JP2017047135A - Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent - Google Patents

Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent Download PDF

Info

Publication number
JP2017047135A
JP2017047135A JP2015175214A JP2015175214A JP2017047135A JP 2017047135 A JP2017047135 A JP 2017047135A JP 2015175214 A JP2015175214 A JP 2015175214A JP 2015175214 A JP2015175214 A JP 2015175214A JP 2017047135 A JP2017047135 A JP 2017047135A
Authority
JP
Japan
Prior art keywords
nanofibers
nanofiber
titanium dioxide
chitosan
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175214A
Other languages
Japanese (ja)
Inventor
裕輝 森本
Hiroki Morimoto
裕輝 森本
敏 大澤
Satoshi Osawa
敏 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Sugino Machine Ltd
Original Assignee
Kanazawa Institute of Technology (KIT)
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT), Sugino Machine Ltd filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2015175214A priority Critical patent/JP2017047135A/en
Publication of JP2017047135A publication Critical patent/JP2017047135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an environment cleaning agent which can efficiently perform adsorption and decomposition of and does not easily become saturated with environmental load substances such as dioxin and the like, and which can continually perform environment cleaning.SOLUTION: Provided is an environment cleaning agent comprising titanium dioxide supported on nanofibers such as cellulose nanofibers, chitin-chitosan nanofibers, and the like. The nanofibers are chitin nanofibers or chitin-chitosan nanofibers fibrillated and opened by a high-pressure injection treatment. The titanium dioxide is one having a hydroxyapatite film thereon. The environment cleaning agent is produced by mixing a dispersion fluid of the nanofibers with titanium dioxide coated with a hydroxyapatite film, followed by drying.SELECTED DRAWING: None

Description

本発明は、ナノファイバー、特にキチンナノファイバーまたはキトサンナノファイバーに二酸化チタンを含浸した環境浄化剤、環境浄化方法、および、環境浄化剤の製造方法に関する。 The present invention relates to an environmental purification agent, an environmental purification method, and a production method of an environmental purification agent, in which nanofibers, particularly chitin nanofibers or chitosan nanofibers are impregnated with titanium dioxide.

従来、環境負荷を軽減し、健康被害を減らすため、様々な有害物質を規制する動きが盛んに行なわれている。ホルムアルデヒド、アセトアルデヒド、ダイオキシンが代表的であるが、近年は、1.4ジオキサン(1.4-Dioxane)、アクリルアミド、メチルメルカプタン等の対応も問題になっている。 Conventionally, in order to reduce the environmental burden and reduce health damage, there are many efforts to regulate various harmful substances. Although formaldehyde, acetaldehyde, and dioxin are typical, in recent years, correspondence with 1.4 dioxane, acrylamide, methyl mercaptan, and the like has also become a problem.

例えば、ホルムアルデヒド等は、反応性が高く、高分子素材を用いた工業製品の製造や加工、圧縮木材製品、さらには、壁紙、塗料等の家庭用の消費製品にも使用されている。ホルムアルデヒドは、人体への有害性が高く、目や鼻の粘膜だけでなく、呼吸系統の粘膜も刺激し、毒作用が報告されるケースが増えている。そのため、シックハウス症候群の原因物質としての関連性が疑われている。 For example, formaldehyde and the like are highly reactive, and are used in manufacturing and processing of industrial products using polymer materials, compressed wood products, and household consumer products such as wallpaper and paint. Formaldehyde is highly harmful to the human body, and it not only stimulates the mucous membranes of the eyes and nose but also the mucous membrane of the respiratory system, and there are an increasing number of cases where toxic effects are reported. Therefore, the relevance as a causative substance of sick house syndrome is suspected.

