JP2017047448A - Manufacturing method of copper-clad aluminum composite extrusion material, copper-clad aluminum conductive wire material and manufacturing method of the same - Google Patents

Manufacturing method of copper-clad aluminum composite extrusion material, copper-clad aluminum conductive wire material and manufacturing method of the same Download PDF

Info

Publication number
JP2017047448A
JP2017047448A JP2015172345A JP2015172345A JP2017047448A JP 2017047448 A JP2017047448 A JP 2017047448A JP 2015172345 A JP2015172345 A JP 2015172345A JP 2015172345 A JP2015172345 A JP 2015172345A JP 2017047448 A JP2017047448 A JP 2017047448A
Authority
JP
Japan
Prior art keywords
copper
pipe
coated aluminum
conductor wire
aluminum composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015172345A
Other languages
Japanese (ja)
Other versions
JP6251710B2 (en
Inventor
亮 高木
Akira Takagi
亮 高木
泰夫 芥田
Yasuo Akuta
泰夫 芥田
賢治 白崎
Kenji Shirosaki
賢治 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
FCM Co Ltd
Original Assignee
Furukawa Electric Co Ltd
FCM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, FCM Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2015172345A priority Critical patent/JP6251710B2/en
Publication of JP2017047448A publication Critical patent/JP2017047448A/en
Application granted granted Critical
Publication of JP6251710B2 publication Critical patent/JP6251710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of copper-clad aluminum composite extrusion material made by integrating Al material in which the thickness of a Cu pipe corresponding part is made thickened and a Cu pipe, and so forth.SOLUTION: A manufacturing method of copper-clad aluminum composite extrusion material 20 includes: a first process S1 of respectively selecting a cylindrical Cu pipe 22 made of Cu type material and a columnar Al material 21 made of Al type material such that a ratio of deformation resistance value at 500°C becomes less than 10; a second process S2 of charging the Al material 21 into the Cu pipe 22; a third process S3 of closing both end openings of the Cu pipe 22 while vacuuming the interior of the Cu pipe 22 into which the Al material 21 is charged to form a composite billet 23 of the Cu pipe 22 in which the Al material 21 is sealed under vacuum; and a fourth process S4 of providing a rod-like copper-clad aluminum composite extrusion material 20 made by integrating the Al material 21 and the Cu pipe 22 by performing hot extrusion while heating the composite billet 23 into 400 to 450°C.SELECTED DRAWING: Figure 2

Description

本発明は、銅被覆アルミニウム複合押出材の製造方法、ならびに銅被覆アルミニウム導体線材およびその製造方法に関する。   The present invention relates to a method for producing a copper-coated aluminum composite extruded material, a copper-coated aluminum conductor wire, and a method for producing the same.

銅被覆アルミニウム導体線材は、アルミニウム(Al)芯部の周囲に、銅(Cu)被覆層を一体形成したものであって、Cu線材に比べて軽量化が図れることから、自動車用電線、同軸ケーブルの中心線、さらには、ボイスコイルのような微小コイル等に用いられる導体線として使用されている。   The copper-coated aluminum conductor wire is formed by integrally forming a copper (Cu) coating layer around an aluminum (Al) core, and can be reduced in weight compared to a Cu wire. Are used as conductor lines used for micro coils such as voice coils.

また、銅被覆アルミニウム導体線材は、Al芯部の周囲にCu被覆層を形成した後に、線径を所定の寸法まで縮径化するための伸線加工を施して製造されるのが一般的である。このとき、Al芯部の周囲にCu被覆層を形成するための従来の方法としては、例えばアルミニウム線上に銅テープ(銅箔)を巻き付けてCu被覆層を形成する、いわゆるフォーミング加工法(例えば特許文献1)、あるいはAl線の外周面にCuまたはCu合金を析出させることにより、Cu被覆層を形成する、いわゆるめっき法(例えば特許文献2)が挙げられる。   Copper-coated aluminum conductor wires are generally manufactured by forming a Cu coating layer around the Al core and then performing a wire drawing process to reduce the wire diameter to a predetermined size. is there. At this time, as a conventional method for forming the Cu coating layer around the Al core portion, for example, a so-called forming method (for example, patent) in which a copper tape (copper foil) is wound around an aluminum wire to form a Cu coating layer. Reference 1) or a so-called plating method (for example, Patent Document 2) in which a Cu coating layer is formed by precipitating Cu or a Cu alloy on the outer peripheral surface of an Al wire.

しかしながら、フォーミング加工法は、Al芯材に巻きつける銅テープが厚くなるにつれて、フォーミング加工を施すのが難しくなる傾向があり、また、めっき法は、均一に形成できるCuめっき層の厚さに限界があることから、両法とも、形成可能なCu被覆層の厚さとしては、銅被覆アルミニウム導体線材に占めるCu被覆層の(断)面積率にして、最大でも25%程度であると考えられる。   However, the forming method tends to become difficult to form as the copper tape wound around the Al core becomes thicker. Also, the plating method is limited to the thickness of the Cu plating layer that can be formed uniformly. Therefore, in both methods, the thickness of the Cu coating layer that can be formed is considered to be about 25% at the maximum in terms of the (cut) area ratio of the Cu coating layer in the copper-coated aluminum conductor wire. .

また、最近では、線材が適用される工業製品によっては、従来の銅被覆アルミニウム導体線材では導電率が十分ではなく、さらに高い導電率を有する銅被覆アルミニウム導体線材を開発する必要性が高まりつつあり、さらには、顧客の要望に応じて、銅被覆アルミニウム導体線材を構成する銅被覆層の厚さを、銅被覆アルミニウム導体線材に占めるCu被覆層の面積率にして、25%以下の薄肉の範囲から、25%超えの厚肉の範囲までの広い範囲で簡便に設定できる銅被覆アルミニウム導体線材の製造方法があれば望ましい。   Also, recently, depending on the industrial products to which the wire is applied, the electrical conductivity of the conventional copper-coated aluminum conductor wire is not sufficient, and the need to develop a copper-coated aluminum conductor wire having higher conductivity is increasing. Furthermore, in accordance with the customer's request, the thickness of the copper coating layer constituting the copper-coated aluminum conductor wire is the area ratio of the Cu coating layer in the copper-coated aluminum conductor wire, and the range of a thin wall of 25% or less Therefore, it is desirable to have a method for producing a copper-coated aluminum conductor wire that can be easily set in a wide range up to a thickness range exceeding 25%.

従来の銅被覆アルミニウム導体線材に比べて導電率を高めるには、Al芯部の周囲に形成するCu被覆層の厚さを、従来の銅被覆アルミニウム導体線材よりも厚くすること(例えば銅被覆アルミニウム導体線材に占めるCu被覆層の面積率にして30%以上)が有効であるが、フォーミング加工法やめっき法のような従来法では、そのように厚いCu被覆層を形成することは難しかった。加えて、フォーミング加工法で形成したCuテープ(Cu被覆層)は、Al芯部に対する密着性が劣るため、その後に行う伸線加工時後にCuテープの一部が剥がれてAl芯部の表面の一部が露出する傾向があり、また、めっき法で形成したCuめっき(Cu被覆層)は、薄くしか形成できないため、その後に行う伸線加工後にCuめっきの一部が剥がれてAl芯部の表面の一部が露出する傾向があり、いずれの場合も、このような表面状態を有する線材を使用し続けると、Al芯部の表面露出部分を起点として異種金属腐食が生じるようになり、最悪の場合には、Al芯部が破断するおそれもあった。   In order to increase the electrical conductivity as compared with the conventional copper-coated aluminum conductor wire, the thickness of the Cu coating layer formed around the Al core is made thicker than the conventional copper-coated aluminum conductor wire (for example, copper-coated aluminum conductor). The area ratio of the Cu coating layer occupying the conductor wire is 30% or more), but it is difficult to form such a thick Cu coating layer by a conventional method such as a forming method or a plating method. In addition, since the Cu tape (Cu coating layer) formed by the forming method is inferior in adhesion to the Al core part, a part of the Cu tape is peeled off after the subsequent wire drawing process, and the surface of the Al core part is removed. A portion of the Cu plating tends to be exposed, and the Cu plating (Cu coating layer) formed by the plating method can only be thinly formed. There is a tendency for a part of the surface to be exposed, and in any case, if a wire having such a surface state is used continuously, corrosion of different metals will start from the surface exposed part of the Al core, which is the worst. In this case, the Al core part may be broken.

特許第5203817号公報Japanese Patent No. 5203817 特開2004−39477号公報JP 2004-39477 A

本発明の目的は、Al芯部に対するCu被覆層の面積比を、従来の銅被覆アルミニウム導体線材(例えば前記銅面積率にして25%以下)に比べて高く(例えば前記銅面積率にして30%以上)することによって、従来の銅線材(前記銅面積率にして100%)に比べて軽量を維持しつつ、従来の銅被覆アルミニウム導体線材に比べて高導電率を有する銅被覆アルミニウム導体線材を提供することにある。   The object of the present invention is to make the area ratio of the Cu coating layer to the Al core part higher (for example, the copper area ratio is 30%) than the conventional copper-coated aluminum conductor wire (for example, the copper area ratio is 25% or less). The copper-coated aluminum conductor wire having a higher electrical conductivity than the conventional copper-coated aluminum conductor wire while maintaining a lighter weight than the conventional copper wire material (100% in terms of the copper area ratio). Is to provide.

また、本発明の別の目的は、円柱状のAl材および円筒状のCuパイプを適正に選択し、選択したAl材およびCuパイプで所定の複合ビレットを形成し、この複合ビレットを所定の温度で熱間押出しすることにより、複合ビレットを構成する、Al材とCuパイプの断面積比と同じまたは近い断面積比をもつ銅被覆アルミニウム複合押出材の製造方法を提供することにある。なお、この銅被覆アルミニウム複合押出材は、銅被覆アルミニウム導体線材を製造するための伸線加工用素材として用いるのに好適である他、銅材料からなる柱状または棒状の導電部材(例えばブスバー)等の各種部材の代用材として用いれば、軽量化を図ることができる。   Another object of the present invention is to appropriately select a columnar Al material and a cylindrical Cu pipe, form a predetermined composite billet with the selected Al material and the Cu pipe, and use this composite billet at a predetermined temperature. It is an object of the present invention to provide a method for producing a copper-clad aluminum composite extruded material having a cross-sectional area ratio that is the same as or close to the cross-sectional area ratio of an Al material and a Cu pipe, constituting a composite billet. The copper-coated aluminum composite extruded material is suitable for use as a wire drawing material for producing a copper-coated aluminum conductor wire, as well as a columnar or bar-shaped conductive member (for example, a bus bar) made of a copper material. If it is used as a substitute material for these various members, the weight can be reduced.

さらに、本発明の他の目的は、上述したAl芯部に対するCu被覆層の面積比が高い被覆アルミニウム導体線材の製造を可能にする銅被覆アルミニウム導体線材の製造方法を提供することにある。   Furthermore, the other object of this invention is to provide the manufacturing method of the copper covering aluminum conductor wire which enables manufacture of the covering aluminum conductor wire with the high area ratio of Cu coating layer with respect to Al core part mentioned above.

