JP2017049036A - Image measuring device and control program thereof - Google Patents

Image measuring device and control program thereof Download PDF

Info

Publication number
JP2017049036A
JP2017049036A JP2015170616A JP2015170616A JP2017049036A JP 2017049036 A JP2017049036 A JP 2017049036A JP 2015170616 A JP2015170616 A JP 2015170616A JP 2015170616 A JP2015170616 A JP 2015170616A JP 2017049036 A JP2017049036 A JP 2017049036A
Authority
JP
Japan
Prior art keywords
image
measurement
workpiece
measurement result
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015170616A
Other languages
Japanese (ja)
Other versions
JP6599698B2 (en
Inventor
正紀 栗原
Masanori Kurihara
正紀 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2015170616A priority Critical patent/JP6599698B2/en
Priority to DE102016008744.7A priority patent/DE102016008744A1/en
Priority to CN201610726418.XA priority patent/CN106482635A/en
Priority to US15/250,313 priority patent/US9972095B2/en
Publication of JP2017049036A publication Critical patent/JP2017049036A/en
Application granted granted Critical
Publication of JP6599698B2 publication Critical patent/JP6599698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Quality & Reliability (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image measuring device capable of performing suitable measurement and its control program.SOLUTION: An image measuring device according to one embodiment of the present invention comprises: an imaging device for photographing a work and obtaining an image of the work; and an arithmetic device for performing measurement of the work on the basis of the image and outputting a measurement result. Furthermore, the arithmetic device generates another image with fewer number of pixels than the image on the basis of the image, sets a plurality of regions on the basis of the other image, and calculates the measurement result on the basis of the plurality of regions.SELECTED DRAWING: Figure 3

Description

本発明は、ワークを撮像する事によってワークを測定する画像測定装置及びその制御プログラムに関する。   The present invention relates to an image measuring apparatus that measures a workpiece by imaging the workpiece and a control program therefor.

ワークについて寸法測定や形状測定を行う測定装置が知られている。このような測定装置としては、例えば、ワークを撮像して、このワークの画像を取得する撮像装置と、この画像に基づいて、ワークの寸法測定や形状測定等を行う演算装置とを備えた画像測定装置が知られている(特許文献1)。このような測定においては、例えば、測定対象の中心位置や、形状、輪郭線、幅等が算出される。   2. Description of the Related Art Measuring apparatuses that perform dimension measurement and shape measurement on a workpiece are known. As such a measuring apparatus, for example, an image including an imaging apparatus that captures an image of a workpiece and acquires an image of the workpiece, and an arithmetic unit that performs dimension measurement or shape measurement of the workpiece based on the image. A measuring apparatus is known (Patent Document 1). In such measurement, for example, the center position, shape, contour, width, etc. of the measurement target are calculated.

特開2001−241941号公報JP 2001-241941 A

例えば、画像測定装置を用いてワークを測定する場合、画像中に含まれるノイズの影響によって、好適に寸法測定や形状測定等を行う事が出来ない場合があった。   For example, when a workpiece is measured using an image measuring device, there are cases where it is not possible to suitably perform dimension measurement or shape measurement due to the influence of noise included in the image.

本発明は、このような点に鑑みなされたもので、画像中のノイズを低減して、好適に寸法測定や形状測定等を行うことが可能な画像測定装置及びその制御プログラムを提供することを目的としている。   The present invention has been made in view of the above points, and provides an image measurement apparatus and a control program therefor that are capable of reducing noise in an image and suitably performing dimension measurement, shape measurement, and the like. It is aimed.

かかる課題を解決すべく、本発明の一の実施の形態に係る画像測定装置は、ワークを撮像して、このワークの画像を取得する撮像装置と、この画像に基づいてワークの寸法測定や形状測定等を行い、測定対象の中心位置や、形状、輪郭線、幅等の測定結果を出力する演算装置とを備える。また、演算装置は、上記画像に基づいて、この画像よりも画素数が少ない他の画像を生成し、この他の画像に基づいて複数の領域を設定し、これら複数の領域に基づいて上記測定結果を算出する。   In order to solve this problem, an image measurement apparatus according to an embodiment of the present invention includes an imaging apparatus that captures an image of a workpiece and acquires an image of the workpiece, and the dimension measurement and shape of the workpiece based on the image. And an arithmetic unit that performs measurement or the like and outputs measurement results such as the center position of the measurement target, shape, contour line, and width. The arithmetic unit generates another image having a smaller number of pixels than the image based on the image, sets a plurality of regions based on the other image, and performs the measurement based on the plurality of regions. Calculate the result.

例えば、上記演算装置は、上記領域の輪郭線に沿ってエッジ検出処理を行ってエッジ点群を取得する事が出来る。また、上記演算装置は、このエッジ点群に含まれる複数のエッジ点のうちの一部を排除する事が出来る。また、上記演算装置は、上記複数の領域に対して、それぞれ異なる複数の番号を設定する事が出来る。   For example, the arithmetic unit can acquire an edge point group by performing an edge detection process along the outline of the region. Further, the arithmetic device can exclude some of the plurality of edge points included in the edge point group. In addition, the arithmetic device can set a plurality of different numbers for the plurality of regions.