一方、キチン・キトサンは、従来からホルムアルデヒド等の環境負荷物質や悪臭成分を、吸着・抗菌する物質として知られている。例えば、室内等で発生する不快臭を吸着・除去する繊維製品、フィルムおよびこれらの二次製品である衣類、寝具、カーテン、室内内装品等に応用したものが開示されている(特許文献1)。
また、天然高分子であるキトサン膜の破砕物を多彩模様形成材料として含む塗料組成物が開示されている(特許文献2)。
On the other hand, chitin / chitosan is conventionally known as a substance that adsorbs and antibacts environmentally hazardous substances such as formaldehyde and malodorous components. For example, a textile product, a film that absorbs and removes unpleasant odors generated in a room, etc., and a secondary product such as clothing, bedding, curtains, indoor interior products, etc. are disclosed (Patent Document 1). .
In addition, a coating composition containing a crushed material of a chitosan film, which is a natural polymer, as a multicolor pattern forming material is disclosed (Patent Document 2).

また、二酸化チタンは、紫外線(UV)を照射することによって、有機物、二酸化硫黄、二酸化窒素等を分解する作用、いわゆる光触媒作用を呈し、汚染物質の除去に用いられていた。例えば、ポリマー質ナノファイバー表面に酸化チタン微粒子を積層被膜した光触媒機能を有するナノファイバーシートおよびその製造方法が開示されている(特許文献3)。   In addition, titanium dioxide exhibits an action of decomposing organic matter, sulfur dioxide, nitrogen dioxide, etc. by irradiating ultraviolet rays (UV), so-called photocatalytic action, and has been used for removing contaminants. For example, a nanofiber sheet having a photocatalytic function in which titanium oxide fine particles are laminated and coated on the surface of a polymer nanofiber and a method for producing the same are disclosed (Patent Document 3).

なお、本願の出願人等は、キチン・キトサン、あるいはその複合体を含む平均繊維径が20nm程度のナノファイバーを、酸、アルカリ、有機溶媒等を一切使用せず、水のみを用いて調製する技術を既に開示している(特許文献4)。また、バイオマス原料であるカルボキシメチルセルロースを、酸を使用せずに、媒体として水を用いて効率的にナノファイバー化したカルボキシメチルセルロースナノファイバー等を既に開示している(特許文献5)。 The applicant of the present application prepares nanofibers having an average fiber diameter of about 20 nm containing chitin / chitosan or a complex thereof using only water without using any acid, alkali, organic solvent or the like. The technology has already been disclosed (Patent Document 4). Moreover, the carboxymethylcellulose nanofiber etc. which made the carboxymethylcellulose which is a biomass raw material efficiently nanofiber using water as a medium, without using an acid have already been disclosed (patent document 5).

特開2001−329433号公報JP 2001-329433 A 特許第4178309号公報Japanese Patent No. 4178309 特開2005−264386号公報JP 2005-264386 A 特開2011−167237号公報JP 2011-167237 A 特開2015−977号公報Japanese Patent Laid-Open No. 2015-977

しかしながら、従来、キチン・キトサンを成形加工するには、弱酸で溶解させる方法が一般的であり、弱酸で溶解成形したフィルムやシートは、耐水性が乏しく、フィルム強度が弱い等の問題があった。また、特殊なアミド溶剤を利用し、溶解させて成形加工する方法もあるが、アミド溶剤には毒性があり、このような方法は環境保護の点で好ましくない。 Conventionally, however, chitin / chitosan is generally molded by a weak acid, and the film or sheet melt-molded with a weak acid has problems such as poor water resistance and weak film strength. . In addition, there is a method in which a special amide solvent is used for dissolution and molding, but the amide solvent is toxic and such a method is not preferable from the viewpoint of environmental protection.

