JP2017048447A - Metal surface treatment agent - Google Patents

Metal surface treatment agent Download PDF

Info

Publication number
JP2017048447A
JP2017048447A JP2015175126A JP2015175126A JP2017048447A JP 2017048447 A JP2017048447 A JP 2017048447A JP 2015175126 A JP2015175126 A JP 2015175126A JP 2015175126 A JP2015175126 A JP 2015175126A JP 2017048447 A JP2017048447 A JP 2017048447A
Authority
JP
Japan
Prior art keywords
metal
group
metal surface
surface treatment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175126A
Other languages
Japanese (ja)
Other versions
JP6562782B2 (en
Inventor
正人 鷲巣
Masato Washisu
正人 鷲巣
勇太 小林
Yuta Kobayashi
勇太 小林
普之 鈴木
Hiroyuki Suzuki
普之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2015175126A priority Critical patent/JP6562782B2/en
Priority to PCT/JP2016/073726 priority patent/WO2017038429A1/en
Publication of JP2017048447A publication Critical patent/JP2017048447A/en
Application granted granted Critical
Publication of JP6562782B2 publication Critical patent/JP6562782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal surface treatment agent capable of imparting excellent corrosion resistivity to a metallic material having various properties of a metallic surface and a metallic structure including a processing part or the like such as an edge part or a weld zone, and not containing a material harmful to an environment.SOLUTION: A metal surface treatment agent having pH of 2-7 comprises at least one kind of metal compound (A) selected from a group comprising Zr, Ti, Hf and Bi as a metal element, and a polyhydric phenol compound (B) having a specific structure.SELECTED DRAWING: None

Description

本発明は、様々な金属材料及び金属構造物の表面に優れた耐食性を付与するための新規な金属表面処理剤に関する。   The present invention relates to a novel metal surface treatment agent for imparting excellent corrosion resistance to the surfaces of various metal materials and metal structures.

金属材料からなる多くの工業製品は腐食防止のため一般的には塗装が施される。塗装には、粉体塗装、溶剤塗装、電着塗装等の各種塗装方法があるが、金属材料に直接塗装しただけでは十分な耐食性を得られない場合が多く、一般的には塗装の前に化成処理等の下地処理が施される。   Many industrial products made of metallic materials are generally painted to prevent corrosion. There are various coating methods such as powder coating, solvent coating, and electrodeposition coating, but there are many cases where sufficient corrosion resistance cannot be obtained just by directly coating metal materials. Substrate treatment such as chemical conversion treatment is performed.

最も一般的な下地処理としてはリン酸塩処理が挙げられる。リン酸塩処理は実用化されてから既に100年近く経過しており、その間に様々な改良発明が提案され、現在でも様々な工業分野で使用されている処理剤である。他方で、皮膜析出反応の副生成物として通称スラッジと呼ばれる不溶性のリン酸鉄が生じ、このスラッジを系内で沈殿させた後系外に排出し産業廃棄物として廃棄するが、昨今、地球環境保全の観点から産業廃棄物の低減は大きな課題となっており、廃棄物を生じない処理剤が強く望まれている。   The most common surface treatment is phosphate treatment. Phosphate treatment has already been used for nearly 100 years, and various improved inventions have been proposed during that time, and it is a treatment agent still used in various industrial fields. On the other hand, insoluble iron phosphate, commonly called sludge, is generated as a by-product of the film deposition reaction. This sludge is precipitated in the system and then discharged out of the system and discarded as industrial waste. Reduction of industrial waste has become a major issue from the viewpoint of conservation, and a treatment agent that does not generate waste is strongly desired.

次いで代表的な化成として、クロメート処理が挙げられる。クロム酸クロメート化成処理の実用化の歴史も古く、現在も航空機材料、建築材料、自動車部品等の表面処理に広く使用されている。このクロメート化成処理剤は、6価クロムからなるクロム酸を主成分として含有するので、金属材料表面上に6価クロムを一部含有する皮膜を形成する。クロメート皮膜は優れた耐食性と塗装密着性を有するものの、有害な6価クロムを含有しているので、環境上の観点から6価クロムを全く含有しない化成処理剤が強く望まれている。   Next, as a typical chemical conversion, there is a chromate treatment. The history of practical application of chromate chromate conversion treatment is also old, and it is still widely used for surface treatment of aircraft materials, building materials, automobile parts and so on. Since this chromate chemical conversion treatment agent contains chromic acid composed of hexavalent chromium as a main component, a film partially containing hexavalent chromium is formed on the surface of the metal material. Although the chromate film has excellent corrosion resistance and paint adhesion, it contains harmful hexavalent chromium. Therefore, a chemical conversion treatment agent containing no hexavalent chromium is strongly desired from the environmental viewpoint.

近年、ジルコニウムをベースにした化成処理剤が提案されている(特許文献1)。ジルコニウムをベースにした化成処理剤の利点に関し、第一の利点として、少ないエッチング量(被処理金属の溶解)で皮膜形成可能なことであり、被処理金属の溶解量が少ないということで、リン酸塩処理の問題点であったスラッジ発生がほとんどない点が挙げられる。第二の利点として、6価クロム等の有害金属を含まない化成処理剤であり環境にやさしい点が挙げられる。   In recent years, a chemical conversion treatment agent based on zirconium has been proposed (Patent Document 1). Regarding the advantages of the chemical conversion treatment agent based on zirconium, the first advantage is that a film can be formed with a small amount of etching (dissolution of the metal to be treated), and the amount of dissolution of the metal to be treated is small. There is a point that there is almost no sludge generation which was a problem of acid treatment. The second advantage is that it is a chemical conversion treatment agent that does not contain harmful metals such as hexavalent chromium and is environmentally friendly.

特開2007−262577公報JP 2007-262577 A

自動車産業においては、車体の軽量化を目的として高張力鋼板(ハイテン材)やホットスタンプ材といった金属材料の使用が増加している。しかし、これらの金属材料は、耐食性が劣る場合があるなど、化成処理性が悪い傾向にある。この原因としては、高張力鋼板については、高い曲げや伸びといった優れた機械的特性を得るべく添加しているSiやMn等の元素が高張力鋼板の金属表面に濃化していること、またホットスタンプ材については、その製造過程において高温雰囲気にさらされ、その金属表面に厚い酸化膜が形成されていること、が考えられ、これらの金属材料における金属表面の性状は、均一な表面とは言い難い。したがって、これらの金属材料を化成処理剤で化成処理した場合に、このような金属表面の状態の影響を受けるため、均一な化成皮膜を形成することが困難な場合がある。
一方、金属構造体(自動車車体等)においては、金属材料の切断過程で生じるバリ部やエッジ部の他、溶接が施された溶接部等の加工部が存在する。この加工部も一般的な金属材料の金属表面と比べると不均一な表面となるため、加工部を化成処理剤で化成処理した場合に、このような金属表面の性状の影響を受けるため、均一な化成皮膜を形成することが困難な場合もある。
よって、様々な金属表面の性状を有する金属材料及びエッジ部や溶接部等の加工部を含んでいる金属構造体に対して、化成皮膜を均一に形成させ、耐食性等の皮膜性能が良好な化成処理剤が望まれている。
しかしながら、発明者らが、特許文献1に記載されている化成処理剤を評価したところ、様々な金属表面の性状を有する金属材料に対する皮膜性能が不十分である場合があることが明らかになってきた。
そこで、本発明は、様々な金属表面の性状を有する金属材料及びエッジ部や溶接部等の加工部等を含む金属構造体に対して優れた耐食性を付与することができ、かつ、環境に有害な物質を含まない金属表面処理剤を提供することを目的とする。また、予め金属表面が清浄化された金属材料を、金属表面処理剤に接触させた後、化成反応工程及び電解化成反応工程から選ばれる少なくとも一の工程により、金属材料の表面に皮膜を形成する金属表面処理方法を提供することも目的とする。
In the automobile industry, the use of metal materials such as high-tensile steel plates (high-tensile materials) and hot stamp materials is increasing for the purpose of reducing the weight of vehicle bodies. However, these metal materials tend to have poor chemical conversion properties, such as corrosion resistance may be inferior. This is because, for high-strength steel sheets, elements such as Si and Mn added to obtain excellent mechanical properties such as high bending and elongation are concentrated on the metal surface of the high-strength steel sheets. It is conceivable that the stamp material is exposed to a high temperature atmosphere in the manufacturing process, and a thick oxide film is formed on the metal surface, and the properties of the metal surface in these metal materials are not uniform surfaces. hard. Therefore, when these metal materials are subjected to a chemical conversion treatment with a chemical conversion treatment agent, it may be difficult to form a uniform chemical conversion film because of being affected by the state of the metal surface.
On the other hand, in a metal structure (such as an automobile body), there are processed parts such as a welded part subjected to welding in addition to a burr part and an edge part generated in the cutting process of the metal material. Since this processed part also has a non-uniform surface compared to the metal surface of a general metal material, when the processed part is subjected to chemical conversion treatment with a chemical conversion agent, it is affected by the properties of the metal surface. It may be difficult to form a chemical conversion film.
Therefore, a chemical film is uniformly formed on a metal structure including various metal surface properties and processed parts such as edges and welds, and a chemical film with good film performance such as corrosion resistance is formed. Treatment agents are desired.
However, when the inventors evaluated the chemical conversion treatment agent described in Patent Document 1, it has become clear that the film performance on metal materials having various metal surface properties may be insufficient. It was.
Therefore, the present invention can give excellent corrosion resistance to metal materials having various metal surface properties and metal structures including processed parts such as edges and welds, and is harmful to the environment. An object of the present invention is to provide a metal surface treatment agent that does not contain any substances. Further, after a metal material whose metal surface has been cleaned in advance is brought into contact with a metal surface treatment agent, a film is formed on the surface of the metal material by at least one process selected from a chemical conversion reaction process and an electrolytic chemical conversion reaction process. It is another object of the present invention to provide a metal surface treatment method.