本発明の一の実施の形態に係る画像測定装置の制御プログラムは、ワークを撮像して、ワークの画像を取得する撮像装置と、この画像に基づいてワークの寸法測定や形状測定等を行い、測定対象の中心位置や、形状、輪郭線、幅等の測定結果を出力する演算装置とを備えた画像測定装置を制御して、測定結果の算出を行う。また、このプログラムにおいて、演算装置は、上記画像に基づいて、この画像よりも画素数が少ない他の画像を生成し、この他の画像に基づいて複数の領域を設定し、これら複数の領域に基づいて上記測定結果を算出する。   The control program of the image measuring apparatus according to one embodiment of the present invention is an imaging apparatus that captures an image of a workpiece and obtains an image of the workpiece, performs dimension measurement or shape measurement of the workpiece based on the image, The measurement result is calculated by controlling an image measurement device including a calculation device that outputs a measurement result such as a center position of the measurement target, a shape, a contour line, and a width. In this program, the arithmetic unit generates another image having a smaller number of pixels than the image based on the image, sets a plurality of areas based on the other image, and sets the plurality of areas in the plurality of areas. Based on this, the measurement result is calculated.

本発明によれば、好適に寸法測定や形状測定等を行うことが可能な画像測定装置及びその制御プログラムを提供する事が可能である。   According to the present invention, it is possible to provide an image measuring apparatus and a control program thereof capable of suitably performing dimension measurement and shape measurement.

本発明の第1の実施の形態に係る画像測定装置の全体図である。1 is an overall view of an image measurement apparatus according to a first embodiment of the present invention. 同画像測定装置で取得されたワークの画像の表示画面を示す。The display screen of the image of the work acquired with the image measuring device is shown. 同画像測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image measuring device. 同画像測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the image measuring device. 同動作において生成された画像ピラミッドを示す。The image pyramid produced | generated in the same operation | movement is shown. 図2のAA線に沿った画素位置と濃度レベルの関係を示すグラフである。3 is a graph showing a relationship between a pixel position and a density level along the AA line in FIG. 2. 同動作においてワークの画像に設定された領域を表示する表示画面を示す。The display screen which displays the area | region set to the image of the workpiece | work in the same operation is shown. 同動作おいて使用されるエッジ検出ツールを表示する表示画面を示す。The display screen which displays the edge detection tool used in the same operation is shown. 図8のBで示した部分の拡大図である。It is an enlarged view of the part shown by B of FIG. 図9のエッジ点から選択された複数のエッジ点を示す。10 shows a plurality of edge points selected from the edge points of FIG. 同動作において取得された測定結果を表示する表示画面を示す。The display screen which displays the measurement result acquired in the same operation is shown. 従来の画像測定装置において取得された複数のエッジ点を示す。The some edge point acquired in the conventional image measuring apparatus is shown. 図12のエッジ点から選択された複数のエッジ点を示す。13 shows a plurality of edge points selected from the edge points in FIG. 従来の画像測定装置においてフィルタリング後の画像から取得された複数のエッジ点を示す。The several edge point acquired from the image after filtering in the conventional image measuring apparatus is shown. 図14のエッジ点から選択された複数のエッジ点を示す。The some edge point selected from the edge point of FIG. 14 is shown. 本発明の第2の実施の形態に係る画像測定装置によってワークの画像に設定された領域を示す。The area | region set to the image of the workpiece | work by the image measuring device which concerns on the 2nd Embodiment of this invention is shown. 図16の領域から抽出された領域を示す。The area extracted from the area of FIG. 16 is shown.

[第1の実施の形態]
次に、本発明の第1の実施の形態について図面を参照して詳細に説明する。
[First Embodiment]
Next, a first embodiment of the present invention will be described in detail with reference to the drawings.

まず、図1を参照して、本実施の形態に係る画像測定装置の概略的な構成について説明する。   First, a schematic configuration of the image measuring apparatus according to the present embodiment will be described with reference to FIG.

図1に示す通り、本実施の形態に係る画像測定装置は、互いに直交するX,Y,Z軸を備えると共に、このZ軸の先端にワーク3を撮像する撮像装置としてカメラ141が搭載された画像測定機1と、この画像測定機1と接続されたコンピュータ(以下、「PC」と呼ぶ。)2とを備えている。   As shown in FIG. 1, the image measuring apparatus according to the present embodiment includes X, Y, and Z axes that are orthogonal to each other, and a camera 141 is mounted as an imaging apparatus that images the workpiece 3 at the tip of the Z axis. An image measuring machine 1 and a computer (hereinafter referred to as “PC”) 2 connected to the image measuring machine 1 are provided.

画像測定機1は、次のように構成されている。即ち、試料移動手段11の上には、試料台12がその上面をベース面として水平面と一致するように載置され、試料移動手段11の両側端から立設されたアーム支持体13a,13bの上端でX軸ガイド13cを支持している。試料台12は、試料移動手段11によってY軸方向に駆動される。X軸ガイド13cには、撮像ユニット14がX軸方向に駆動可能に支持されている。撮像ユニット14の下端には、カメラ141がZ軸方向に駆動可能に装着されている。   The image measuring machine 1 is configured as follows. That is, the sample stage 12 is placed on the sample moving means 11 so as to coincide with the horizontal plane with the upper surface as a base surface, and the arm supports 13 a and 13 b erected from both ends of the sample moving means 11. The X-axis guide 13c is supported at the upper end. The sample stage 12 is driven in the Y-axis direction by the sample moving means 11. The imaging unit 14 is supported by the X-axis guide 13c so as to be driven in the X-axis direction. A camera 141 is attached to the lower end of the imaging unit 14 so as to be driven in the Z-axis direction.