本発明の要旨構成は、以下のとおりである。
(1)Cu系材料からなる円筒状のCuパイプ、およびAl系材料からなる円柱状のAl材を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択する第1工程と、それぞれ選択した前記Cuパイプおよび前記Al材を用い、前記Cuパイプに前記Al材を装入する第2工程と、前記Al材が装入された前記Cuパイプ内を真空引きした状態で前記Cuパイプの両端開口を密封して、前記Al材が真空封入されたCuパイプの複合ビレットを形成する第3工程と、該複合ビレットを400〜450℃に加熱しながら熱間押出しすることにより、前記Al材および前記Cuパイプを一体化してなる棒状の銅被覆アルミニウム複合押出材を得る第4工程とを含むことを特徴とする、銅被覆アルミニウム複合押出材の製造方法。
The gist configuration of the present invention is as follows.
(1) a first step of selecting a cylindrical Cu pipe made of a Cu-based material and a columnar Al material made of an Al-based material so that the ratio of deformation resistance values at 500 ° C. is less than 10, respectively; A second step of charging the Cu pipe with the Al material using the selected Cu pipe and the Al material, and the Cu pipe in a state in which the inside of the Cu pipe in which the Al material is charged is evacuated. A third step of forming a Cu bill composite billet in which the Al material is vacuum-sealed, and hot extrusion while heating the composite billet to 400 to 450 ° C. And a fourth step of obtaining a rod-like copper-coated aluminum composite extruded material obtained by integrating the material and the Cu pipe. A method for producing a copper-coated aluminum composite extruded material, comprising:

(2)前記第1工程における前記変形抵抗値の比が3以下である、上記(1)に記載の銅被覆アルミニウム複合押出材の製造方法。 (2) The manufacturing method of the copper covering aluminum composite extrusion material as described in said (1) whose ratio of the said deformation resistance value in the said 1st process is 3 or less.

(3)前記第2工程を行なうに先立ち、前記Al材の表面に、NbまたはTaからなる拡散バリア層を形成する工程をさらに含む、上記(1)または(2)に記載の銅被覆アルミニウム複合押出材の製造方法。 (3) The copper-coated aluminum composite according to (1) or (2), further including a step of forming a diffusion barrier layer made of Nb or Ta on the surface of the Al material prior to performing the second step. Method for producing extruded material.

(4)前記第4工程における熱間押出し時の減面率を85.0%以上99.9%未満とする、上記(1)〜(3)のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法。 (4) The copper-coated aluminum composite according to any one of the above (1) to (3), wherein a reduction in area during hot extrusion in the fourth step is 85.0% or more and less than 99.9%. Method for producing extruded material.

(5)前記第1工程で選択される、前記Al材の横断面積に対する前記Cuパイプの横断面積の比が、前記第4工程で得られた前記銅被覆アルミニウム複合押出材を構成する、前記Al材に相当する部分の横断面積に対する前記Cuパイプに相当する部分の横断面積の比の0.43〜2.30の範囲である、上記(1)〜(4)のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法。 (5) The ratio of the cross-sectional area of the Cu pipe to the cross-sectional area of the Al material selected in the first step constitutes the copper-coated aluminum composite extruded material obtained in the fourth step. The ratio of the cross-sectional area of the portion corresponding to the Cu pipe to the cross-sectional area of the portion corresponding to the material is in the range of 0.43 to 2.30, according to any one of (1) to (4) above. A method for producing a copper-coated aluminum composite extruded material.

(6)上記(1)〜(5)のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法を用いて製造された銅被覆アルミニウム複合押出材に、伸線加工を施して銅被覆アルミニウム導体線材を得る第5工程を含む、銅被覆アルミニウム導体線材の製造方法。 (6) The copper-coated aluminum composite extruded material produced by using the method for producing a copper-coated aluminum composite extruded material according to any one of (1) to (5) above is subjected to wire drawing to provide a copper coating. The manufacturing method of a copper covering aluminum conductor wire including the 5th process of obtaining an aluminum conductor wire.

(7)前記第4工程で得られた前記銅被覆アルミニウム複合押出材を構成する、前記Al材に相当する部分の横断面積に対する前記Cuパイプに相当する部分の横断面積の比が、前記第5工程で得られた前記銅被覆アルミニウム導体線材を構成する、Al芯部の横断面積に対するCu被覆層の横断面積の比の0.43〜2.30範囲である、上記(6)に記載の銅被覆アルミニウム複合押出材の製造方法。 (7) The ratio of the cross-sectional area of the portion corresponding to the Cu pipe to the cross-sectional area of the portion corresponding to the Al material that constitutes the copper-coated aluminum composite extruded material obtained in the fourth step is the fifth The copper according to (6) above, which is in the range of 0.43 to 2.30 of the ratio of the cross-sectional area of the Cu coating layer to the cross-sectional area of the Al core portion, which constitutes the copper-coated aluminum conductor wire obtained in the process. A method for producing a coated aluminum composite extruded material.

(8)Al系材料からなるAl芯部と、該Al芯部の周囲に配置された、Cu系材料からなるCu被覆層とを有する銅被覆アルミニウム導体線材であって、前記銅被覆アルミニウム導体線材の横断面で見て、前記Al芯部に対する前記Cu被覆層の面積比が、0.43以上であることを特徴とする銅被覆アルミニウム導体線材。 (8) A copper-coated aluminum conductor wire having an Al core portion made of an Al-based material and a Cu coating layer made of a Cu-based material disposed around the Al core portion. A copper-coated aluminum conductor wire, wherein the area ratio of the Cu coating layer to the Al core portion is 0.43 or more, as seen in the cross section of FIG.

(9)前記Al芯部に対する前記Cu被覆層の面積比が、0.82〜1.23である、上記(8)に記載の銅被覆アルミニウム導体線材。 (9) The copper-coated aluminum conductor wire according to (8), wherein the area ratio of the Cu coating layer to the Al core is 0.82 to 1.23.

本発明によれば、Al系材料からなるAl芯部と、このAl芯部の周囲に配置された、Cu系材料からなるCu被覆層とを有する銅被覆アルミニウム導体線材であって、Al芯部の面積比に対するCu被覆層の面積比を0.43以上として、Al芯部に対するCu被覆層の面積比を、従来の銅被覆アルミニウム導体線材(銅被覆アルミニウム導体線材に占めるCu被覆層の面積率にして25%以下)に比べて高く(例えば前記銅面積率にして30%以上)することによって、従来の銅線材(前記銅面積率にして100%)に比べて軽量を維持しつつ、これまでの従来の銅被覆アルミニウム導体線材では得られなかった高導電率を有する銅被覆アルミニウム導体線の提供が可能になった。   According to the present invention, there is provided a copper-coated aluminum conductor wire having an Al core portion made of an Al-based material and a Cu coating layer made of a Cu-based material disposed around the Al core portion. The area ratio of the Cu coating layer with respect to the area ratio of the copper coating layer is 0.43 or more, and the area ratio of the Cu coating layer to the Al core portion is defined as a conventional copper-coated aluminum conductor wire And lower than 25%) (for example, 30% or more in terms of the copper area ratio), while maintaining a lighter weight than conventional copper wire (100% in terms of the copper area ratio). Thus, it has become possible to provide a copper-coated aluminum conductor wire having a high conductivity that has not been obtained with conventional copper-coated aluminum conductor wires.

また、本発明によれば、Cu系材料からなる円筒状のCuパイプ、およびAl系材料からなる円柱状のAl材を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択する第1工程と、それぞれ選択したCuパイプおよびAl材を用い、CuパイプにAl材を装入する第2工程と、Al材が装入されたCuパイプ内を真空引きした状態で前記Cuパイプの両端開口を密封して、Al材が真空封入されたCuパイプの複合ビレットを形成する第3工程と、複合ビレットを400〜450℃に加熱しながら熱間押出しすることにより、Al材およびCuパイプが一体化してなる棒状の銅被覆アルミニウム複合押出材を得る第4工程とを含むことによって、特に従来の製造方法では製造できなかった、Cuパイプに相当する部分の厚さを厚く(例えば前記銅面積率にして30%以上)した棒状の銅被覆アルミニウム複合押出材の製造方法の提供が可能になった。なお、この銅被覆アルミニウム複合押出材は、銅被覆アルミニウム導体線材を製造するための伸線加工用素材として用いるのに好適である他、銅材料からなる棒状の導電部材(例えばブスバー)等の各種部材の代用材として用いれば、軽量化を図ることができる。   Further, according to the present invention, a cylindrical Cu pipe made of a Cu-based material and a columnar Al material made of an Al-based material are selected so that the ratio of deformation resistance values at 500 ° C. is less than 10. A first step, a second step of using each selected Cu pipe and Al material, and charging the Cu pipe with an Al material, and the Cu pipe filled with the Al material in a vacuum-evacuated state. A third step of forming a composite billet of a Cu pipe in which the opening of both ends is sealed and the Al material is vacuum-enclosed, and the composite billet is hot-extruded while being heated to 400 to 450 ° C. And a fourth step of obtaining a rod-shaped copper-coated aluminum composite extruded material formed by integrating the parts, particularly in a portion corresponding to a Cu pipe that could not be manufactured by a conventional manufacturing method. Has become possible to thicken provide manufacturing methods of (e.g., the in to 30% or more copper area ratio) was bar-shaped copper-coated aluminum composite extrusions of. The copper-coated aluminum composite extruded material is suitable for use as a wire drawing material for producing a copper-coated aluminum conductor wire, as well as various kinds of rod-shaped conductive members (for example, bus bars) made of a copper material. If it is used as a substitute for a member, the weight can be reduced.

さらに、本発明によれば、特に上述したAl芯部に対するCu被覆層の面積比が高い被覆アルミニウム導体線材の製造を可能にする銅被覆アルミニウム導体線材の製造方法の提供が可能になった。   Furthermore, according to the present invention, it is possible to provide a method for producing a copper-clad aluminum conductor wire that makes it possible to produce a coated aluminum conductor wire that has a particularly high area ratio of the Cu coating layer to the Al core described above.

図1は、本発明に従う銅被覆アルミニウム導体線材の横断面を模式的に示した図である。FIG. 1 is a diagram schematically showing a cross section of a copper-coated aluminum conductor wire according to the present invention. 図2(a)〜(d)は、本発明に従う銅被覆アルミニウム複合押出材の製造方法を説明するための図であって、(a)が製造フロー図、(b)がAl材をCuパイプに装入(組立)するときの状態を示す図、(c)が複合ビレットを形成するときの状態を示す図、そして、(d)が複合ビレットを熱間押出しするときの状態を示す図である。FIGS. 2A to 2D are views for explaining a method for producing a copper-coated aluminum composite extruded material according to the present invention, wherein FIG. 2A is a production flow diagram, and FIG. The figure which shows the state at the time of charging (assembling), (c) is the figure which shows the state when forming a composite billet, and (d) is the figure which shows the state when hot extruding the composite billet is there. 図3(a)〜(e)は、本発明に従う銅被覆アルミニウム導体線材の製造方法を説明するための図であって、(a)が製造フロー図、(b)がAl材をCuパイプに装入(組立)するときの状態を示す図、(c)が複合ビレットを形成するときの状態を示す図、(d)が複合ビレットを熱間押出しするときの状態を示す図、そして、(e)が銅被覆アルミニウム複合押出材を伸線加工するときの状態を示す図である。FIGS. 3A to 3E are views for explaining a method for producing a copper-coated aluminum conductor wire according to the present invention, in which FIG. 3A is a production flow diagram, and FIG. The figure which shows the state when charging (assembling), (c) is the figure which shows the state when forming a composite billet, (d) is the figure which shows the state when hot extruding a composite billet, and ( It is a figure which shows a state when e) draws a copper covering aluminum composite extruded material.

