JP2017048361A - Chromatic color member exhibiting structural color - Google Patents

Chromatic color member exhibiting structural color Download PDF

Info

Publication number
JP2017048361A
JP2017048361A JP2015252062A JP2015252062A JP2017048361A JP 2017048361 A JP2017048361 A JP 2017048361A JP 2015252062 A JP2015252062 A JP 2015252062A JP 2015252062 A JP2015252062 A JP 2015252062A JP 2017048361 A JP2017048361 A JP 2017048361A
Authority
JP
Japan
Prior art keywords
fine particles
acrylic polymer
color
polymer fine
chromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015252062A
Other languages
Japanese (ja)
Other versions
JP6597291B2 (en
Inventor
一敏 大庭
Kazutoshi Oba
一敏 大庭
啓輔 倉内
Keisuke Kurauchi
啓輔 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2017048361A publication Critical patent/JP2017048361A/en
Application granted granted Critical
Publication of JP6597291B2 publication Critical patent/JP6597291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chromatic color member that gives visible structural colors of violet, red, blue, green, yellow and the like as colors of normal reflection light visible when the member is irradiated with sunlight or light in a visible light region.SOLUTION: The chromatic color member comprises acrylic polymer fine particles (A) that include a copolymer of a water-soluble monomer (a) and a water-insoluble monomer (b), a black achromatic substance (B) and a medium (C), and develops distinct chromatic colors as structural colors. The water-soluble monomer (a) comprises a (meth)acrylate monomer having a carboxyl group by 50 wt.% or more; the acrylic polymer particles (A) have an average particle diameter of 100 nm to 600 nm, with a coefficient of variance Cv of the particle diameter being 30% or less; and the black achromatic substance (B) is included by 0.001 wt.% or more relative to the acrylic polymer fine particles (A).SELECTED DRAWING: Figure 1

Description

本発明は、構造色として明確な有彩色を呈する有彩色部材に関し、より詳細にはアクリル系ポリマー微粒子(A)及び黒色系無彩物(B)及び媒体(C)を含む有彩色部材であって、太陽光もしくは可視光領域の光が照射されて視感される垂直反射光色が、紫、赤、青、緑、及び黄等の構造色である有彩色部材に関する。   The present invention relates to a chromatic member that exhibits a clear chromatic color as a structural color. More specifically, the chromatic member includes acrylic polymer fine particles (A), black achromatic matter (B), and medium (C). In addition, the present invention relates to a chromatic color member whose vertical reflected light color that is perceived when irradiated with sunlight or light in the visible light region is a structural color such as purple, red, blue, green, and yellow.

構造色とは、光の波長あるいはそれ以下の微細構造による発色現象を指し、身近な例にはコンパクトディスクやシャボン玉、オパール、真珠、モルフォ蝶、玉虫などから観察される。   The structural color refers to a coloring phenomenon due to a fine structure with a wavelength of light or less, and familiar examples are observed from compact discs, soap bubbles, opals, pearls, morpho butterflies, beetles and the like.

近年、構造色を発するような規則正しい周期的な構造を人工的に作成する開発が進められている。例えば、球状微細粒子が媒体(C)中に分散してなる分散液を噴射・塗布し、基板上で乾燥・固定することで、球状微細粒子を垂直・平面方向に規則的に配列させる粒子積層体の製造方法が提案されている。   In recent years, development for artificially creating a regular periodic structure that emits a structural color has been underway. For example, a particle stack in which spherical fine particles are regularly arranged in the vertical and planar directions by spraying and applying a dispersion liquid in which spherical fine particles are dispersed in a medium (C), and drying and fixing on a substrate. Body manufacturing methods have been proposed.

「特許文献1」には、単分散酸化チタン粒子を基板上に堆積させることで、チタン粒子の粒子径に応じて外観色調が赤色系から青色系と変化する粒子積層体を得ることができると示されている。しかし、このような色材では、レイリー散乱やミー散乱などの光の散乱により、その発色は淡い乳白色として観察されてしまい、発色性が十分でないいう課題がある。  According to “Patent Document 1”, by depositing monodispersed titanium oxide particles on a substrate, a particle laminate in which the appearance color tone changes from red to blue can be obtained according to the particle diameter of the titanium particles. It is shown. However, with such a color material, due to light scattering such as Rayleigh scattering or Mie scattering, the color development is observed as pale milky white, and there is a problem that the color developability is not sufficient.

「非特許文献1」では、カーボンブラックを添加することで、レイリー散乱やミー散乱のような散乱光を吸収し、彩度の向上が可能であることが示されている。しかしながら、ここで使用されているシリカ粒子など粒子間の相互作用の弱い球状粒子では、添加剤を加えることで粒子の規則構造が崩れ、充分な発色を得ることができないという課題がある。   “Non-Patent Document 1” shows that by adding carbon black, scattered light such as Rayleigh scattering and Mie scattering can be absorbed, and saturation can be improved. However, the spherical particles having a weak interaction between particles such as silica particles used here have a problem that the regular structure of the particles is broken by adding an additive, and sufficient color development cannot be obtained.

「特許文献2」、「非特許文献2」では、散乱光の吸収剤を加えず単分散な黒色粒子のみを用いることで、粒子積層体に由来する構造色と、余分な散乱光の吸収を同時に達成できることが示されている。この方法では、粒子の規則性が崩れにくいため、発色性は上記「非特許文献1」よりも改善されるが、やはり発色性が不十分であるといえる。そのため、分散液の粒子濃度を充分に増やすことや、粒子積層体を厚膜にする必要が生じ、制御技術や量産化、コスト面において課題がある。   In “Patent Document 2” and “Non-Patent Document 2”, by using only monodisperse black particles without adding an absorber of scattered light, the structural color derived from the particle stack and the absorption of excess scattered light can be obtained. It has been shown that it can be achieved simultaneously. In this method, since the regularity of the particles is not easily lost, the color developability is improved as compared with the above-mentioned “Non-patent Document 1”, but it can be said that the color developability is still insufficient. For this reason, it is necessary to sufficiently increase the particle concentration of the dispersion and to make the particle laminate thicker, and there are problems in terms of control technology, mass production, and cost.

以上のように単分散微粒子を規則的に配列させることで、その微粒子配列による光の干渉が起き、積層構造体に係わる特有の干渉色調(反射光色)を呈する有彩色部材は多く報告されている。また、粒子サイズの揃った無機微粒子分散体に、散乱光吸収剤を添加することや、黒色の樹脂微粒子を使用することで、発色性の改善が検討されてきた。しかしながら、高い着色力を有する有彩色色材を作成することは非常に困難であった。   As described above, by regularly arranging monodisperse fine particles, light interference occurs due to the fine particle arrangement, and many chromatic members exhibiting a specific interference color tone (reflected light color) related to the laminated structure have been reported. Yes. Further, improvement of color developability has been studied by adding a scattered light absorber or using black resin fine particles to an inorganic fine particle dispersion having a uniform particle size. However, it has been very difficult to create a chromatic color material having high coloring power.

特開2001−206719号公報JP 2001-206719 A 特開2004−269922号公報JP 2004-269922 A

Y.Takeoka:J.Mater.Chem.C, 1, 6059(2013)Y. Takeoka: J. Mater. Chem. C, 1, 6059 (2013) J.Jpn.Soc.Colour Master., 87[8], 279−283(2014)J. et al. Jpn. Soc. Color Master. , 87 [8], 279-283 (2014)

本研究の目的は、簡易的かつ安価な製造方法で、通常の太陽光もしくは可視光の照射下によって反射される垂直反射光色が赤、青、緑、及び黄等の色みを視感させる有彩色部材を提供することを目的とする。   The purpose of this study is a simple and inexpensive manufacturing method, in which the vertical reflected light color reflected by normal sunlight or visible light is radiated such as red, blue, green and yellow. An object is to provide a chromatic member.

すなわち本発明は、水溶性モノマー(a)と非水溶性モノマー(b)との共重合物であるアクリル系ポリマー微粒子(A)、黒色系無彩物(B)、および、媒体(C)を含み、構造色として明確な有彩色を呈することを特徴とする有彩色部材であって、
水溶性モノマー(a)の50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーであり、
アクリル系ポリマー微粒子(A)が、平均粒子径が100nm〜600nmであり、かつ、粒子径の変動係数Cv値が30%以下であり、
黒色系無彩物(B)が、アクリル系ポリマー微粒子(A)に対して0.001重量%以上含有されている有彩色部材に関する。
That is, the present invention provides an acrylic polymer fine particle (A), a black achromatic material (B), and a medium (C) that are a copolymer of a water-soluble monomer (a) and a water-insoluble monomer (b). A chromatic color member characterized by exhibiting a clear chromatic color as a structural color,
50% by weight or more of the water-soluble monomer (a) is a (meth) acrylic acid monomer having a carboxyl group,
The acrylic polymer fine particles (A) have an average particle size of 100 nm to 600 nm, and a variation coefficient Cv value of the particle size of 30% or less,
The present invention relates to a chromatic member in which the black achromatic material (B) is contained in an amount of 0.001% by weight or more based on the acrylic polymer fine particles (A).

また本発明は、黒色系無彩物(B)が、媒体(C)に対して不溶であることを特徴とする上記有彩色部材に関する。   The present invention also relates to the chromatic member, wherein the black achromatic material (B) is insoluble in the medium (C).

また本発明は、媒体(C)が液体であることを特徴とする上記有彩色部材に関する。   The present invention also relates to the above chromatic member, wherein the medium (C) is a liquid.

また本発明は、アクリル系ポリマー微粒子(A)が、全モノマー組成中に、屈折率が1.50以上のモノマーを10.0重量%以上含有することを特徴とする上記有彩色部材に関する。   The present invention also relates to the above chromatic member, wherein the acrylic polymer fine particles (A) contain 10.0% by weight or more of a monomer having a refractive index of 1.50 or more in the total monomer composition.

