JP2017048888A - Slip control device of lockup clutch - Google Patents

Slip control device of lockup clutch Download PDF

Info

Publication number
JP2017048888A
JP2017048888A JP2015174211A JP2015174211A JP2017048888A JP 2017048888 A JP2017048888 A JP 2017048888A JP 2015174211 A JP2015174211 A JP 2015174211A JP 2015174211 A JP2015174211 A JP 2015174211A JP 2017048888 A JP2017048888 A JP 2017048888A
Authority
JP
Japan
Prior art keywords
differential rotation
rotation
actual
deviation
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015174211A
Other languages
Japanese (ja)
Other versions
JP6500710B2 (en
Inventor
宗伸 荒武
Takanobu Aratake
宗伸 荒武
典弘 塚本
Norihiro Tsukamoto
典弘 塚本
友弘 浅見
Tomohiro Asami
友弘 浅見
啓史 上島
Hiroshi Uejima
啓史 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015174211A priority Critical patent/JP6500710B2/en
Publication of JP2017048888A publication Critical patent/JP2017048888A/en
Application granted granted Critical
Publication of JP6500710B2 publication Critical patent/JP6500710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Fluid Gearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of an engagement shock caused by an abrupt decrease of actual differential rotation while suppressing the pick-up of an input side rotation number by feedback control based on differential rotation at the acceleration of a vehicle.SOLUTION: When a deviation ΔSN between actual differential rotation SNr and target differential rotation SNt is not smaller than a determination value α, and a reduction degree of the deviation ΔSN reaches a determination value β or larger in the case that chip-in acceleration is determined, actual differential rotation SNr1 at that time is set at the target differential rotation SNt, a feedback control value becomes zero once, an increase of clutch torque is thereby suppressed, and the generation of an engagement shock of a lockup clutch caused by an abrupt decrease of the actual differential rotation SNr is prevented. Furthermore, since the clutch torque is feedback-controlled on the basis of normal target differential rotation SNt2 until the reduction degree of the deviation ΔSN reaches the determination value β or larger, the pick-up of an engine rotation number NE is suppressed at the chip-in acceleration, and a direct feeling related to drive force responsiveness is properly secured.SELECTED DRAWING: Figure 2

Description

本発明はロックアップクラッチのスリップ制御装置に係り、特に、入力側回転数と出力側回転数との実差回転が目標差回転と一致するようにクラッチトルクをフィードバック制御する技術に関するものである。   The present invention relates to a slip-up control device for a lock-up clutch, and more particularly to a technique for feedback-controlling clutch torque so that an actual differential rotation between an input side rotational speed and an output side rotational speed matches a target differential rotation.

ロックアップクラッチ(直結クラッチ)を有する流体式伝動装置を備えている車両用動力伝達装置に関し、その流体式伝動装置の入力側回転数と出力側回転数との実際の回転数差である実差回転が目標差回転と一致するように前記ロックアップクラッチのクラッチトルクをフィードバック制御するスリップ制御装置が知られている(特許文献1参照)。   The present invention relates to a vehicle power transmission device including a fluid transmission device having a lock-up clutch (direct coupling clutch), and is an actual difference that is an actual rotational speed difference between an input side rotational speed and an output side rotational speed of the fluid transmission device. There is known a slip control device that feedback-controls the clutch torque of the lockup clutch so that the rotation matches the target differential rotation (see Patent Document 1).

特開2014−219030号公報JP 2014-2119030 A

しかしながら、被駆動走行(惰性走行や減速走行)時にアクセルペダルが急に大きく踏み込まれて駆動走行へ切り換わるチップイン加速時などの車両加速時に、フィードバック制御の応答遅れによって実差回転が目標差回転から大きく乖離すると、その乖離に応じてクラッチトルクが増大するため、その後に実差回転が急激に減少して目標差回転よりも小さくなるオーバーシュートが発生し、ロックアップクラッチが一時的に係合してショックを発生することがある。これを防止するために、車両加速時には一時的にロックアップクラッチを解放することが考えられるが、エンジン等の入力側回転数が吹き上がってダイレクト感(駆動力応答性)が損なわれるとともに燃費が悪化する恐れがある。   However, when the vehicle is accelerating, such as during tip-in acceleration, where the accelerator pedal is suddenly depressed greatly during driven driving (inertia driving or deceleration driving) and switches to driving driving, the actual differential rotation becomes the target differential rotation. If there is a large deviation from the clutch torque, the clutch torque increases in accordance with the deviation, and then the actual differential rotation decreases rapidly, resulting in an overshoot that becomes smaller than the target differential rotation, and the lockup clutch is temporarily engaged. May cause shock. To prevent this, it may be possible to temporarily release the lock-up clutch during vehicle acceleration, but the input side rotational speed of the engine or the like blows up, impairing the direct feeling (driving force responsiveness) and reducing the fuel consumption. There is a risk of getting worse.