以下に、本発明の実施形態について、図面を参照しながら詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

(銅被覆アルミニウム導体線材)
図1は、本発明に従う銅被覆アルミニウム導体線材の横断面を模式的に示したものであって、図1中の符号10は銅被覆アルミニウム導体線材、11はアルミニウム(Al)芯部、12は銅(Cu)被覆層である。
(Copper-coated aluminum conductor wire)
FIG. 1 schematically shows a cross section of a copper-coated aluminum conductor wire according to the present invention. In FIG. 1, reference numeral 10 denotes a copper-coated aluminum conductor wire, 11 denotes an aluminum (Al) core, and 12 denotes It is a copper (Cu) coating layer.

図示の銅被覆アルミニウム導体線材10は、Al芯部11と、このAl芯部11の周囲に配置されたCu被覆層12とで主に構成されている。   The illustrated copper-coated aluminum conductor wire 10 is mainly composed of an Al core portion 11 and a Cu coating layer 12 disposed around the Al core portion 11.

Al芯部11は、AlまたはAl合金からなるAl系材料で構成され、特に5000系(Al−Mg系)や、機械的強度が高い6000系(Al−Mg−Si系)のAl合金で構成されているのが、Cu被覆層12とともに押出加工した時における断面積比の均一性に優れている点で好ましい。   The Al core 11 is made of an Al-based material made of Al or an Al alloy, and is particularly made of a 5000-based (Al-Mg-based) or 6000-based (Al-Mg-Si-based) Al alloy having high mechanical strength. It is preferable that it is excellent in the uniformity of the cross-sectional area ratio when extruded together with the Cu coating layer 12.

また、Cu被覆層12は、CuまたはCu合金からなるCu系材料で構成され、特に、Ni−Cu−Ni合金やCu−Zn合金で構成されているのが、Al芯部11とともに押出加工した時における断面積比の均一性に優れている点で好ましい。   Further, the Cu coating layer 12 is made of a Cu-based material made of Cu or a Cu alloy, and particularly made of a Ni—Cu—Ni alloy or a Cu—Zn alloy is extruded together with the Al core portion 11. It is preferable in that it has excellent uniformity in cross-sectional area ratio.

そして、本発明の銅被覆アルミニウム導体線材10は、Al芯部11に対するCu被覆層12の厚さtを、従来の製造方法では製造できなかった、例えば銅被覆アルミニウム導体線材10に占めるCu被覆層12の(断)面積率にして30%以上とすることにあり、より具体的には、銅被覆アルミニウム導体線材10の横断面で見て、Al芯部11の面積S1に対するCu被覆層12の面積S2の比S2/S1を0.43以上とすることを必須の発明特定事項とすることにある。そして、本発明の銅被覆アルミニウム導体線材10は、この構成を採用することにより、従来の銅線材に比べて軽量でありながら、これまでの従来の銅被覆アルミニウム導体線材では得られなかった高導電率を有することができる。   And the copper coating aluminum conductor wire 10 of this invention was not able to manufacture the thickness t of Cu coating layer 12 with respect to Al core part 11 with the conventional manufacturing method, for example, Cu coating layer which occupies for copper coating aluminum conductor wire 10 12 (cut) area ratio is 30% or more. More specifically, the Cu covering layer 12 has an area S1 of the Al core portion 11 as seen in a cross section of the copper-covered aluminum conductor wire 10. It is an essential invention specific matter that the ratio S2 / S1 of the area S2 is 0.43 or more. And the copper covering aluminum conductor wire 10 of this invention employ | adopts this structure, It is lightweight compared with the conventional copper wire, However, The high electroconductivity which was not obtained with the conventional copper covering aluminum conductor wire until now Can have a rate.

また、本発明の銅被覆アルミニウム導体線材10は、Al芯部11の部分で軽量化に寄与させるとともに、従来の銅被覆アルミニウム導体線材に比べて厚く形成できるCu被覆層12の部分で、導電率の向上に寄与させるように構成することを可能としたものである。Al芯部11の面積S1に対するCu被覆層12の面積S2の比S2/S1が0.43未満であると、従来の銅被覆アルミニウム導体線材に比べて、導電率の向上効果が顕著ではなく、線材を用いて構成される工業製品によっては、必要とされる導電率のレベルを満たない場合が想定され、銅被覆アルミニウム導体線材を使用できる工業製品の種類や用途が限定されるからである。   In addition, the copper-coated aluminum conductor wire 10 of the present invention contributes to weight reduction at the Al core portion 11, and at the portion of the Cu coating layer 12 that can be formed thicker than the conventional copper-coated aluminum conductor wire, the conductivity is increased. It can be configured to contribute to the improvement of When the ratio S2 / S1 of the area S2 of the Cu coating layer 12 to the area S1 of the Al core portion 11 is less than 0.43, the effect of improving the conductivity is not significant as compared with the conventional copper-coated aluminum conductor wire, This is because, depending on the industrial product configured using the wire, it is assumed that the required level of electrical conductivity is not satisfied, and the types and applications of the industrial product that can use the copper-coated aluminum conductor wire are limited.

また、銅被覆アルミニウム導体線材10において、軽量と高導電率の双方をバランスよく満足させることを重視する場合には、Al芯部11に対するCu被覆層12の面積比S2/S1を、0.82〜1.23とすることがより好適である。   Further, in the copper-coated aluminum conductor wire 10, when importance is attached to satisfying both light weight and high conductivity in a balanced manner, the area ratio S2 / S1 of the Cu coating layer 12 to the Al core portion 11 is set to 0.82. It is more preferable to set it to -1.23.

さらに、図1の銅被覆アルミニウム導体線材10は、Al芯部11とCu被覆層12とで構成した場合を示しているが、Al芯部11とCu被覆層12との間にNbまたはTaからなる拡散防止層(図示せず)を形成することも可能である。拡散防止層は、銅被覆アルミニウム導体線材10の製造時に熱間押出し等の加熱処理が施される場合に、Al芯部11中のAlや、Cu被覆層12中のCuが相互に熱拡散して、Al芯部11とCu被覆層12との界面等にAl−Cu相が生成するのを有効に防止することができることから、必要に応じて形成することが好ましい。   Furthermore, although the copper covering aluminum conductor wire 10 of FIG. 1 has shown the case where it comprises with the Al core part 11 and the Cu coating layer 12, it is Nb or Ta between Al core part 11 and the Cu coating layer 12. It is also possible to form a diffusion prevention layer (not shown). When the diffusion prevention layer is subjected to heat treatment such as hot extrusion during the production of the copper-coated aluminum conductor wire 10, Al in the Al core 11 and Cu in the Cu coating layer 12 are thermally diffused to each other. Thus, it is possible to effectively prevent the formation of an Al—Cu phase at the interface between the Al core portion 11 and the Cu coating layer 12 or the like.

(銅被覆アルミニウム複合押出材の製造方法)
次に、本発明に従う銅被覆アルミニウム複合押出材20の製造方法について説明する。
図2(a)は、本発明に従う銅被覆アルミニウム複合押出材の製造フローを示したものである。本発明の銅被覆アルミニウム複合押出材20の製造方法は、Al系材料からなる円柱状のAl材21およびCu系材料からなる円筒状のCuパイプ22を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択する第1工程S1と、それぞれ選択したCuパイプ22およびAl材21を用い、Cuパイプ22にAl材21を装入する第2工程S2と、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封して、Al材21が真空封入されたCuパイプ22の複合ビレット23を形成する第3工程S3と、複合ビレット23を400〜450℃に加熱しながら熱間押出しすることにより、Al材21およびCuパイプ22が一体化してなる棒状の銅被覆アルミニウム複合押出材20を得る第4工程S4とを順次行なうものである。
(Method for producing copper-coated aluminum composite extruded material)
Next, the manufacturing method of the copper covering aluminum composite extrusion material 20 according to this invention is demonstrated.
Fig.2 (a) shows the manufacture flow of the copper covering aluminum composite extrusion material according to this invention. In the method for producing the copper-coated aluminum composite extruded material 20 of the present invention, a cylindrical Al pipe 21 made of an Al-based material and a cylindrical Cu pipe 22 made of a Cu-based material have a deformation resistance value ratio of 10 at 500 ° C. 1st process S1 which selects so that it may become less than each, 2nd process S2 which inserts Al material 21 in Cu pipe 22 using each selected Cu pipe 22 and Al material 21, and Al material 21 is charged In a state where the inside of the Cu pipe 22 is evacuated, both ends of the Cu pipe 22 are sealed to form a composite billet 23 of the Cu pipe 22 in which the Al material 21 is vacuum-sealed, and the composite billet 23 A rod-like copper-coated aluminum composite extruded material 20 in which the Al material 21 and the Cu pipe 22 are integrated by hot extrusion while heating to 400 to 450 ° C. In which sequentially perform a fourth step S4 for obtaining.

本発明の銅被覆アルミニウム複合押出材20の製造方法は、Al材21とCuパイプ22とで構成される複合ビレット23を熱間押出しすることによって銅被覆アルミニウム複合押出材20を得る方法であって、熱間押出を行なう複合ビレット23は、Al材21とCuパイプ22の異種材料で構成されているため、Al材21とCuパイプ22の変形抵抗値が大きく異なる場合には、熱間押出し後に得られる銅被覆アルミニウム複合押出材20を構成するAl材に相当する部分(以下「Al材相当部」という場合がある。)とCuパイプに相当する部分(以下「Cuパイプ相当部」という場合がある。)が、均一には押し出されず、Al材相当部に対するCuパイプ相当部の面積比が、所期した面積比にすることができず、さらに、その後に伸線加工を施す場合も同様の問題が生じる。このため、第1工程では、Cu系材料からなる円筒状のCuパイプ22と、Al系材料からなる円柱状のAl材21を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択する。   The method for producing the copper-coated aluminum composite extruded material 20 of the present invention is a method for obtaining the copper-coated aluminum composite extruded material 20 by hot-extruding a composite billet 23 composed of an Al material 21 and a Cu pipe 22. Since the composite billet 23 that performs hot extrusion is composed of different materials of the Al material 21 and the Cu pipe 22, when the deformation resistance values of the Al material 21 and the Cu pipe 22 are greatly different, after the hot extrusion, A portion corresponding to an Al material constituting the obtained copper-coated aluminum composite extruded material 20 (hereinafter sometimes referred to as “Al material equivalent portion”) and a portion corresponding to a Cu pipe (hereinafter referred to as “Cu pipe equivalent portion”). However, it is not uniformly extruded, and the area ratio of the Cu pipe equivalent part to the Al material equivalent part cannot be the expected area ratio. A similar problem is also the case of applying the drawing occurs. For this reason, in the first step, the cylindrical Cu pipe 22 made of a Cu-based material and the columnar Al material 21 made of an Al-based material are each set so that the deformation resistance ratio at 500 ° C. is less than 10. select.