尚、本実施の形態においては試料台12上に配置されたワーク3を撮像する形式をとっているが、当然他の形式でも良く、例えば床に設置されたワークを横方向から撮像する様な形式でも良い。又、カメラ141としてはCCD、CMOS等、種々のカメラを使用可能である。また、カメラ141としては、画像測定機1に着脱可能な画像プローブを採用する事も出来る。   In the present embodiment, the form of imaging the workpiece 3 arranged on the sample stage 12 is taken. However, other formats may naturally be used. For example, the workpiece placed on the floor is imaged from the lateral direction. The format is acceptable. As the camera 141, various cameras such as a CCD and a CMOS can be used. As the camera 141, an image probe that can be attached to and detached from the image measuring device 1 can be adopted.

PC2は、演算装置22と、この演算装置22に接続された表示装置21、及び、入力装置23を備えている。演算装置22は、内部にCPUやハードディスク等の記憶装置を備えている。表示装置21は、例えば、ディスプレイやプロジェクタ等である。入力装置23は、測定者の操作を入力する操作入力装置であり、例えばマウスやキーボード、タッチパネル等である。   The PC 2 includes an arithmetic device 22, a display device 21 connected to the arithmetic device 22, and an input device 23. The arithmetic device 22 includes a storage device such as a CPU and a hard disk. The display device 21 is, for example, a display or a projector. The input device 23 is an operation input device that inputs a measurement person's operation, and is, for example, a mouse, a keyboard, a touch panel, or the like.

次に、図2を参照して、表示装置21の画面上に表示される映像について説明する。   Next, an image displayed on the screen of the display device 21 will be described with reference to FIG.

図2に示す通り、表示装置21の画面上には、カメラ141によって取得されたワーク3の画像(以下、図中、画像(3)と表記する。)が表示されている。図2に示す例において、ワーク3は、測定対象31を含んでいる。   As shown in FIG. 2, an image of the work 3 acquired by the camera 141 (hereinafter referred to as image (3) in the figure) is displayed on the screen of the display device 21. In the example shown in FIG. 2, the work 3 includes a measurement object 31.

次に、図3を参照して、本施の形態に係る演算装置22の構成について、更に詳しく説明する。   Next, with reference to FIG. 3, the configuration of the arithmetic unit 22 according to the present embodiment will be described in more detail.

図3に示す通り、本実施の形態に係る画像測定装置においては、カメラ141がワーク3を撮像し、ワーク3の画像を取得する。また、この画像は、演算装置22を介して、表示装置21に転送される。また、演算装置22は、入力装置23を介して測定者の操作を受け付け、これに基づいてワーク3の測定(寸法測定や形状測定等)を行う。例えば、画像中から測定対象となる部分を抽出し、この測定対象について、重心等の位置に関する値や、輪郭線、幅等の形状に関する値を算出する。   As shown in FIG. 3, in the image measurement device according to the present embodiment, camera 141 captures workpiece 3 and acquires an image of workpiece 3. In addition, this image is transferred to the display device 21 via the arithmetic device 22. In addition, the arithmetic device 22 accepts a measurement person's operation via the input device 23, and measures the workpiece 3 (such as dimension measurement or shape measurement) based on this. For example, a part to be measured is extracted from the image, and a value relating to the position such as the center of gravity and a value relating to the shape such as the contour line and width are calculated for the measurement object.

図3に示す通り、演算装置22は、CPU、メモリ及びハードディスク(記憶装置24)等に格納されたプログラムによって、下記の機能を実現する。即ち、領域分割部221は、ワーク3の画像に対して領域分割処理を行う。例えば、図7に示す通り、画像に領域分割処理を行ってこの画像を複数の領域に分割し、これら複数の領域を出力する。エッジ検出部222は、例えば、図8及び図9に示す通り、出力された領域の輪郭線に対してエッジ検出処理を行い、複数のエッジ点を含むエッジ点群を取得する。異常点除去部223は、例えば、図10に示す通り、複数のエッジ点のうちの一部を異常点と判定して除去し、残りを選択エッジ点群として取得する。測定結果取得部224は、この選択エッジ点群に基づいて、測定結果を取得する。   As illustrated in FIG. 3, the arithmetic device 22 realizes the following functions by a program stored in a CPU, a memory, a hard disk (storage device 24), and the like. That is, the area dividing unit 221 performs area dividing processing on the image of the work 3. For example, as shown in FIG. 7, region division processing is performed on the image to divide the image into a plurality of regions, and the plurality of regions are output. For example, as illustrated in FIGS. 8 and 9, the edge detection unit 222 performs edge detection processing on the outline of the output region, and acquires an edge point group including a plurality of edge points. For example, as illustrated in FIG. 10, the abnormal point removing unit 223 determines and removes some of the plurality of edge points as abnormal points, and acquires the remaining as selected edge point groups. The measurement result acquisition unit 224 acquires the measurement result based on the selected edge point group.

次に、図4〜図11を参照して、本実施の形態に係る画像測定装置の動作について説明する。   Next, the operation of the image measurement apparatus according to the present embodiment will be described with reference to FIGS.

まず、図4〜図7を参照して、ステップS101について説明する。   First, step S101 will be described with reference to FIGS.