また、キトサン等は、環境負荷物質を吸着・保持できるが、分解まではできない。このため、吸着が飽和状態になると、環境負荷物質を吸着できなくなるため、連続的に発生する環境負荷物質に対し、適宜、新しいフィルムや多孔質体に交換しなければならない、といった課題があった。さらに、キトサン等をコーティング剤に使用する場合においても、同様の理由から、適宜、再塗工等の対策を行なう必要があり、再利用しにくい、といった課題があった。   Chitosan and the like can adsorb and retain environmentally hazardous substances, but cannot decompose them. For this reason, when the adsorption becomes saturated, it becomes impossible to adsorb the environmentally hazardous substance, and there is a problem that the continuously generated environmentally hazardous substance has to be appropriately replaced with a new film or porous body. . Further, when chitosan or the like is used as a coating agent, for the same reason, it is necessary to take measures such as recoating as appropriate, and there is a problem that it is difficult to reuse.

また、二酸化チタンのみを積層した場合、基板表面に固着されるよりは結合させた状態となるものの、結合度という点においては、改善の余地があった。二酸化チタンによる分解は、触媒作用によるため、反応物と二酸化チタンが接触する必要があるが、二酸化チタン単体では吸着能を持たないため、反応物と接触するまでの時間が反応時間の律速になっていた。さらに、二酸化チタンが分解することによって、基材となるキトサン等も損傷してしまう、といった課題があった。 Further, when only titanium dioxide is laminated, there is room for improvement in terms of the degree of bonding, although it is in a bonded state rather than being fixed to the substrate surface. Decomposition by titanium dioxide is due to catalytic action, so it is necessary for the reactant and titanium dioxide to come into contact with each other. However, since titanium dioxide alone does not have adsorption capacity, the time until it comes into contact with the reactant becomes the rate-determining reaction time. It was. Furthermore, when titanium dioxide decomposes, there is a problem that chitosan or the like serving as a base material is damaged.

他方、ホルムアルデヒド等は揮発性を有しており、ホルムアルデヒド等の浄化を行なう際、効率的に吸着・分解しなければならない。また、気相での浄化のみならず液相や固相での浄化にも応用できることが望ましい。そして、環境適合性に優れ、持続的な効果が維持できることが望ましい。 On the other hand, formaldehyde and the like are volatile, and must be efficiently adsorbed and decomposed when purifying formaldehyde and the like. It is also desirable to be able to apply not only to purification in the gas phase but also to purification in the liquid phase or solid phase. And it is desirable that it is excellent in environmental compatibility and can maintain a sustainable effect.

そこで、本発明の目的は、環境負荷物質に対して吸着・分解を効率的に行なうことができ、飽和状態になり難くして持続的に環境浄化を行なうことが可能になる環境浄化剤、環境浄化方法、および、環境浄化剤の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide an environmental purification agent, an environment that can efficiently adsorb and decompose environmentally hazardous substances, and that can be continuously purified without being saturated. It is providing the purification method and the manufacturing method of an environmental purification agent.

本願の発明者らは、キチンナノファイバーまたはキトサンナノファイバー等のナノファイバーを使用すれば、ホルムアルデヒド等の環境負荷物質や悪臭成分の吸着・抗菌することができるが、環境負荷物質を分解するとまでは言えないところ、二酸化チタンを含有させることで、ホルムアルデヒド等の環境負荷物質の浄化を、吸着のみならず分解を持続的に行なうことができ、しかも環境に優しく環境適合性を有していることに着目して本発明を完成させた。 By using nanofibers such as chitin nanofibers or chitosan nanofibers, the inventors of the present application can adsorb and antibacterial environmentally harmful substances such as formaldehyde and malodorous components. It cannot be said that by containing titanium dioxide, it is possible to purify environmentally hazardous substances such as formaldehyde continuously as well as adsorption, and to be environmentally friendly and environmentally friendly. The present invention was completed with attention.

上記課題を解決するための手段として、本発明の環境浄化剤は、ホルムアルデヒド、アセトアルデヒド、ダイオキシン等の環境負荷物質を分解する環境浄化剤において、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバー等のナノファイバーに二酸化チタンを含有させたことを特徴とする。 As a means for solving the above-mentioned problems, the environmental purification agent of the present invention is an environmental purification agent that decomposes environmentally hazardous substances such as formaldehyde, acetaldehyde, dioxin, etc. The fiber is characterized by containing titanium dioxide.