一般に、Al系材料は、Cu系材料よりも軟質であって、変形抵抗値が小さいことが知られている。本発明者らは、純AlからなるAl系材料と、Cu−10質量%Ni合金からなるCu系材料を選択し、本発明の製造方法に従って銅被覆アルミニウム複合押出材を製造したところ、製造された銅被覆アルミニウム複合押出材は、長手方向に断続的に外径が大きい部分と小さい部分とが生じる現象、いわゆるソーセージング現象と呼ばれる不均一形状が生じていて、均一形状(棒状)の銅被覆アルミニウム複合押出材を得ることができないことが判明した。このとき用いた純AlからなるAl系材料と、Cu−10質量%Ni合金からなるCu系材料の変形抵抗値の比は約15であった。   In general, it is known that an Al-based material is softer than a Cu-based material and has a small deformation resistance value. The inventors selected an Al-based material composed of pure Al and a Cu-based material composed of a Cu-10 mass% Ni alloy, and manufactured a copper-coated aluminum composite extruded material according to the manufacturing method of the present invention. The copper-coated aluminum composite extruded material has a phenomenon in which the outer diameter is intermittently large and small, that is, a non-uniform shape called a so-called sausaging phenomenon. It has been found that an aluminum composite extrusion cannot be obtained. The ratio of the deformation resistance value between the Al-based material made of pure Al and the Cu-based material made of Cu-10 mass% Ni alloy used at this time was about 15.

そこで、本発明者らは、異なる組成をもつ種々のCu系材料からなるCuパイプと、異なる組成をもつ種々のAl材を準備し、CuパイプとAl材をいろいろな組合せで、変形抵抗値の差が異なる複合ビレットを作製し、各複合ビレットを熱間押出して得られる押出材の形状を検討した。その結果、CuパイプとAl材の500℃における変形抵抗値の比が10未満になるようにして作製した複合ビレットを熱間押出して得られる押出材は、いずれも均一形状(棒状)を有することを見出した。   Therefore, the present inventors prepared Cu pipes made of various Cu-based materials having different compositions and various Al materials having different compositions. With various combinations of Cu pipes and Al materials, the deformation resistance value can be reduced. Composite billets with different differences were produced, and the shape of the extruded material obtained by hot extrusion of each composite billet was examined. As a result, any extruded material obtained by hot extrusion of a composite billet prepared such that the ratio of the deformation resistance value at 500 ° C. between the Cu pipe and the Al material is less than 10 has a uniform shape (bar shape). I found.

このため、本発明では、Cu系材料からなる円筒状のCuパイプ22と、Al系材料からなる円柱状のAl材21を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択することを必須の発明特定事項とした。なお、熱間押出しや伸線加工の前後で、Al材(Al芯部)に対するCuパイプ(Cu被覆層)の面積比が等しくなるような断面がほぼ相似形になるようにして、長手方向の断面積比の変動をより一層抑制する必要がある場合には、前記変形抵抗値の比が3以下になるようにすることが好ましい。
前記第1工程S1で選択される、Al材21の横断面積に対するCuパイプ22の横断面積の比が、第4工程S4で得られた銅被覆アルミニウム複合押出材20を構成する、Al材相当部の横断面積に対する前記Cuパイプ相当部の横断面積の比の0.43〜2.30の範囲であることが、銅被覆アルミニウム複合押出材20を構成するCuパイプ相当部の厚さを所期した厚さに簡便に設定することができる点で好ましい。
For this reason, in the present invention, the cylindrical Cu pipe 22 made of a Cu-based material and the columnar Al material 21 made of an Al-based material are each selected so that the ratio of deformation resistance values at 500 ° C. is less than 10. This is an essential invention specific matter. In addition, before and after hot extrusion and wire drawing, the cross section in which the area ratio of the Cu pipe (Cu coating layer) to the Al material (Al core portion) is equal is substantially similar, When it is necessary to further suppress the change in the cross-sectional area ratio, it is preferable that the ratio of the deformation resistance values is 3 or less.
The ratio of the cross-sectional area of the Cu pipe 22 to the cross-sectional area of the Al material 21 selected in the first step S1 constitutes the copper-coated aluminum composite extruded material 20 obtained in the fourth step S4. The ratio of the cross-sectional area of the Cu pipe equivalent part to the cross-sectional area of 0.43 to 2.30 is intended to be the thickness of the Cu pipe equivalent part constituting the copper-coated aluminum composite extruded material 20 It is preferable in that the thickness can be easily set.

第2工程S2は、第1工程S1でそれぞれ選択したCuパイプ22およびAl材21を用い、Cuパイプ22にAl材21を装入する工程(図2(b))である。Cuパイプ22は、Al材21の装入を容易にするとともに、その後に行われる第3工程S3でCuパイプ22内の真空引きを行なうことから、Cuパイプ22の内径を、Al材21の直径よりも0.1〜0.5mm程度大きくすることが好ましい。加えて、銅被覆アルミニウム複合押出材20において、Al材相当部とCuパイプ相当部の間にNb等の拡散防止層を設ける場合には、Al材21の表面にNb等の箔を巻き付けてから、このAl材21をCuパイプ22に装入すればよい。また、Al材21は、その後に行われる第3工程S3でCuパイプ22内に真空封入されることから、Al材21の長さをCuパイプ22の長さと同じか、或いは3〜10mm程度短くすることが好ましい。また、Cuパイプ22の内面とAl材21の表面は、熱間押出し後に密着して一体化する必要があるため、Cuパイプ22とAl材21は、Cuパイプ22にAl材21を装入する前に、表面を洗浄することが好ましい。Cuパイプ22の表面は、酸洗浄によって行なえばよいが、Al材21は、酸にもアルカリにも溶ける金属であるため、表面を酸やアルカリでは洗浄せず、機械加工で酸化被膜を除去したきれいな表面にした後に、脱脂ふき取りのみで洗浄することが好ましい。   2nd process S2 is a process (FIG.2 (b)) which inserts the Al material 21 in Cu pipe 22 using Cu pipe 22 and Al material 21 which were each selected in 1st process S1. Since the Cu pipe 22 facilitates the charging of the Al material 21 and evacuates the Cu pipe 22 in the third step S3 performed thereafter, the inner diameter of the Cu pipe 22 is set to the diameter of the Al material 21. It is preferable to make it larger by about 0.1 to 0.5 mm. In addition, in the copper-coated aluminum composite extruded material 20, when a diffusion prevention layer such as Nb is provided between the Al material equivalent part and the Cu pipe equivalent part, a foil such as Nb is wound around the surface of the Al material 21. The Al material 21 may be inserted into the Cu pipe 22. In addition, since the Al material 21 is vacuum-sealed in the Cu pipe 22 in the subsequent third step S3, the length of the Al material 21 is the same as the length of the Cu pipe 22 or about 3 to 10 mm shorter. It is preferable to do. Further, since the inner surface of the Cu pipe 22 and the surface of the Al material 21 need to be closely integrated after hot extrusion, the Cu pipe 22 and the Al material 21 are charged with the Al material 21 in the Cu pipe 22. It is preferred to clean the surface before. The surface of the Cu pipe 22 may be formed by acid cleaning. However, since the Al material 21 is a metal that is soluble in both acid and alkali, the surface is not cleaned with acid or alkali, and the oxide film is removed by machining. It is preferable to clean the surface only by degreasing.

また、他の実施形態として、第2工程S2を行なうに先立ち、Al材21の表面に、NbまたはTaからなる拡散バリア層を形成する工程をさらに行なってもよい。この拡散バリア層は、特にAlとCuの熱拡散を防止するのに有効であることから、銅被覆アルミニウム複合押出材20(およびこの押出材20を用いて製造される銅被覆アルミニウム導体線材10)が熱間押出時やそれ以外の製造工程時に高温の熱履歴を経なければならない場合に、特に設けることが好ましい。   As another embodiment, a step of forming a diffusion barrier layer made of Nb or Ta on the surface of the Al material 21 may be further performed prior to performing the second step S2. Since this diffusion barrier layer is particularly effective for preventing thermal diffusion of Al and Cu, the copper-coated aluminum composite extruded material 20 (and the copper-coated aluminum conductor wire 10 produced using this extruded material 20) Is particularly preferable when a high-temperature heat history is required during hot extrusion or other manufacturing processes.

第3工程S3は、第2工程S2で、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封して、Al材21が真空封入されたCuパイプ22の複合ビレット23を形成する工程(図2(c))である。本発明の製造方法は、熱間押出しの際に複合ビレット23が400℃以上の高温に加熱されるため、複合ビレット23を、Al材21とCuパイプ22で形成する場合には、Al材21とCuパイプ22の間に空気が存在すると、高温加熱下でCuパイプ22の内面が酸化しやすく、Cuパイプ22の内面に酸化膜が形成された状態で熱間押出しすると、Alに対するCuの密着性が劣ることから、本発明において、熱間押出しされる複合ビレット23を、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封して、Al材21が真空封入されたCuパイプ22の複合ビレット23として形成することが必要である。   The third step S3 is a second step S2, in which the opening of both ends of the Cu pipe 22 is sealed in a state where the inside of the Cu pipe 22 in which the Al material 21 is charged is evacuated, and the Al material 21 is vacuum-encapsulated. This is a step of forming the composite billet 23 of the pipe 22 (FIG. 2C). In the manufacturing method of the present invention, the composite billet 23 is heated to a high temperature of 400 ° C. or higher during hot extrusion. Therefore, when the composite billet 23 is formed of the Al material 21 and the Cu pipe 22, the Al material 21 When air is present between the Cu pipe 22 and the Cu pipe 22, the inner surface of the Cu pipe 22 is easily oxidized under high temperature heating, and when hot extrusion is performed with an oxide film formed on the inner surface of the Cu pipe 22, the adhesion of Cu to Al Therefore, in the present invention, the composite billet 23 to be hot extruded is sealed at both ends of the Cu pipe 22 in a state where the inside of the Cu pipe 22 into which the Al material 21 is charged is evacuated. It is necessary to form the composite billet 23 of the Cu pipe 22 in which the material 21 is vacuum-sealed.