図4〜図7に示す通り、ステップS101においては、ワーク3の画像に対して領域分割処理を行う。領域分割処理は、種々の態様において行うことが可能であるが、以下においては、画像ピラミッドを用いた方法について例示する。尚、画像ピラミッドとは、例えば図5に示す様な、解像度(画素数)の異なる同一画像の集合である。   As shown in FIGS. 4 to 7, in step S <b> 101, region division processing is performed on the image of the work 3. The area division processing can be performed in various modes. In the following, a method using an image pyramid will be exemplified. The image pyramid is a set of the same images having different resolutions (number of pixels) as shown in FIG. 5, for example.

図5に示す通り、ステップS101においては、例えば、ワーク3の画像に基づいて画像ピラミッドを生成する。例えば、図5に示す通り、ワーク3の画像がn画素の画像であった場合、例えば上下左右に隣接する画素の階調を平均化して、第1の画像よりも画素数が少ない画像を生成する。続いて、この生成された画像にも同様の処理を行い、更に画素数が少ない画像を生成する。以下同様に、新たに生成される画像が、元となる画像よりも画素数の少ないものとなる様に、順次画像を生成し、画像ピラミッドを生成する。続いて、この画像ピラミッドに含まれる複数の画像からk(<n)画素の画像を選択する。   As shown in FIG. 5, in step S <b> 101, for example, an image pyramid is generated based on the image of the work 3. For example, as shown in FIG. 5, when the image of the work 3 is an image of n pixels, for example, the gradation of pixels adjacent in the vertical and horizontal directions is averaged to generate an image having a smaller number of pixels than the first image To do. Subsequently, similar processing is performed on the generated image to generate an image having a smaller number of pixels. Similarly, images are sequentially generated so that a newly generated image has a smaller number of pixels than the original image, and an image pyramid is generated. Subsequently, an image of k (<n) pixels is selected from a plurality of images included in the image pyramid.

また、図6及び図7に示す通り、ステップS101においては、例えば、この選択されたk画素の画像に、複数の領域を設定する。領域の設定は、種々の態様において行うことが可能であるが、図6に示す例においては、濃度レベル(階調)がしきい値Thよりも高い部分と、濃度レベル(階調)がしきい値Thよりも低い部分とが異なる領域に分割される様に、領域の設定を行っている。尚、各画素の濃度レベル(階調)に応じて領域を設定する場合、しきい値Thを複数設定する事も可能である。また、上記k画素の画像に基づいて各領域の大まかな位置等を決定し、カメラ141において取得されたn画素の画像に基づいて各領域の境界を詳細に決定する事も可能である。   Also, as shown in FIGS. 6 and 7, in step S101, for example, a plurality of regions are set in the selected k-pixel image. The area can be set in various modes. In the example shown in FIG. 6, the portion where the density level (gradation) is higher than the threshold value Th and the density level (gradation) are set. The region is set so that the portion lower than the threshold value Th is divided into different regions. In addition, when setting an area | region according to the density level (gradation) of each pixel, it is also possible to set multiple threshold value Th. It is also possible to determine a rough position or the like of each area based on the k pixel image, and to determine the boundary of each area in detail based on the n pixel image acquired by the camera 141.

次に、図4、図8及び図9を参照して、ステップS102について説明する。   Next, step S102 will be described with reference to FIG. 4, FIG. 8, and FIG.

図4、図8及び図9に示す通り、ステップS102においては、ステップS101において取得された複数の領域の少なくとも一部に対してエッジ検出処理を行い、複数のエッジ点を取得する。エッジ検出処理は、種々の態様において行うことが可能であるが、図8に示す例においては、エッジ検出用のツールtを使用している。図8に例示するエッジ検出用のツールtは4つのボックスbを含んでおり、各ボックスbは測定対象31に対応する領域の輪郭線に沿って延びる長方形の形状を有している。また、各ボックスbには、その短手方向に延びる線分lが、その長手方向に沿って複数設けられている。エッジ検出においては、図8に示す通り、各ボックスbが測定対象31の輪郭に重畳され、ボックスb内の線分lに沿って濃度レベルの変化(傾き)の最も大きい画素がエッジ点として取得される。   As shown in FIGS. 4, 8, and 9, in step S <b> 102, edge detection processing is performed on at least a part of the plurality of regions acquired in step S <b> 101 to acquire a plurality of edge points. The edge detection process can be performed in various modes. In the example shown in FIG. 8, a tool t for edge detection is used. The edge detection tool t illustrated in FIG. 8 includes four boxes b, and each box b has a rectangular shape extending along a contour line of a region corresponding to the measurement target 31. Each box b is provided with a plurality of line segments l extending in the short direction along the longitudinal direction. In edge detection, as shown in FIG. 8, each box b is superimposed on the contour of the measurement object 31, and a pixel having the largest change (gradient) in density level along the line segment l in the box b is acquired as an edge point. Is done.

次に、図4及び図10を参照して、ステップS103について説明する。   Next, step S103 will be described with reference to FIGS.

図4及び図10に示す通り、ステップS103においては、異常点検出処理を行って、図9に示した複数のエッジ点から異常点を除去し、選択エッジ点を取得する。異常点検出処理は種々の態様において行うことが可能であるが、例えば、ステップS102において取得した複数のエッジ点に近似直線(近似曲線)を設定し、この近似直線(近似曲線)から、各エッジ点までの距離を算出し、算出された距離の平均値及び分散値に基づいて、異常点を判定する事が可能である。   As shown in FIGS. 4 and 10, in step S103, an abnormal point detection process is performed to remove abnormal points from the plurality of edge points shown in FIG. 9 and acquire selected edge points. The abnormal point detection processing can be performed in various modes. For example, an approximate straight line (approximate curve) is set at a plurality of edge points acquired in step S102, and each edge is determined from the approximate straight line (approximate curve). It is possible to calculate the distance to the point and determine the abnormal point based on the average value and the variance value of the calculated distance.