本発明は以上の事情を背景として為されたもので、その目的とするところは、車両加速時に差回転に基づくフィードバック制御によって入力側回転数の吹き上がりを抑制しつつ、実差回転の急激な減少で係合ショックが発生することを防止することにある。   The present invention has been made against the background of the above circumstances. The object of the present invention is to suppress the increase of the input side rotational speed by feedback control based on the differential rotation at the time of vehicle acceleration, while the actual differential rotation is abrupt. This is to prevent the occurrence of engagement shock due to the decrease.

本発明は、ロックアップクラッチを有する流体式伝動装置を備えている車両用動力伝達装置に関し、その流体式伝動装置の入力側回転数と出力側回転数との実際の回転数差である実差回転が目標差回転と一致するように前記ロックアップクラッチのクラッチトルクをフィードバック制御するスリップ制御装置において、車両加速時に、前記実差回転と前記目標差回転との偏差が予め定められた判定値α以上で、その偏差が減少する変化度合が予め定められた判定値β以上になると、その時の実差回転に前記目標差回転が近づけられることを特徴とする。   The present invention relates to a vehicle power transmission device including a fluid transmission device having a lock-up clutch, and an actual difference that is an actual rotational speed difference between an input side rotational speed and an output side rotational speed of the fluid transmission device. In the slip control device that feedback-controls the clutch torque of the lockup clutch so that the rotation coincides with the target differential rotation, a deviation between the actual differential rotation and the target differential rotation is determined in advance during vehicle acceleration. As described above, when the degree of change in which the deviation decreases is equal to or greater than a predetermined determination value β, the target differential rotation is brought close to the actual differential rotation at that time.

このようなロックアップクラッチのスリップ制御装置においては、実差回転と目標差回転との偏差が判定値α以上で、その偏差が減少する変化度合が判定値β以上になると、その時の実差回転に目標差回転が近づけられるため、それ等の偏差に基づくフィードバック制御によるクラッチトルクの増大が抑制され、或いは減少させられるため、実差回転の急激な減少によるロックアップクラッチの係合ショックが防止される。また、実差回転と目標差回転との偏差が減少する変化度合が判定値β以上になるまでは、通常の目標差回転に基づいてクラッチトルクがフィードバック制御されるため、車両加速時に入力側回転数が吹き上がることが抑制されるとともに、駆動力応答性に関するダイレクト感が適切に確保される。   In such a lock-up clutch slip control device, when the deviation between the actual differential rotation and the target differential rotation is equal to or greater than the determination value α and the degree of change in which the deviation decreases is equal to or greater than the determination value β, the actual differential rotation at that time Since the target differential rotation is brought close to the increase, the clutch torque increase due to feedback control based on these deviations is suppressed or reduced, so that the lockup clutch engagement shock due to the sudden decrease in the actual differential rotation is prevented. The In addition, the clutch torque is feedback-controlled based on the normal target differential rotation until the degree of change in which the deviation between the actual differential rotation and the target differential rotation decreases is equal to or greater than the determination value β. The number is suppressed from being blown up, and a direct feeling regarding the driving force response is appropriately ensured.

本発明の一実施例であるロックアップクラッチのスリップ制御装置を有する車両用動力伝達装置のブロック線図である。1 is a block diagram of a vehicle power transmission device having a slip control device for a lock-up clutch according to an embodiment of the present invention. 図1の車両加速時目標差回転設定部の機能を具体的に説明するフローチャートである。FIG. 2 is a flowchart for specifically explaining a function of a vehicle acceleration target difference rotation setting unit in FIG. 1. FIG. 図2のフローチャートに従って目標差回転SNtが設定された場合の実差回転SNr、目標差回転SNt、フィードバック制御値(FB制御値)等の変化を示すタイムチャートの一例である。FIG. 3 is an example of a time chart showing changes in an actual differential rotation SNr, a target differential rotation SNt, a feedback control value (FB control value), and the like when the target differential rotation SNt is set according to the flowchart of FIG. 2. 車両加速時目標差回転設定部を備えていない従来装置における実差回転SNrおよび目標差回転SNtの変化を示すタイムチャートの一例である。It is an example of the time chart which shows the change of the actual difference rotation SNr and the target difference rotation SNt in the conventional apparatus which is not provided with the target difference rotation setting part at the time of vehicle acceleration.

本発明は、内燃機関等の燃料の燃焼で動力を発生するエンジンを駆動力源として備えているエンジン駆動車両に好適に適用されるが、駆動力源として電動モータを備えているハイブリッド車両などにも適用され得る。流体式伝動装置としてはトルクコンバータが好適に用いられるが、フルードカップリング等を採用することもできる。   The present invention is suitably applied to an engine-driven vehicle including an engine that generates power by combustion of fuel such as an internal combustion engine as a driving force source, but is applied to a hybrid vehicle including an electric motor as a driving force source. Can also be applied. A torque converter is preferably used as the fluid transmission device, but a fluid coupling or the like can also be employed.