本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来技術にはない金属表面処理剤を完成するに至った。すなわち本発明は、下記の通りである。   As a result of intensive studies on means for solving the above-mentioned problems, the present inventors have completed a metal surface treatment agent that does not exist in the prior art. That is, the present invention is as follows.

本発明(1)は、金属元素としてZr、Ti、Hf及びBiからなる群から選ばれる少なくとも1種の金属化合物(A)及び式(1)で表される多価フェノール化合物(B)を加えてなる、pHが2〜7である金属表面処理剤である。

Figure 2017048447
[但し、式(1)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、Zは、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基、アミノ基及び式(2)で表される基から選ばれる基である。]
Figure 2017048447
[式(2)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、R1及びR2は、それぞれ独立に、水素原子又はメチル基である。] The present invention (1) adds at least one metal compound (A) selected from the group consisting of Zr, Ti, Hf and Bi as a metal element and a polyhydric phenol compound (B) represented by the formula (1). The metal surface treatment agent having a pH of 2 to 7.
Figure 2017048447
[However, X 1 to X 3 in the formula (1) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group. , Z is a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, an amino group and a group represented by the formula (2). ]
Figure 2017048447
[X 4 to X 6 in the formula (2) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group; And R2 are each independently a hydrogen atom or a methyl group. ]

本発明(2)は、前記金属化合物(A)を、前記金属元素の合計濃度として10〜5000mg/L加えてなる前記発明(1)の金属表面処理剤である。   This invention (2) is a metal surface treating agent of the said invention (1) which adds 10-5000 mg / L of the said metal compound (A) as the total density | concentration of the said metal element.

本発明(3)は、前記多価フェノール化合物(B)を、濃度として10〜10000mg/L加えてなる前記発明(1)又は(2)の金属表面処理剤である。   This invention (3) is a metal surface treating agent of the said invention (1) or (2) which adds the said polyhydric phenol compound (B) as a density | concentration 10-10000 mg / L.

本発明(4)は、予め表面が清浄化された被処理金属材料を、前記発明(1)〜(3)のいずれか一つの金属表面処理剤に接触させた後、化成反応工程及び電解化成反応工程から選ばれる少なくとも一の工程により、前記被処理金属材料の表面に皮膜を形成する金属表面処理方法である。   In the present invention (4), the metal material to be treated whose surface has been cleaned in advance is brought into contact with any one of the metal surface treatment agents of the inventions (1) to (3), and then a chemical conversion reaction step and an electrolytic chemical conversion are performed. It is a metal surface treatment method for forming a film on the surface of the metal material to be treated by at least one step selected from reaction steps.

本発明の金属表面処理剤を用いることにより、様々な金属表面の性状を持つ金属材料及びエッジ部や溶接部等の加工部等を含む金属構造物に対して、優れた耐食性を付与することができる。更に本発明の方法によると、スラッジ等の環境に有害な副生成物がほとんど発生せず、またクロム化合物を使用しないため、環境に対する影響も小さくすることができる。   By using the metal surface treatment agent of the present invention, it is possible to impart excellent corrosion resistance to metal materials having various metal surface properties and metal structures including processed parts such as edges and welds. it can. Furthermore, according to the method of the present invention, almost no by-product harmful to the environment such as sludge is generated, and since no chromium compound is used, the influence on the environment can be reduced.

本発明の一形態を説明する。但し、本発明の技術的範囲は、当該形態には限定されない。なお、本発明において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。   One embodiment of the present invention will be described. However, the technical scope of the present invention is not limited to this form. In the present invention, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

≪金属表面処理剤≫
本発明に係る金属表面処理剤の一例は、Zr、Ti、Hf及びBiからなる群から選ばれる少なくとも1種の金属化合物(A)、及び多価フェノール化合物(B)を含まなければならない。以下に各成分を説明する。
≪Metal surface treatment agent≫
An example of the metal surface treating agent according to the present invention must contain at least one metal compound (A) selected from the group consisting of Zr, Ti, Hf and Bi, and a polyhydric phenol compound (B). Each component will be described below.

<金属化合物(A)>
金属化合物(A)の金属元素がZrの場合、金属化合物(A)は、例えば硝酸ジルコニウム、オキシ硝酸ジルコニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、酢酸ジルコニウム、乳酸ジルコニウム、フルオロジルコニウム酸、及びフルオロジルコニウム錯塩が挙げられる。
<Metal compound (A)>
When the metal element of the metal compound (A) is Zr, the metal compound (A) includes, for example, zirconium nitrate, zirconium oxynitrate, zirconium sulfate, zirconium oxysulfate, zirconium acetate, zirconium lactate, fluorozirconic acid, and a fluorozirconium complex salt. Can be mentioned.

金属化合物(A)の金属元素がTiの場合、金属化合物(A)は、例えば硫酸チタン、オキシ硫酸チタン、硝酸チタン、オキシ硝酸チタン、フルオロチタン酸、及びフルオロチタン錯塩等を用いることができる。   When the metal element of the metal compound (A) is Ti, for example, titanium sulfate, titanium oxysulfate, titanium nitrate, titanium oxynitrate, fluorotitanic acid, and a fluorotitanium complex salt can be used as the metal compound (A).

金属化合物(A)の金属元素がHfの場合、金属化合物(A)は、例えば硝酸ハフニウム、酸化ハフニウム、ケイ酸ハフニウム、塩化ハフニウム、フルオロハフニウム、及びフルオロハフニウム錯塩等を用いることができる。   When the metal element of the metal compound (A) is Hf, as the metal compound (A), for example, hafnium nitrate, hafnium oxide, hafnium silicate, hafnium chloride, fluorohafnium, a fluorohafnium complex, or the like can be used.

金属化合物(A)の金属元素がBi(3価のビスマス)の場合、金属化合物(A)は、硝酸ビスマス(III)、リン酸ビスマス(III)、硫酸ビスマス(III)、塩化ビスマス(III)、フッ化ビスマス(III)、臭化ビスマス(III)、ヨウ化ビスマス(III)、酢酸ビスマス(III)、蟻酸ビスマス(III)、クエン酸ビスマス(III)錯体、乳酸ビスマス(III)錯体、シュウ酸ビスマス(III)錯体、リンゴ酸ビスマス(III)錯体、酒石酸ビスマス(III)錯体、アスコルビン酸ビスマス(III)錯体、EDTAビスマス(III)錯体、NTAビスマス(III)錯体、HEDTAビスマス(III)錯体、トリス(メタンスルホン酸)ビスマス(III)、ベンゼンスルホン酸ビスマス、トリス(D−グルコン酸)ビスマス(III)、及びヘプトグルコン酸ビスマス(III)等を用いることができる。   When the metal element of the metal compound (A) is Bi (trivalent bismuth), the metal compound (A) is bismuth nitrate (III), bismuth phosphate (III), bismuth sulfate (III), bismuth chloride (III) Bismuth (III) fluoride, bismuth bromide (III), bismuth iodide (III), bismuth acetate (III), bismuth formate (III), bismuth citrate (III) complex, bismuth lactate (III) complex, Shu Bismuth (III) acid complex, Bismuth (III) malate, Bismuth (III) tartrate, Bismuth (III) ascorbate, EDTA bismuth (III) complex, NTA bismuth (III) complex, HEDTA bismuth (III) complex , Bismuth tris (methanesulfonic acid) bismuth (III), bismuth benzene sulfonic acid, bismuth tris (D-gluconic acid), bismuth heptogluconic acid (III), etc. Rukoto can.

金属化合物(A)には可溶性の化合物と難溶性の化合物とが存在する。金属化合物(A)が可溶性の場合は、純水や工業用水に溶解させて用いることができる。また、金属化合物(A)が難溶性の場合は、硝酸、硫酸、塩酸等の無機酸や、アミノカルボン酸、ヒドロキシカルボン酸、有機スルホン酸、有機ホスホン酸等の有機酸(キレート剤)等により溶解させて用いることができる。   The metal compound (A) includes a soluble compound and a hardly soluble compound. When the metal compound (A) is soluble, it can be used after being dissolved in pure water or industrial water. In addition, when the metal compound (A) is hardly soluble, it can be obtained by using an inorganic acid such as nitric acid, sulfuric acid or hydrochloric acid, or an organic acid (chelating agent) such as aminocarboxylic acid, hydroxycarboxylic acid, organic sulfonic acid or organic phosphonic acid. It can be dissolved and used.

本発明の金属表面処理剤において、金属化合物(A)は単独で用いてもよいし、2種以上の金属化合物(A)を併用してもよい。また、金属表面処理剤に配合される金属化合物(A)に由来した金属元素の濃度は、金属元素の合計濃度として、特に制限はないが、好ましくは10〜5,000mg/Lである。10mg/L以上は、耐食性がより良好になるが、5,000mg/L超では更なる耐食性の向上は認められずコスト高となる。より好ましくは25〜5,000mg/Lである。   In the metal surface treating agent of the present invention, the metal compound (A) may be used alone, or two or more metal compounds (A) may be used in combination. The concentration of the metal element derived from the metal compound (A) blended in the metal surface treatment agent is not particularly limited as the total concentration of the metal elements, but is preferably 10 to 5,000 mg / L. If it is 10 mg / L or more, the corrosion resistance becomes better, but if it exceeds 5,000 mg / L, no further improvement in corrosion resistance is recognized, resulting in an increase in cost. More preferably, it is 25-5,000 mg / L.