次に、図4及び図11を参照して、ステップS104について説明する。   Next, step S104 will be described with reference to FIGS.

図4及び図11に示す通り、ステップS104においては、例えばステップS103において取得された複数の選択エッジ点に基づいて、測定の結果を取得する。ステップS104においては、測定対象(例えば、測定対象31)の重心や輪郭線、幅等、種々の値を算出することが可能である。   As shown in FIGS. 4 and 11, in step S <b> 104, for example, the measurement result is acquired based on the plurality of selected edge points acquired in step S <b> 103. In step S104, various values such as the center of gravity, contour line, and width of the measurement target (for example, measurement target 31) can be calculated.

ここで、従来の画像測定装置においては、カメラ141において取得された画像に対して直接エッジ検出処理を行うと、図12に示す通り、画像に含まれるノイズの影響によって、測定対象31の輪郭から離れた多くの点がエッジ点として算出されてしまう場合があった。このような画像に対して異常点検出処理を行うと、図13に示す通り、多くのエッジ点が除去されてしまい、測定の精度に影響する場合があった。   Here, in the conventional image measuring apparatus, when the edge detection process is directly performed on the image acquired by the camera 141, as shown in FIG. 12, due to the influence of noise included in the image, the contour of the measurement target 31 is detected. There are cases where many distant points are calculated as edge points. When an abnormal point detection process is performed on such an image, many edge points are removed as shown in FIG. 13, which may affect the measurement accuracy.

このような点に鑑み、従来の画像測定装置においては、カメラ141において取得された画像に対して予めフィルタリング等の画像処理を行い、画像中のノイズを低減させ、その後にエッジ検出処理を行う場合があった。このようなフィルタリングには、例えば、メディアンフィルタ、平均フィルタ、ガウシアンフィルタ、モフォロジーフィルタ等の画像フィルタを用いることがあった。しかしながら、このようにフィルタリング等の画像処理を行った場合であっても、図14に示す通り、測定対象31の輪郭から離れた多くの点がエッジ点として算出されてしまう場合があった。従って、このような画像に対して異常点検出処理を行った場合にも、図15に示す通り、多くのエッジ点が除去されてしまい、測定の精度に影響する場合があった。   In view of these points, in the conventional image measurement device, image processing such as filtering is performed in advance on an image acquired by the camera 141 to reduce noise in the image, and then edge detection processing is performed. was there. For such filtering, for example, an image filter such as a median filter, an average filter, a Gaussian filter, or a morphology filter may be used. However, even when image processing such as filtering is performed in this way, as shown in FIG. 14, many points away from the contour of the measurement target 31 may be calculated as edge points. Therefore, even when the abnormal point detection process is performed on such an image, as shown in FIG. 15, many edge points are removed, which may affect the measurement accuracy.

このような場合に対し、第1の実施の形態においては、カメラ141によって取得した画像に対して領域分割処理を行って画像を複数の領域に分割し(図7参照)、これら複数の領域の少なくとも一部に対してエッジ検出処理を行い(図8参照)、このエッジ検出処理によって取得された複数のエッジ点に対して異常点検出処理を行い(図10参照)、その結果に基づいて測定結果を取得している(図11参照)。従って、図7に示す通り、測定対象31の輪郭付近におけるノイズを好適に低減させ、図9に示す通り、測定対象31の輪郭上において多数のエッジ点を好適に取得する事が可能である。また、上述したような場合と比較して、異常点検出処理において除去されるエッジ点の点数を低減させることが可能である。   In such a case, in the first embodiment, the image obtained by the camera 141 is subjected to region division processing to divide the image into a plurality of regions (see FIG. 7). Edge detection processing is performed on at least a part (see FIG. 8), abnormal point detection processing is performed on a plurality of edge points acquired by the edge detection processing (see FIG. 10), and measurement is performed based on the result. The result is acquired (see FIG. 11). Therefore, as shown in FIG. 7, it is possible to suitably reduce noise in the vicinity of the outline of the measurement target 31, and to obtain a large number of edge points on the outline of the measurement target 31 as shown in FIG. Further, it is possible to reduce the number of edge points to be removed in the abnormal point detection process as compared with the case described above.

尚、図4〜図11を参照して説明した例においては、画像ピラミッドを用いて領域分割処理を行っていた。即ち、カメラ141において取得された画像よりも画素数が少ない画像に基づいて各領域の大まかな位置等を決定していた。ここで、画素数が少ない画像においては、元の画像に含まれるノイズが大幅に削減される。従って、この画像に基づいて各領域の大まかな位置等を決定することにより、測定対象31の輪郭付近におけるノイズの影響を低減させつつ各領域の輪郭を決定する事が可能である。   In the example described with reference to FIGS. 4 to 11, the region dividing process is performed using the image pyramid. That is, the approximate position of each region is determined based on an image having a smaller number of pixels than the image acquired by the camera 141. Here, in an image having a small number of pixels, noise included in the original image is greatly reduced. Therefore, by determining the approximate position of each region based on this image, it is possible to determine the contour of each region while reducing the influence of noise near the contour of the measurement object 31.