本発明は、被駆動走行時にアクセルペダルが急に大きく踏み込まれて駆動走行へ切り換わるチップイン加速時におけるロックアップクラッチのスリップ制御に好適に適用されるが、ロックアップクラッチのスリップ制御が行なわれる駆動走行時にアクセルペダルが急に大きく踏み込まれて急加速する場合や、停車状態から発進加速する場合等にも適用され得る。ロックアップクラッチは、常にスリップ制御される必要はなく、例えば予め定められた係合解放条件に従って完全係合、スリップ係合、および解放の3つの状態に切り換えられる。スリップ制御は、例えば低車速時に実行されるとともに、被駆動走行か駆動走行かによって予め一定の目標差回転が定められるが、運転状態に応じて目標差回転を連続的或いは段階的に変化させることもできる。   The present invention is preferably applied to slip-up clutch slip control at the time of tip-in acceleration in which the accelerator pedal is suddenly greatly depressed during driving and switches to driving, but the slip-up control of the lock-up clutch is performed. The present invention can also be applied to the case where the accelerator pedal is suddenly depressed greatly during driving and the vehicle accelerates rapidly, or the vehicle is started and accelerated from a stopped state. The lockup clutch does not always need to be slip-controlled, and is switched to three states, for example, full engagement, slip engagement, and release according to predetermined engagement release conditions. The slip control is executed at a low vehicle speed, for example, and a predetermined target differential rotation is determined in advance depending on whether it is driven or driven, but the target differential rotation is changed continuously or stepwise according to the driving state. You can also.

チップイン加速時等の車両加速時には、実差回転と目標差回転との偏差が判定値α以上で、且つ、その偏差が減少する変化度合が判定値β以上になると、目標差回転がその時の実差回転に近づけられ、それ等の偏差に基づいてフィードバック制御されるクラッチトルクの増大が抑制され、或いは低減される。例えば、目標差回転を実差回転と一致させれば偏差が0になるため、フィードバック制御値(直前のクラッチトルクに対する変更量)が0になってクラッチトルクの変化が0になり、目標差回転を実差回転よりも大きくすればクラッチトルクが減少させられるが、本発明の実施に際しては、少なくとも通常の目標差回転よりも実差回転に近い値であれば良い。また、その後の目標差回転については、入力回転数の吹き上がりを防止しつつ係合ショックを生じさせることなく実差回転を通常の目標差回転まで低減する上で、例えば通常の目標差回転まで連続的或いは段階的に戻すことが望ましい。   During vehicle acceleration, such as during chip-in acceleration, if the deviation between the actual differential rotation and the target differential rotation is greater than or equal to the criterion value α and the degree of change in which the deviation decreases is greater than or equal to the criterion value β, the target differential rotation is An increase in clutch torque that is brought close to the actual differential rotation and feedback-controlled based on such deviation is suppressed or reduced. For example, if the target differential rotation is matched with the actual differential rotation, the deviation becomes 0. Therefore, the feedback control value (change amount with respect to the immediately preceding clutch torque) becomes 0, the change in clutch torque becomes 0, and the target differential rotation The clutch torque can be reduced by increasing the value to be larger than the actual difference rotation. However, when the present invention is implemented, it is sufficient that the value is at least closer to the actual difference rotation than the normal target difference rotation. Further, for the subsequent target differential rotation, the actual differential rotation is reduced to the normal target differential rotation without causing an engagement shock while preventing the input rotational speed from rising. It is desirable to return continuously or stepwise.

本発明では、車両加速時に、少なくとも実差回転と目標差回転との偏差が判定値α以上で、その偏差が減少する変化度合が判定値β以上になった場合には、目標差回転がその時の実差回転に近づけられるようになっていれば良く、例えば実差回転と目標差回転との偏差が一旦判定値α以上になった場合には、判定値αを下回った後に偏差が減少する変化度合が判定値β以上になった場合にも、目標差回転をその時の実差回転に近づけるようにすることもできるなど、種々の態様が可能である。   In the present invention, when at least the deviation between the actual differential rotation and the target differential rotation is greater than or equal to the determination value α and the degree of change in which the deviation decreases is greater than or equal to the determination value β during vehicle acceleration, the target differential rotation is For example, if the deviation between the actual difference rotation and the target difference rotation once exceeds the determination value α, the deviation decreases after the value falls below the determination value α. Even when the degree of change becomes equal to or greater than the determination value β, various modes are possible, such as making it possible to bring the target differential rotation closer to the actual differential rotation at that time.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用された車両用動力伝達装置10の制御系統を含むブロック線図で、エンジン12から出力された駆動力はトルクコンバータ14を介して自動変速機16に伝達され、図示しない差動歯車装置等を経て駆動輪に伝達される。エンジン12は駆動力源で、燃料の燃焼によって動力を発生するガソリンエンジン等の内燃機関である。トルクコンバータ14は、エンジン12のクランク軸18に連結されたポンプ翼車20、および自動変速機16の入力軸となるタービン軸22に連結されたタービン翼車24を備えており、エンジン12により発生させられた駆動力を流体を介して自動変速機16に伝達する流体式伝動装置である。自動変速機16は、遊星歯車式等の有段変速機、或いはベルト式等の無段変速機である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram including a control system of a vehicle power transmission device 10 to which the present invention is applied. A driving force output from an engine 12 is transmitted to an automatic transmission 16 via a torque converter 14. It is transmitted to the driving wheel through a differential gear device that does not. The engine 12 is a driving force source, and is an internal combustion engine such as a gasoline engine that generates power by burning fuel. The torque converter 14 includes a pump impeller 20 connected to a crankshaft 18 of the engine 12 and a turbine impeller 24 connected to a turbine shaft 22 serving as an input shaft of the automatic transmission 16, and is generated by the engine 12. This is a fluid transmission device that transmits the generated driving force to the automatic transmission 16 via a fluid. The automatic transmission 16 is a stepped transmission such as a planetary gear type or a continuously variable transmission such as a belt type.