<多価フェノール化合物(B)>
本発明において、多価フェノール化合物(B)は、式(1)で示される化合物である。

Figure 2017048447
[但し、式(1)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、Zは、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基、アミノ基及び式(2)で表される基から選ばれる基である。]
Figure 2017048447
[式(2)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、R1及びR2は、それぞれ独立に、水素原子又はメチル基である。] <Polyhydric phenol compound (B)>
In the present invention, the polyhydric phenol compound (B) is a compound represented by the formula (1).
Figure 2017048447
[However, X 1 to X 3 in the formula (1) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group. , Z is a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, an amino group and a group represented by the formula (2). ]
Figure 2017048447
[X 4 to X 6 in the formula (2) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group; And R2 are each independently a hydrogen atom or a methyl group. ]

多価フェノール化合物(B)は、具体的には、カテコール(1,2−ベンゼンジオール)、3−メチルカテコール、4−メチルカテコール、3−エチルカテコール、4−エチルカテコール、3−ニトロカテコール、4−ニトロカテコール、カテコール−3,5−ジスルホン酸、2,3−ジヒドロキシ安息香酸、3,4−ジヒドロキシ安息香酸、3−アミノカテコール、4−アミノカテコール、3−メトキシカテコール、4−スルホカテコール、3,5−ジメチルカテコール、3,4−ジメチルカテコール、4,5−ジメチルカテコール、3,6−ジメチルカテコール、3,4,6−トリメチルカテコール、3,4,5−トリメチルカテコール、3,5−ジニトロカテコール、3,6−ジニトロカテコール、3,5−ジアミノカテコール、4−メチル−5−エチルカテコール、3−メチル−5−ニトロカテコール、3−メチル−4−ニトロカテコール、4−メチル−5−ニトロカテコール、3,5,6−トリメチル−4−メトキシカテコール、3,4−ジメトキシカテコール、4,5−ジメトキシカテコール、3,6−ジメトキシカテコール、レゾルシノール(1,3−ベンゼンジオール)、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、2−エチルレゾルシノール、4−エチルレゾルシノール、5−エチルレゾルシノール、2−ニトロレゾルシノール、5−ニトロレゾルシノール、2−アミノレゾルシノール、4−アミノレゾルシノール、5−アミノレゾルシノール、2−メトキシレゾルシノール、4−メトキシレゾルシノール、5−メトキシレゾルシノール、2,4−ジヒドロキシ安息香酸、3,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、4,5−ジメチルレゾルシノール、2,4−ジメチルレゾルシノール、2,5−ジメチルレゾルシノール、5−エチル−4−メチルレゾルシノール、4−エチル−2−メチルレゾルシノール、5−メトキシ−4−メチルレゾルシノール、2−メトキシ−5−メチルレゾルシノール、2−ニトロ−5−メチルレゾルシノール、4−ニトロ−5−メチルレゾルシノール、2,4,5−トリメチルレゾルシノール、2,4,6−トリメチルレゾルシノール、テトラメチルレゾルシノール、2,5−ジメトキシレゾルシノール、ヒドロキノン(1,4−ベンゼンジオール)、メチルヒドロキノン、エチルヒドロキノン、ニトロヒドロキノン、アミノヒドロキノン、メトキシヒドロキノン、ヒドロキノンスルホン酸、2,5−ジヒドロキシ安息香酸、2,5−ジメチルヒドロキノン、2,6−ジメチルヒドロキノン、2,6−ジエチルヒドロキノン、2,3−ジメトキシ−5−メチルヒドロキノン、2,5−ジアミノヒドロキノン、2,6−ジアミノヒドロキノン、2,5−ジニトロヒドロキノン、トリメチルヒドロキノン、テトラメチルヒドロキノン、ピロガロール(1,2,3−ベンゼントリオール)、4−メチルピロガロール、5−メチルピロガロール、5−エチルピロガロール、4−ニトロピロガロール、5−ニトロピロガロール、ピロガロール−5−スルホン酸、ピロガロール−4−カルボン酸、没食子酸(3,4,5−トリヒドロキシ安息香酸)、4,5−ジメチルピロガロール、4,6−ジメチルピロガロール、4,6−ジアミノピロガロール、ヒドロキシキノール、3−メチル−1,2,5−ベンゼントリオール、5−メチル−1,2,4−ベンゼントリオール、フロログルシノール(ベンゼン−1,3,5−トリオール)、メチルフロログルシノール、フロログルシノールカルボン酸(2,4,6−トリヒドロキシ安息香酸)、1,2,3,4−テトラヒドロキシベンゼン、1,2,3,5−テトラヒドロキシベンゼン、ヘキサヒドロキシベンゼン、ビス(3,4−ジヒドロキシフェニル)メタン、2,2−ビス(3,4−ジヒドロキシフェニル)プロパン等が挙げられる。ここで、多価フェノール化合物(B)は、1種単独で用いてもよいし又は2種以上併用してもよい。   Specific examples of the polyhydric phenol compound (B) include catechol (1,2-benzenediol), 3-methylcatechol, 4-methylcatechol, 3-ethylcatechol, 4-ethylcatechol, 3-nitrocatechol, 4 -Nitrocatechol, catechol-3,5-disulfonic acid, 2,3-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3-aminocatechol, 4-aminocatechol, 3-methoxycatechol, 4-sulfocatechol, 3, , 5-dimethylcatechol, 3,4-dimethylcatechol, 4,5-dimethylcatechol, 3,6-dimethylcatechol, 3,4,6-trimethylcatechol, 3,4,5-trimethylcatechol, 3,5-dinitro Catechol, 3,6-dinitrocatechol, 3,5-diaminocatechol, 4- Til-5-ethylcatechol, 3-methyl-5-nitrocatechol, 3-methyl-4-nitrocatechol, 4-methyl-5-nitrocatechol, 3,5,6-trimethyl-4-methoxycatechol, 3,4 -Dimethoxycatechol, 4,5-dimethoxycatechol, 3,6-dimethoxycatechol, resorcinol (1,3-benzenediol), 2-methylresorcinol, 4-methylresorcinol, 5-methylresorcinol, 2-ethylresorcinol, 4- Ethylresorcinol, 5-ethylresorcinol, 2-nitroresorcinol, 5-nitroresorcinol, 2-aminoresorcinol, 4-aminoresorcinol, 5-aminoresorcinol, 2-methoxyresorcinol, 4-methoxyresorcinol, 5-methoxy Resorcinol, 2,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 4,5-dimethylresorcinol, 2,4-dimethylresorcinol, 2,5-dimethylresorcinol, 5-ethyl -4-methylresorcinol, 4-ethyl-2-methylresorcinol, 5-methoxy-4-methylresorcinol, 2-methoxy-5-methylresorcinol, 2-nitro-5-methylresorcinol, 4-nitro-5-methylresorcinol 2,4,5-trimethylresorcinol, 2,4,6-trimethylresorcinol, tetramethylresorcinol, 2,5-dimethoxyresorcinol, hydroquinone (1,4-benzenediol), methylhydroquinone, ethylhydroquinone, nitrohydro Quinone, aminohydroquinone, methoxyhydroquinone, hydroquinonesulfonic acid, 2,5-dihydroxybenzoic acid, 2,5-dimethylhydroquinone, 2,6-dimethylhydroquinone, 2,6-diethylhydroquinone, 2,3-dimethoxy-5-methyl Hydroquinone, 2,5-diaminohydroquinone, 2,6-diaminohydroquinone, 2,5-dinitrohydroquinone, trimethylhydroquinone, tetramethylhydroquinone, pyrogallol (1,2,3-benzenetriol), 4-methylpyrogallol, 5-methyl Pyrogallol, 5-ethyl pyrogallol, 4-nitropyrogallol, 5-nitropyrogallol, pyrogallol-5-sulfonic acid, pyrogallol-4-carboxylic acid, gallic acid (3,4,5-trihydroxybenzoic acid), 4,5- Jime Lupyrogallol, 4,6-dimethylpyrogallol, 4,6-diaminopyrogallol, hydroxyquinol, 3-methyl-1,2,5-benzenetriol, 5-methyl-1,2,4-benzenetriol, phloroglucinol ( Benzene-1,3,5-triol), methylphloroglucinol, phloroglucinol carboxylic acid (2,4,6-trihydroxybenzoic acid), 1,2,3,4-tetrahydroxybenzene, 1,2, Examples include 3,5-tetrahydroxybenzene, hexahydroxybenzene, bis (3,4-dihydroxyphenyl) methane, 2,2-bis (3,4-dihydroxyphenyl) propane, and the like. Here, a polyhydric phenol compound (B) may be used individually by 1 type, or may be used together 2 or more types.

本発明の金属表面処理剤に使用できる多価フェノール化合物(B)は特に限定されるものではないが、その多価フェノール化合物(B)において、式(1)のZが、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基である多価フェノール化合物(B)が好ましい。
また、多価フェノール化合物(B)において、式(1)のZが、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であって、ベンゼン環が水酸基を2個又は3個有する多価フェノール化合物(B)がより好ましい。
更に、多価フェノール化合物(B)において、式(1)のZが、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であって、ベンゼン環が水酸基を2個有する多価フェノール化合物(B)が最も好ましい。
Although the polyhydric phenol compound (B) which can be used for the metal surface treating agent of the present invention is not particularly limited, in the polyhydric phenol compound (B), Z in the formula (1) is a hydrogen atom or a methyl group. The polyhydric phenol compound (B) which is a group selected from ethyl group, hydroxyl group, sulfone group, nitro group, carboxyl group, methoxy group and amino group is preferred.
In the polyphenol compound (B), Z in the formula (1) is a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group. The polyhydric phenol compound (B) in which the benzene ring has 2 or 3 hydroxyl groups is more preferable.
Furthermore, in the polyhydric phenol compound (B), Z in the formula (1) is a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group. The polyphenol compound (B) in which the benzene ring has two hydroxyl groups is most preferable.