また本発明は、アクリル系ポリマー微粒子(A)が、全モノマー組成中に、スチレンを10.0重量%以上含有することを特徴とする上記有彩色部材に関する。   The present invention also relates to the above chromatic member, wherein the acrylic polymer fine particles (A) contain 10.0% by weight or more of styrene in the total monomer composition.

また本発明は、アクリル系ポリマー微粒子(A)のガラス転移温度が、40℃以上であることを特徴とする上記有彩色部材に関する。   The present invention also relates to the above chromatic member, wherein the glass transition temperature of the acrylic polymer fine particles (A) is 40 ° C. or higher.

本発明の有彩色部材はアクリル系ポリマー微粒子(A)と黒色系無彩物(B)と媒体(C)を含むことで、容易に優れた有彩色を得ることができる。   By including the acrylic polymer fine particles (A), the black achromatic material (B), and the medium (C), the chromatic color member of the present invention can easily obtain an excellent chromatic color.

図1は実施例5で得られた粒子積層体の、走査型電子顕微鏡写真である。1 is a scanning electron micrograph of the particle laminate obtained in Example 5. FIG.

以下に、本発明の有彩色部材の特徴について更に説明する。  Below, the characteristic of the chromatic color member of this invention is further demonstrated.

<有彩色部材>
本発明の有彩色部材は、50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーである水溶性モノマー(a)と非水溶性モノマー(b)の共重合物からなり、平均粒子径が100nm〜600nmの範囲にあり、粒子径の変動係数Cv値が30%以下であるアクリル系ポリマー微粒子(A)及び、アクリル系ポリマー微粒子(A)に対して0.001重量%以上の黒色系無彩物(B)及び、媒体(C)を含み、構造色として明確な有彩色を呈することを特徴とする。粒子間の相互作用が強いアクリル系ポリマー微粒子(A)を用いることで、微粒子の取る構造の規則性を高め、発色性の優れた有彩色材料を得ることができる。また、黒色系無彩物(B)を加えることで、構造色とは無関係の散乱光を効率的に吸収し優れた発色性を得ることができる。
<Chromatic material>
The chromatic color member of the present invention comprises a copolymer of a water-soluble monomer (a) and a water-insoluble monomer (b) that are (meth) acrylic acid monomers having a carboxyl group of 50% by weight or more, and has an average particle diameter. Is in the range of 100 nm to 600 nm, the particle size variation coefficient Cv value is 30% or less, and the acrylic polymer fine particles (A) and the black type of 0.001% by weight or more with respect to the acrylic polymer fine particles (A) It includes an achromatic material (B) and a medium (C), and exhibits a clear chromatic color as a structural color. By using the acrylic polymer fine particles (A) having a strong interaction between the particles, the regularity of the structure taken by the fine particles can be increased, and a chromatic material having excellent color development can be obtained. Further, by adding the black achromatic material (B), it is possible to efficiently absorb scattered light unrelated to the structural color and to obtain excellent color developability.

本発明において有彩色部材は、例えばアクリル系ポリマー微粒子(A)と黒色系無彩物(B)を媒体(C)中で分散させた分散体であってもよい。これを微細なカプセルや光学セルに封入することにより、表示材などに用いることができる。また、この有彩色部材は粒子が互いに接触し固定された粒子積層体状態であってもよい。これを有彩色を有する塗膜そのものとして使用することや、粉砕し顔料のようにスラリー化して用いることもできる。   In the present invention, the chromatic member may be a dispersion in which, for example, acrylic polymer fine particles (A) and a black achromatic material (B) are dispersed in the medium (C). By encapsulating this in a fine capsule or optical cell, it can be used as a display material. Further, the chromatic color member may be in a particle laminate state in which particles are in contact with each other and fixed. This can be used as a coating film itself having a chromatic color, or can be pulverized and slurried like a pigment.

<アクリル系ポリマー微粒子(A)>
本発明のアクリル系ポリマー微粒子(A)は、これの体積基準で表される平均粒子径(d)が100〜600nmの範囲にあることを特徴とする。有彩光色をより鮮明に発色させる観点から、この平均粒子径は150〜350nmの範囲にあることが好ましい。このアクリル系ポリマー微粒子(A)の平均粒子径は有彩色材料で観察される発色と相関を有している。
<Acrylic polymer fine particles (A)>
The acrylic polymer fine particles (A) of the present invention are characterized in that the average particle diameter (d) expressed on a volume basis thereof is in the range of 100 to 600 nm. This average particle diameter is preferably in the range of 150 to 350 nm from the viewpoint of more vividly coloring the chromatic light color. The average particle diameter of the acrylic polymer fine particles (A) has a correlation with the color development observed in the chromatic color material.

上記のような微粒子の取る構造の規則性により有彩色は得られることから、微粒子の粒子径はなるべく均一であることが望ましい。本発明において、微粒子の粒子径のばらつきの指標である変動係数Cv値が30%以下であり、20%以下であることが好ましい。変動係数Cv値が30%より大きい場合、微粒子の取る構造の規則性を十分に得ることができず、有彩色を得ることができない可能性がある。   Since a chromatic color is obtained by the regularity of the structure taken by the fine particles as described above, it is desirable that the particle diameter of the fine particles be as uniform as possible. In the present invention, the coefficient of variation Cv, which is an index of variation in the particle diameter of the fine particles, is 30% or less, preferably 20% or less. When the variation coefficient Cv value is larger than 30%, the regularity of the structure taken by the fine particles cannot be sufficiently obtained, and there is a possibility that a chromatic color cannot be obtained.

なお、本発明における平均粒子径とは、粉体の集団の全体積を100%として累積カーブを求めたときの、累積カーブが50%となる累積中位径のことを指し、動的光散乱法により測定できる。   The average particle diameter in the present invention refers to the cumulative median diameter at which the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population as 100%, and dynamic light scattering. It can be measured by the method.

動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。アクリル系ポリマー微粒子(A)は、重量が500〜2000倍となるように水に分散しておく。該分散液約5mlを測定装置[(株)日機装製マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)およびポリマーの屈折率条件を入力後、測定を行う。この時得られた累積中位径の値を平均粒子径とする。   The average particle diameter can be measured by the dynamic light scattering method as follows. The acrylic polymer fine particles (A) are dispersed in water so that the weight is 500 to 2000 times. About 5 ml of the dispersion liquid is injected into a cell of a measuring apparatus [Microtrack manufactured by Nikkiso Co., Ltd.], and measurement is performed after inputting the solvent (water in the present invention) and the refractive index condition of the polymer according to the sample. The value of the cumulative median diameter obtained at this time is defined as the average particle diameter.

また、本発明においては、粒子径の均斉度を表す変動係数Cv値は下記式で定義される値のことを指し、平均粒子径と同様、動的光散乱法によって測定できる。

[Cv値]=([粒子径の標準偏差]/[平均粒子径])

この粒子径の標準偏差は、上記の平均粒子径の測定時に得られた微粒子の粒子径に対する分布から算出することができる。
In the present invention, the coefficient of variation Cv representing the uniformity of the particle diameter refers to a value defined by the following formula, and can be measured by a dynamic light scattering method as with the average particle diameter.

[Cv value] = ([standard deviation of particle diameter] / [average particle diameter])

The standard deviation of the particle diameter can be calculated from the distribution of the fine particles obtained at the time of measuring the average particle diameter.

本発明においてアクリル系ポリマー微粒子(A)とは、分子内に(メタ)アクリル基を有する(メタ)アクリル酸系モノマーをモノマー成分として有するポリマー微粒子を指す。(メタ)アクリル酸系モノマーをモノマー成分として有することにより、太陽光等の自然光又は白色光の照射下において、光劣化変色を起こしにくい、耐候性に優れた有彩色部材を得ることができる。本発明において(メタ)アクリル酸系モノマーはモノマー成分として、10重量%以上有することが好ましい。   In the present invention, the acrylic polymer fine particles (A) refer to polymer fine particles having a (meth) acrylic acid-based monomer having a (meth) acryl group in the molecule as a monomer component. By having a (meth) acrylic acid monomer as a monomer component, it is possible to obtain a chromatic member excellent in weather resistance that hardly undergoes light deterioration and discoloration under irradiation of natural light such as sunlight or white light. In the present invention, the (meth) acrylic acid monomer is preferably 10% by weight or more as a monomer component.

本発明において、アクリル系ポリマー微粒子(A)は50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーである水溶性モノマー(a)と非水溶性モノマー(b)の共重合物からなること特徴とする。本発明のアクリル系ポリマー微粒子(A)は水溶性モノマー(a)に対して50重量%以上のカルボキシル基を有する(メタ)アクリル酸系モノマーが組み込まれていることで、微粒子間の相互作用による規則構造の誘導が起こり、高度な規則構造が得られると考えられる。カルボキシル基を有する(メタ)アクリル酸系モノマーのうち70重量%以上、100重量%以下であることが、微粒子の規則構造誘導の観点から更に好ましい。また、非水溶性モノマー(b)が組み込まれることで、アクリル系ポリマー微粒子(A)を安定に合成することが可能になると考えられる。   In the present invention, the acrylic polymer fine particles (A) are composed of a copolymer of a water-soluble monomer (a) and a water-insoluble monomer (b) that are (meth) acrylic acid monomers having a carboxyl group of 50% by weight or more. It is a feature. The acrylic polymer fine particles (A) of the present invention incorporate a (meth) acrylic acid-based monomer having a carboxyl group of 50% by weight or more with respect to the water-soluble monomer (a). It is considered that the induction of a regular structure occurs and a highly regular structure is obtained. From the viewpoint of inducing the ordered structure of fine particles, it is more preferably 70% by weight or more and 100% by weight or less of the (meth) acrylic acid monomer having a carboxyl group. Further, it is considered that the acrylic polymer fine particles (A) can be stably synthesized by incorporating the water-insoluble monomer (b).