複合ビレット23の形成方法としては、種々の方法が考えられるが、一例として挙げると、まず、Al材21が装入されたCuパイプ22を真空チャンバー内に回転可能にセットし、次いで、Cuパイプ22の両端にCu製の蓋24、24を被せる。このとき、Cuパイプ22の両端開口は蓋24で閉ざされているものの、気体が出入りできないような気密(密封)状態にはなっていないため、Cuパイプ22の内部と外部(真空チャンバー内)とは連通していて気体が自由に出入りできる状態になっている。その後、真空チャンバー内を真空引きして、蓋24をしたCuパイプ22の内部に存在する空気を外部へ吸引して排出した後、真空チャンバー内に設置された電子ビーム溶接機の電子銃(陰極)25から放射させた電子ビームを、Cuパイプ22を回転させながらCuパイプ22と蓋24の嵌合部分の全周にわたって照射することによって溶接し、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封することができ、これによって、Al材21が真空封入されたCuパイプ22の複合ビレット23を形成することができる。このようにして形成した複合ビレット23は、その後、大気中で熱間押出しを行なったとしても、Cuパイプ22の内面が酸化することがなく、常に安定して均一形状の銅被覆アルミニウム複合押出材20を得るのに好適な複合ビレット23を形成することができる。   Various methods can be considered as a method of forming the composite billet 23. For example, first, the Cu pipe 22 charged with the Al material 21 is set in a vacuum chamber so as to be rotatable, and then the Cu pipe. The lids 24 and 24 made of Cu are put on both ends of 22. At this time, although both end openings of the Cu pipe 22 are closed by the lid 24, they are not in an airtight (sealed) state in which gas cannot enter and exit, so the inside and outside of the Cu pipe 22 (inside the vacuum chamber) Is in communication and allows gas to enter and exit freely. Thereafter, the inside of the vacuum chamber is evacuated, and the air existing inside the Cu pipe 22 with the lid 24 is sucked out and discharged, and then an electron gun (cathode) of an electron beam welding machine installed in the vacuum chamber. ) The electron beam emitted from 25 is welded by irradiating the entire circumference of the fitting portion between the Cu pipe 22 and the lid 24 while rotating the Cu pipe 22, and the inside of the Cu pipe 22 in which the Al material 21 is inserted. The openings at both ends of the Cu pipe 22 can be sealed in a vacuumed state, whereby the composite billet 23 of the Cu pipe 22 in which the Al material 21 is vacuum-sealed can be formed. Even if the composite billet 23 thus formed is subsequently hot extruded in the atmosphere, the inner surface of the Cu pipe 22 does not oxidize, and the copper-clad aluminum composite extruded material is always stably and uniformly shaped. A composite billet 23 suitable for obtaining 20 can be formed.

第4工程S4は、複合ビレット23を400〜450℃に加熱しながら熱間押出しすることにより、前記Al材および前記Cuパイプが一体化してなる棒状の銅被覆アルミニウム複合押出材20を得る工程(図2(d))である。熱間押出し時の複合ビレット23の加熱温度は、400〜450℃とする。前記加熱温度が400℃よりも低いと、熱間押出しに用いるプレス機26の圧力が高くなりすぎ、熱間押出時の減面率を大きくすることができず、所定の径にするには、さらに伸線加工を行なうか、あるいは伸線加工の回数を多くしなくてはならず、効率良く製造することができなくなるからである。また、前記加熱温度が450℃よりも高いと、Alの溶融や、AlやCuの熱拡散が生じやすくなるからである。本発明では、複合ビレット23を400〜450℃に加熱しながら熱間押出しすることにより、Al材21とCuパイプ22とを密着一体化させて、均一形状をした棒状の銅被覆アルミニウム複合押出材20を得ることができる。複合ビレット23の熱間押出しは、具体的には複合ビレット23をコンテナ27の中に入れ、400〜450℃に加熱した後にプレス機26によって複合ビレットに圧力を加えてダイスから押し出すことにより行えばよい。なお、熱間押出しの回数は、特に限定はしないが、歩留りやコストのことを考慮して、1回とすることが好ましい。   In the fourth step S4, the composite billet 23 is hot-extruded while being heated to 400 to 450 ° C., thereby obtaining a rod-like copper-coated aluminum composite extruded material 20 in which the Al material and the Cu pipe are integrated ( FIG. 2 (d)). The heating temperature of the composite billet 23 at the time of hot extrusion is set to 400 to 450 ° C. When the heating temperature is lower than 400 ° C., the pressure of the press machine 26 used for hot extrusion becomes too high, and the area reduction rate during hot extrusion cannot be increased. This is because the wire drawing process must be performed or the number of wire drawing processes must be increased, resulting in an inefficient production. Further, if the heating temperature is higher than 450 ° C., melting of Al and thermal diffusion of Al and Cu are likely to occur. In the present invention, the composite billet 23 is hot-extruded while being heated to 400 to 450 ° C., whereby the Al material 21 and the Cu pipe 22 are closely integrated to form a uniform bar-shaped copper-coated aluminum composite extruded material. 20 can be obtained. Specifically, the hot extrusion of the composite billet 23 is performed by placing the composite billet 23 in a container 27, heating the composite billet 23 to 400 to 450 ° C., and applying pressure to the composite billet by a press machine 26 and extruding it from a die. Good. The number of hot extrusions is not particularly limited, but is preferably set once in consideration of yield and cost.

また、本発明の銅被覆アルミニウム複合押出材の製造方法によって得られる銅被覆アルミニウム複合押出材20を用い、この押出材20に伸線加工を施して所定の線径の銅被覆アルミニウム導体線材10を形成する場合には、熱間押出し時の減面率を85.0%以上99.5%未満と大きくすることが、伸線加工を行なう回数を少なくできる点で好ましい。熱間押出し時の減面率が85.0%未満だと、熱間押出後の押出材20の径を十分に縮径することができず、伸線加工を行なう回数が多くなって、製造設備が大型化するなどの問題が生じるため好ましくなく、また、前記減面率が99.5%未満としたのは、熱間押出しのプレス機26のプレス圧力の限界を考慮して限定したものである。   Further, the copper-coated aluminum composite extruded material 20 obtained by the method for producing a copper-coated aluminum composite extruded material of the present invention is used, and the extruded material 20 is subjected to wire drawing to obtain a copper-coated aluminum conductor wire 10 having a predetermined wire diameter. In the case of forming, it is preferable to increase the area reduction ratio at the time of hot extrusion to 85.0% or more and less than 99.5% because the number of wire drawing processes can be reduced. If the area reduction ratio during hot extrusion is less than 85.0%, the diameter of the extruded material 20 after hot extrusion cannot be sufficiently reduced, and the number of wire drawing operations increases, producing It is not preferable because the problem of an increase in the size of the equipment occurs, and the reduction in area is less than 99.5% in consideration of the press pressure limit of the hot extrusion press 26. It is.

また、熱間押出し時における押出材20の形成速度は、特に限定はしないが、例えば5〜100mm/secで行なうことができる。さらに、熱間押出しに用いるダイス28の角度は60〜120°とすることが好ましい。ダイス28の角度が60°以上だと、熱間押出しにより得られる押出材20におけるCuとAlとが密着性よく一体化される傾向があるからであり、また、ダイス28の角度が120°以下だと、熱間押出しにより得られる押出材20の両端における不良部の生成割合が少なく、高い歩留まりで押出材20を製造できる傾向があるからである。なお、ここでいう「ダイスの角度」は、ダイスの軸線方向断面で見て、複合ビレットの押出方向に向かって円錐台状に延び、複合ビレットが接触するダイスの傾斜表面を、仮想円錐の頂点まで延長して傾斜表面同士を交差させたときの交角(頂角)を意味する。   Moreover, the formation speed of the extruded material 20 at the time of hot extrusion is not particularly limited, but may be 5 to 100 mm / sec, for example. Furthermore, the angle of the die 28 used for hot extrusion is preferably 60 to 120 °. This is because if the angle of the die 28 is 60 ° or more, Cu and Al in the extruded material 20 obtained by hot extrusion tend to be integrated with good adhesion, and the angle of the die 28 is 120 ° or less. This is because the proportion of defective portions generated at both ends of the extruded material 20 obtained by hot extrusion is small, and the extruded material 20 tends to be manufactured with a high yield. Note that the "die angle" here refers to the inclined surface of the die that extends in a frustoconical shape toward the extrusion direction of the composite billet when viewed in the axial cross section of the die, and the vertex of the virtual cone. It means the angle of intersection (vertical angle) when the inclined surfaces are crossed with each other.

(銅被覆アルミニウム導体線材の製造方法)
また、本発明に従う銅被覆アルミニウム導体線材10の製造方法は、上述した銅被覆アルミニウム複合押出材の製造方法を用いて製造された銅被覆アルミニウム複合押出材に、伸線加工を施す第5工程(図3(e))を含む製造方法である。図3(a)は、本発明に従う銅被覆アルミニウム導体線材10の製造フローを示したものである。なお、本発明の銅被覆アルミニウム導体線材10の製造方法の主要工程である第1工程S1から第5工程S5のうち、第1工程S1から第4工程S4までは、上述した本発明の銅被覆アルミニウム複合押出材の製造方法と同様であり、図3(a)〜図3(d)と図2(a)〜(d)は同じ工程を示しており、説明は省略する。
(Method for producing copper-coated aluminum conductor wire)
Moreover, the manufacturing method of the copper covering aluminum conductor wire 10 according to this invention is the 5th process (drawing process) to the copper covering aluminum composite extruded material manufactured using the manufacturing method of the copper covering aluminum composite extruded material mentioned above ( It is a manufacturing method including FIG.3 (e)). Fig.3 (a) shows the manufacture flow of the copper covering aluminum conductor wire 10 according to this invention. In addition, from 1st process S1 to 5th process S5 which are the main processes of the manufacturing method of the copper covering aluminum conductor wire 10 of this invention, from 1st process S1 to 4th process S4, the copper coating of this invention mentioned above is mentioned. It is the same as the manufacturing method of an aluminum composite extrusion material, FIG.3 (a)-FIG.3 (d) and FIG.2 (a)-(d) have shown the same process, and abbreviate | omit description.

伸線加工は、複数回行なわれる。1回の伸線加工における減面率は、15〜30%とすることが好ましい。前記減面率が30%を超えると、断線の恐れがあり、また、前記減面率が15%未満だと、伸線加工の回数が多くなるとともに、線材の内部に加工力が十分に伝わらないため、不均一な加工になりやすいため好ましくない。   The wire drawing process is performed a plurality of times. The area reduction rate in one wire drawing is preferably 15 to 30%. If the area reduction ratio exceeds 30%, there is a risk of disconnection. If the area reduction ratio is less than 15%, the number of wire drawing operations increases and the working force is sufficiently transmitted to the inside of the wire. This is not preferable because non-uniform processing is likely to occur.

また、伸線加工は、常温で行なわれ、加工によって銅被覆層12に導入された加工歪みを除去する必要がある場合には、加工途中に200〜300℃程度の温度で1回または複数回の中間焼鈍を行うことが好ましい。   Further, the wire drawing is performed at room temperature, and when it is necessary to remove the processing strain introduced into the copper coating layer 12 by the processing, it is performed once or a plurality of times at a temperature of about 200 to 300 ° C. during the processing. It is preferable to perform the intermediate annealing.