本発明の金属表面処理剤に配合される多価フェノール化合物(B)の濃度は、特に制限は無いが、好ましくは10〜10,000mg/Lであり、より好ましくは50〜8,000mg/Lである。前記多価フェノール化合物(B)の濃度が10mg/L以上であると、後述する効果がより発揮しやすい。また、多価フェノール化合物(B)の濃度が10,000mg/L以下であると、金属化合物(A)の皮膜形成がより容易となる。   Although the density | concentration of the polyhydric phenol compound (B) mix | blended with the metal surface treating agent of this invention does not have a restriction | limiting in particular, Preferably it is 10-10,000 mg / L, More preferably, it is 50-8,000 mg / L. It is. When the concentration of the polyhydric phenol compound (B) is 10 mg / L or more, the effects described later are more easily exhibited. Moreover, the film formation of a metal compound (A) becomes easier as the density | concentration of a polyhydric phenol compound (B) is 10,000 mg / L or less.

金属表面処理剤に含まれる金属化合物(A)と多価フェノール化合物(B)との間において、「金属化合物(A)に由来した金属元素の濃度(mg/L)」に対する「多価フェノール化合物(B)の濃度(mg/L)」の比(B/A)は、特に制限がないが、B/Aが0.05以上であると密着性がより向上する。   Between the metal compound (A) and the polyhydric phenol compound (B) contained in the metal surface treatment agent, the “polyhydric phenol compound” with respect to the “concentration (mg / L) of the metal element derived from the metal compound (A)” The ratio (B / A) of (B) concentration (mg / L) is not particularly limited, but if B / A is 0.05 or more, the adhesion is further improved.

本発明の金属表面処理剤は、金属化合物(A)とは別に、Zn、Al、Fe、V、Mo、W、Mn、Ni等の金属化合物を含んでいてもよい。   The metal surface treatment agent of the present invention may contain a metal compound such as Zn, Al, Fe, V, Mo, W, Mn, and Ni, in addition to the metal compound (A).

本発明の金属表面処理剤は、一般的な無機酸や有機酸を含んでいてもよく、被処理金属材料のエッチング反応に寄与するものであれば何でもよい。無機酸としては、例えば、硝酸、亜硝酸、硫酸、塩酸、フッ化水素酸等が挙げられる。また、有機酸としては、例えば、蟻酸、酢酸、乳酸、アスコルビン酸、クエン酸、グルコン酸、酒石酸、リンゴ酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、シュウ酸、マロン酸、コハク酸等が挙げられる。   The metal surface treating agent of the present invention may contain a general inorganic acid or organic acid, and may be anything as long as it contributes to the etching reaction of the metal material to be treated. Examples of inorganic acids include nitric acid, nitrous acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, and the like. Examples of organic acids include formic acid, acetic acid, lactic acid, ascorbic acid, citric acid, gluconic acid, tartaric acid, malic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, oxalic acid, malonic acid, succinic acid, etc. Is mentioned.

更に本発明の金属表面処理剤は、キレート剤を含んでいてもよい。キレート剤としては、例えば、EDTA(エチレンジアミン四酢酸)、HEDTA(ヒドロキシエチルエチレンジアミン三酢酸)、NTA(ニトリロ三酢酸)、DTPA(ジエチレントリアミン五酢酸)、TTHA(トリエチレンテトラミン六酢酸)、DHEG(ジヒドロキシエチルグリシン)、イミノ二酢酸、トリシン、酒石酸、リンゴ酸、クエン酸、グリコール酸、乳酸、グルコン酸、粘液酸、キナ酸、タウリン、EDTMP(エチレンジアミンテトラメチレンホスホン酸)、NTMP(ニトリロトリメチレンホスホン酸)、HEDP(ヒドロキシエチリデンジホスホン酸)等が挙げられる。   Furthermore, the metal surface treatment agent of the present invention may contain a chelating agent. Examples of the chelating agent include EDTA (ethylenediaminetetraacetic acid), HEDTA (hydroxyethylethylenediaminetriacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid), and DHEG (dihydroxyethyl). Glycine), iminodiacetic acid, tricine, tartaric acid, malic acid, citric acid, glycolic acid, lactic acid, gluconic acid, mucoic acid, quinic acid, taurine, EDTMP (ethylenediaminetetramethylenephosphonic acid), NTMP (nitrilotrimethylenephosphonic acid), HEDP (hydroxyethylidene diphosphonic acid) etc. are mentioned.

一般的に金属表面処理剤には工業用水が用いられるが、その工業用水の水源により様々な不純物を含んでいる。例えば、工業用水には、いわゆる硬度成分であるCaやMg等が含まれているのが一般的であるが、その硬度成分の含有量が多い場合には、金属表面処理剤の化成処理性に悪影響を及ぼすため、キレート剤を含有させることにより、水質の安定化を図ることができる。更には、金属表面処理剤による化成処理の過程においては、被処理金属材料のエッチング反応により金属が金属イオンとして溶出する。例えば金属材料が鉄の場合は鉄イオンが溶出してくる。その溶出してきた鉄イオンは、いずれ経時により不溶性の水酸化鉄となりスラッジとなる。この現象を抑制するためにもキレート剤の適用は、有効である。   In general, industrial water is used as the metal surface treatment agent, and various impurities are contained depending on the water source of the industrial water. For example, industrial water generally contains so-called hardness components such as Ca and Mg, but when the content of the hardness component is large, the chemical treatment of the metal surface treatment agent is effective. In order to have an adverse effect, the water quality can be stabilized by adding a chelating agent. Furthermore, in the process of chemical conversion treatment with the metal surface treatment agent, the metal is eluted as metal ions by the etching reaction of the metal material to be treated. For example, when the metal material is iron, iron ions are eluted. The eluted iron ions eventually become insoluble iron hydroxide with time and become sludge. In order to suppress this phenomenon, the application of a chelating agent is effective.

更に本発明の金属表面処理剤は、水溶性又は水分散性樹脂を含んでいてもよい。   Furthermore, the metal surface treatment agent of the present invention may contain a water-soluble or water-dispersible resin.

<液性>
本発明の金属表面処理剤のpHは2〜7でなければならない。pHが2.5〜6.5がより好ましい。pHが2未満であると被処理金属材料を過剰にエッチングしてしまうことで皮膜の均一被覆性が損なわれ、pHが7超であると十分な皮膜量が得られなくなるため、耐食性が低下する。なお、本明細書及び特許請求の範囲でのpHは、25℃の剤について、市販のpHメーターで測定した値である。
<Liquid>
The pH of the metal surface treatment agent of the present invention must be 2-7. The pH is more preferably 2.5 to 6.5. If the pH is less than 2, the metal material to be treated is excessively etched, so that the uniform coating property of the film is impaired. If the pH is more than 7, a sufficient film amount cannot be obtained, so that the corrosion resistance decreases. . In addition, pH in this specification and a claim is the value measured with the commercially available pH meter about the agent of 25 degreeC.

≪金属表面処理方法、及び皮膜≫
本発明の金属表面処理方法は、被処理金属である金属材料を本発明の金属表面処理剤に浸漬又はスプレー等の方法で接液させる工程を含む。即ち、本発明の金属表面処理方法は、化成反応により金属化合物(A)由来の金属を主成分とする皮膜を被処理金属材料上に形成させる手法である。
≪Metal surface treatment method and film≫
The metal surface treatment method of the present invention includes a step of bringing a metal material that is a metal to be treated into contact with the metal surface treatment agent of the present invention by a method such as immersion or spraying. That is, the metal surface treatment method of the present invention is a method of forming a film mainly containing a metal derived from the metal compound (A) on a metal material to be treated by a chemical conversion reaction.

本発明の処理方法は、無通電での化成反応の他に、カソード電解処理によって金属皮膜を析出させることも可能である。すなわち、本発明の金属表面処理剤に被処理金属材料を浸漬した直後にカソード電解処理に供するため電圧を印加してもよいし、無通電で一定時間浸漬して化成反応をさせた後に、カソード電解処理に供するため電圧を印加してもよい。   In the treatment method of the present invention, a metal film can be deposited by cathodic electrolysis in addition to a chemical conversion reaction without energization. That is, immediately after immersing the metal material to be treated in the metal surface treatment agent of the present invention, a voltage may be applied for cathodic electrolysis treatment, or after immersion for a certain period of time without conducting electricity, the cathode is subjected to a chemical reaction. A voltage may be applied for electrolytic treatment.

本発明に係る金属表面処理剤の金属表面処理における温度は特に規定されるものではないが、15〜60℃が好ましく、20〜50℃がより好ましい。   Although the temperature in the metal surface treatment of the metal surface treatment agent according to the present invention is not particularly specified, it is preferably 15 to 60 ° C, and more preferably 20 to 50 ° C.

本発明の処理時間は特に規定されるものではないが、10〜600秒が好ましく、15〜300秒が好ましい。処理時間が下限を下回ると金属化合物(A)に由来する皮膜の析出量が低下し十分な耐食性が得られない。   The treatment time of the present invention is not particularly defined, but is preferably 10 to 600 seconds, and preferably 15 to 300 seconds. When processing time is less than a minimum, the precipitation amount of the film | membrane originating in a metal compound (A) will fall, and sufficient corrosion resistance will not be obtained.

<適用対象の金属材料>
本発明の金属表面処理剤に適用できる金属材料は特に限定されない。金属材料としては、例えば、冷延鋼板、熱延鋼板、高張力鋼板、ホットスタンプ鋼板、亜鉛系めっき鋼板(合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板等を含む)、アルミニウム材、マグネシウム材等が挙げられる。
<Applicable metal materials>
The metal material applicable to the metal surface treating agent of the present invention is not particularly limited. Examples of metal materials include cold-rolled steel sheets, hot-rolled steel sheets, high-tensile steel sheets, hot stamped steel sheets, galvanized steel sheets (including alloyed hot-dip galvanized steel sheets, hot-dip galvanized steel sheets, electrogalvanized steel sheets, etc.), aluminum Materials, magnesium materials and the like.

<皮膜>
本発明に係る金属表面処理皮膜は、本発明の金属表面処理剤を用い、本発明の金属表面処理方法によって得られる。ところで金属化合物(A)の金属がBiの場合は、Bi以外の金属、つまり、Zr、Ti又はHfと比較して、異なる析出機構で皮膜を形成する。
<Film>
The metal surface treatment film according to the present invention is obtained by the metal surface treatment method of the present invention using the metal surface treatment agent of the present invention. By the way, when the metal of the metal compound (A) is Bi, a film is formed by a different precipitation mechanism as compared with metals other than Bi, that is, Zr, Ti, or Hf.