また本発明では、微粒子の安定性や分散性の観点から、水溶性モノマー(a)と非水溶性モノマー(b)の重量比(a)/(b)は0.01〜0.5の範囲であることが好ましく、0.01〜0.1の範囲であることが更に好ましい。   In the present invention, from the viewpoint of the stability and dispersibility of the fine particles, the weight ratio (a) / (b) of the water-soluble monomer (a) to the water-insoluble monomer (b) is in the range of 0.01 to 0.5. It is preferable that it is in the range of 0.01 to 0.1.

本発明では、水溶性モノマー(a)とは25℃の蒸留水に対して、1.0重量%以上溶解するものを指す。また、非水溶性モノマー(b)とは、25℃の蒸留水に対して、1.0重量%以上溶解しないものを指す。   In the present invention, the water-soluble monomer (a) refers to a monomer that is soluble in distilled water at 25 ° C. by 1.0% by weight or more. Further, the water-insoluble monomer (b) refers to a monomer that does not dissolve 1.0% by weight or more in 25 ° C. distilled water.

カルボキシル基を有する(メタ)アクリル酸系モノマーである水溶性モノマー(a)として、例えば(メタ)アクリル酸、こはく酸モノ(2−アクリロイルオキシエチル)などが挙げられる。   Examples of the water-soluble monomer (a) which is a (meth) acrylic acid monomer having a carboxyl group include (meth) acrylic acid and succinic acid mono (2-acryloyloxyethyl).

それ以外の(メタ)アクリル酸系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸−2−トリフルオロメチルエチル、(メタ)アクリル酸−2−パ−フルオロメチルエチル、(メタ)アクリル酸−2−パ−フルオロエチル−2−パ−フルオロブチルエチル、(メタ)アクリル酸−2−パ−フルオロエチル、(メタ)アクリル酸パ−フルオロメチル、(メタ)アクリル酸ジパ−フルオロメチルメチルの(メタ)アクリル酸の部分又は完全フッ素置換系モノマー;ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート;エチレングリコールジ(メタ)アクリル酸エステル、ジエチルグリコールジ(メタ)アクリル酸エステル、トリエチレングリコールジ(メタ)アクリル酸エステル、ポリエチレングリコールジ(メタ)アクリル酸エステル、ジプロピレングリコールジ(メタ)アクリル酸エステル、トリプロピレングリコールジ(メタ)アクリル酸エステル等の(ポリ)アルキレングリコールジ(メタ)アクリル酸エステル類等の(メタ)アクリル酸エステルモノマーが挙げられる。
また、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、ジアセトンアクリルアミド等のアミド基を有するモノマーや、1,1,1−トリヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルメチルエタントリ(メタ)アクリレート、1,1,1−トリスヒドロキシメチルプロパントリ(メタ)アクリレート、ヒドロキシブチルビニルエーテル−2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、グリシジル(メタ)アクリレート等の水酸基を有するモノマーなどの、官能基を有する(メタ)アクリル系モノマーが挙げられる。
Examples of other (meth) acrylic acid monomers include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, Isobutyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, nonyl (meth) acrylate , Decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, (meth) acrylic (Meth) such as butoxyethyl acid and ethoxypropyl (meth) acrylate Crylic acid alkyl ester; (meth) acrylic acid trifluoromethylmethyl, (meth) acrylic acid-2-trifluoromethylethyl, (meth) acrylic acid-2-perfluoromethylethyl, (meth) acrylic acid-2- Perfluoroethyl-2-perfluorobutylethyl, (meth) acrylic acid-2-perfluoroethyl, (meth) acrylic acid perfluoromethyl, (meth) acrylic acid diperfluoromethylmethyl (meth) Partially or completely fluorine-substituted monomer of acrylic acid; dialkylaminoalkyl (meth) acrylate such as diethylaminoethyl (meth) acrylate; ethylene glycol di (meth) acrylate, diethyl glycol di (meth) acrylate, triethylene glycol Di (meth) acrylic acid ester, (Metal) such as (poly) alkylene glycol di (meth) acrylic acid esters such as reethylene glycol di (meth) acrylic acid ester, dipropylene glycol di (meth) acrylic acid ester, tripropylene glycol di (meth) acrylic acid ester ) Acrylic acid ester monomers.
In addition, monomers having an amide group such as (meth) acrylamide, N-methylol (meth) acrylamide, diacetone acrylamide, 1,1,1-trihydroxymethylethane tri (meth) acrylate, 1,1,1-tris Hydroxymethyl methylethane tri (meth) acrylate, 1,1,1-trishydroxymethylpropane tri (meth) acrylate, hydroxybutyl vinyl ether-2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, diethylene glycol mono Examples include (meth) acrylic monomers having a functional group, such as monomers having a hydroxyl group such as (meth) acrylate and glycidyl (meth) acrylate.

本発明では、アクリル系ポリマー微粒子の屈折率調整の観点から、全モノマー成分として屈折率が1.50以上のモノマーを10.0重量%以上有することが好ましく、10.0重量%以上かつ80重量%以下有することがさらに好ましい。本発明では、モノマーの屈折率として、POLYMER HANDBOOK FOURTH EDITION (J.Brandrup, E.H.Immergut, E.A.Grulke)に記載の値を使用した。   In the present invention, from the viewpoint of adjusting the refractive index of the acrylic polymer fine particles, it is preferable to have 10.0% by weight or more of a monomer having a refractive index of 1.50 or more as all monomer components, and 10.0% by weight or more and 80% by weight. % Or less is more preferable. In the present invention, the value described in POLYMER HANDBOOK FOURTH EDITION (J. Brandrup, EH Immergut, EA Gulke) was used as the refractive index of the monomer.

屈折率が1.50以上のモノマーとしては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、ヘキシルスチレン、ヘプチルスチレン、オクチルスチレン、メトキシスチレン、フルオロスチレン、クロロスチレン、ジクロロスチレン、クロルメチルスチレン、ブロモスチレン、ジブロモスチレン、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシジエチレングリコール、(メタ)アクリル酸フェノキシポリエチレングリコール、(メタ)アクリル酸ペンタブロモフェニル、(メタ)アクリル酸ペンタブロモベンジル、ジビニルベンゼン等が挙げられる。本発明では、屈折率が1.50以上のモノマーとしてスチレンを有することが好ましく、スチレンをモノマー成分として10重量%以上、90重量%以下有することがさらに好ましく、10重量%以上、80重量%以下有することがさらに好ましい。   Examples of the monomer having a refractive index of 1.50 or more include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene, octyl styrene, methoxy. Styrene, fluorostyrene, chlorostyrene, dichlorostyrene, chloromethylstyrene, bromostyrene, dibromostyrene, benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate , Phenoxypolyethylene glycol (meth) acrylate, Pentabromophenyl (meth) acrylate, Pentabromobenzyl (meth) acrylate, Divinylben Emissions, and the like. In the present invention, styrene is preferably used as a monomer having a refractive index of 1.50 or more, more preferably 10% by weight or more and 90% by weight or less as a monomer component, and more preferably 10% by weight or more and 80% by weight or less. More preferably, it has.

本発明では、アクリル系ポリマー微粒子(A)は、共重合が可能であれば上記以外のモノマーをモノマー成分として有してもよい。   In the present invention, the acrylic polymer fine particles (A) may have monomers other than the above as monomer components as long as copolymerization is possible.

共重合が可能な上記以外のモノマーとして、例えば、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸等のカルボン酸基を有するモノマー;無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2.2.1]ヘプト−2−エン−5,6−ジカルボン酸無水物等の無水カルボン酸基を有するモノマー;ヒドロキシビニルエーテル、ヒドロキシプロピルビニルエーテル等のビニルエーテルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、n−酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、パーサティック酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、安息香酸ビニル、p−t−ブチル安息香酸ビニル、サリチル酸ビニル等のビニルエステル類;塩化ビニリデン、クロロヘキサンカルボン酸ビニル等が挙げられる。   Examples of other monomers that can be copolymerized include tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, and bicyclo [2.2.1] hept-2-ene-5,6. Monomers having a carboxylic acid group such as dicarboxylic acid; maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2.2.1] hept-2-ene-5,6-dicarboxylic anhydride Monomers having a carboxylic anhydride group such as products; Vinyl ether monomers such as hydroxy vinyl ether and hydroxypropyl vinyl ether; Silicon-containing vinyl monomers such as vinyl trimethoxy silane and vinyl triethoxy silane; Vinyl acetate, vinyl propionate, vinyl n-butyrate , Vinyl isobutyrate, pivalic acid Vinyl esters such as nyl, vinyl caproate, vinyl persate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pt-butylbenzoate, vinyl salicylate; vinylidene chloride, vinyl chlorohexanecarboxylate, etc. Can be mentioned.

本発明において、アクリル系ポリマー微粒子(A)のガラス転移温度Tgは40℃以上であることが好ましい。Tgが40℃より小さい場合、特に有彩色部材が粒子積層体のような形態をとる場合、微粒子が形状を保持せず、微粒子の取る構造が崩れてしまい、有彩色が得られない可能性がある。   In the present invention, the glass transition temperature Tg of the acrylic polymer fine particles (A) is preferably 40 ° C. or higher. When Tg is less than 40 ° C., particularly when the chromatic color member takes a form like a particle laminate, the fine particles may not retain their shape, and the structure taken by the fine particles may be disrupted, and chromatic colors may not be obtained. is there.