さらに、第4工程S4で得られた銅被覆アルミニウム複合押出材20を構成する、Al材相当部の横断面積0.4に対するCuパイプ相当部の横断面積の比が、第5工程S5で得られた銅被覆アルミニウム導体線材10を構成する、Al芯部11の横断面積S1に対するCu被覆層12の横断面積S2の比S2/S1の0.43〜2.30の範囲であることが、銅被覆アルミニウム導体線材10を構成するCu被覆層12の厚さを所期した厚さに簡便に設定することができる点で好ましい。   Further, the ratio of the cross-sectional area of the Cu pipe equivalent part to the cross-sectional area 0.4 of the Al material equivalent part constituting the copper-coated aluminum composite extruded material 20 obtained in the fourth process S4 is obtained in the fifth process S5. It is the copper coating that the ratio S2 / S1 of the cross-sectional area S2 of the Cu coating layer 12 to the cross-sectional area S1 of the Al core 11 constituting the copper-coated aluminum conductor wire 10 is in the range of 0.43 to 2.30. This is preferable in that the thickness of the Cu coating layer 12 constituting the aluminum conductor wire 10 can be easily set to a desired thickness.

本発明の銅被覆アルミニウム導体線材10の製造方法は、線径が50〜100μm程度の極細な銅被覆アルミニウム導体線を製造することができ、銅線に近い導電率を有しつつ、銅線よりも軽量化が図れているので、自動車用電線や同軸ケーブルの中心線に使用できるのは勿論のこと、さらには、ボイスコイルのような微小コイル等に用いられる導体線として用いるのに特に適している。   The method for producing the copper-coated aluminum conductor wire 10 of the present invention can produce an extremely fine copper-coated aluminum conductor wire having a wire diameter of about 50 to 100 μm, and has a conductivity close to that of a copper wire, while having a conductivity close to that of a copper wire. Is also suitable for use as a conductor wire used for a micro coil such as a voice coil as well as a center line of an automobile electric wire or a coaxial cable. Yes.

なお、本発明の銅被覆アルミニウム導体線材の製造方法は、フォーミング加工法やめっき法のような従来の製造方法では製造することができなかった、Cu被覆層の厚さを厚く(例えばAl芯部に対する前記Cu被覆層の面積比にして0.43以上)した銅被覆アルミニウム導体線材を製造することを可能にするだけではなく、Cu被覆層の厚さが薄い従来の銅被覆アルミニウム導体線材を製造することもできることから、顧客の要求に応じて、Cu被覆層の厚さを広範囲にわたって所望の厚さにした銅被覆アルミニウム導体線材の供給も可能にすることができる。   In addition, the manufacturing method of the copper-coated aluminum conductor wire of the present invention increases the thickness of the Cu coating layer (for example, an Al core portion) that could not be manufactured by a conventional manufacturing method such as a forming method or a plating method. In addition to making it possible to produce a copper-coated aluminum conductor wire with an area ratio of the Cu coating layer to 0.43 or more), a conventional copper-coated aluminum conductor wire with a thin Cu coating layer is produced. Therefore, it is possible to supply a copper-coated aluminum conductor wire in which the thickness of the Cu coating layer is set to a desired thickness over a wide range according to the customer's request.

次に、本発明の実施例によって更に詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例I:銅被覆アルミニウム複合押出材の製造)
表1に示す種々のCu系材料からなる円筒状のCuパイプ22(外径:200mm、内径:130.0mm、長さ:805.0mm)と、表1に示す種々のAl系材料からなる円柱状のAl材21(直径:129.5mm、長さ:800.0mm)を選択した。Cuパイプ22とAl材21の変形抵抗値の比を表1に示す。
(Example I: Production of copper-coated aluminum composite extruded material)
Cylindrical Cu pipes 22 (outer diameter: 200 mm, inner diameter: 130.0 mm, length: 805.0 mm) made of various Cu-based materials shown in Table 1, and circles made of various Al-based materials shown in Table 1 A columnar Al material 21 (diameter: 129.5 mm, length: 800.0 mm) was selected. Table 1 shows the ratio of the deformation resistance values of the Cu pipe 22 and the Al material 21.

次に、Cuパイプ22の内面及び外面を酸洗浄し、また、Al材21の表面は、機械加工で酸化被膜を除去した後に、脱脂ふき取りのみの表面洗浄を行った後に、Cuパイプ22にAl材21を装入した。その後、Al材21が装入されたCuパイプ22の両端にCu製の蓋24を被せ、このCuパイプ22を真空チャンバー内に回転可能にセットし、真空チャンバー内を10−5Pa以下まで真空引きして、蓋24をしたCuパイプ22の内部に存在する空気を外部へ吸引して排出した後、真空チャンバー内に設置された電子ビーム溶接機の電子銃25から放射された電子ビームを、Cuパイプ22を回転させながらCuパイプ22と蓋24の嵌合部分の全周にわたって照射して溶接し、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封することによって、Al材21が真空封入されたCuパイプ22の複合ビレット23を形成した。次に、この複合ビレット23を430℃に加熱しながら熱間押出しすることにより、Al材21およびCuパイプ22を一体化してなる、外径:75mm、長さ:10mの棒状の銅被覆アルミニウム複合押出材20(実施例1−1〜1−4)を作製した。なお、熱間押出し時の減面率は85.0%とした。また、作製した銅被覆アルミニウム複合押出材20のうち、その両端からそれぞれ全長の5%に相当する長さ部分を除いた、全長の90%に相当する長さ部分について、ソーセージング現象と呼ばれる不均一形状の発生の有無を外観目視で観察した結果を表1に示す。表1中の「×」は、前記銅被覆アルミニウム複合押出材の全長の90%に相当する長さ部分が、熱間押出し時の押出径(75mm)に対する押出材の外径の変動幅が±2%を超えていて不均一形状が発生、または破断が生じている場合(不合格)を示しており、また、「◎」および「○」は、熱間押出し時の押出径(75mm)に対する押出材の外径の変動幅が±2%以内である場合(合格品)を示すものであって、特に、「◎」は前記変動幅が±1%以内である場合を示している。
参考のため、変形抵抗値の比が、本発明の適正範囲外である組合せのCuパイプとAl材を用いたことを除いて、実施例と同様の製造方法で銅被覆アルミニウム複合押出材(比較例2−1および2−2)を作製したので、表1に併記した。
Next, the inner surface and outer surface of the Cu pipe 22 are acid cleaned, and the surface of the Al material 21 is subjected to surface cleaning only by degreasing after the oxide film is removed by machining, and then the Cu pipe 22 is subjected to Al cleaning. Material 21 was charged. Thereafter, a Cu lid 24 is put on both ends of the Cu pipe 22 charged with the Al material 21, the Cu pipe 22 is set to be rotatable in the vacuum chamber, and the inside of the vacuum chamber is vacuumed to 10 −5 Pa or less. Then, the air existing inside the Cu pipe 22 with the lid 24 is sucked and discharged outside, and then the electron beam emitted from the electron gun 25 of the electron beam welder installed in the vacuum chamber is While rotating the Cu pipe 22, the entire circumference of the fitting portion between the Cu pipe 22 and the lid 24 is irradiated and welded, and both ends of the Cu pipe 22 are evacuated while the inside of the Cu pipe 22 in which the Al material 21 is charged is evacuated. By sealing the opening, the composite billet 23 of the Cu pipe 22 in which the Al material 21 was vacuum-sealed was formed. Next, the composite billet 23 is hot-extruded while being heated to 430 ° C., and the Al material 21 and the Cu pipe 22 are integrated. A rod-shaped copper-coated aluminum composite having an outer diameter of 75 mm and a length of 10 m. Extruded material 20 (Examples 1-1 to 1-4) was produced. The area reduction rate during hot extrusion was 85.0%. Further, in the produced copper-coated aluminum composite extruded material 20, a length portion corresponding to 90% of the total length excluding a length portion corresponding to 5% of the total length from both ends thereof is referred to as a so-called phenomenon. Table 1 shows the results of visual observation of the appearance of uniform shapes. In Table 1, “x” indicates that the length corresponding to 90% of the total length of the copper-coated aluminum composite extruded material has a fluctuation range of the outer diameter of the extruded material with respect to the extruded diameter (75 mm) during hot extrusion is ± It shows the case where the non-uniform shape is generated or exceeds 2%, or the fracture occurs (fail), and “◎” and “◯” indicate the extrusion diameter (75 mm) at the time of hot extrusion. This indicates the case where the fluctuation range of the outer diameter of the extruded material is within ± 2% (accepted product), and in particular, “」 ”indicates the case where the fluctuation range is within ± 1%.
For reference, a copper-coated aluminum composite extruded material (comparative) was produced by the same manufacturing method as in the examples except that a combination of a Cu pipe and an Al material having a deformation resistance ratio outside the proper range of the present invention was used. Examples 2-1 and 2-2) were prepared and are also shown in Table 1.

Figure 2017047448
Figure 2017047448

表1に示す結果から、実施例1−1〜1−4は、いずれも均一な棒状の銅被覆アルミニウム複合押出材が得られた。また、実施例1−1〜1−4で得られた押出材をその後切断して、Al材相当部に対するCuパイプ相当部の面積比を、押出材の長手方向に沿って調べたところ、いずれもほぼ1であった。一方、変形抵抗比が本発明の適正範囲外である比較例1−1および1−2は、いずれも不均一形状が生じていた。また、比較例1−1および1−2で得られた押出材をその後切断して、Al材相当部に対するCuパイプ相当部の面積比を、押出材の長手方向に沿って調べたところ、いずれも0.5〜1.5の範囲であり、Cuパイプ相当部の厚さに大きなバラツキがあることを確認した。   From the results shown in Table 1, in Examples 1-1 to 1-4, a uniform bar-shaped copper-coated aluminum composite extruded material was obtained. Moreover, when the extrusion material obtained in Examples 1-1 to 1-4 was then cut, and the area ratio of the Cu pipe equivalent part to the Al material equivalent part was examined along the longitudinal direction of the extrusion material, Was almost 1. On the other hand, in Comparative Examples 1-1 and 1-2, in which the deformation resistance ratio is outside the proper range of the present invention, both had non-uniform shapes. Moreover, when the extrusion material obtained by Comparative Examples 1-1 and 1-2 was cut | disconnected after that and the area ratio of the Cu pipe equivalent part with respect to Al material equivalent part was investigated along the longitudinal direction of an extrusion material, it was Was also in the range of 0.5 to 1.5, and it was confirmed that there was a large variation in the thickness of the portion corresponding to the Cu pipe.

(実施例II:銅被覆アルミニウム導体線材の製造)
純Cuからなる円筒状のCuパイプ22と、6063番のAl合金からなる円柱状のAl材21を、表2に示すAl材に対するCuパイプの面積比になるような異なる横断面積をもつ種々のものを用意した。なお、用意したCuパイプとAl材は、変形抵抗比が2.0であり、CuパイプとAl材で構成される複合ビレットを構成する、Al材に対するCuパイプの面積比と、最終的に得られる銅被覆アルミニウム導体線材を構成する、Al芯部に対するCu被覆層の面積比とは、ほぼ同じであった。
(Example II: Production of copper-coated aluminum conductor wire)
The cylindrical Cu pipe 22 made of pure Cu and the columnar Al material 21 made of No. 6063 Al alloy have various cross-sectional areas having different area ratios of the Cu pipe to the Al material shown in Table 2. I prepared something. The prepared Cu pipe and the Al material have a deformation resistance ratio of 2.0, and the area ratio of the Cu pipe to the Al material constituting the composite billet composed of the Cu pipe and the Al material is finally obtained. The area ratio of the Cu coating layer to the Al core portion constituting the copper-coated aluminum conductor wire to be obtained was almost the same.