上記トルクコンバータ14は、ポンプ翼車20とタービン翼車24とを直結することができるロックアップクラッチ30を備えている。ロックアップクラッチ30は、係合側油室32内の油圧Ponと解放側油室34内の油圧Poff との差圧ΔP(Pon−Poff )により、タービン翼車24に設けられた摩擦材がフロントカバー36に摩擦係合させられる油圧式摩擦係合クラッチである。そして、その差圧ΔPすなわち油圧PonおよびPoff が油圧制御回路38によって調圧されることにより、ロックアップクラッチ30は、(a) 差圧ΔPが負とされて解放状態とされるロックアップオフ状態、(b) 差圧ΔPが零以上とされて半係合状態とされるスリップ状態、および(c) 差圧ΔPが最大値とされて完全に係合させられるロックアップオン状態(直結状態)の3つの状態に制御される。差圧Pはクラッチトルクに対応する。なお、トルクコンバータ14は中心線に対して略対称的に構成されており、図1ではその中心線の下半分が省略されている。   The torque converter 14 includes a lock-up clutch 30 that can directly connect the pump impeller 20 and the turbine impeller 24. The lock-up clutch 30 is configured so that the friction material provided in the turbine impeller 24 is moved to the front by the differential pressure ΔP (Pon−Poff) between the hydraulic pressure Pon in the engagement side oil chamber 32 and the hydraulic pressure Poff in the release side oil chamber 34. This is a hydraulic friction engagement clutch that is frictionally engaged with the cover 36. Then, when the differential pressure ΔP, that is, the hydraulic pressures Pon and Poff are regulated by the hydraulic pressure control circuit 38, the lockup clutch 30 is (a) a lockup off state in which the differential pressure ΔP is made negative and released. (B) A slip state in which the differential pressure ΔP is set to zero or more to be in a semi-engaged state, and (c) a lock-up on state (directly connected state) in which the differential pressure ΔP is set to a maximum value and is fully engaged. The three states are controlled. The differential pressure P corresponds to the clutch torque. The torque converter 14 is substantially symmetrical with respect to the center line, and the lower half of the center line is omitted in FIG.

車両用動力伝達装置10は、ロックアップクラッチ30の係合解放制御を行うためのコントローラとして電子制御装置40を備えている。電子制御装置40は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うもので、油圧制御回路38に設けられた切換弁および調圧弁等を制御することにより前記差圧ΔPを調圧し、ロックアップクラッチ32を前記ロックアップオフ状態、スリップ状態、およびロックアップオン状態の何れかに制御する。電子制御装置40には、エンジン回転数センサ42、タービン回転数センサ44、出力回転数センサ46、スロットル弁開度センサ48からそれぞれエンジン回転数NE、タービン回転数NT、車速Vに対応する出力回転数Nout 、エンジン12のスロットル弁開度θthを表す信号が供給される他、制御に必要な種々の信号が供給されるようになっている。そして、例えば出力回転数Nout およびスロットル弁開度θth等の車両の運転状態をパラメータとして予め設定されたロックアップ切換マップに従って、ロックアップクラッチ30の係合解放状態が切り換えられる。例えば所定車速以下の低車速時には、ロックアップクラッチ30がスリップ状態に制御される。   The vehicle power transmission device 10 includes an electronic control device 40 as a controller for performing engagement release control of the lockup clutch 30. The electronic control unit 40 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM, and signals according to a program stored in the ROM in advance. The pressure difference ΔP is regulated by controlling a switching valve and a pressure regulating valve provided in the hydraulic control circuit 38, and the lock-up clutch 32 is locked in the lock-up off state, the slip state, and the lock-up. Control to any of the ON states. The electronic control unit 40 includes an engine speed sensor 42, a turbine speed sensor 44, an output speed sensor 46, and a throttle valve opening sensor 48 from the engine speed NE, the turbine speed NT, and the output speed corresponding to the vehicle speed V, respectively. In addition to the number Nout and a signal indicating the throttle valve opening θth of the engine 12, various signals necessary for control are supplied. Then, for example, the engagement / release state of the lockup clutch 30 is switched according to a lockup switching map set in advance using the vehicle operating state such as the output rotation speed Nout and the throttle valve opening θth as parameters. For example, when the vehicle speed is lower than a predetermined vehicle speed, the lockup clutch 30 is controlled to the slip state.