本発明においてガラス転移温度Tgとは、下記FOXの式で算出される設計Tgのことを指す。

FOXの式: 1/Tg=w1/Tg1+w2/Tg2+・・・+wN/TgN

Tg:アクリル系ポリマー微粒子(A)のガラス転移温度(K)
Tg1、Tg2、・・・、TgN:成分1、2、・・・Nのガラス転移温度(K)
w1、w2、・・・、wN:成分1、2、・・・Nの重量分率

(例えば、モノマー組成が、アクリル酸−2−エチルヘキシル(50重量%、218K)、スチレン(45重量%、373K)、アクリル酸(5重量%、379K)のアクリル系ポリマー微粒子(A)の場合は、Tg(K)=275(K)=2(℃)となる。)
In the present invention, the glass transition temperature Tg refers to the design Tg calculated by the following FOX equation.

Formula of FOX: 1 / Tg = w1 / Tg1 + w2 / Tg2 + ... + wN / TgN

Tg: Glass transition temperature (K) of acrylic polymer fine particles (A)
Tg1, Tg2, ..., TgN: Glass transition temperatures (K) of components 1, 2, ... N
w1, w2,..., wN: weight fraction of components 1, 2,... N

(For example, when the monomer composition is acrylic polymer fine particles (A) of 2-ethylhexyl acrylate (50 wt%, 218 K), styrene (45 wt%, 373 K), acrylic acid (5 wt%, 379 K)) Tg (K) = 275 (K) = 2 (° C.).

本発明において、アクリル系ポリマー微粒子(A)自体の吸収により、構造色による反射強度を低下させることを防ぐため、アクリル系ポリマー微粒子(A)は無色であることが好ましい。本発明においてアクリル系ポリマー微粒子(A)が無色であるとは、400nm〜800nmにおいてアクリル系ポリマー微粒子(A)の反射スペクトルを測定したときに、その反射強度の最小値が20%以上であるものを指す。反射スペクトルの測定は以下の方法で行うことができる。アクリル系ポリマー微粒子(A)を臭化カリウム粉末中に10重量%で分散し、脱水、加圧し、膜圧1mmのペレットを得る。このペレットを直径30mmの円状、厚さ10mmの酸化アルミニウムの白色盤の手前に設置し、分光光度計(日立分光光度計/U−4100 日立ハイテクノロジーズ社製)を用いて、反射スペクトルを測定する。得られた反射スペクトルを、アクリル系ポリマー微粒子(A)の反射率とする。各波長における反射率は、上記の白色盤単体で測定したものを100%として計算した。   In the present invention, the acrylic polymer fine particles (A) are preferably colorless in order to prevent the reflection intensity due to the structural color from being lowered by absorption of the acrylic polymer fine particles (A) themselves. In the present invention, the acrylic polymer fine particles (A) are colorless when the reflection spectrum of the acrylic polymer fine particles (A) is measured at 400 nm to 800 nm when the minimum value of the reflection intensity is 20% or more. Point to. The reflection spectrum can be measured by the following method. Acrylic polymer fine particles (A) are dispersed in potassium bromide powder at 10% by weight, dehydrated and pressurized to obtain pellets having a film pressure of 1 mm. This pellet was placed in front of a white plate of aluminum oxide with a diameter of 30 mm and a thickness of 10 mm, and the reflection spectrum was measured using a spectrophotometer (Hitachi Spectrophotometer / U-4100 manufactured by Hitachi High-Technologies Corporation). To do. Let the obtained reflection spectrum be the reflectance of the acrylic polymer fine particles (A). The reflectance at each wavelength was calculated assuming that the value measured with the above white disk alone was 100%.

本発明のアクリル系ポリマー微粒子(A)は一般的に用いられている乳化重合、ソープフリー乳化重合、懸濁重合等で適宜調製することができる。   The acrylic polymer fine particles (A) of the present invention can be appropriately prepared by commonly used emulsion polymerization, soap-free emulsion polymerization, suspension polymerization and the like.

本発明のアクリル系ポリマー微粒子(A)を得るに際して用いられる重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。   The polymerization initiator used for obtaining the acrylic polymer fine particles (A) of the present invention is not particularly limited as long as it has the ability to start radical polymerization, and is a known oil-soluble polymerization initiator or water-soluble polymerization start. Agents can be used.

油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルハイドロパーオキサイド、tert−ブチルパーオキシ(2−エチルヘキサノエート)、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、ジ−tert−ブチルパーオキサイドなどの有機過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、1,1’−アゾビス−シクロヘキサン−1−カルボニトリルなどのアゾビス化合物などをあげることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、モノマー100重量部に対して、0.1〜10.0重量部の量を用いるのが好ましい。   The oil-soluble polymerization initiator is not particularly limited, and examples thereof include benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl hydroperoxide, tert-butyl peroxy (2-ethylhexanoate), and tert-butyl peroxide. Organic peroxides such as oxy-3,5,5-trimethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4- Examples thereof include azobis compounds such as dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobiscyclohexane-1-carbonitrile. These can be used alone or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the monomer.

水溶性重合開始剤としては特に限定されず、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。また、重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、重合を促進したり、低温において重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩などの還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全モノマー100重量部に対して、0.05〜5.0重量部の量を用いるのが好ましい。   The water-soluble polymerization initiator is not particularly limited, and for example, conventionally known ones such as ammonium persulfate, potassium persulfate, hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine) dihydrochloride are preferably used. Can be used. Moreover, when performing superposition | polymerization, a reducing agent can be used together with a polymerization initiator depending on necessity. This facilitates the polymerization or facilitates the polymerization at a low temperature. Examples of such a reducing agent include reducing organic compounds such as metal salts such as ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, and formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalite, thiourea dioxide, and the like. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the total monomers.

本発明のアクリル系ポリマー微粒子(A)を乳化重合で得るに際して用いられる界面活性剤としては、特に制限はなく、公知の界面活性剤を使用することができる。例えば、アニオン系界面活性剤としてはドデシルベンゼンスルホネート、ウンデシルベンゼンスルホネート、トリデシルベンゼンスルホネート、ノニルベンゼンスルホネート、これらのナトリウム、カリウム塩等が挙げられ、また、カチオン系界面活性剤としてはセチルトリメチルアンモニウムプロミド、塩化ヘキサデシルピリジニウム、塩化ヘキサデシルトリメチルアンモニウム等が挙げられ、また、ノニオン系界面活性剤としては、リピリジニウム等が挙げられる。また、反応性乳化剤(例えば、アクリロイル基、メタクロイル基等の重合性基を有する乳化剤)としては、例えば、アニオン性、カチオン性又はノニオン性の反応性乳化剤が挙げられ、特に限定することなく使用される。またこれらを併用して用いることもできる。   There is no restriction | limiting in particular as surfactant used when obtaining acrylic polymer microparticles | fine-particles (A) of this invention by emulsion polymerization, A well-known surfactant can be used. Examples of anionic surfactants include dodecyl benzene sulfonate, undecyl benzene sulfonate, tridecyl benzene sulfonate, nonyl benzene sulfonate, sodium and potassium salts thereof, and cationic surfactants include cetyl trimethyl ammonium. Promide, hexadecylpyridinium chloride, hexadecyltrimethylammonium chloride and the like can be mentioned, and examples of the nonionic surfactant include lipidinium and the like. Examples of reactive emulsifiers (for example, emulsifiers having a polymerizable group such as acryloyl group, methacryloyl group) include anionic, cationic or nonionic reactive emulsifiers, and are used without particular limitation. The These can also be used in combination.

<黒色系無彩物(B)>
黒色系無彩物(B)は色味がなく低明度の物質のことを指し、アクリル系ポリマー微粒子(A)の構造による発色をより鮮明にさせるために使用する。本発明で黒色系無彩物(B)とは、その明度、彩度をCIE1976(L*,a*,b*)色空間で表した時に、明度であるL*が60以下、彩度である(a*の二乗+b*の二乗)の平方根が20以下であるものを指す。L*、a*、b*の算出は、以下のようにして行うことができる。黒色系無彩物(B)を臭化カリウム粉末中に0.1重量%で分散し、脱水、加圧し、膜圧1mmのペレットを得る。分光光度計(日立分光光度計/U−4100 日立ハイテクノロジーズ社製)を用いて、このペレットの透過スペクトルを測定する。得られた透過スペクトル、光源D50、および2度視感度曲線から算出したL*、a*、b*を本発明におけるL*、a*、b*とする。
<Black achromatic material (B)>
The black achromatic material (B) refers to a substance having no color and low brightness, and is used to make the color development due to the structure of the acrylic polymer fine particles (A) clearer. In the present invention, the black achromatic material (B) means that the lightness and saturation are expressed in the CIE 1976 (L *, a *, b *) color space, and the lightness L * is 60 or less. It means that the square root of a certain value (square of a * + square of b *) is 20 or less. Calculation of L *, a *, and b * can be performed as follows. Black achromatic material (B) is dispersed in potassium bromide powder at 0.1% by weight, dehydrated and pressurized to obtain pellets having a film pressure of 1 mm. The transmission spectrum of the pellet is measured using a spectrophotometer (Hitachi spectrophotometer / U-4100, manufactured by Hitachi High-Technologies Corporation). L *, a *, and b * calculated from the obtained transmission spectrum, the light source D50, and the two-degree visibility curve are L *, a *, and b * in the present invention.

黒色系無彩物(B)としては特に限定はされないが、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック、黒鉛などのなどの炭素系黒色色材、酸化鉄、酸化マンガン、硫化亜鉛などの酸化物系黒色色材、ニグロシン類、アジン類、メラミン類などの有機系黒色色材などが挙げられる。   The black achromatic material (B) is not particularly limited, but examples thereof include carbon black color materials such as acetylene black, ketjen black, furnace black, lamp black, and graphite, iron oxide, manganese oxide, and zinc sulfide. Examples thereof include oxide black color materials such as organic black color materials such as nigrosines, azines, and melamines.