次に、Cuパイプ22の内面及び外面を酸洗浄し、また、Al材21の表面は、機械加工で酸化被膜を除去した後に、脱脂ふき取りのみの表面洗浄を行った後に、Cuパイプ22にAl材21を装入した。その後、Al材21が装入されたCuパイプ22の両端にCu製の蓋24を被せ、このCuパイプ22を真空チャンバー内に回転可能にセットし、真空チャンバー内を10−5Pa以下まで真空引きして、蓋24をしたCuパイプ22の内部に存在する空気を外部へ吸引して排出した後、真空チャンバー内に設置された電子ビーム溶接機の電子銃25から放射された電子ビームを、Cuパイプ22を回転させながらCuパイプ22と蓋24の嵌合部分の全周にわたって照射して溶接し、Al材21が装入されたCuパイプ22内を真空引きした状態でCuパイプ22の両端開口を密封することによって、Al材21が真空封入されたCuパイプ22の複合ビレット23を形成した。次に、この複合ビレット23を430℃に加熱しながら熱間押出しすることにより、Al材21およびCuパイプ22を一体化してなる棒状の銅被覆アルミニウム複合押出材20(外径:75mm、長さ:6m)を作製した。なお、熱間押出し時の減面率は85.0%とした。その後、この押出材20に、250℃の中間焼鈍を施した後に、減面率が25%の伸線加工を30回施して、線径8mmの銅被覆アルミニウム導体線材(実施例2−1〜2−7)を作製し、作製した各銅被覆アルミニウム導体線材について、導電率、重量、屈曲性および交差圧縮性について評価した結果を表2に示す。参考のため、従来の特許文献2記載の電気メッキ法と同様な製造方法で製造した、Al芯部に対するCu被覆層の面積比が0.1である銅被覆アルミニウム導体線材(比較例2−1)についても作製したので、表2に併記した。 Next, the inner surface and outer surface of the Cu pipe 22 are acid cleaned, and the surface of the Al material 21 is subjected to surface cleaning only by degreasing after the oxide film is removed by machining, and then the Cu pipe 22 is subjected to Al cleaning. Material 21 was charged. Thereafter, a Cu lid 24 is put on both ends of the Cu pipe 22 charged with the Al material 21, the Cu pipe 22 is set to be rotatable in the vacuum chamber, and the inside of the vacuum chamber is vacuumed to 10 −5 Pa or less. Then, the air existing inside the Cu pipe 22 with the lid 24 is sucked and discharged outside, and then the electron beam emitted from the electron gun 25 of the electron beam welder installed in the vacuum chamber is While rotating the Cu pipe 22, the entire circumference of the fitting portion between the Cu pipe 22 and the lid 24 is irradiated and welded, and both ends of the Cu pipe 22 are evacuated while the inside of the Cu pipe 22 in which the Al material 21 is charged is evacuated. By sealing the opening, the composite billet 23 of the Cu pipe 22 in which the Al material 21 was vacuum-sealed was formed. Next, the composite billet 23 is hot-extruded while being heated to 430 ° C., so that the rod-like copper-coated aluminum composite extruded material 20 (outer diameter: 75 mm, length) formed by integrating the Al material 21 and the Cu pipe 22. : 6 m). The area reduction rate during hot extrusion was 85.0%. Thereafter, the extruded material 20 was subjected to an intermediate annealing at 250 ° C., and then subjected to a wire drawing process having a surface reduction rate of 25% 30 times to obtain a copper-coated aluminum conductor wire having a wire diameter of 8 mm (Example 2-1 Table 2 shows the results of evaluating the electrical conductivity, weight, flexibility, and cross-compressibility of each of the copper-coated aluminum conductor wires produced. For reference, a copper-coated aluminum conductor wire manufactured by the same manufacturing method as the electroplating method described in Patent Document 2 and having an area ratio of the Cu coating layer to the Al core portion of 0.1 (Comparative Example 2-1) ) Was also prepared and is shown in Table 2.

(導電率)
導電率は、JIS H 0505−1975に従い測定し、Cu線の導電率を100としたときの銅被覆アルミニウム導体線材の導電率を指数比で表したものを表2に示す。
(conductivity)
The electrical conductivity is measured according to JIS H 0505-1975, and the electrical conductivity of the copper-coated aluminum conductor wire when the electrical conductivity of the Cu wire is taken as 100 is shown in Table 2.

(重量)
重量は、長さ10mの線材の重量を化学天秤により測定し、Cu線の重量を100としたときの銅被覆アルミニウム導体線材の重量を指数比で表したものを表2に示す。
(weight)
Table 2 shows the weight of the copper-coated aluminum conductor wire measured by the chemical balance and the weight of the copper-coated aluminum conductor wire when the weight of the Cu wire is 100.

(屈曲性)
屈曲性は、銅被覆アルミニウム導体線材を180°折り返して、ヘアピン状に曲げ、そのとき、ヘアピン曲げ部に1mm以上の割れ等の欠陥の発生の有無を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することによって評価した。表2に屈曲性の評価結果を示す。表2中に示す屈曲性の欄の「◎」は、ヘアピン曲げ部に割れ等の欠陥が存在しない場合を示し、また、「○」は、ヘアピン曲げ部に1mm未満の微小な欠陥が存在する場合を示し、「×」は、ヘアピン曲げ部に1mm以上の割れ等の欠陥が存在する場合を示す。
(Flexibility)
Flexibility is determined by bending a copper-coated aluminum conductor wire 180 ° and bending it into a hairpin shape. At that time, the presence or absence of defects such as cracks of 1 mm or more in the hairpin bent portion is observed with an optical microscope or a scanning electron microscope (SEM). Evaluation was made by observation. Table 2 shows the evaluation results of flexibility. “◎” in the column of flexibility shown in Table 2 indicates a case where there is no defect such as a crack in the hairpin bent portion, and “◯” indicates a minute defect of less than 1 mm in the hairpin bent portion. "X" shows the case where defects, such as a crack of 1 mm or more, exist in a hairpin bending part.

(交差圧縮性)
交差圧縮性は、銅被覆アルミニウム導体線材を90°に交差させ、この交差部を線材の線径の半分になる位置まで押圧し、このとき、線材の表面における割れの発生の有無を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することによって評価した。表2に交差圧縮性の評価結果を示す。表2中に示す交差圧縮性の欄の「○」は、線材の表面に割れの発生が認められない場合、「×」は、線材の表面に割れの発生が認められた場合を示す。
(Cross compression)
Cross compressibility is achieved by crossing a copper-coated aluminum conductor wire at 90 ° and pressing the intersecting portion to a position that is half the wire diameter of the wire. At this time, the presence or absence of cracks on the surface of the wire is checked with an optical microscope or Evaluation was made by observing with a scanning electron microscope (SEM). Table 2 shows the evaluation results of the cross-compressibility. “◯” in the column of cross-compressibility shown in Table 2 indicates that cracks are not observed on the surface of the wire, and “x” indicates that cracks are observed on the surface of the wire.

Figure 2017047448
Figure 2017047448

表2に示す結果から、実施例2−1〜2−7は、いずれも屈曲性および交差圧縮性が優れていた。特に、実施例2−3〜2−7は、屈曲性に優れていた。一方、Al芯部に対するCu被覆層の面積率が0.1と小さい比較例2−1は、屈曲性および交差圧縮性の双方ともが劣っていた。   From the results shown in Table 2, Examples 2-1 to 2-7 were all excellent in flexibility and cross compression. In particular, Examples 2-3 to 2-7 were excellent in flexibility. On the other hand, Comparative Example 2-1 in which the area ratio of the Cu coating layer to the Al core portion was as small as 0.1 was inferior in both flexibility and cross-compressibility.

本発明によれば、従来の銅線材に比べて軽量を維持しつつ、これまでの従来の銅被覆アルミニウム導体線材では得られなかった高導電率を有する銅被覆アルミニウム導体線の提供が可能になった。また、本発明によれば、特に従来の製造方法では製造できなかった、Cuパイプ相当部の厚さを厚く(例えば前記銅面積率にして30%以上)した棒状の銅被覆アルミニウム複合押出材の製造方法の提供が可能になった。なお、この銅被覆アルミニウム複合押出材は、銅被覆アルミニウム導体線材を製造するための伸線加工用素材として用いるのに好適である他、銅材料からなる棒状の導電部材(例えばブスバー)等の各種部材の代用材として用いれば、軽量化を図ることができる。さらに、本発明によれば、特に、上述したAl芯部に対するCu被覆層の面積比が高い被覆アルミニウム導体線材の製造を可能にする銅被覆アルミニウム導体線材の製造方法の提供が可能になり、自動車用電線や同軸ケーブルの中心線への適用の他、さらには、ボイスコイルのような微小コイル等に用いられる導体線に適用することが期待される。   According to the present invention, it is possible to provide a copper-coated aluminum conductor wire having a high conductivity that has not been obtained with conventional copper-coated aluminum conductor wires while maintaining a lighter weight than conventional copper wires. It was. Further, according to the present invention, a rod-like copper-coated aluminum composite extruded material in which the thickness of the portion corresponding to the Cu pipe, which could not be produced by the conventional production method, is increased (for example, the copper area ratio is 30% or more). A manufacturing method can be provided. The copper-coated aluminum composite extruded material is suitable for use as a wire drawing material for producing a copper-coated aluminum conductor wire, as well as various kinds of rod-shaped conductive members (for example, bus bars) made of a copper material. If it is used as a substitute for a member, the weight can be reduced. Furthermore, according to the present invention, in particular, it is possible to provide a method for producing a copper-coated aluminum conductor wire that enables the production of a coated aluminum conductor wire having a high area ratio of the Cu coating layer to the Al core described above. In addition to the application to the center line of industrial wires and coaxial cables, it is expected to be applied to a conductor wire used for a minute coil such as a voice coil.