金属化合物(A)の金属がBiの場合、本発明で用いるBiは処理液中では3価のBiイオン(錯体等も含む)の形態として存在していると推定される。この3価のBiイオンは一般的な被処理金属材料である鉄鋼、亜鉛めっき鋼板、アルミニウム合金等の標準電極電位よりも高い電位を有しており、貴な金属であるBiと卑な金属である被処理金属材料との間で酸化還元反応が起こる。すなわち卑な金属である金属材料のアノード反応により金属が溶解し、この溶解反応に伴い放出された電子が処理液中の3価のBiイオンを還元し、被処理金属材料の表面にBiが還元析出してくることになる。   When the metal of the metal compound (A) is Bi, Bi used in the present invention is presumed to exist in the form of a trivalent Bi ion (including a complex and the like) in the treatment liquid. This trivalent Bi ion has a potential higher than the standard electrode potential of steel, galvanized steel sheet, aluminum alloy, etc., which are general metal materials to be treated, and is a noble metal Bi and a base metal. A redox reaction occurs with a certain metal material to be treated. That is, the metal is dissolved by the anode reaction of the base metal material, and the electrons released by the dissolution reaction reduce trivalent Bi ions in the treatment liquid, and Bi is reduced on the surface of the metal material to be treated. It will be deposited.

一方、金属化合物(A)の金属がZr、Ti又はHfの場合には、被処理金属材料のアノード反応により金属が金属表面処理液に溶解してくるが、この溶解反応に伴い電子が処理液中に放出されることになる。金属表面処理液にある水素イオンはこの電子を受け取ることで還元され、水素イオンが消費されることになる。その結果、被処理金属材料の表面の界面においては、バルク(金属表面処理液の界面でないところ)と比して、相対的に高いpHとなるため、Zr、Ti又はHfは水酸化物と不溶性の塩を形成し、被処理金属材料の表面上に沈殿析出するものである。   On the other hand, when the metal of the metal compound (A) is Zr, Ti, or Hf, the metal is dissolved in the metal surface treatment liquid by the anode reaction of the metal material to be treated. Will be released inside. The hydrogen ions in the metal surface treatment liquid are reduced by receiving the electrons, and the hydrogen ions are consumed. As a result, the pH of the surface of the metal material to be treated is relatively higher than that of the bulk (not the interface of the metal surface treatment liquid), so that Zr, Ti or Hf is insoluble in hydroxide. Is formed and precipitated on the surface of the metal material to be treated.

金属化合物(A)は2種以上の金属化合物(A)を併用してもよい。例えばBiとZrとを併用する場合には、被処理金属材料のアノード反応により生じた電子に対し、Biイオンがその電子を受け取る場合と水素イオンがその電子を受け取る場合の両方の反応が起きることになる。Biイオンが電子を受け取る場合には、Biが被処理金属材料上に還元析出する。また、水素イオンが電子を受け取る場合には、被処理金属材料の表面界面におけるpHの上昇が生じ、それに伴ってZrイオンが水酸化物イオンと不溶性の塩を形成し、被処理金属材料上に沈殿析出することになる。   Two or more metal compounds (A) may be used in combination for the metal compound (A). For example, in the case where Bi and Zr are used in combination, the reaction that occurs when Bi ions receive the electrons and when the hydrogen ions receive the electrons occurs due to the anodic reaction of the metal material to be processed. become. When Bi ions receive electrons, Bi is reduced and deposited on the metal material to be treated. In addition, when hydrogen ions receive electrons, a pH increase occurs at the surface interface of the metal material to be treated, and accordingly, Zr ions form an insoluble salt with hydroxide ions, It will precipitate out.

多価フェノール化合物(B)は、前記の金属化合物(A)に由来した金属元素の皮膜析出過程において、皮膜の均一被覆性を高める働きを有していることが分かった。前述の通り、化成皮膜の皮膜析出工程における第一段階は被処理金属材料の溶解反応であるが、金属表面の全面において均一な金属の溶解反応が起こるのではなく、金属表面の活性な部位ほど金属の溶解がより容易となるため、少なからず不均一な皮膜が形成されることになる。ここで、多価フェノール化合物(B)を金属表面処理液に適用すると、多価フェノール化合物(B)が持つインヒビター的な働きであると推測しているが、この多価フェノール化合物(B)のインヒビター的な働きにより、被処理金属材料表面の反応性に富む活性サイトをすばやく封鎖する。この活性サイトの封鎖により被処理金属材料の溶解反応の均一性がより高まるため、金属表面に対する皮膜の均一被覆性も高まるものと推測される。この皮膜の均一被覆性が高まることにより、金属表面処理後の金属材料は優れた耐食性を有することになる。   It was found that the polyhydric phenol compound (B) has a function of enhancing the uniform coverage of the film in the film deposition process of the metal element derived from the metal compound (A). As described above, the first step in the film deposition process of the chemical conversion film is a dissolution reaction of the metal material to be treated. However, a uniform metal dissolution reaction does not occur on the entire surface of the metal surface. Since the dissolution of the metal becomes easier, a non-uniform film is formed. Here, when the polyhydric phenol compound (B) is applied to the metal surface treatment liquid, it is assumed that the polyhydric phenol compound (B) has an inhibitory function. By acting like an inhibitor, active sites rich in reactivity on the surface of the metal material to be treated are quickly blocked. It is presumed that since the uniformity of the dissolution reaction of the metal material to be treated is further enhanced by the blocking of the active site, the uniform coverage of the film on the metal surface is also enhanced. By increasing the uniform coverage of the film, the metal material after the metal surface treatment has excellent corrosion resistance.

昨今、例えば自動車業界においては環境負荷低減のために車両の軽量化が図られ、使用される金属材料としては、高張力鋼板やホットスタンプ鋼板(熱間鋼板)の使用が増加している。前述したが、これらの金属材料は、一般的に通常の冷延鋼板等に比べて、耐食性が劣る傾向にある。これは、例えば、高張力鋼板であれば、機械特性を付与するため添加しているSiやMnが高張力鋼板の金属表面に濃化し、不均一な金属表面の性状になっているため、高張力鋼板の金属表面に均一な皮膜が形成できないと考えられる。しかしながら、本発明の多価フェノール化合物(B)を適用すると、被処理金属の金属表面にある反応性に富む活性サイトにおける表面の活性を抑制する。したがって、フェノール化合物(A)を金属表面処理液に適用すると、金属材料における金属表面の均一な溶解反応を促すことになるので、金属表面に対して被覆性に優れた金属皮膜を得ることができるため、その金属材料は、優れた耐食性を有することになる。   In recent years, for example, in the automobile industry, the weight of vehicles has been reduced in order to reduce the environmental load, and the use of high-tensile steel plates and hot stamped steel plates (hot steel plates) is increasing as metal materials used. As described above, these metal materials generally tend to be inferior in corrosion resistance as compared with ordinary cold-rolled steel sheets and the like. This is because, for example, in the case of a high-tensile steel plate, Si and Mn added for imparting mechanical properties are concentrated on the metal surface of the high-tensile steel plate, resulting in uneven metal surface properties. It is considered that a uniform film cannot be formed on the metal surface of the tensile steel plate. However, when the polyhydric phenol compound (B) of the present invention is applied, the surface activity at the active site rich in reactivity on the metal surface of the metal to be treated is suppressed. Therefore, when the phenol compound (A) is applied to the metal surface treatment liquid, a uniform dissolution reaction of the metal surface in the metal material is promoted, so that a metal film having excellent coverage on the metal surface can be obtained. Therefore, the metal material has excellent corrosion resistance.

また、金属構造体は、切断、溶接、折り曲げ等の様々な加工が行われることにより製造されている。その構造体には、切断等により生じるバリ部又はエッジ部と呼ばれる加工部や、溶接等の影響でその溶接付近に局所的に厚い表面酸化膜等が形成されている溶接部等が含まれることになる。そして、それらの加工部は、加工を施していない一般的な金属材料に比べてより不均一な金属表面の性状となっているため、これらの加工部は、加工を施していない一般的な金属材料と比較して、耐食性が劣る場合が多い。しかし、本発明の金属表面処理剤を用いることにより、このような加工部においても均一な皮膜形成が可能となるため、優れた耐食性を有することになる。
〔実施例〕
Moreover, the metal structure is manufactured by performing various processes such as cutting, welding, and bending. The structure includes a processing part called a burr part or an edge part generated by cutting or the like, or a welding part in which a thick surface oxide film or the like is locally formed in the vicinity of the welding due to the influence of welding or the like. become. And these processed parts have a non-uniform nature of the metal surface compared to general metal materials that are not processed, so these processed parts are general metal that is not processed The corrosion resistance is often inferior compared to the material. However, by using the metal surface treating agent of the present invention, it is possible to form a uniform film even in such a processed portion, and thus has excellent corrosion resistance.
〔Example〕

以下に実施例を比較例とともに挙げ、本発明の表面処理用処理液、表面処理方法、及び表面処理された金属材料の効果を具体的に説明する。なお、実施例で使用した被処理金属板、脱脂剤及び塗料は市販されている材料の中から任意に選定したものであり、本発明の表面処理用処理液及び表面処理方法の実際の用途を限定するものではない。   Examples are given below together with comparative examples to specifically describe the effects of the surface treatment liquid, the surface treatment method, and the surface-treated metal material of the present invention. In addition, the to-be-processed metal plate, degreasing agent, and coating material used in the examples are arbitrarily selected from commercially available materials, and the actual use of the surface treatment liquid and the surface treatment method of the present invention is as follows. It is not limited.