また、上述の通り、上記領域分割処理においては、上記k画素の画像に基づいて各領域の大まかな位置等を決定し、カメラ141において取得されたn画素の画像に基づいて各領域の境界を詳細に決定する事も可能である。このような場合、上記領域の輪郭を、n画素の画像に基づいて決定する事が可能であるため、ノイズを低減させつつ詳細な測定を行う事が可能である。尚、k画素の画像に基づいて測定結果を算出することにより、高速な概算処理を行う事も可能である。   Further, as described above, in the region division processing, the approximate position of each region is determined based on the k pixel image, and the boundary of each region is determined based on the n pixel image acquired by the camera 141. It is also possible to decide in detail. In such a case, the outline of the region can be determined based on an image of n pixels, so that detailed measurement can be performed while reducing noise. In addition, it is also possible to perform a high-speed rough calculation process by calculating a measurement result based on an image of k pixels.

[第2の実施の形態]
次に、図16及び図17を参照して、本発明の第2の実施の形態に係る画像測定装置について説明する。尚、以下の説明において、第1の実施の形態と同様の部分については同一の符号を付し、説明を省略する。
[Second Embodiment]
Next, an image measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS. In the following description, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態に係る画像測定装置は、基本的には第1の実施の形態と同様に構成されているが、本実施の形態においては、図16に示す通り、画像分割処理が行われた後、各領域に異なる番号を割り振っている。また、その後、図17に示す通り、測定対象31に対応する領域“3”を抽出し、この抽出された領域に基づいて測定結果を取得する。   The image measurement apparatus according to the present embodiment is basically configured in the same manner as in the first embodiment, but in this embodiment, as shown in FIG. 16, image division processing is performed. Later, different numbers are assigned to each area. After that, as shown in FIG. 17, the area “3” corresponding to the measurement object 31 is extracted, and the measurement result is acquired based on the extracted area.

本実施の形態においては、図16に示す通り、ノイズ部分に対応する領域“6”,“7”に、測定対象31に対応する領域“3”とは異なる番号が割り振られる。従って、測定対象31に対応する領域“3”が抽出された時点で、測定対象31の輪郭付近におけるノイズを好適に低減させることが可能である。   In the present embodiment, as shown in FIG. 16, the areas “6” and “7” corresponding to the noise portion are assigned different numbers from the area “3” corresponding to the measurement target 31. Therefore, when the region “3” corresponding to the measurement target 31 is extracted, noise near the contour of the measurement target 31 can be suitably reduced.

尚、本実施の形態においては、抽出された領域“3”に対して、第1の実施の形態と同様にエッジ検出や異常点検出処理等の処理を行い、その結果に基づいて測定結果を取得する事も出来る。また、その他の処理を行うことによって測定結果を取得する事も出来る。   In this embodiment, the extracted region “3” is subjected to processing such as edge detection and abnormal point detection processing as in the first embodiment, and the measurement result is obtained based on the result. You can also get it. Moreover, a measurement result can also be acquired by performing other processes.

また、図16に示す通り、ノイズ部分に対応する領域“6”,“7”は、他の領域と比較して、面積が小さい事がある。従って、例えば、領域の面積について予めしきい値を設定しておき、各領域に異なる番号を割り振った後で、面積がしきい値以下となる様な領域“6”,“7”が存在していた場合には、これらの領域“6”,“7”をノイズ成分に対応する領域と判定し、測定結果の算出の際に排除する事も可能である。   In addition, as shown in FIG. 16, the areas “6” and “7” corresponding to the noise portion may have a smaller area than the other areas. Therefore, for example, after setting a threshold value for the area of a region and assigning a different number to each region, there are regions “6” and “7” where the area is equal to or less than the threshold value. In such a case, these areas “6” and “7” can be determined as areas corresponding to noise components, and can be excluded when calculating the measurement result.

[その他の実施の形態]
第1の実施の形態においてはエッジ検出処理や異常点検出処理等を行っていたが、これらの処理を省略したり、他の処理に置き換えたりする事も可能である。また、上記フィルタリング等の画像処理を組み合わせて行う事も可能である。
[Other embodiments]
In the first embodiment, edge detection processing, abnormal point detection processing, and the like are performed. However, these processing can be omitted or replaced with other processing. It is also possible to combine image processing such as filtering.

また、本発明は、カメラ141がZ軸方向に駆動可能に構成され、Z軸方向の座標を測定可能な三次元画像測定機を使用する場合の他、二次元画像測定機や、画像測定機能を有する顕微鏡を使用する場合にも適用可能である。   In addition to the case where the camera 141 is configured so that the camera 141 can be driven in the Z-axis direction and can measure coordinates in the Z-axis direction, a two-dimensional image measuring machine and an image measuring function are used. It is also applicable when using a microscope having

1…画像測定機、2…コンピュータ(PC)、3…ワーク、11…試料移動手段、12…試料台、13a、b…アーム支持体、13c…X軸ガイド、14…撮像ユニット、表示装置21、演算装置22、入力装置23、141…カメラ。   DESCRIPTION OF SYMBOLS 1 ... Image measuring machine, 2 ... Computer (PC), 3 ... Workpiece, 11 ... Sample moving means, 12 ... Sample stand, 13a, b ... Arm support, 13c ... X-axis guide, 14 ... Imaging unit, Display device 21 , Arithmetic unit 22, input devices 23, 141... Camera.