本発明では、黒色系無彩物(B)はアクリル系ポリマー微粒子(A)に対して0.001重量%以上含まれる。0.001重量%より少ない場合、黒色系無彩物(B)による効果が不十分になり、明確な有彩色が得られなくなる可能性がある。また、黒色系無彩物(B)はアクリル系ポリマー微粒子(A)に対して0.001重量%以上、10重量%以下含まれることが好ましい。黒色系無彩物(B)はアクリル系ポリマー微粒子(A)に対して10重量%より多く含まれると、微粒子の取る構造による干渉光も吸収されてしまい、十分な発色が得られない可能性がある。   In the present invention, the black achromatic material (B) is contained in an amount of 0.001% by weight or more based on the acrylic polymer fine particles (A). When the amount is less than 0.001% by weight, the effect of the black achromatic material (B) becomes insufficient, and a clear chromatic color may not be obtained. Further, the black achromatic material (B) is preferably contained in an amount of 0.001 wt% or more and 10 wt% or less with respect to the acrylic polymer fine particles (A). If the black achromatic material (B) is contained in an amount of more than 10% by weight with respect to the acrylic polymer fine particles (A), interference light due to the structure taken by the fine particles is also absorbed, and sufficient color development may not be obtained. There is.

また、アクリル系ポリマー微粒子(A)が黒色を有している場合でも、無色の場合と同様に黒色系無彩物(B)を添加することで、構造色とは無関係の散乱光を効率的に吸収し優れた発色性を得ることができる。   In addition, even when the acrylic polymer fine particles (A) have a black color, the addition of the black achromatic material (B) as in the case of the colorless color enables efficient scattering of light regardless of the structural color. It can be absorbed to give excellent color developability.

本発明において黒色系無彩物(B)は媒体(C)に対して不溶であることが好ましい。黒色系無彩物(B)が媒体(C)に不溶であることで、媒体(C)中で偏在し、散乱光などに由来する有彩色に不要な発色を効率的に吸収し取り除くことができる。媒体(C)中で不溶であることは、光学顕微鏡、走査型電子顕微鏡などから確認することが可能である。なお、本発明における不溶とは、媒体と分離している状態を示し、媒体が空気である場合にも適用される。   In the present invention, the black achromatic material (B) is preferably insoluble in the medium (C). Since the black achromatic material (B) is insoluble in the medium (C), it can be unevenly distributed in the medium (C) and efficiently absorb and remove color development unnecessary for chromatic colors derived from scattered light or the like. it can. The insolubility in the medium (C) can be confirmed from an optical microscope, a scanning electron microscope or the like. The term “insoluble” in the present invention refers to a state where the medium is separated from the medium, and is also applied when the medium is air.

本発明において黒色系無彩物(B)は顔料であることが好ましい。黒色系無彩物(B)が染料であった場合、顔料と比較して耐候性に劣るため、有彩色色材中で散乱光などの不要な光の吸収を長期にわたって行うことができない。   In the present invention, the black achromatic material (B) is preferably a pigment. When the black achromatic material (B) is a dye, the weather resistance is inferior to that of the pigment, and therefore, it is not possible to absorb unnecessary light such as scattered light for a long time in the chromatic color material.

<媒体(C)>
本発明で媒体(C)とは、アクリル系ポリマー微粒子(A)や、黒色系無彩物(B)の隙間に存在するもののことを指す。媒体(C)としては特に限定はされないが、例えば、水、メタノール、エタノール、イソプロパノールなどの極性溶剤や、酢酸エチル、メチルエチルケトン、アセトン、トルエン、ノルマルヘキサンなどの非極性溶媒が挙げられる。また、それらにゲル化剤を加えゲル状態にすることもできる。さらには、ホットメルト樹脂、シリコーン樹脂、アクリル樹脂などの樹脂を用いることもできる。また、空気などの気体であってもよい。
<Medium (C)>
In the present invention, the medium (C) refers to those present in the gaps between the acrylic polymer fine particles (A) and the black achromatic material (B). The medium (C) is not particularly limited, and examples thereof include polar solvents such as water, methanol, ethanol, and isopropanol, and nonpolar solvents such as ethyl acetate, methyl ethyl ketone, acetone, toluene, and normal hexane. Moreover, a gelling agent can be added to them and it can also be set as a gel state. Furthermore, a resin such as a hot melt resin, a silicone resin, or an acrylic resin can be used. Also, a gas such as air may be used.

<その他>
また本発明の有彩色部材には、上記のアクリル系ポリマー微粒子(A)、黒色系無彩物(B)、媒体(C)のほかに、必要に応じて、例えば、滑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、帯電付与剤、界面活性剤、分散安定剤、消泡剤、安定剤等の添加剤を加えることもできる。
<Others>
In addition to the above-mentioned acrylic polymer fine particles (A), black achromatic material (B), medium (C), the chromatic member of the present invention, if necessary, for example, a lubricant, an ultraviolet absorber, Additives such as an antioxidant, an antistatic agent, a charge imparting agent, a surfactant, a dispersion stabilizer, an antifoaming agent and a stabilizer can also be added.

以上から、本発明の有彩色部材はアクリル系ポリマー微粒子(A)と黒色系無彩物(B)と媒体(C)を含むことで、容易に優れた有彩色を得ることができる。この有彩色部材は、例えば、電着カラー板、カラーシート、カラーフィルター、偏光フィルム、インクジェット記録用インク、グラビア印刷用インク、ホログラム部材、顔料、センサー用色材として用いることができる。   As described above, the chromatic color member of the present invention can easily obtain an excellent chromatic color by including the acrylic polymer fine particles (A), the black achromatic material (B), and the medium (C). This chromatic color member can be used, for example, as an electrodeposition color plate, a color sheet, a color filter, a polarizing film, an ink jet recording ink, a gravure printing ink, a hologram member, a pigment, or a sensor color material.

以下に、本発明を実施例により説明するが、本発明は以下の実施例にいささかも限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

<S−1(分散液);アクリル系ポリマー微粒子(A)分散液の調整>
容量2リットルの四つ口フラスコに、純水300重量部、乳化剤としてアデカリアソープSR―10を2.0重量部仕込み、撹拌しながら80℃に加温した。次いで、開始剤として過硫酸カリウム1.2重量部を加え、モノマーとしてアクリル酸6部、スルホン酸ビニル4部、スチレン60重量部、メタクリル酸メチル66重量部、アクリル酸2−エチルヘキシル44重量部、アクリロニトリル20重量部の混合液を100分間かけて滴下した。滴下終了後、さらに2時間撹拌しながら80℃に保持した。この乳化重合で得られた分散液(S−1)中には、アクリル系ポリマー微粒子(A)が含まれ、その平均粒子径は200nmであった。
<S-1 (dispersion); preparation of acrylic polymer fine particle (A) dispersion>
A 4-liter flask having a volume of 2 liters was charged with 300 parts by weight of pure water and 2.0 parts by weight of Adekari Soap SR-10 as an emulsifier, and heated to 80 ° C. with stirring. Next, 1.2 parts by weight of potassium persulfate as an initiator was added, and 6 parts of acrylic acid, 4 parts of vinyl sulfonate, 60 parts by weight of styrene, 66 parts by weight of methyl methacrylate, 44 parts by weight of 2-ethylhexyl acrylate, A mixture of 20 parts by weight of acrylonitrile was added dropwise over 100 minutes. After completion of dropping, the mixture was kept at 80 ° C. with stirring for 2 hours. The dispersion liquid (S-1) obtained by this emulsion polymerization contained acrylic polymer fine particles (A), and the average particle diameter was 200 nm.

<S−2〜3、5〜13、15〜26(分散液);アクリル系ポリマー微粒子(A)分散液の調整>
容量2リットルの四つ口フラスコに、純水300重量部、乳化剤としてアデカリアソープSR―10を表1に従って加え、撹拌しながら80℃に加温した。次いで、開始剤として過硫酸カリウム1.2重量部を加え、モノマーを表1に従って各種割合で加えた混合液を100分間かけて滴下した。滴下終了後、さらに2時間撹拌しながら80℃に保持した。この乳化重合で得られた分散液(S−2〜3、5〜13、15〜26)中には、アクリル系ポリマー微粒子(A)が含まれ、その平均粒子径は100nm〜600nmであった。
<S-2 to 3, 5 to 13, 15 to 26 (dispersion); adjustment of acrylic polymer fine particle (A) dispersion>
To a 2 liter four-necked flask, 300 parts by weight of pure water and Adekaria soap SR-10 as an emulsifier were added according to Table 1 and heated to 80 ° C. with stirring. Next, 1.2 parts by weight of potassium persulfate was added as an initiator, and a mixed solution in which monomers were added in various proportions according to Table 1 was added dropwise over 100 minutes. After completion of dropping, the mixture was kept at 80 ° C. with stirring for 2 hours. In the dispersions (S-2 to 3, 5 to 13, 15 to 26) obtained by this emulsion polymerization, acrylic polymer fine particles (A) were contained, and the average particle size was 100 nm to 600 nm. .