電子制御装置40は、上記ロックアップクラッチ30のスリップ制御に関連してL/Uクラッチスリップ制御部50および車両加速時目標差回転設定部52を機能的に備えている。L/Uクラッチスリップ制御部50は、ロックアップクラッチ30が所定のスリップ状態になるように制御するもので、入力側回転数であるエンジン回転数NEと出力側回転数であるタービン回転数NTとの実際の回転数差である実差回転SNr(=NE−NT)が、予め定められた目標差回転SNtと一致するように、それ等の偏差ΔSN(=SNr−SNt)に応じてクラッチトルクすなわち前記差圧ΔPをフィードバック制御する。目標差回転SNtは、本実施例では実差回転SNrが負すなわちNE<NTの被駆動走行か、実差回転SNrが正すなわちNE>NTの駆動走行かによって、別々に予め一定値SNt1、SNt2が定められている。図3のタイムチャートにおいて、時間t2よりも前は被駆動走行時で、目標差回転SNtとして負の一定値SNt1が定められており、時間t2よりも後は駆動走行時で、時間t2〜t3の間、および時間t4以降は、目標差回転SNtとして正の一定値SNt2が定められている。   The electronic control unit 40 functionally includes an L / U clutch slip control unit 50 and a vehicle acceleration target difference rotation setting unit 52 in relation to the slip control of the lockup clutch 30. The L / U clutch slip control unit 50 controls the lock-up clutch 30 to be in a predetermined slip state, and includes an engine speed NE that is an input side speed and a turbine speed NT that is an output side speed. The actual torque difference SNr (= NE−NT), which is the actual speed difference between the clutch torques according to their deviation ΔSN (= SNr−SNt) so as to coincide with a predetermined target difference rotation SNt. That is, the differential pressure ΔP is feedback controlled. In the present embodiment, the target differential rotation SNt is separately set to predetermined values SNt1 and SNt2 depending on whether the actual differential rotation SNr is negative, that is, driven driving with NE <NT, or the actual differential rotation SNr is positive, that is, driving driving with NE> NT. Is stipulated. In the time chart of FIG. 3, the time before the time t2 is the time when the vehicle is driven and a negative constant value SNt1 is determined as the target differential rotation SNt, and the time after the time t2 is the time when the vehicle is driving and the time t2 to t3. And after time t4, a positive constant value SNt2 is determined as the target differential rotation SNt.

車両加速時目標差回転設定部52は、被駆動走行時にアクセルペダルが急に大きく踏み込まれて駆動走行へ切り換わるチップイン加速時に、一定の条件下で通常時とは異なる目標差回転SNtを設定するもので、具体的には図2のフローチャートの各ステップS1〜S6(以下、単にS1〜S6という)に従って信号処理を実行する。この車両加速時目標差回転設定部52によって目標差回転SNtが設定された場合、前記L/Uクラッチスリップ制御部50は、車両加速時目標差回転設定部52によって設定された目標差回転SNtに基づいてクラッチトルクのフィードバック制御を実行する。   The target differential rotation setting unit 52 at the time of vehicle acceleration sets a target differential rotation SNt that is different from the normal time under a certain condition at the time of chip-in acceleration in which the accelerator pedal is suddenly depressed greatly during driven driving to switch to driving driving. Specifically, signal processing is executed according to steps S1 to S6 (hereinafter simply referred to as S1 to S6) in the flowchart of FIG. When the target differential rotation SNt is set by the vehicle acceleration target differential rotation setting unit 52, the L / U clutch slip control unit 50 sets the target differential rotation SNt set by the vehicle acceleration target differential rotation SNt. Based on this, the clutch torque feedback control is executed.

図2のS1では、チップイン加速か否かを、例えばエンジン回転数NEおよびタービン回転数NTに基づいて被駆動走行(NE<NT)から駆動走行(NE>NT)へ切り換わったか否かによって判断する。アクセル操作量或いはスロットル弁開度θthが所定値以上等の急加速時であることを、チップイン加速の条件に加えることもできる。そして、S1でチップイン加速と判定された場合にはS2以下を実行する。図3のタイムチャートは、図2のフローチャートに従ってチップイン加速時に目標差回転SNtが設定された場合の実差回転SNr、目標差回転SNt、クラッチトルクのフィードバック制御値(FB制御値)等の変化を示すタイムチャートの一例で、被駆動走行中に時間t1でアクセルペダルが大きく踏込み操作され、時間t2で被駆動走行から駆動走行に切り換わってS1の判断がYES(肯定)になった場合である。   In S1 of FIG. 2, whether or not the tip-in acceleration is performed depends on, for example, whether or not the driving travel (NE <NT) is switched to the driving travel (NE> NT) based on the engine speed NE and the turbine speed NT. to decide. The fact that the accelerator operation amount or the throttle valve opening degree θth is at a rapid acceleration such as a predetermined value or more can be added to the conditions for tip-in acceleration. If it is determined in S1 that chip-in acceleration has occurred, S2 and subsequent steps are executed. The time chart of FIG. 3 shows changes in the actual differential rotation SNr, the target differential rotation SNt, the clutch torque feedback control value (FB control value), etc., when the target differential rotation SNt is set during tip-in acceleration according to the flowchart of FIG. This is an example of a time chart showing the case where the accelerator pedal is greatly depressed at time t1 during the driven travel, and the driven travel is switched to the drive travel at time t2 and the determination of S1 becomes YES (positive). is there.