Claims (5)

ワークを撮像して、前記ワークの画像を取得する撮像装置と、
前記画像に基づいて前記ワークの測定を行い、測定結果を出力する演算装置と
を備え、
前記演算装置は、
前記画像に基づいて、前記画像よりも画素数が少ない他の画像を生成し、
前記他の画像に基づいて複数の領域を設定し、
前記複数の領域に基づいて前記測定結果を算出する
ことを特徴とする画像測定装置。
An imaging device that captures an image of the workpiece and obtains an image of the workpiece;
An arithmetic unit that measures the workpiece based on the image and outputs a measurement result;
The arithmetic unit is:
Based on the image, generate another image having fewer pixels than the image,
Set a plurality of areas based on the other images,
The image measurement apparatus that calculates the measurement result based on the plurality of regions.
前記演算装置は、前記領域の輪郭線に沿ってエッジ検出処理を行ってエッジ点群を取得する
ことを特徴とする請求項1記載の画像測定装置。
The image measurement device according to claim 1, wherein the arithmetic device performs edge detection processing along a contour line of the region to acquire an edge point group.
前記演算装置は、前記エッジ点群に含まれる複数のエッジ点のうちの一部を排除する
ことを特徴とする請求項2記載の画像測定装置。
The image measuring device according to claim 2, wherein the arithmetic device excludes a part of a plurality of edge points included in the edge point group.
前記演算装置は、前記複数の領域に対して、それぞれ異なる複数の番号を設定する
ことを特徴とする請求項1〜3のいずれか1項記載の画像測定装置。
The image processing device according to claim 1, wherein the arithmetic device sets a plurality of different numbers for the plurality of regions.
ワークを撮像して、前記ワークの画像を取得する撮像装置と、
前記画像に基づいて前記ワークの測定を行い、測定結果を出力する演算装置と
を備えた画像測定装置を制御して、前記測定結果の算出を行う画像測定装置の制御プログラムであって、
前記演算装置は、
前記画像に基づいて、前記画像よりも画素数が少ない他の画像を生成し、
前記他の画像に基づいて複数の領域を設定し、
前記複数の領域に基づいて前記測定結果を算出する
ことを特徴とする画像測定装置の制御プログラム。
An imaging device that captures an image of the workpiece and obtains an image of the workpiece;
A control program for an image measurement device that performs measurement of the workpiece based on the image and controls the image measurement device including an arithmetic device that outputs a measurement result, and calculates the measurement result;
The arithmetic unit is:
Based on the image, generate another image having fewer pixels than the image,
Set a plurality of areas based on the other images,
A control program for an image measuring apparatus, wherein the measurement result is calculated based on the plurality of regions.
JP2015170616A 2015-08-31 2015-08-31 Image measuring apparatus and control program therefor Active JP6599698B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015170616A JP6599698B2 (en) 2015-08-31 2015-08-31 Image measuring apparatus and control program therefor
DE102016008744.7A DE102016008744A1 (en) 2015-08-31 2016-07-15 Image measuring apparatus, control program of such apparatus and non-volatile recording medium on which the control program is recorded
CN201610726418.XA CN106482635A (en) 2015-08-31 2016-08-25 Image measuring apparatuss
US15/250,313 US9972095B2 (en) 2015-08-31 2016-08-29 Image measuring apparatus and non-temporary recording medium on which control program of same apparatus is recorded

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015170616A JP6599698B2 (en) 2015-08-31 2015-08-31 Image measuring apparatus and control program therefor

Publications (2)

Publication Number Publication Date
JP2017049036A true JP2017049036A (en) 2017-03-09
JP6599698B2 JP6599698B2 (en) 2019-10-30

Family

ID=58010797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015170616A Active JP6599698B2 (en) 2015-08-31 2015-08-31 Image measuring apparatus and control program therefor

Country Status (4)

Country Link
US (1) US9972095B2 (en)
JP (1) JP6599698B2 (en)
CN (1) CN106482635A (en)
DE (1) DE102016008744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272788B1 (en) 2016-07-22 2020-07-08 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
KR20220046575A (en) 2019-08-21 2022-04-14 브이 테크놀로지 씨오. 엘티디 Microscopic image measuring device and microscope image measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290140A (en) * 2017-06-14 2017-10-24 东华大学 A kind of method for measuring Yarn-spinning spindle ingot end oscillation trajectory

