration device according to claim 1, wherein the wiring is different in length to be connected. 前記遅延回路の遅延設定時間または前記配線の長さが変化可能に構成されたことを特徴とする請求項3に記載の埋設物探査装置。 The buried object search device according to claim 3, wherein a delay setting time of the delay circuit or a length of the wiring is configured to be variable. 前記誘電体は、コンクリート、土、アスファルト、砂、ゴム、塩化ビニール樹脂、プラスチック、セラミックを少なくとも1つ備えた請求項1乃至4のいずれか1項に記載の埋設物探査装置。 The buried object exploration device according to any one of claims 1 to 4, wherein the dielectric includes at least one of concrete, soil, asphalt, sand, rubber, vinyl chloride resin, plastic, and ceramic. コンクリートや土を含む誘電体中へ電波を送受信することで、前記誘電体内に存在する埋設物を探査する埋設物探査方法において、
電波送信手段の複数の電波送信部が電波を発信することでこの電波が前記誘電体中に送信されて伝搬し、前記埋設物から反射した電波を電波受信手段が受信して高周波信号とし、この電波受信手段からの高周波信号の信号レベルと、前記電波送信手段により送信されてから前記電波受信手段により受信されるまでの電波の伝搬時間とから、前記誘電体内の前記埋設物の位置を算出して前記埋設物を検出して探査する際に、
前記電波送信部のそれぞれから電波を発信するタイミングを異ならせるように設定して、前記誘電体中を伝搬する電波の強度の高い領域を集中して分布させることを特徴とする埋設物探査方法。
In the buried object exploration method for exploring the buried object existing in the dielectric by transmitting and receiving radio waves into the dielectric including concrete and soil,
When a plurality of radio wave transmission units of the radio wave transmission means transmit radio waves, the radio waves are transmitted and propagated in the dielectric, and the radio wave reception means receives the radio waves reflected from the embedded object to obtain high frequency signals. The position of the buried object in the dielectric is calculated from the signal level of the high-frequency signal from the radio wave receiving means and the propagation time of the radio wave from the transmission by the radio wave transmission means to the reception by the radio wave reception means. When detecting and investigating the buried object,
A buried object searching method, wherein the radio wave transmitting units are set to have different timings for transmitting radio waves, and regions of high intensity of radio waves propagating in the dielectric are concentrated and distributed.
JP2015171153A 2015-08-31 2015-08-31 Device and method for probing buried object Pending JP2017049061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171153A JP2017049061A (en) 2015-08-31 2015-08-31 Device and method for probing buried object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171153A JP2017049061A (en) 2015-08-31 2015-08-31 Device and method for probing buried object

Publications (1)

Publication Number Publication Date
JP2017049061A true JP2017049061A (en) 2017-03-09

Family

ID=58280092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171153A Pending JP2017049061A (en) 2015-08-31 2015-08-31 Device and method for probing buried object

Country Status (1)

Country Link
JP (1) JP2017049061A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142292A (en) * 1975-03-24 1976-12-07 Hughes Aircraft Co Dynamically focused thin array radar system
JPS61272671A (en) * 1985-05-29 1986-12-02 Toshiba Corp Electronic focus device
JPH09148981A (en) * 1995-11-27 1997-06-06 Nippon Motorola Ltd Spectrum effective use method and communication system using the same
JP2002202378A (en) * 2000-12-28 2002-07-19 Kddi Corp Buried object locating system in unopened-cut excavating
JP2008096199A (en) * 2006-10-10 2008-04-24 Nippon Signal Co Ltd:The Underground radar
JP2010502452A (en) * 2006-09-04 2010-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Machine tool monitoring device
JP2013110577A (en) * 2011-11-21 2013-06-06 Nippon Dengyo Kosaku Co Ltd Antenna, array antenna and sector antenna
US20150168554A1 (en) * 2012-08-09 2015-06-18 Israel Aerospace Industries Ltd. Friend or foe identification system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51142292A (en) * 1975-03-24 1976-12-07 Hughes Aircraft Co Dynamically focused thin array radar system
JPS61272671A (en) * 1985-05-29 1986-12-02 Toshiba Corp Electronic focus device
JPH09148981A (en) * 1995-11-27 1997-06-06 Nippon Motorola Ltd Spectrum effective use method and communication system using the same
JP2002202378A (en) * 2000-12-28 2002-07-19 Kddi Corp Buried object locating system in unopened-cut excavating
JP2010502452A (en) * 2006-09-04 2010-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Machine tool monitoring device
JP2008096199A (en) * 2006-10-10 2008-04-24 Nippon Signal Co Ltd:The Underground radar
JP2013110577A (en) * 2011-11-21 2013-06-06 Nippon Dengyo Kosaku Co Ltd Antenna, array antenna and sector antenna
US20150168554A1 (en) * 2012-08-09 2015-06-18 Israel Aerospace Industries Ltd. Friend or foe identification system and method

Similar Documents

Publication Publication Date Title
JP2017215328A (en) Imaging radar sensor with narrow antenna lobe and wide angle detection range
JP5191116B2 (en) Underground radar
JPWO2008053685A1 (en) Radar target detection method and radar apparatus using the target detection method
JP2017072590A (en) Detector, fish detector, and radar
JP2015190777A (en) pedestrian detection device
JP6019795B2 (en) Radar apparatus, target data acquisition method, and target tracking system
JP6478578B2 (en) Exploration equipment
CN110507361B (en) Shear wave imaging method and system
JP6767171B2 (en) Buried object exploration device and buried object exploration method
JP2017049061A (en) Device and method for probing buried object
JP6586462B2 (en) Water vapor observation device
JP3717835B2 (en) Buried object exploration equipment
JP6478557B2 (en) Exploration method
KR101903880B1 (en) Apparatus and method for detecting buried structure
KR101897690B1 (en) Mixed crossover-type gpr antenna array apparatus
JP2016224047A (en) Buried object exploratory device and buried object exploratory method
KR101758364B1 (en) Cross over gpr antenna array apparatus based on broadside configuration
JP2866885B2 (en) Method and apparatus for measuring depth of object in buried medium and relative permittivity of buried medium
WO2016017580A1 (en) Three-dimensional space coordinate measurement device
JPH0470588A (en) Underground inspection device
JP2005049301A (en) Ultrasonic sensor
JP2002006030A (en) Method and instrument for multi-point simultaneous distance measurement
JP2009174968A (en) Obstacle detection apparatus
JP3840520B2 (en) Navigation method for moving objects using radio wave reflectors
JP2004212324A (en) Buried structure exploration system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625