<金属表面処理剤の作製>
実施例1
金属化合物(A)であるZrの供給源としてフルオロジルコニウム酸を用い、Zrが最終的に200mg/Lとなるように添加した。更にヒドロキノンを最終的に500mg/L、硝酸を最終的に1000mg/Lとなるように添加した。pH調整には硝酸又はアンモニア水を用い、所定のpHに調整した。実施例1の金属表面処理剤を表1Aに示す。
<Production of metal surface treatment agent>
Example 1
Fluorozirconic acid was used as a supply source of Zr as the metal compound (A), and Zr was added so that the final concentration was 200 mg / L. Further, hydroquinone was finally added to 500 mg / L and nitric acid was finally added to 1000 mg / L. For pH adjustment, nitric acid or ammonia water was used to adjust to a predetermined pH. The metal surface treating agent of Example 1 is shown in Table 1A.

実施例2〜34
実施例1と同様の作製方法で、表1Aに示す実施例2〜34の金属表面処理剤を作製した。なお、実施例34にのみ、水溶性樹脂として分子量3000のポリアリルアミン(PAA)を加えた金属表面処理剤を作製した。
Examples 2-34
In the same manner as in Example 1, metal surface treatment agents of Examples 2-34 shown in Table 1A were prepared. In addition, only in Example 34, a metal surface treating agent was prepared by adding polyallylamine (PAA) having a molecular weight of 3000 as a water-soluble resin.

実施例35〜53
実施例1と同様の方法で、表1Aに示す実施例35〜53の金属表面処理剤を作製した。なお、金属化合物(A)であるTiの供給源としてフルオロチタン酸を用いた。
Examples 35-53
In the same manner as in Example 1, metal surface treatment agents of Examples 35 to 53 shown in Table 1A were produced. In addition, fluorotitanic acid was used as a supply source of Ti which is a metal compound (A).

実施例54〜56
金属化合物(A)であるBiの供給源として酸化ビスマスを用いた。最初に脱イオン水にBiに対して3倍のモル質量となるHEDTAを溶解させた。次に表1Bに示すBi濃度となるように酸化ビスマスを溶解させた。更に、金属化合物(A)であるZrの供給源としてフルオロジルコニウム酸を用いて、表1Bに示すジルコニウムの濃度に調整した。その他については実施例1と同様の方法を用い、表1Bに示す金属表面処理薬剤を作製した。
Examples 54-56
Bismuth oxide was used as a source of Bi as the metal compound (A). First, HEDTA having a molar mass three times that of Bi was dissolved in deionized water. Next, bismuth oxide was dissolved so as to have a Bi concentration shown in Table 1B. Furthermore, the zirconium concentration shown in Table 1B was adjusted by using fluorozirconic acid as a supply source of Zr as the metal compound (A). About the other, the metal surface treatment chemical | medical agent shown to Table 1B was produced using the method similar to Example 1. FIG.

実施例57
金属化合物(A)であるBiの供給源として酸化ビスマスを用いた。最初に脱イオン水にBiに対し3倍のモル質量となるHEDTAを溶解させた。次にBi濃度が最終的に100mg/Lとなるように酸化ビスマスを溶解させた。更に、ヒドロキノンを最終的に500mg/Lとなるように添加した。pH調整には硝酸又はアンモニア水を用い、所定のpHに調整して、表1Bに示す金属表面処理剤を得た。
Example 57
Bismuth oxide was used as a source of Bi as the metal compound (A). First, HEDTA having a molar mass three times that of Bi was dissolved in deionized water. Next, bismuth oxide was dissolved so that the Bi concentration was finally 100 mg / L. Further, hydroquinone was added so that the final concentration was 500 mg / L. For the pH adjustment, nitric acid or aqueous ammonia was used to adjust the pH to a predetermined value, and metal surface treatment agents shown in Table 1B were obtained.

実施例58〜90
表1Bに示す多価フェノール化合物(B)を用いた以外は、実施例57と同様の方法で金属表面処理剤を作製した。
Examples 58-90
A metal surface treating agent was produced in the same manner as in Example 57 except that the polyhydric phenol compound (B) shown in Table 1B was used.

比較例1及び2
金属化合物(A)は使用せず、表1Bに示す多価フェノール化合物(B)を用いた。表1Bに示す金属表面処理剤の組成とした以外は、実施例1と同様の方法で処理液を作製した。
Comparative Examples 1 and 2
The metal compound (A) was not used, and the polyhydric phenol compound (B) shown in Table 1B was used. A treatment liquid was prepared in the same manner as in Example 1 except that the composition of the metal surface treatment agent shown in Table 1B was used.

比較例3〜5
多価フェノール化合物(B)は使用せず、表1Bに示す金属化合物(A)を用いた。Zr、Ti、及びBiの供給源は実施例と同様のものを用いた。表1Bに示す金属表面処理剤の組成とした以外は、実施例1と同様の方法で金属表面処理剤を作製した。
Comparative Examples 3-5
The polyhydric phenol compound (B) was not used, and the metal compound (A) shown in Table 1B was used. The same supply source as Zr, Ti, and Bi was used. A metal surface treatment agent was produced in the same manner as in Example 1 except that the composition of the metal surface treatment agent shown in Table 1B was used.

比較例6〜8
多価フェノール化合物(B)の代わりに1個のベンゼン環に1個の水酸基が結合しているフェノールを用いた。金属化合物(A)であるZr、Ti、及びBiの供給源は実施例と同様のものを用い、表1Bに示す金属表面処理剤の組成とした以外は、実施例1と同様の方法で処理液を作製した。
Comparative Examples 6-8
Instead of the polyhydric phenol compound (B), phenol having one hydroxyl group bonded to one benzene ring was used. The source of Zr, Ti, and Bi as the metal compound (A) was the same as that used in the example, and the treatment was performed in the same manner as in Example 1 except that the composition of the metal surface treatment agent shown in Table 1B was used. A liquid was prepared.

比較例9
表1Bに示す金属表面処理剤の組成とし、その処理剤のpHを硝酸で1.5に調整した以外は、実施例1と同様の方法で金属表面処理剤を作製した。
Comparative Example 9
A metal surface treating agent was prepared in the same manner as in Example 1 except that the composition of the metal surface treating agent shown in Table 1B was used and the pH of the treating agent was adjusted to 1.5 with nitric acid.

比較例10及び11
表1Bに示す金属表面処理剤の組成とし、その処理剤のpHを、比較例10については硝酸で1.5に調整し、比較例11についてはアンモニア水で7.2に調整した以外は、実施例58と同様の方法で金属表面処理剤を作製した。
Comparative Examples 10 and 11
The composition of the metal surface treatment agent shown in Table 1B, except that the pH of the treatment agent was adjusted to 1.5 with nitric acid for Comparative Example 10 and 7.2 to aqueous ammonia for Comparative Example 11, A metal surface treating agent was produced in the same manner as in Example 58.

比較例12
特開2007−262577号公報の実施例1に記載の金属表面処理組成物を作製した。
Comparative Example 12
A metal surface treatment composition described in Example 1 of Japanese Patent Application Laid-Open No. 2007-262577 was prepared.

比較例13
従来の金属表面処理剤であるリン酸亜鉛処理を用いた。リン酸亜鉛処理剤には、日本パーカライジング社製「PB−L3020」を用いた。
Comparative Example 13
A zinc phosphate treatment, which is a conventional metal surface treatment agent, was used. “PB-L3020” manufactured by Nippon Parkerizing Co., Ltd. was used as the zinc phosphate treating agent.

<金属材料>
試験材料として次の金属材料を用意した。
・冷延鋼板:SPCC(JISG3141)、70×150×0.8mm
・高張力鋼板:SPFC980Y(JISG3135)、70×150×1.2mm
・合金化溶融亜鉛めっき鋼板:GA(JISG3302)、70×150×0.8mm
・熱間圧延材:SS400(JISG3101)、70×150×0.8mm
・高張力熱延鋼板:SPH590(JISG3131)、70×150×1.6mm
以下、冷延鋼板をSPC、高張力鋼板をハイテン、合金化溶融亜鉛めっき鋼板をGA、熱間圧延材をSS、高張力熱延鋼板をSPHと表記する。
<Metal material>
The following metal materials were prepared as test materials.
-Cold rolled steel sheet: SPCC (JISG 3141), 70 x 150 x 0.8 mm
・ High tensile steel plate: SPFC980Y (JISG3135), 70 × 150 × 1.2 mm
・ Alloyed hot-dip galvanized steel sheet: GA (JISG3302), 70 x 150 x 0.8 mm
・ Hot rolled material: SS400 (JISG3101), 70 × 150 × 0.8 mm
・ High-tensile hot-rolled steel sheet: SPH590 (JISG3131), 70 × 150 × 1.6 mm
Hereinafter, the cold-rolled steel sheet is represented as SPC, the high-tensile steel sheet as high tensile steel, the galvannealed steel sheet as GA, the hot-rolled material as SS, and the high-tensile hot-rolled steel sheet as SPH.

<脱脂処理>
試験材料には防錆油等の油が付着していることもあり、金属表面処理剤による金属表面処理の前段階として脱脂処理を行った。日本パーカライジング社製のアルカリ脱脂剤である「FC−E2001」を使用した。FC−E2001Aを13g/L、FC−E2001Bを7g/L工業用市水に混合し、40℃に加温した後、試験材料を120秒間のスプレーによって脱脂した。その後、30秒間のスプレーによる水洗した後、次の工程で実施例及び比較例で示した金属表面処理剤による金属処理を行った。
<Degreasing treatment>
Oil such as rust preventive oil may adhere to the test material, and degreasing treatment was performed as a pre-stage of metal surface treatment with a metal surface treatment agent. “FC-E2001” which is an alkaline degreasing agent manufactured by Nippon Parkerizing Co., Ltd. was used. After mixing FC-E2001A with 13 g / L and FC-E2001B with 7 g / L industrial city water and heating to 40 ° C., the test material was degreased by spraying for 120 seconds. Then, after washing with water by spraying for 30 seconds, metal treatment with the metal surface treatment agent shown in Examples and Comparative Examples was performed in the next step.