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169005A (en) * 1986-01-22 1987-07-25 Sharp Corp Position measurement by pickup image
JPH08234226A (en) * 1995-02-28 1996-09-13 Toshiba Corp Image processor for production of liquid crystal substrate
US5781655A (en) * 1995-12-15 1998-07-14 Macmillan Bloedel Limited Strand dimension sensing
JP2000227309A (en) * 1999-02-04 2000-08-15 Olympus Optical Co Ltd Three-dimensional position posture sensing device
JP2000357228A (en) * 1999-06-14 2000-12-26 Sumitomo Metal Ind Ltd Edge detection method, edge detection device and recording medium
JP2005331285A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Image processing method and image processing device
JP2006064415A (en) * 2004-08-24 2006-03-09 Nikon Corp Image measuring machine and data generating apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955761B2 (en) 1990-02-15 1999-10-04 東洋通信機株式会社 Image sampling method
EP0887769B1 (en) * 1997-06-05 2002-03-13 Agfa-Gevaert Method of segmenting a radiation image into direct exposure area and diagnostically relevant area
JP3474511B2 (en) 2000-03-01 2003-12-08 株式会社ミツトヨ Geometric element measuring device and method
US7065239B2 (en) * 2001-10-24 2006-06-20 Applied Materials, Inc. Automated repetitive array microstructure defect inspection
JP4047090B2 (en) * 2002-07-31 2008-02-13 キヤノン株式会社 Image processing method and image processing apparatus
JP4074202B2 (en) 2003-02-06 2008-04-09 株式会社ミツトヨ Image measuring apparatus and program for generating edge tracking measurement program
JP2005083948A (en) * 2003-09-10 2005-03-31 Hitachi High-Technologies Corp Inspection device, inspection method and process management method
JP4078280B2 (en) * 2003-10-08 2008-04-23 株式会社日立ハイテクノロジーズ Circuit pattern inspection method and inspection apparatus
US7324682B2 (en) * 2004-03-25 2008-01-29 Mitutoyo Corporation System and method for excluding extraneous features from inspection operations performed by a machine vision inspection system
US7454053B2 (en) * 2004-10-29 2008-11-18 Mitutoyo Corporation System and method for automatically recovering video tools in a vision system
US7684609B1 (en) * 2006-05-25 2010-03-23 Kla-Tencor Technologies Corporation Defect review using image segmentation
US8111938B2 (en) * 2008-12-23 2012-02-07 Mitutoyo Corporation System and method for fast approximate focus
US8111905B2 (en) * 2009-10-29 2012-02-07 Mitutoyo Corporation Autofocus video tool and method for precise dimensional inspection
JP5543872B2 (en) * 2010-07-27 2014-07-09 株式会社東芝 Pattern inspection method and pattern inspection apparatus
JP5597056B2 (en) * 2010-08-02 2014-10-01 株式会社キーエンス Image measuring apparatus, image measuring method, and program for image measuring apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169005A (en) * 1986-01-22 1987-07-25 Sharp Corp Position measurement by pickup image
JPH08234226A (en) * 1995-02-28 1996-09-13 Toshiba Corp Image processor for production of liquid crystal substrate
US5781655A (en) * 1995-12-15 1998-07-14 Macmillan Bloedel Limited Strand dimension sensing
JP2000227309A (en) * 1999-02-04 2000-08-15 Olympus Optical Co Ltd Three-dimensional position posture sensing device
JP2000357228A (en) * 1999-06-14 2000-12-26 Sumitomo Metal Ind Ltd Edge detection method, edge detection device and recording medium
JP2005331285A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Image processing method and image processing device
JP2006064415A (en) * 2004-08-24 2006-03-09 Nikon Corp Image measuring machine and data generating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3272788B1 (en) 2016-07-22 2020-07-08 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
EP3750943B1 (en) 2016-07-22 2022-04-20 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
KR20220046575A (en) 2019-08-21 2022-04-14 브이 테크놀로지 씨오. 엘티디 Microscopic image measuring device and microscope image measuring method
US11935259B2 (en) 2019-08-21 2024-03-19 V Technology Co., Ltd. Microscope image measuring device and microscope image measuring method

Also Published As

Publication number Publication date
CN106482635A (en) 2017-03-08
DE102016008744A1 (en) 2017-03-02
US20170061649A1 (en) 2017-03-02
US9972095B2 (en) 2018-05-15
JP6599698B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6290720B2 (en) Inspection device, inspection method, and program
JP4774824B2 (en) Method for confirming measurement target range in three-dimensional measurement processing, method for setting measurement target range, and apparatus for performing each method
JP5567922B2 (en) Image processing apparatus and control method thereof
JP5923824B2 (en) Image processing device
US9866747B2 (en) Optical displacement measurement system, imaging condition optimization method, and imaging condition optimization program
JP6599697B2 (en) Image measuring apparatus and control program therefor
JP5385703B2 (en) Inspection device, inspection method, and inspection program
JP6599698B2 (en) Image measuring apparatus and control program therefor
TWI510761B (en) System and method for focusing multiple measurement points on a surface of an object
JP6095486B2 (en) Image measuring device
US8274597B2 (en) System and method for measuring a border of an image of an object
US20190273845A1 (en) Vibration monitoring of an object using a video camera
KR101653861B1 (en) Drawing data generating method, drawing method, drawing data generating apparatus and drawing apparatus
JP2013002968A (en) Component height measuring method and apparatus therefor
JP6202875B2 (en) Image measuring apparatus and control program therefor
JP2008014857A (en) Device, method, and program for acquiring coordinate for inspection of printed board
JP6188384B2 (en) Shape measuring device
JP6653539B2 (en) Image measuring device, control program therefor, and measuring device
JP6043529B2 (en) Pattern measuring device and contour line extracting device
JP6314464B2 (en) Image processing apparatus, image processing method, and image processing program
JP5851269B2 (en) Defect inspection system and defect inspection method
JP6078356B2 (en) Template matching condition setting device and charged particle beam device
JP2017090945A (en) Image processing device, image processing method, measurement device, and program
CN105987667B (en) The wide measurement method of angular thread cusp and device
TW202223838A (en) Computer System of Observation Device and Processing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191003

R150 Certificate of patent or registration of utility model

Ref document number: 6599698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250