S2では、実差回転SNrと目標差回転SNtとの偏差ΔSNが予め定められた判定値α以上か否かを判断する。判定値αは、通常の目標差回転SNtによるフィードバック制御をそのまま継続すると、実差回転SNrの急激な減少によって係合ショックが発生する恐れがある偏差ΔSNよりも小さ目の値で、実験やシミュレーション等によって設定される。また、S3では、その偏差ΔSNが減少する変化度合である減少度合が、予め定められた判定値β以上であるか否かを判断する。判定値βは、それよりも減少度合が小さい場合に通常の目標差回転SNtによるフィードバック制御を中止すると、エンジン回転NEが吹き上がったり駆動力応答性のダイレクト感が損なわれたりする恐れがある減少度合よりも大き目の値で、実験やシミュレーション等によって設定される。偏差ΔSNの減少度合としては、例えば偏差ΔSNが減少する変化率(傾き)が適当であるが、制御サイクルタイム等の単位時間当たりの減少量を用いることもできる。そして、S2およびS3の判断が何れもYESの場合、すなわちΔSN≧αで且つΔSNの減少度合≧βの場合には、S4以下を実行するが、何れかの判断がNO(否定)の場合はS6を実行する。S6では、予め定められた中止条件が成立したか否かを判断し、中止条件が成立した場合には一連の制御を中止して終了し、中止条件が成立しなかった場合はS2以下を繰り返し実行する。中止条件は、例えばS1のチップイン加速判定後の経過時間が一定時間以上になった場合、アクセル操作量やスロットル弁開度θthが所定値以下になった場合、或いは車両が被駆動走行になった場合などである。   In S2, it is determined whether or not the deviation ΔSN between the actual differential rotation SNr and the target differential rotation SNt is greater than or equal to a predetermined determination value α. The determination value α is a smaller value than the deviation ΔSN that may cause an engagement shock due to a rapid decrease in the actual difference rotation SNr if feedback control by the normal target difference rotation SNt is continued as it is. Set by Further, in S3, it is determined whether or not the degree of decrease, which is the degree of change in which the deviation ΔSN decreases, is equal to or greater than a predetermined determination value β. If the degree of decrease is smaller than that, if the feedback control based on the normal target differential rotation SNt is stopped, the degree of decrease may cause the engine rotation NE to blow up or the direct feeling of driving force responsiveness to be impaired. It is a larger value and is set by experiment, simulation, or the like. As the degree of decrease of the deviation ΔSN, for example, a change rate (gradient) at which the deviation ΔSN decreases is appropriate, but a decrease amount per unit time such as a control cycle time can also be used. If both S2 and S3 are determined to be YES, that is, if ΔSN ≧ α and the degree of decrease in ΔSN ≧ β, S4 and subsequent steps are executed, but if either determination is NO (negative) S6 is executed. In S6, it is determined whether or not a predetermined stop condition is satisfied. If the stop condition is satisfied, the series of control is stopped and the process ends. If the stop condition is not satisfied, S2 and subsequent steps are repeated. Run. The stop condition is, for example, when the elapsed time after the tip-in acceleration determination in S1 becomes a predetermined time or more, when the accelerator operation amount or the throttle valve opening θth becomes a predetermined value or less, or when the vehicle is driven. This is the case.