<金属表面処理剤による表面処理>
脱脂処理で清浄化した試験材料を、実施例1〜90及び比較例1〜13に示す金属表面処理剤を用いて表面処理をした。実施例1〜90及び比較例1〜12に示す金属表面処理剤については、金属表面処理剤を40℃に加温した後に、清浄化した金属材料を60秒間浸漬させて、皮膜を形成させた。その後、金属材料を金属表面処理剤から取出した後、脱イオン水による水洗を施した後、エアブローで水分を除去することで乾燥させた。比較例13のリン酸亜鉛処理剤については、リン酸亜鉛処理剤の遊離酸度(FA)を0.9pt、促進剤濃度(AC)を4.0ptに調整し、脱脂処理により清浄化した金属材料を、日本パーカライジング社製「PL−X」に30秒間浸漬した後、温度40℃にしたリン酸亜鉛処理剤に試験材料を120秒間浸漬させることで、リン酸亜鉛皮膜を形成させた。その後、リン酸塩処理剤から取出した後、脱イオン水による水洗を施した後に、エアブローで水分を除去することで乾燥させた。
<Surface treatment with metal surface treatment agent>
The test material cleaned by the degreasing treatment was subjected to surface treatment using the metal surface treatment agents shown in Examples 1 to 90 and Comparative Examples 1 to 13. About the metal surface treatment agent shown in Examples 1-90 and Comparative Examples 1-12, after heating the metal surface treatment agent to 40 ° C., the cleaned metal material was immersed for 60 seconds to form a film. . Thereafter, the metal material was taken out of the metal surface treatment agent, washed with deionized water, and then dried by removing moisture with an air blow. For the zinc phosphate treating agent of Comparative Example 13, a metal material that was cleaned by degreasing after adjusting the free acidity (FA) of the zinc phosphate treating agent to 0.9 pt and the accelerator concentration (AC) to 4.0 pt. Was immersed in “PL-X” manufactured by Nihon Parkerizing Co., Ltd. for 30 seconds, and then the test material was immersed in a zinc phosphate treating agent at a temperature of 40 ° C. for 120 seconds to form a zinc phosphate coating. Then, after taking out from the phosphate treating agent, it was washed with deionized water and then dried by removing moisture with an air blow.

<金属付着量の測定>
金属表面処理剤による化成処理後の試験材料に析出した金属の付着量を蛍光X線分光分析(XRF)により測定した。
<Measurement of metal adhesion>
The amount of metal deposited on the test material after the chemical conversion treatment with the metal surface treatment agent was measured by fluorescent X-ray spectroscopic analysis (XRF).

<金属皮膜の均一被覆性の評価>
化成処理後の金属材料に析出した金属皮膜の均一被覆性をXPS装置を用いて算出した。
測定機器:島津製作所製ESCA850
X線源:MgKα(8kV−30mA)
スパッタリング:Arスパッタ
測定深さ:
表層:1層(第1層)
第1エッチング層(1.2秒間のエッチング):4層(第2層〜第5層)
第2エッチング層(2.4秒間のエッチング):4層(第6層〜第9層)
第3エッチング層(4.8秒間のエッチング):7層(第10層〜第16層)
合計16層(第1層〜第16層)
測定元素:金属化合物(A)由来の金属、Fe、Zn、C、O(ただし、Znは、金属材料がGAの場合のみ測定)
<Evaluation of uniform coverage of metal film>
The uniform coverage of the metal film deposited on the metal material after the chemical conversion treatment was calculated using an XPS apparatus.
Measuring instrument: ESCA850 manufactured by Shimadzu Corporation
X-ray source: MgKα (8 kV-30 mA)
Sputtering: Ar sputter measurement depth:
Surface layer: 1 layer (1st layer)
First etching layer (1.2 second etching): 4 layers (2nd to 5th layers)
Second etching layer (etching for 2.4 seconds): 4 layers (sixth layer to ninth layer)
Third etching layer (etching for 4.8 seconds): 7 layers (10th to 16th layers)
16 layers in total (1st to 16th layers)
Measuring element: Metal derived from metal compound (A), Fe, Zn, C, O (however, Zn is measured only when the metal material is GA)

上記の測定条件にて表層、及び各エッチング層(深さ方向)の各元素の原子濃度を測定する。金属化合物(A)由来の金属については、表層、及び各エッチング層(合計16層)で検出された濃度を積算する(これをXとする)。また表層から5層目までに検出された濃度を積算する(これをYとする)。Y/X(均一被覆性:%)とした時、この値が高いほど析出した金属皮膜の均一被覆性が高いと言える。   Under the above measurement conditions, the atomic concentration of each element in the surface layer and each etching layer (depth direction) is measured. For the metal derived from the metal compound (A), the concentrations detected in the surface layer and each etching layer (16 layers in total) are integrated (this is X). Further, the concentrations detected from the surface layer to the fifth layer are integrated (this is assumed to be Y). When Y / X (uniform coverage:%), the higher the value, the higher the uniform coverage of the deposited metal film.

<カチオン電着塗装>
実施例1〜90及び比較例1〜13の金属表面処理剤による皮膜処理が施された金属材料についてカチオン電着塗装をした。カチオン電着塗料としては、関西ペイント社製のGT−100を用いた。カチオン電着塗料浴に前記金属材料を浸漬した状態にて、180秒間、定電圧の陰極電解をしてカチオン電着塗膜を皮膜処理後の試験材料に析出させた。その後、水洗、脱イオン水の水洗をした後、170℃で20分間の加熱焼付をしてカチオン電着塗膜を硬化させた。なお、カチオン電着塗装の膜厚は、15μmとなるように調整した。
<Cation electrodeposition coating>
Cationic electrodeposition coating was performed on the metal materials subjected to the coating treatment with the metal surface treatment agents of Examples 1 to 90 and Comparative Examples 1 to 13. As the cationic electrodeposition coating, GT-100 manufactured by Kansai Paint Co., Ltd. was used. In the state where the metal material was immersed in a cationic electrodeposition coating bath, a constant voltage cathodic electrolysis was performed for 180 seconds to deposit a cationic electrodeposition coating film on the test material after the film treatment. Then, after washing with water and deionized water, the cation electrodeposition coating film was cured by heating and baking at 170 ° C. for 20 minutes. The film thickness of the cationic electrodeposition coating was adjusted to 15 μm.

<耐食性試験方法及び評価方法>
塩水浸漬試験(SDT)
カチオン電着塗装まで施された試験板にカッターナイフを用いてクロスカットを施し、55℃に加温した5質量%の塩化ナトリウム水溶液に240時間浸漬した。更に過酷な条件下における性能を評価する為、480時間浸漬も実施した。浸漬終了後水道水で水洗し、布等で水分を除去した。次いでクロスカット部を粘着テープで剥離し、塗膜の片側最大剥離幅を測定し、SDT性能を以下の判定基準で評価した。
◎+:1mm未満
◎:1mm以上2mm未満
○:2mm以上3mm未満
△:3mm以上5mm未満
×:5mm以上
<Corrosion resistance test method and evaluation method>
Salt water immersion test (SDT)
The test plate subjected to the cationic electrodeposition coating was cross-cut using a cutter knife, and immersed in a 5% by mass sodium chloride aqueous solution heated to 55 ° C. for 240 hours. Further, in order to evaluate the performance under severe conditions, immersion was also performed for 480 hours. After dipping, it was washed with tap water, and water was removed with a cloth or the like. Next, the cross cut part was peeled off with an adhesive tape, the maximum peel width on one side of the coating film was measured, and the SDT performance was evaluated according to the following criteria.
◎ +: Less than 1 mm ◎: 1 mm or more and less than 2 mm ○: 2 mm or more and less than 3 mm Δ: 3 mm or more and less than 5 mm x: 5 mm or more

耐水2次密着試験(密着性)
カチオン電着塗装まで施された試験板を、40℃の脱イオン水に240時間浸漬した。浸漬終了後、布等で水分を除去した後、カッターナイフを用いて2mm間隔の碁盤目を100個切った。碁盤目部を粘着テープで剥離した後、塗膜の碁盤目剥離個数を算出し、密着性を以下の判定基準で評価した。
○:0個
△:1〜10個
×:11個以上
Water resistance secondary adhesion test (adhesion)
The test plate subjected to the cationic electrodeposition coating was immersed in deionized water at 40 ° C. for 240 hours. After completion of the immersion, moisture was removed with a cloth or the like, and then 100 grids at intervals of 2 mm were cut using a cutter knife. After peeling the cross section with an adhesive tape, the number of cross cuts of the coating film was calculated, and the adhesion was evaluated according to the following criteria.
○: 0 △: 1 to 10 ×: 11 or more