<S−4(分散液)/コアシェル型アクリル系ポリマー微粒子(A)分散液の調整>
容量2リットルの四つ口フラスコに、純水300重量部、乳化剤としてアデカリアソープSR―10を2.0重量部仕込み、撹拌しながら80℃に加温した。次いで、開始剤として過硫酸カリウム0.3重量部を加え、モノマーとして、スチレン90重量部、メタクリル酸メチル40重量部、ジビニルベンゼン10重量部の混合液を100分間かけて滴下し、滴下終了後、さらに30分間撹拌しながら80℃に保持した。上記撹拌後、さらに、メタクリル酸5重量部、メタクリル酸メチル40重量部、アクリル酸ブチル15重量部からなる混合液を、100分間かけて滴下した。滴下終了後、2時間撹拌しながら80℃に保持した。この乳化重合で得られた分散液(S−4)中には、アクリル系ポリマー微粒子(A)が含まれ、その平均粒子径は平均粒子径220nmであった。
<S-4 (dispersion) / adjustment of core-shell type acrylic polymer fine particles (A) dispersion>
A 4-liter flask having a volume of 2 liters was charged with 300 parts by weight of pure water and 2.0 parts by weight of Adekari Soap SR-10 as an emulsifier, and heated to 80 ° C. with stirring. Next, 0.3 parts by weight of potassium persulfate is added as an initiator, and as a monomer, a mixed solution of 90 parts by weight of styrene, 40 parts by weight of methyl methacrylate, and 10 parts by weight of divinylbenzene is dropped over 100 minutes. The mixture was kept at 80 ° C. with stirring for another 30 minutes. After the stirring, a mixed solution consisting of 5 parts by weight of methacrylic acid, 40 parts by weight of methyl methacrylate, and 15 parts by weight of butyl acrylate was added dropwise over 100 minutes. After completion of dropping, the mixture was kept at 80 ° C. with stirring for 2 hours. The dispersion (S-4) obtained by this emulsion polymerization contained acrylic polymer fine particles (A), and the average particle size was 220 nm.

<S−14(分散液)/黒色粒子型アクリル系ポリマー微粒子(A)分散液の調整>
容量1リットルの四つ口フラスコに、純水300重量部、乳化剤としてアデカリアソープSR―10を1.0重量部仕込み、撹拌しながら80℃に加温した。次いで、開始剤として過硫酸カリウム0.5重量部を加え、モノマーとしてアクリル酸6部、スチレン149重量部、アクリル酸ブチル45重量部、さらに黒色染料のC.Iソルベントブラック27の8重量部を加えた混合物を100分間かけて滴下した。滴下終了後、撹拌しながら80℃に保持した。この乳化重合で得られた分散液(S−14)中には、アクリル系ポリマー微粒子(A)が含まれ、その平均粒子径は平均粒子径240nmであった。
<S-14 (dispersion) / adjustment of black particle type acrylic polymer fine particles (A) dispersion>
A 1-liter four-necked flask was charged with 300 parts by weight of pure water and 1.0 part by weight of Adekaria Soap SR-10 as an emulsifier, and heated to 80 ° C. with stirring. Next, 0.5 parts by weight of potassium persulfate was added as an initiator, and 6 parts of acrylic acid, 149 parts by weight of styrene, 45 parts by weight of butyl acrylate, and 8 parts by weight of CI solvent black 27 as a black dye were added as monomers. The mixture was added dropwise over 100 minutes. After completion of dropping, the mixture was kept at 80 ° C. with stirring. The dispersion (S-14) obtained by this emulsion polymerization contained acrylic polymer fine particles (A), and the average particle size was 240 nm.

上述のアクリル系ポリマー微粒子(A)のモノマー組成と性状を表2に示す。   Table 2 shows the monomer composition and properties of the above-mentioned acrylic polymer fine particles (A).

表1

Figure 2017048361
Table 1
Figure 2017048361

AA:アクリル酸(屈折率1.4202)
MAA:メタクリル酸(屈折率1.432)
VSA:スルホン酸ビニル(屈折率1.4493)
HEA:アクリル酸2−ヒドロキシエチル(屈折率1.4502)
St:スチレン(屈折率1.5470)
BzA:アクリル酸ベンジル(屈折率1.5143)
BzMA:メタクリル酸ベンジル(屈折率1.5120)
MMA:メタクリル酸メチル(屈折率1.4140)
EA:アクリル酸エチル(屈折率1.4060)
BA:アクリル酸ブチル(屈折率1.4180)
2EHA:アクリル酸-2エチルヘキシル(屈折率1.4360)
GMA:メタクリル酸グリシジル(屈折率1.4490)
AN:アクリロニトリル(屈折率1.3911)
ATFE:アクリル酸トリフルオロエチル(屈折率1.3506)
DVB:ジビニルベンゼン(屈折率1.5470)
上記屈折率は、POLYMER HANDBOOK FOURTH EDITION (J.Brandrup, E.H.Immergut, E.A.Grulke)に記載の値を使用した。
AA: Acrylic acid (refractive index 1.4202)
MAA: Methacrylic acid (refractive index 1.432)
VSA: vinyl sulfonate (refractive index: 1.4493)
HEA: 2-hydroxyethyl acrylate (refractive index 1.4502)
St: Styrene (refractive index 1.5470)
BzA: benzyl acrylate (refractive index 1.5143)
BzMA: benzyl methacrylate (refractive index 1.5120)
MMA: Methyl methacrylate (refractive index 1.4140)
EA: ethyl acrylate (refractive index: 1.4060)
BA: butyl acrylate (refractive index: 1.4180)
2EHA: Acrylic acid-2-ethylhexyl (refractive index 1.4360)
GMA: Glycidyl methacrylate (refractive index: 1.4490)
AN: Acrylonitrile (refractive index: 1.3911)
ATFE: trifluoroethyl acrylate (refractive index: 1.3506)
DVB: Divinylbenzene (refractive index 1.5470)
As the refractive index, the value described in POLYMER HANDBOOK FOURTH EDITION (J. Brandrup, E. H. Immergut, E. A. Gulke) was used.

<実施例1>
アクリル系ポリマー微粒子(A)に対して0.01重量%となるように、分散液S−1に表1記載の配合物A−1を添加し、十分に撹拌することで実施例1の有彩色部材である分散液を得た。
<Example 1>
The formulation A-1 shown in Table 1 was added to the dispersion S-1 so as to be 0.01% by weight based on the acrylic polymer fine particles (A), and the mixture was sufficiently stirred. A dispersion as a coloring member was obtained.

<実施例2〜30、比較例1〜8>
アクリル系ポリマー微粒子(A)に対して表3記載の重量割合となるように、各分散液に各配合物を添加し、十分撹拌することで実施例2〜30、比較例1〜8記載の有彩色部材である分散液を得た。
<Examples 2 to 30, Comparative Examples 1 to 8>
Examples 2 to 30 and Comparative Examples 1 to 8 are described by adding each formulation to each dispersion so as to have a weight ratio shown in Table 3 with respect to the acrylic polymer fine particles (A) and stirring sufficiently. A dispersion which is a chromatic member was obtained.

上述の有彩色部材の調整に用いた、配合物を表2に示す。   Table 2 shows the blends used for the adjustment of the chromatic color members described above.

表2

Figure 2017048361
Table 2
Figure 2017048361

<混合時(分散液状態)の発色評価試験>
上記で調整した実施例1〜30、比較例1〜8の分散液における発色性を反射スペクトルから評価した。各種調整した分散体を石英セル(S20曲底標準セル/ジーエルサイエンス社製)に6.0ml加え、この反射スペクトルを所定の分光光度計(日立分光光度計/U−4100 日立ハイテクノロジーズ社製)を用いて測定した。各波長における反射率は、検出器が設置された球の内面に直径30mmの円状、厚さ20mmの酸化アルミニウムの白色盤のものを100%として計算した。評価結果においては、構造色による反射率の最大値と構造色によらないベースラインの反射率の差分を反射率のコントラストとしたとき、そのコントラストが30%以上の場合を◎、20%以上かつ30%より小さい場合を○、10%以上かつ20%より小さい場合を○△、5%以上かつ10%より小さい場合を△、5%より小さい場合を×と評価した
<Color evaluation test during mixing (dispersion state)>
The color developability in the dispersions of Examples 1 to 30 and Comparative Examples 1 to 8 prepared above was evaluated from the reflection spectrum. 6.0 ml of the variously adjusted dispersions are added to a quartz cell (S20 curved bottom standard cell / GL Sciences Inc.), and this reflection spectrum is applied to a predetermined spectrophotometer (Hitachi spectrophotometer / U-4100 manufactured by Hitachi High-Technologies Corporation). It measured using. The reflectance at each wavelength was calculated assuming that the inner surface of a sphere on which the detector was installed had a circular shape with a diameter of 30 mm and a white plate of aluminum oxide with a thickness of 20 mm was taken as 100%. In the evaluation results, when the difference between the maximum reflectance of the structural color and the reflectance of the baseline that does not depend on the structural color is taken as the contrast of the reflectance, the contrast is 30% or more, ◎, 20% or more and The case where it is smaller than 30% is evaluated as ○, the case where it is smaller than 10% and smaller than 20%, the case where it is smaller than 5% and smaller than 10%, and the case where it is smaller than 5% are evaluated as ×.