10 銅被覆アルミニウム導体線材
11 Al芯部
12 Cu被覆層
20 銅被覆アルミニウム複合押出材
21 Al材
22 Cuパイプ
23 複合ビレット
24 蓋
25 電子銃(陰極)
26 プレス機
27 コンテナ
28 ダイス
DESCRIPTION OF SYMBOLS 10 Copper covering aluminum conductor wire 11 Al core part 12 Cu coating layer 20 Copper covering aluminum compound extrusion material 21 Al material 22 Cu pipe 23 Composite billet 24 Lid 25 Electron gun (cathode)
26 Press machine 27 Container 28 Dice

Claims (9)

Cu系材料からなる円筒状のCuパイプ、およびAl系材料からなる円柱状のAl材を、500℃における変形抵抗値の比が10未満になるようにそれぞれ選択する第1工程と、
それぞれ選択した前記Cuパイプおよび前記Al材を用い、前記Cuパイプに前記Al材を装入する第2工程と、
前記Al材が装入された前記Cuパイプ内を真空引きした状態で前記Cuパイプの両端開口を密封して、前記Al材が真空封入されたCuパイプの複合ビレットを形成する第3工程と、
該複合ビレットを400〜450℃に加熱しながら熱間押出しすることにより、前記Al材および前記Cuパイプを一体化してなる棒状の銅被覆アルミニウム複合押出材を得る第4工程と
を含むことを特徴とする、銅被覆アルミニウム複合押出材の製造方法。
A first step of selecting a cylindrical Cu pipe made of a Cu-based material and a columnar Al material made of an Al-based material so that the ratio of deformation resistance values at 500 ° C. is less than 10, respectively;
Using the selected Cu pipe and the Al material, respectively, a second step of charging the Al material into the Cu pipe;
A third step of forming a composite billet of the Cu pipe in which the Al material is vacuum-sealed by sealing both end openings of the Cu pipe in a state where the inside of the Cu pipe in which the Al material is charged is evacuated;
And a fourth step of obtaining a rod-like copper-coated aluminum composite extruded material obtained by integrating the Al material and the Cu pipe by hot extrusion while heating the composite billet to 400 to 450 ° C. A method for producing a copper-coated aluminum composite extruded material.
前記第1工程における前記変形抵抗値の比が3以下である、請求項1に記載の銅被覆アルミニウム複合押出材の製造方法。   The manufacturing method of the copper covering aluminum composite extrusion material of Claim 1 whose ratio of the said deformation resistance value in a said 1st process is 3 or less. 前記第2工程を行なうに先立ち、前記Al材の表面に、NbまたはTaからなる拡散バリア層を形成する工程をさらに含む、請求項1または2に記載の銅被覆アルミニウム複合押出材の製造方法。   The method for producing a copper-clad aluminum composite extruded material according to claim 1 or 2, further comprising a step of forming a diffusion barrier layer made of Nb or Ta on the surface of the Al material prior to performing the second step. 前記第4工程における熱間押出し時の減面率を85.0%以上99.9%未満とする、請求項1〜3のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法。   The manufacturing method of the copper covering aluminum composite extrusion material of any one of Claims 1-3 which makes the area reduction rate at the time of the hot extrusion in the said 4th process 85.0% or more and less than 99.9%. 前記第1工程で選択される、前記Al材の横断面積に対する前記Cuパイプの横断面積の比が、前記第4工程で得られた前記銅被覆アルミニウム複合押出材を構成する、前記Al材に相当する部分の横断面積に対する前記Cuパイプに相当する部分の横断面積の比の0.43〜2.30の範囲である、請求項1〜4のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法。   The ratio of the cross-sectional area of the Cu pipe to the cross-sectional area of the Al material selected in the first step corresponds to the Al material constituting the copper-coated aluminum composite extruded material obtained in the fourth step. The copper-coated aluminum composite extruded material according to any one of claims 1 to 4, wherein a ratio of a cross-sectional area of a portion corresponding to the Cu pipe to a cross-sectional area of the portion to be processed is in a range of 0.43 to 2.30. Manufacturing method. 請求項1〜5のいずれか1項に記載の銅被覆アルミニウム複合押出材の製造方法を用いて製造された銅被覆アルミニウム複合押出材に、伸線加工を施して銅被覆アルミニウム導体線材を得る第5工程を含む、銅被覆アルミニウム導体線材の製造方法。   A copper-coated aluminum composite extruded material produced using the method for producing a copper-coated aluminum composite extruded material according to any one of claims 1 to 5 is subjected to wire drawing to obtain a copper-coated aluminum conductor wire. The manufacturing method of a copper covering aluminum conductor wire including 5 processes. 前記第4工程で得られた前記銅被覆アルミニウム複合押出材を構成する、前記Al材に相当する部分の横断面積に対する前記Cuパイプに相当する部分の横断面積の比が、前記第5工程で得られた前記銅被覆アルミニウム導体線材を構成する、Al芯部の横断面積に対するCu被覆層の横断面積の比の0.43〜2.30の範囲である、請求項6に記載の銅被覆アルミニウム複合押出材の製造方法。   The ratio of the cross-sectional area of the portion corresponding to the Cu pipe to the cross-sectional area of the portion corresponding to the Al material constituting the copper-coated aluminum composite extruded material obtained in the fourth step is obtained in the fifth step. The copper-coated aluminum composite according to claim 6, wherein the ratio of the cross-sectional area of the Cu coating layer to the cross-sectional area of the Al core constituting the copper-coated aluminum conductor wire is 0.43 to 2.30. Method for producing extruded material. Al系材料からなるAl芯部と、該Al芯部の周囲に配置された、Cu系材料からなるCu被覆層とを有する銅被覆アルミニウム導体線材であって、
前記銅被覆アルミニウム導体線材の横断面で見て、前記Al芯部に対する前記Cu被覆層の面積比が、0.43以上であることを特徴とする銅被覆アルミニウム導体線材。
A copper-coated aluminum conductor wire having an Al core portion made of an Al-based material and a Cu coating layer made of a Cu-based material disposed around the Al core portion,
An area ratio of the Cu coating layer to the Al core portion is 0.43 or more when viewed in a cross section of the copper-coated aluminum conductor wire.
前記Al芯部に対する前記Cu被覆層の面積比が、0.82〜1.23である、請求項8に記載の銅被覆アルミニウム導体線材。   The copper-coated aluminum conductor wire according to claim 8, wherein an area ratio of the Cu coating layer to the Al core is 0.82 to 1.23.
JP2015172345A 2015-09-01 2015-09-01 Method for producing copper-coated aluminum composite extruded material, copper-coated aluminum conductor wire, and method for producing the same Active JP6251710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172345A JP6251710B2 (en) 2015-09-01 2015-09-01 Method for producing copper-coated aluminum composite extruded material, copper-coated aluminum conductor wire, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172345A JP6251710B2 (en) 2015-09-01 2015-09-01 Method for producing copper-coated aluminum composite extruded material, copper-coated aluminum conductor wire, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017047448A true JP2017047448A (en) 2017-03-09
JP6251710B2 JP6251710B2 (en) 2017-12-20

Family

ID=58278482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172345A Active JP6251710B2 (en) 2015-09-01 2015-09-01 Method for producing copper-coated aluminum composite extruded material, copper-coated aluminum conductor wire, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6251710B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599531A (en) * 2020-05-29 2020-08-28 珠海蓉胜超微线材有限公司 Copper-coated carbon nano composite wire and preparation method thereof
CN112122377A (en) * 2020-08-05 2020-12-25 昆明理工大学 Semi-solid forming method for copper-clad aluminum composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223611A (en) * 1984-04-21 1985-11-08 Japan Steel Works Ltd:The Backward extrusion molding method of two-layered pipe material
JPH01224111A (en) * 1988-03-03 1989-09-07 Showa Electric Wire & Cable Co Ltd Manufacture of composite wire rod
JPH04230905A (en) * 1990-08-31 1992-08-19 Sumitomo Electric Ind Ltd Copper-clad aluminum composite wire and manufacture thereof
JPH04315524A (en) * 1991-04-10 1992-11-06 Kobe Steel Ltd Member for bonding together copper material and aluminum material and manufacture thereof
JP2004304483A (en) * 2003-03-31 2004-10-28 Pioneer Electronic Corp Voice coil for speaker and speaker device
JP2004342561A (en) * 2003-05-19 2004-12-02 Kobe Steel Ltd Nb3sn superconductive wire
JP2010135138A (en) * 2008-12-03 2010-06-17 Fujikura Ltd Manufacturing method for copper-clad aluminum wire and copper-clad aluminum wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223611A (en) * 1984-04-21 1985-11-08 Japan Steel Works Ltd:The Backward extrusion molding method of two-layered pipe material
JPH01224111A (en) * 1988-03-03 1989-09-07 Showa Electric Wire & Cable Co Ltd Manufacture of composite wire rod
JPH04230905A (en) * 1990-08-31 1992-08-19 Sumitomo Electric Ind Ltd Copper-clad aluminum composite wire and manufacture thereof
JPH04315524A (en) * 1991-04-10 1992-11-06 Kobe Steel Ltd Member for bonding together copper material and aluminum material and manufacture thereof
JP2004304483A (en) * 2003-03-31 2004-10-28 Pioneer Electronic Corp Voice coil for speaker and speaker device
JP2004342561A (en) * 2003-05-19 2004-12-02 Kobe Steel Ltd Nb3sn superconductive wire
JP2010135138A (en) * 2008-12-03 2010-06-17 Fujikura Ltd Manufacturing method for copper-clad aluminum wire and copper-clad aluminum wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599531A (en) * 2020-05-29 2020-08-28 珠海蓉胜超微线材有限公司 Copper-coated carbon nano composite wire and preparation method thereof
CN112122377A (en) * 2020-08-05 2020-12-25 昆明理工大学 Semi-solid forming method for copper-clad aluminum composite material

Also Published As

Publication number Publication date
JP6251710B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6105561B2 (en) Aluminum alloy inner surface grooved heat transfer tube
JP4533254B2 (en) Metal surface joining method
JP6251710B2 (en) Method for producing copper-coated aluminum composite extruded material, copper-coated aluminum conductor wire, and method for producing the same
CN113020423A (en) Forming method of dissimilar metal laminated thin-wall cylindrical part
US3631586A (en) Manufacture of copper-clad aluminum rod
CN102527768A (en) Manufacturing method of copper-clad aluminum pipe
JP2007152398A (en) Manufacturing method for copper-clad aluminum wire
US20110162763A1 (en) Method for Producing Copper-Clad Aluminum Wire
JP6288433B2 (en) Copper coil material, copper coil material manufacturing method, copper flat wire manufacturing method, and coated flat wire manufacturing method
CN105845192B (en) Copper, aluminum and steel three-layer clad composite wire and formation method thereof
CN104934107A (en) Composite conductor
JP6655769B1 (en) Plating wire rod, manufacturing method of the plating wire rod, and cable, electric wire, coil, wire harness, spring member, enamel wire, and lead wire using the plating wire rod
CN104002101A (en) Manufacturing method for long fiber texture organization metal materials
RU2588937C2 (en) Method of making mandrel for rolling with piercing
JPH1030896A (en) Manufacture of high corrosion-resistant aluminum tube and high corrosion-resistant aluminum tube manufactured based on the same method
HU214381B (en) Copper pipe with oxidized inside and method for producing thereof
US2120561A (en) Composite metallic bodies
JP2001150247A (en) Electrode wire for wire electric discharge machining
JP5877739B2 (en) Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
US11053569B2 (en) Alloying-element additive and method of manufacturing copper alloy
CN105895268A (en) Preparation technology of copper-zinc-aluminum three-layer composite wire
JP7415287B2 (en) Aluminum base wire material, stranded wire, and method for producing aluminum base wire material
JP6204450B2 (en) Aluminum alloy flat tube for heat exchanger and method for producing the same, heat exchanger core and method for producing the same
SU803725A1 (en) Blank for making superconducting cable product
JP2635769B2 (en) Manufacturing method of seamless aluminum clad tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6251710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250