<実施例と比較例の性能評価の考察>
本発明で用いた塗装性能評価において、△以上の評価が得られたものについては実用上問題のないレベルの性能を有していると言える。すなわち、実施例1〜90はいずれの水準も良好な性能を示したのに対し、比較例1〜13については、比較例13のGA材の評価を除いた全ての処理水準で×評価が有り、十分な耐食性を得るには至らなかった。比較例1及び2については、金属化合物(A)が無いため、そもそも金属皮膜の形成がなされずSDT性能及び密着性能共に性能が得られなかったと考えられる。比較例3〜5は金属皮膜形成をしているものの、SDT性能、密着性能共に十分な性能を得られていないが、これは多価フェノール化合物(B)が無いため被覆性の高い皮膜形成が為されなかった影響だと考えられる。比較例6〜8では、多価フェノール化合物(B)の代わりに、ベンゼン環1個当りに1個の水酸基が結合しているフェノールを適用したが、金属化合物(A)の被覆性改善には全く寄与せず、十分な耐食性及び密着性が得られなかったと考える。比較例9及び10は、処理剤のpHが1.5であったため、金属材料のエッチングが過剰となった結果、均一被覆性の劣る皮膜形成となってしまったために耐食性が劣ったもの考えられる。比較例11は処理剤のpHが7.2であったため、十分な金属皮膜量が得られず、特に過酷の条件下のSDT評価において性能が劣った。比較例12は特開2007−262577に記載の実施例1の金属表面処理組成物で処理を行ったものであるが、SPC材、及びその他の金属材料であるSS材やSPH材ともに特にSDTの過酷な条件下で性能が不十分であった。比較例13は市場実績十分なリン酸亜鉛処理であり、通常のSDT評価では十分な性能を有しているが、過酷な条件下では性能が劣るが、これはリン酸亜鉛皮膜はアルカリ環境下では皮膜が溶解する特徴を持っているため、長時間浸漬により溶解によりリン酸亜鉛皮膜が恐らく無くなったため、性能が悪くなったと考えられる。
<Consideration of performance evaluation of Examples and Comparative Examples>
In the coating performance evaluation used in the present invention, those having an evaluation of Δ or more can be said to have performance at a level with no practical problem. That is, Examples 1 to 90 showed good performance at all levels, while Comparative Examples 1 to 13 had x evaluations at all treatment levels except the evaluation of the GA material of Comparative Example 13. However, sufficient corrosion resistance was not obtained. In Comparative Examples 1 and 2, since there is no metal compound (A), it is considered that the metal film was not formed in the first place, and neither the SDT performance nor the adhesion performance was obtained. Although Comparative Examples 3 to 5 have metal film formation, sufficient performance is not obtained for both SDT performance and adhesion performance, but this is because there is no polyhydric phenol compound (B), and film formation with high coverage is achieved. It is thought that the effect was not made. In Comparative Examples 6 to 8, instead of the polyhydric phenol compound (B), phenol having one hydroxyl group bonded per benzene ring was applied. For improving the coverage of the metal compound (A), It does not contribute at all, and it is considered that sufficient corrosion resistance and adhesion were not obtained. In Comparative Examples 9 and 10, since the pH of the treatment agent was 1.5, the etching of the metal material was excessive, and as a result, the film formation was inferior in uniform coverage, so that the corrosion resistance was inferior. . In Comparative Example 11, since the pH of the treatment agent was 7.2, a sufficient amount of the metal film was not obtained, and the performance was inferior particularly in SDT evaluation under severe conditions. Comparative Example 12 was treated with the metal surface treatment composition of Example 1 described in Japanese Patent Application Laid-Open No. 2007-262577. Both SPC material and other metal materials SS material and SPH material are particularly SDT materials. The performance was insufficient under harsh conditions. Comparative Example 13 is a zinc phosphate treatment with a sufficient market performance and has a sufficient performance in normal SDT evaluation, but the performance is inferior under severe conditions, but this is a zinc phosphate coating in an alkaline environment. In this case, since the film has a characteristic to dissolve, it is considered that the performance deteriorated because the zinc phosphate film probably disappeared by dissolution after prolonged immersion.

本発明によれば、環境負荷の少ない処理液を用い、様々な金属材料に対しても優れた耐食性を有する塗装物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coating material which has the outstanding corrosion resistance also with respect to various metal materials can be provided using the processing liquid with little environmental impact.

Figure 2017048447
Figure 2017048447

Figure 2017048447
Figure 2017048447

Figure 2017048447
Figure 2017048447

Figure 2017048447
Figure 2017048447

Claims (4)

金属元素としてZr、Ti、Hf及びBiからなる群から選ばれる少なくとも1種の金属化合物(A)及び式(1)で表される多価フェノール化合物(B)を加えてなる、pHが2〜7である金属表面処理剤。
Figure 2017048447
[但し、式(1)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、Zは、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基、アミノ基及び式(2)で表される基から選ばれる基である。]
Figure 2017048447
[式(2)のX〜Xは、それぞれ独立に、水素原子又はメチル基、エチル基、水酸基、スルホン基、ニトロ基、カルボキシル基、メトキシ基及びアミノ基から選ばれる基であり、R1及びR2は、それぞれ独立に、水素原子又はメチル基である。]
At least one metal compound (A) selected from the group consisting of Zr, Ti, Hf and Bi as a metal element and a polyhydric phenol compound (B) represented by the formula (1) are added, and the pH is 2 to 2 7 is a metal surface treatment agent.
Figure 2017048447
[However, X 1 to X 3 in the formula (1) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group. , Z is a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, an amino group and a group represented by the formula (2). ]
Figure 2017048447
[X 4 to X 6 in the formula (2) are each independently a hydrogen atom or a group selected from a methyl group, an ethyl group, a hydroxyl group, a sulfone group, a nitro group, a carboxyl group, a methoxy group, and an amino group; And R2 are each independently a hydrogen atom or a methyl group. ]
前記金属化合物(A)を、前記金属元素の合計濃度として10〜5000mg/L加えてなる請求項1に記載の金属表面処理剤。   The metal surface treating agent according to claim 1, wherein the metal compound (A) is added in an amount of 10 to 5000 mg / L as the total concentration of the metal elements. 前記多価フェノール化合物(B)を、濃度として10〜10000mg/L加えてなる請求項1又は2に記載の金属表面処理剤。   The metal surface treating agent according to claim 1 or 2, wherein the polyphenol compound (B) is added at a concentration of 10 to 10,000 mg / L. 予め表面が清浄化された被処理金属材料を、請求項1〜3のいずれか1項に記載の金属表面処理剤に接触させた後、化成反応工程及び電解化成反応工程から選ばれる少なくとも一の工程により、前記被処理金属材料の表面に皮膜を形成する金属表面処理方法。   After the metal material to be treated whose surface has been cleaned in advance is brought into contact with the metal surface treatment agent according to any one of claims 1 to 3, at least one selected from a chemical reaction step and an electrolytic chemical reaction step A metal surface treatment method for forming a film on the surface of the metal material to be treated by a process.
JP2015175126A 2015-09-04 2015-09-04 Metal surface treatment agent Active JP6562782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015175126A JP6562782B2 (en) 2015-09-04 2015-09-04 Metal surface treatment agent
PCT/JP2016/073726 WO2017038429A1 (en) 2015-09-04 2016-08-12 Metal surface treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175126A JP6562782B2 (en) 2015-09-04 2015-09-04 Metal surface treatment agent

Publications (2)

Publication Number Publication Date
JP2017048447A true JP2017048447A (en) 2017-03-09
JP6562782B2 JP6562782B2 (en) 2019-08-21

Family

ID=58187307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175126A Active JP6562782B2 (en) 2015-09-04 2015-09-04 Metal surface treatment agent

Country Status (2)

Country Link
JP (1) JP6562782B2 (en)
WO (1) WO2017038429A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174832A (en) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd Surface treatment liquid for metal to be coated by cationic electrodeposition
WO2009020097A1 (en) * 2007-08-03 2009-02-12 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
JP2011026661A (en) * 2009-07-24 2011-02-10 Nippon Parkerizing Co Ltd Metal surface treatment liquid and surface treatment method for metal material
WO2013133435A1 (en) * 2012-03-09 2013-09-12 日本ペイント株式会社 Chemical conversion agent and chemical conversion coating film
WO2013133434A1 (en) * 2012-03-09 2013-09-12 日本ペイント株式会社 Surface treatment method for aluminum heat exchangers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358309A1 (en) * 2003-12-11 2005-07-21 Henkel Kgaa Functionalized phenol-aldehyde resin and process for treating metal surfaces
JP5889561B2 (en) * 2011-07-15 2016-03-22 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material with surface coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174832A (en) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd Surface treatment liquid for metal to be coated by cationic electrodeposition
WO2009020097A1 (en) * 2007-08-03 2009-02-12 Dipsol Chemicals Co., Ltd. Corrosion-resistant trivalent-chromium chemical conversion coating and solution for trivalent-chromium chemical treatment
JP2011026661A (en) * 2009-07-24 2011-02-10 Nippon Parkerizing Co Ltd Metal surface treatment liquid and surface treatment method for metal material
WO2013133435A1 (en) * 2012-03-09 2013-09-12 日本ペイント株式会社 Chemical conversion agent and chemical conversion coating film
WO2013133434A1 (en) * 2012-03-09 2013-09-12 日本ペイント株式会社 Surface treatment method for aluminum heat exchangers

Also Published As

Publication number Publication date
WO2017038429A1 (en) 2017-03-09
JP6562782B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
US10227686B2 (en) Pretreating zinc surfaces prior to a passivating process
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
JP5251078B2 (en) Steel plate for containers and manufacturing method thereof
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
JP2012062520A (en) Steel sheet for container and its manufacturing method
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
JP2012062518A (en) Method for production of steel sheet for container
CN103492611A (en) Multi-stage anti-corrosion treatment of metal components having zinc surfaces
US20230203699A1 (en) Treated substrates
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JP5290079B2 (en) Metal surface treatment liquid and metal material surface treatment method
JP6562782B2 (en) Metal surface treatment agent
JP6249948B2 (en) Metal surface modification liquid and metal surface modification method
JP4393349B2 (en) Cold-rolled steel sheet with excellent phosphatability and post-coating salt hot water resistance
US9309602B2 (en) Electrolytic iron metallizing of zinc surfaces
JP4492254B2 (en) Phosphate-treated galvanized steel sheet with excellent corrosion resistance and blackening resistance
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
EP4079934A1 (en) Steel sheet with improved yellowing resistance and phosphatability and manufacturing method thereof
JP2008111174A (en) Organic resin-coated phosphate treated galvanized steel sheet, and its production method
KR20200096980A (en) Pretreatment method for corrosion prevention and cleaning of metal parts
US20220403540A1 (en) Methods for electrolytically depositing pretreatment compositions
JP4635638B2 (en) Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R150 Certificate of patent or registration of utility model

Ref document number: 6562782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250