<塗工物の発色評価試験>
上記で調整した実施例1〜30、比較例1〜8の分散液をIJ紙に塗工して得られる、粒子積層体の発色性を分光反射率スペクトルで評価した。上記で調整した分散液(実施例1〜29、比較例1〜6)をIJ紙(KA5100AP/エプソン社製)上に、厚みが約2.0μmとなるように塗布し、オーブンで70℃5分加熱し粒子積層体を得た。これの反射スペクトルを、所定の分光光度計(日立分光光度計/U−4100 日立ハイテクノロジーズ社製)を用いて測定した。各波長における反射率は、検出器が設置された球の内面に直径30mmの円状、厚さ10mmの酸化アルミニウムの白色盤のものを100%として計算した。
評価結果においては、構造色による反射率の最大値と構造色によらないベースラインの反射率の差分を反射率のコントラストとしたとき、そのコントラストが30%以上の場合を◎、20%以上かつ30%より小さい場合を○、10%以上かつ20%より小さい場合を○△、5%以上かつ10%より小さい場合を△、5%より小さい場合を×と評価した
<Color evaluation test of coated material>
The color developability of the particle laminate obtained by coating the dispersions of Examples 1 to 30 and Comparative Examples 1 to 8 prepared above on IJ paper was evaluated by spectral reflectance spectrum. The dispersion liquid prepared in the above (Examples 1 to 29, Comparative Examples 1 to 6) was applied on IJ paper (KA5100AP / manufactured by Epson Corporation) so that the thickness was about 2.0 μm, and the temperature was 70 ° C. in an oven. Heated for a minute to obtain a particle laminate. The reflection spectrum of this was measured using a predetermined spectrophotometer (Hitachi spectrophotometer / U-4100, manufactured by Hitachi High-Technologies Corporation). The reflectivity at each wavelength was calculated assuming that the inner surface of a sphere on which the detector was installed had a circular shape with a diameter of 30 mm and a white plate of aluminum oxide with a thickness of 10 mm was 100%.
In the evaluation results, when the difference between the maximum reflectance of the structural color and the reflectance of the baseline that does not depend on the structural color is taken as the contrast of the reflectance, the contrast is 30% or more, ◎, 20% or more and The case where it is smaller than 30% is evaluated as ○, the case where it is smaller than 10% and smaller than 20%, the case where it is smaller than 5% and smaller than 10%, and the case where it is smaller than 5% are evaluated as ×.

<塗工物の耐候性評価>
上記で調整した実施例1〜30、比較例1〜8の分散液をIJ紙に塗工して得られる粒子積層体の耐候性を、キセノンランプを用いた促進暴露試験により評価した。上記で調整した粒子積層体を、太陽光同等の分光分布となるキセノンランプ(東洋精機製SUNTEST CPS+)を用いて、470W/m2、100時間暴露し、上記の塗工物の発色試験と同様の方法で分光反射率スペクトルを測定した。評価結果においては、構造色による反射率の最大値と構造色によらないベースラインの反射率の差分を反射率のコントラストとしたとき、そのコントラストが30%以上の場合を◎、20%以上かつ30%より小さい場合を○、10%以上かつ20%より小さい場合を○△、5%以上かつ10%より小さい場合を△、5%より小さい場合を×と評価した。
<Evaluation of weather resistance of coated materials>
The weather resistance of the particle laminate obtained by applying the dispersions of Examples 1 to 30 and Comparative Examples 1 to 8 prepared above onto IJ paper was evaluated by an accelerated exposure test using a xenon lamp. The particle laminate prepared above is exposed to 470 W / m 2 for 100 hours using a xenon lamp (SUNTEST CPS + manufactured by Toyo Seiki Co., Ltd.) having a spectral distribution equivalent to that of sunlight. The spectral reflectance spectrum was measured by this method. In the evaluation results, when the difference between the maximum reflectance of the structural color and the reflectance of the baseline that does not depend on the structural color is taken as the contrast of the reflectance, the contrast is 30% or more, ◎, 20% or more and The case of less than 30% was evaluated as ◯, the case of 10% or more and less than 20% was evaluated as ○, the case of 5% or more and less than 10% was evaluated as Δ, and the case of less than 5% was evaluated as ×.

上述の実施例、比較例の配合処方と、発色評価試験結果を表3に示す。   Table 3 shows the formulation of the above-mentioned Examples and Comparative Examples and the color development evaluation test results.

表3

Figure 2017048361

Table 3
Figure 2017048361

実施例5から得られた粒子積層体の、走査型電子顕微鏡S−4300(株式会社日立ハイテクノロジーズ製)を用いて撮影した写真を図1に示す。   The photograph image | photographed using the scanning electron microscope S-4300 (made by Hitachi High-Technologies Corporation) of the particle | grain laminated body obtained from Example 5 is shown in FIG.

表3の実施例1〜30の結果より、水溶性モノマー(a)と非水溶性モノマー(b)との共重合物であるアクリル系ポリマー微粒子(A)、黒色系無彩物(B)、および、媒体(C)を含み、構造色として明確な有彩色を呈することを特徴とする有彩色部材であって、水溶性モノマー(a)の50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーであり、アクリル系ポリマー微粒子(A)が、平均粒子径が100nm〜600nmであり、かつ、粒子径の変動係数Cv値が30%以下であり、黒色系無彩物(B)が、アクリル系ポリマー微粒子(A)に対して0.001重量%以上含有されているものは、明確な構造発色を示すことが分かった。   From the results of Examples 1 to 30 in Table 3, acrylic polymer fine particles (A) which are a copolymer of the water-soluble monomer (a) and the water-insoluble monomer (b), black achromatic material (B), And a chromatic color member comprising the medium (C) and having a clear chromatic color as a structural color, wherein 50% by weight or more of the water-soluble monomer (a) has a carboxyl group (meth) acrylic It is an acid monomer, the acrylic polymer fine particles (A) have an average particle size of 100 nm to 600 nm, a particle size variation coefficient Cv value of 30% or less, and a black achromatic product (B). It was found that those containing 0.001% by weight or more with respect to the acrylic polymer fine particles (A) show clear structural color development.

それに対して、50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーである水溶性モノマー(a)でない比較例1〜2では、明確な構造発色は確認されなかった。これは、カルボキシル基を有する(メタ)アクリル酸系モノマーの水溶性モノマー(a)に対する割合が不十分であったため、粒子間の相互作用が適切に得られず、粒子の規則構造が適切に発達できなかったためであると考えられる。またアクリル系ポリマー微粒子(A)の変動係数Cv値が30%より大きい比較例3では、良好な発色は得られなかった。これは、使用した微粒子の変動係数が大きいため、規則性配列が形成されなかったためであると考えられる。また、黒色系無彩物(B)をアクリル系ポリマー微粒子(A)に対して0.001重量%以上含んでいない比較例4〜8は良好な発色は得られなかった。これは黒色系無彩物(B)の量が不十分であったため、散乱光の影響が顕著に現れ、良好な発色性が得られなかったためであると考えられる。   On the other hand, no clear structural color was confirmed in Comparative Examples 1 and 2 which are not water-soluble monomer (a) which is a (meth) acrylic acid monomer having 50% by weight or more having a carboxyl group. This is because the ratio of the (meth) acrylic acid-based monomer having a carboxyl group to the water-soluble monomer (a) is insufficient, so that the interaction between the particles cannot be obtained properly, and the regular structure of the particles is appropriately developed. This is thought to be because it was not possible. In Comparative Example 3 in which the variation coefficient Cv value of the acrylic polymer fine particles (A) was larger than 30%, good color development was not obtained. This is considered to be because the regular array was not formed because the variation coefficient of the fine particles used was large. Further, in Comparative Examples 4 to 8 which did not contain 0.001% by weight or more of the black achromatic material (B) with respect to the acrylic polymer fine particles (A), good color development was not obtained. This is presumably because the amount of the black achromatic material (B) was insufficient, so that the influence of scattered light appeared remarkably, and good color development was not obtained.

顔料である黒色系無彩物(B)を使用した実施例1、3〜17、25、28の分散体状態での評価では、水溶性の黒色系無彩物(B)を使用した実施例20〜21と比較して、さらに良好な発色が得られた。これは黒色系無彩物(B)が媒体(C)である水中に不溶であったため、偏在して存在することができ、効率的に散乱光などの不要な発色を吸収できたためであると考えられる。また、黒色系無彩顔料を使用した実施例1、3〜17、25、28の粒子積層体状態での耐候性評価では、水溶性黒色無彩染料を使用した実施例20〜21と比較して、さらに良好な発色が得られた。これは黒色系無彩物(B)が顔料であったため、染料と比べて良好な耐候性を示したためであると考えられる。また、アクリル系ポリマー微粒子(A)の全モノマー組成中に屈折率が1.50以上のモノマーを10重量%以上有する実施例1〜17、25〜28では、10重量%より少なく有する実施例22〜24と比較して、さらに良好な発色性が得られることが分かった。これは、屈折率が1.50以上のモノマーが十分に樹脂に組み込まれたため、樹脂の屈折率が適切に制御され、構造発色が十分に得られたためであると考えられる。また、アクリル系ポリマー微粒子(A)の全モノマー組成中にスチレンを10重量%以上有している実施例1、3〜17、25、28では、10重量%より少なく有する実施例2、26〜27と比較して、さらに良好な発色性が得られることが分かった。また、粒子積層体の発色性評価においては、アクリル系ポリマー微粒子(A)のTgが40℃以上の実施例1、3〜17、25、28では、40℃より小さい実施例29〜30と比較してさらに良好な発色性が得られることが分かった。これは、微粒子が十分に硬かったため、粒子積層体状態でも、その形状や規則構造を保持できたためであると考えられる。    In Examples 1, 3 to 17, 25, and 28 using the pigment-based black achromatic material (B) in the state of dispersion, examples using the water-soluble black achromatic material (B) were used. Compared with 20-21, even better color development was obtained. This is because the black achromatic material (B) was insoluble in the medium (C) water, and therefore it could exist unevenly and could absorb unnecessary color development such as scattered light efficiently. Conceivable. Moreover, in the weather resistance evaluation in the particle | grain laminated body state of Example 1, 3-17, 25, 28 using a black-type achromatic pigment, compared with Examples 20-21 using a water-soluble black achromatic dye. Thus, even better color development was obtained. This is presumably because the black achromatic material (B) was a pigment and therefore showed better weather resistance than the dye. Further, in Examples 1 to 17, 25 to 28 having a monomer having a refractive index of 1.50 or more in the total monomer composition of the acrylic polymer fine particles (A) of 10% by weight or more, Example 22 having less than 10% by weight. It was found that even better color developability was obtained as compared with ˜24. This is considered to be because a monomer having a refractive index of 1.50 or more was sufficiently incorporated into the resin, so that the refractive index of the resin was appropriately controlled and sufficient structural color development was obtained. In Examples 1, 3 to 17, 25, and 28 having styrene in an amount of 10% by weight or more in the total monomer composition of the acrylic polymer fine particles (A), Examples 2 to 26 having less than 10% by weight are used. It was found that even better color developability was obtained compared to 27. In the evaluation of the color developability of the particle laminate, Examples 1, 3 to 17, 25, and 28 having Tg of acrylic polymer fine particles (A) of 40 ° C. or higher are compared with Examples 29 to 30 having a Tg of 40 ° C. or less. As a result, it was found that better color developability can be obtained. This is presumably because the fine particles were sufficiently hard, so that the shape and regular structure could be maintained even in the particle laminate state.