ΔSN≧αで且つΔSNの減少度合≧βの場合に実行するS4では、その時の実差回転SNr1を目標差回転SNtに設定する。図3の時間t3は、ΔSN≧αで且つΔSNの減少度合≧βになり、S4が実行されて目標差回転SNtが実差回転SNr1と同じ値に変更された時間であり、実差回転SNrと目標差回転SNtとの偏差ΔSN=0になるため、その偏差ΔSNに基づくフィードバック制御値(SB制御値)が一旦0になる。続くS5では、目標差回転SNtが駆動走行時の通常の目標差回転SNt2と同じ値になるように、予め定められた変化パターンに従って連続的に滑らかに減少させられる。この時の変化パターンは、例えば図3に示されるように徐々に変化率が小さくなる非線形パターンが適当であるが、一定の変化率でリニアに減少させるなど種々の態様が可能である。また、その目標差回転SNtの変化パターンや変化率が、上記実差回転SNr1等に基づいて設定されるようにしても良い。図3の時間t3〜t4は、S5で目標差回転SNtが漸減させられる時間で、実差回転SNrは、その目標差回転SNtの変化に倣って滑らかに変化させられる。なお、図3では、時間t3〜t4の略全域に亘って実差回転SNrが目標差回転SNtよりも小さいが、フィードバック制御の応答性によっては目標差回転SNtを上下に跨いで実差回転SNrが変化しながら目標差回転SNtと略一致するように収束する場合もある。   In S4 executed when ΔSN ≧ α and the degree of decrease of ΔSN ≧ β, the actual differential rotation SNr1 at that time is set as the target differential rotation SNt. The time t3 in FIG. 3 is the time when ΔSN ≧ α and the degree of decrease of ΔSN ≧ β, and S4 is executed and the target differential rotation SNt is changed to the same value as the actual differential rotation SNr1, and the actual differential rotation SNr And the target differential rotation SNt = 0, the feedback control value (SB control value) based on the deviation ΔSN once becomes zero. In subsequent S5, the target differential rotation SNt is continuously and smoothly decreased according to a predetermined change pattern so that the target differential rotation SNt becomes the same value as the normal target differential rotation SNt2 during driving. As the change pattern at this time, for example, a non-linear pattern in which the rate of change gradually decreases as shown in FIG. 3 is suitable, but various modes such as a linear decrease at a constant rate of change are possible. Further, the change pattern and change rate of the target differential rotation SNt may be set based on the actual differential rotation SNr1 and the like. Times t3 to t4 in FIG. 3 are times when the target differential rotation SNt is gradually decreased in S5, and the actual differential rotation SNr is smoothly changed following the change of the target differential rotation SNt. In FIG. 3, the actual differential rotation SNr is smaller than the target differential rotation SNt over substantially the entire time period t3 to t4, but the actual differential rotation SNr straddles the target differential rotation SNt vertically depending on the response of feedback control. In some cases, the angle converges so as to substantially match the target differential rotation SNt.

このような本実施例のロックアップクラッチのスリップ制御装置においては、チップイン加速と判定された場合に、実差回転SNrと目標差回転SNtとの偏差ΔSNが判定値α以上で、その偏差ΔSNの減少度合が判定値β以上になると、その時の実差回転SNr1が目標差回転SNtに設定されるため、それ等の偏差ΔSNに基づくフィードバック制御値が一旦0になってクラッチトルクの増大が抑制される。このため、実差回転SNrの急激な減少によるロックアップクラッチ30の係合ショックが防止される。図4は、車両加速時目標差回転設定部52を備えていない従来装置における実差回転SNrおよび目標差回転SNtの変化を示すタイムチャートの一例で、予め定められた一定の目標差回転SNt2に基づいてフィードバック制御が継続して行なわれる場合であり、実差回転SNrが目標差回転SNt2と同じになる時間taまで偏差ΔSNが正、すなわちフィードバック制御値が正で、その偏差ΔSNに応じてクラッチトルクが増大させられることから、実差回転SNrが目標差回転SNt2を超えて低下(オーバーシュート)させられ、係合ショックが発生する可能性がある。   In such a lock-up clutch slip control device of this embodiment, when it is determined that the tip-in acceleration, the deviation ΔSN between the actual differential rotation SNr and the target differential rotation SNt is greater than or equal to the determination value α, and the deviation ΔSN When the degree of decrease in the value becomes equal to or larger than the determination value β, the actual differential rotation SNr1 at that time is set to the target differential rotation SNt, and thus the feedback control value based on the deviation ΔSN once becomes 0 and the increase in the clutch torque is suppressed. Is done. For this reason, the engagement shock of the lockup clutch 30 due to the rapid decrease of the actual difference rotation SNr is prevented. FIG. 4 is an example of a time chart showing changes in the actual differential rotation SNr and the target differential rotation SNt in a conventional apparatus that does not include the target differential rotation setting unit 52 at the time of vehicle acceleration, and shows a predetermined target differential rotation SNt2. In this case, the feedback control is continuously performed, and the deviation ΔSN is positive until the time ta when the actual differential rotation SNr becomes equal to the target differential rotation SNt2, that is, the feedback control value is positive, and the clutch is controlled according to the deviation ΔSN. Since the torque is increased, the actual differential rotation SNr is decreased (overshoot) beyond the target differential rotation SNt2, and an engagement shock may occur.

また、本実施例では偏差ΔSNの減少度合が判定値β以上になるまでは、通常の目標差回転SNt2に基づいてクラッチトルクがフィードバック制御されるため、チップイン加速時にエンジン回転数NEが吹き上がることが抑制されるとともに、駆動力応答性に関するダイレクト感が適切に確保される。   In this embodiment, the clutch torque is feedback-controlled based on the normal target differential rotation SNt2 until the decrease degree of the deviation ΔSN becomes equal to or greater than the determination value β, so that the engine speed NE is increased at the time of tip-in acceleration. In addition, the direct feeling related to the driving force responsiveness is appropriately secured.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

10:車両用動力伝達装置 14:トルクコンバータ(流体式伝動装置) 30:ロックアップクラッチ 40:電子制御装置 50:L/Uクラッチスリップ制御部 52:車両加速時目標差回転設定部 NE:エンジン回転数(入力側回転数) NT:タービン回転数(出力側回転数) SNr:実差回転 SNt:目標差回転 ΔSN:偏差 α:偏差の判定値 β:偏差の減少度合の判定値   DESCRIPTION OF SYMBOLS 10: Power transmission device for vehicles 14: Torque converter (fluid transmission device) 30: Lock-up clutch 40: Electronic control device 50: L / U clutch slip control part 52: Target difference rotation setting part at the time of vehicle acceleration NE: Engine rotation Number (input side rotational speed) NT: turbine rotational speed (output side rotational speed) SNr: actual differential rotational speed SNt: target differential rotational speed ΔSN: deviation α: deviation judgment value β: deviation reduction degree judgment value

Claims (1)

ロックアップクラッチを有する流体式伝動装置を備えている車両用動力伝達装置に関し、該流体式伝動装置の入力側回転数と出力側回転数との実際の回転数差である実差回転が目標差回転と一致するように前記ロックアップクラッチのクラッチトルクをフィードバック制御するスリップ制御装置において、
車両加速時に、前記実差回転と前記目標差回転との偏差が予め定められた判定値α以上で、該偏差が減少する変化度合が予め定められた判定値β以上になると、その時の実差回転に前記目標差回転が近づけられる
ことを特徴とするロックアップクラッチのスリップ制御装置。
In regard to a vehicle power transmission device including a fluid transmission device having a lock-up clutch, an actual differential rotation, which is an actual rotational speed difference between an input-side rotational speed and an output-side rotational speed of the fluid transmission device, is a target difference. In the slip control device that feedback-controls the clutch torque of the lockup clutch so as to coincide with the rotation,
When the deviation between the actual difference rotation and the target difference rotation is greater than or equal to a predetermined determination value α and the degree of change in which the deviation decreases is equal to or greater than a predetermined determination value β during vehicle acceleration, the actual difference at that time A slip control device for a lockup clutch, wherein the target differential rotation is brought close to rotation.
JP2015174211A 2015-09-03 2015-09-03 Slip control device for lockup clutch Active JP6500710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174211A JP6500710B2 (en) 2015-09-03 2015-09-03 Slip control device for lockup clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174211A JP6500710B2 (en) 2015-09-03 2015-09-03 Slip control device for lockup clutch

Publications (2)

Publication Number Publication Date
JP2017048888A true JP2017048888A (en) 2017-03-09
JP6500710B2 JP6500710B2 (en) 2019-04-17

Family

ID=58279978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174211A Active JP6500710B2 (en) 2015-09-03 2015-09-03 Slip control device for lockup clutch

Country Status (1)

Country Link
JP (1) JP6500710B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960722A (en) * 1995-08-24 1997-03-04 Toyota Motor Corp Slip control device for vehicular direct-coupled clutch
JP2004162749A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Controller and control method for lock-up clutch
JP2006132627A (en) * 2004-11-04 2006-05-25 Nissan Motor Co Ltd Control device for automatic transmission
JP2007218268A (en) * 2006-02-14 2007-08-30 Daihatsu Motor Co Ltd Slip control device for lock-up clutch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960722A (en) * 1995-08-24 1997-03-04 Toyota Motor Corp Slip control device for vehicular direct-coupled clutch
JP2004162749A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Controller and control method for lock-up clutch
JP2006132627A (en) * 2004-11-04 2006-05-25 Nissan Motor Co Ltd Control device for automatic transmission
JP2007218268A (en) * 2006-02-14 2007-08-30 Daihatsu Motor Co Ltd Slip control device for lock-up clutch

Also Published As

Publication number Publication date
JP6500710B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US7770676B2 (en) Method for operating a parallel hybrid powertrain of a vehicle with at least one internal combustion engine and at least one electric motor
US7645209B2 (en) Method for operating a parallel hybrid powertrain
JP6176192B2 (en) Vehicle control device
JP5727035B2 (en) Control device for automatic transmission
JP6304094B2 (en) Control device for lock-up clutch
US10358138B2 (en) Control apparatus and control method for vehicle
US10794481B2 (en) Control device for continuously variable transmission and control method for continuously variable transmission
JP5660180B2 (en) Vehicle control device
JP5467973B2 (en) Automatic transmission for vehicle
JP6500710B2 (en) Slip control device for lockup clutch
JP5994663B2 (en) Vehicle control device
JP4698436B2 (en) Slip control device for lock-up clutch
JP2011089614A (en) Hydraulic control device for vehicle
JP2576733B2 (en) Slip control device for vehicle direct coupling clutch
JP4784185B2 (en) Vehicle control device
JP5880458B2 (en) Control device for continuously variable transmission
JP2013067265A (en) Control device of vehicle
JP6806910B2 (en) Vehicle control device and vehicle control method
JP6922071B2 (en) Control device and control method for automatic transmission
JP5068280B2 (en) Lockup control device and lockup control method for automatic transmission
JP2012092894A (en) Vehicle control device
JP2024117610A (en) Vehicle control device
JP2023107681A (en) Vehicular control apparatus
JP2017198308A (en) Control device of clutch for vehicle
JP2024109162A (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151