黒色系無彩物(B)をアクリル系ポリマー微粒子(A)に対して10重量%以下含有する実施例1、3〜17、25、28では、10重量%より多く含有する実施例18と比較して、さらに良好な発色性が得られることが分かった。これは、黒色系無彩物(B)の含有量が適切に制御されることで、黒色系無彩物(B)による微粒子の規則構造による干渉光の吸収が抑えられたためであると考えられる。   In Examples 1, 3 to 17, 25, and 28 containing 10% by weight or less of the black achromatic material (B) with respect to the acrylic polymer fine particles (A), compared with Example 18 containing more than 10% by weight. As a result, it was found that better color developability can be obtained. This is considered to be because the absorption of interference light due to the regular structure of the fine particles by the black achromatic material (B) was suppressed by appropriately controlling the content of the black achromatic material (B). .

本発明の有彩色部材は分散体の状態または粒子積層体の状態で、鮮明な発色を呈することから、各種の内装、装飾、意匠、ディスプレイ材等の分野の新規な色材として使用することができる。また、各種の形状の光変調部材、光量調整フィルター、カラーフィルター、室内透視防止フィルム(シート)、センサー等も提供することができる。また、本発明の有彩色部材は分散体の状態で、各種の下地部材や各容器内面に塗布、乾燥されることで、容易に粒子積層体の状態として得ることができる。   Since the chromatic color member of the present invention exhibits a clear color in the state of dispersion or particle laminate, it can be used as a new color material in the fields of various interiors, decorations, designs, display materials, etc. it can. In addition, various shapes of light modulation members, light amount adjustment filters, color filters, indoor see-through prevention films (sheets), sensors, and the like can also be provided. Moreover, the chromatic color member of the present invention can be easily obtained as a state of a particle laminated body by being applied and dried on various base members and the inner surface of each container in a dispersion state.

Claims (6)

水溶性モノマー(a)と非水溶性モノマー(b)との共重合物であるアクリル系ポリマー微粒子(A)、黒色系無彩物(B)、および、媒体(C)を含み、構造色として明確な有彩色を呈することを特徴とする有彩色部材であって、
水溶性モノマー(a)の50重量%以上がカルボキシル基を有する(メタ)アクリル酸系モノマーであり、
アクリル系ポリマー微粒子(A)が、平均粒子径が100nm〜600nmであり、かつ、粒子径の変動係数Cv値が30%以下であり、
黒色系無彩物(B)が、アクリル系ポリマー微粒子(A)に対して0.001重量%以上含有されている有彩色部材。
As a structural color, it contains acrylic polymer fine particles (A), black achromatic material (B), and medium (C), which are a copolymer of water-soluble monomer (a) and water-insoluble monomer (b). A chromatic member characterized by exhibiting a clear chromatic color,
50% by weight or more of the water-soluble monomer (a) is a (meth) acrylic acid monomer having a carboxyl group,
The acrylic polymer fine particles (A) have an average particle size of 100 nm to 600 nm, and a variation coefficient Cv value of the particle size of 30% or less,
A chromatic member in which the black achromatic material (B) is contained in an amount of 0.001% by weight or more based on the acrylic polymer fine particles (A).
黒色系無彩物(B)が、媒体(C)に対して不溶であることを特徴とする請求項1記載の有彩色部材。   The chromatic member according to claim 1, wherein the black achromatic material (B) is insoluble in the medium (C). 媒体(C)が液体であることを特徴とする請求項1または2記載の有彩色部材。   The chromatic member according to claim 1 or 2, wherein the medium (C) is a liquid. アクリル系ポリマー微粒子(A)が、全モノマー組成中に、屈折率が1.50以上のモノマーを10.0重量%以上含有することを特徴とする請求項1〜3いずれか記載の有彩色部材。   The chromatic color member according to any one of claims 1 to 3, wherein the acrylic polymer fine particles (A) contain 10.0% by weight or more of a monomer having a refractive index of 1.50 or more in the total monomer composition. . アクリル系ポリマー微粒子(A)が、全モノマー組成中に、スチレンを10.0重量%以上含有することを特徴とする請求項1〜4いずれか記載の有彩色部材。   The chromatic color member according to any one of claims 1 to 4, wherein the acrylic polymer fine particles (A) contain 10.0% by weight or more of styrene in the total monomer composition. アクリル系ポリマー微粒子(A)のガラス転移温度が、40℃以上であることを特徴とする請求項1〜5いずれか記載の有彩色部材。   The chromatic color member according to any one of claims 1 to 5, wherein the glass transition temperature of the acrylic polymer fine particles (A) is 40 ° C or higher.
JP2015252062A 2014-12-25 2015-12-24 Chromatic colored member with structural color Active JP6597291B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014261960 2014-12-25
JP2014261960 2014-12-25
JP2015174434 2015-09-04
JP2015174434 2015-09-04

Publications (2)

Publication Number Publication Date
JP2017048361A true JP2017048361A (en) 2017-03-09
JP6597291B2 JP6597291B2 (en) 2019-10-30

Family

ID=58278872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252062A Active JP6597291B2 (en) 2014-12-25 2015-12-24 Chromatic colored member with structural color

Country Status (1)

Country Link
JP (1) JP6597291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172821A (en) * 2015-03-17 2016-09-29 東洋インキScホールディングス株式会社 Production method of dispersion of acidic functional group-containing acrylic organic polymer spherical particle which develops structural color
CN114752168A (en) * 2022-03-31 2022-07-15 华南农业大学 Angle-dependency-free structural color hydrogel film, and preparation method and application thereof
CN115926528A (en) * 2022-12-29 2023-04-07 新源劲吾(北京)科技有限公司 Colorizing printing ink for photovoltaic module and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172821A (en) * 2015-03-17 2016-09-29 東洋インキScホールディングス株式会社 Production method of dispersion of acidic functional group-containing acrylic organic polymer spherical particle which develops structural color
CN114752168A (en) * 2022-03-31 2022-07-15 华南农业大学 Angle-dependency-free structural color hydrogel film, and preparation method and application thereof
CN114752168B (en) * 2022-03-31 2023-03-03 华南农业大学 Structure color hydrogel film without angle dependence, preparation method and application thereof
CN115926528A (en) * 2022-12-29 2023-04-07 新源劲吾(北京)科技有限公司 Colorizing printing ink for photovoltaic module and preparation method thereof

Also Published As

Publication number Publication date
JP6597291B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP4479671B2 (en) Dispersion and ink composition
JP6597291B2 (en) Chromatic colored member with structural color
JP3995242B2 (en) Photochromic member whose chromatic color to be perceived is structural color, method for producing the same, and method for producing electrodeposited color plate using the method
JP7472487B2 (en) Resin fine particles, resin composition and colloidal crystals
JP6668838B2 (en) Temperature-sensitive material and temperature sensor using the same
US9453133B2 (en) Additives for improved hiding and paint compositions containing same
JP5953181B2 (en) Structural color developing composition and structural color developing film
JP2015067803A (en) Porous resin particle
JP2014047233A (en) Composition for structural color expression and structural color expression membrane
JP4663990B2 (en) A manufacturing method of a three-dimensional particle matching body of spherical fine particles, a three-dimensional particle matching body, and a manufacturing method of the three-dimensional particle matching body coating film.
TW201546153A (en) Polymer microparticle composition and use thereof as light diffusing agent
JP4586125B2 (en) Novel flowable colloidal crystal composed of solid-liquid colloidal dispersion
JP4300549B2 (en) Hydrophilic colored resin fine particles, colored aqueous emulsion composition and production method thereof
TW201706340A (en) Polymeric beads, process for preparing polymeric beads, and optical film using the same
JP6589330B2 (en) Method for producing colored film exhibiting structural color
JP2007138025A (en) Aqueous dispersion and aqueous ink composition
JP6690319B2 (en) Chromatic fine particle capsule
JP2004352848A (en) Water-based coating composition and method for improving solvent resistance of coating film
JP2011074229A (en) Aggregation resin particle, manufacturing method for this particle, and coating composition and coating film containing the same
TWI547515B (en) High performance nanocomposite latex
JP2018501367A (en) Atomized cationic polymer aqueous dispersion, process for its production and use thereof
JP7193925B2 (en) WATER-BASED RESIN DISPERSION, TOPCOAT, PRODUCTION THEREOF, AND COATING FILM
JP6511886B2 (en) Method for producing acidic functional group-containing acrylic organic polymer spherical fine particle dispersion exhibiting a structural color
JP2007126646A (en) Aqueous suspension-type particle dispersion for formation of continuous phase of three-dimensionally ordered particle association
JP2005002172A (en) Organic fluorescent pigment and water-based fluorescent composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R151 Written notification of patent or utility model registration

Ref document number: 6597291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250