本発明の環境浄化方法は、環境負荷物質は、ホルムアルデヒド、アセトアルデヒド、ダイオキシン、硝酸、亜硝酸アンモニウム、アンモニア、1.4ジオキサン(1.4-Dioxane)、アクリルアミド、トルエン、キシレン、硫化水素、トリメチルアミン、メチルメルカプタンのうちの少なくとも1つを含み、環境負荷物質を増加させながら本発明の環境浄化剤を使用して吸着・分解を同時に行なうことを特徴とする。
本発明によれば、環境負荷物質に対して、吸着・分解を効率的に行なうことができ、飽和状態になり難くして、持続的な環境浄化を行なうことが可能になる。
In the environmental purification method of the present invention, environmental load substances are formaldehyde, acetaldehyde, dioxin, nitric acid, ammonium nitrite, ammonia, 1.4 dioxane, acrylamide, toluene, xylene, hydrogen sulfide, trimethylamine, methyl. It includes at least one of mercaptans, and is characterized in that adsorption and decomposition are simultaneously performed using the environmental purification agent of the present invention while increasing environmental load substances.
ADVANTAGE OF THE INVENTION According to this invention, it can adsorb | suck and decompose | disassemble with respect to an environmental load substance efficiently, it becomes difficult to become a saturated state, and it becomes possible to perform a continuous environmental purification.

光触媒は、太陽、蛍光灯等の光が当たると、その表面で強力な酸化力が生まれ、接触してくる有機化合物、細菌等の有害物質を除去することができる。光触媒には、次の機能があることが知られている。気中のNOx、SOx、ホルムアルデヒド等の有害物質の除去(空気浄化)、アセトアルデヒド、アンモニア、硫化水素等の悪臭の分解(脱臭)、水中に溶解した汚染物質であるテトラクロロエチレン、トリクロロエチレン等の揮発性有機塩素化合物の分解・除去(浄水)、抗菌作用によるクリーンな環境(抗菌)、窓ガラスや外壁等の汚れを防ぐ(防汚)等である。このため、優れた環境浄化材料と言える。また、これらの機能を有する各種浄化剤と混ぜて、例えば、地質改良剤、土壌改良剤や水質浄化剤等や、これらと混ぜて使用することができ、固相等にも適用可能である。 When the photocatalyst is exposed to light from the sun, a fluorescent lamp, or the like, a strong oxidizing power is generated on the surface, and harmful substances such as organic compounds and bacteria that come into contact with the photocatalyst can be removed. It is known that the photocatalyst has the following functions. Removal of harmful substances such as NOx, SOx and formaldehyde in the air (air purification), decomposition of odors such as acetaldehyde, ammonia and hydrogen sulfide (deodorization), and volatile organic substances such as tetrachloroethylene and trichlorethylene which are pollutants dissolved in water These include decomposition and removal of chlorine compounds (purified water), clean environment with antibacterial action (antibacterial), and prevention of dirt on window glass and outer walls (antifouling). For this reason, it can be said that it is an excellent environmental purification material. Moreover, it can mix with various purification agents which have these functions, for example, can improve a geological improvement agent, a soil improvement agent, a water quality purification agent, etc., these can be used, and is applicable also to a solid phase etc.

本発明の環境浄化方法は、さらに、環境負荷物質は、1.4ジオキサン、アクリルアミド、メチルメルカプタン等に対する環境浄化も期待できる。
1.4-ジオキサン(1.4-Dioxane)は、常圧常温において、無色透明の液体の有機化合物である。分子式は、C482である。ジエチルエーテルの臭気を弱くしたような臭気を持ち、非プロトン性溶媒として用いられる。構造異性体に1.2-ジオキサンと1.3-ジオキサンがある。可燃性液体であり、日本では消防法により危険物第4類(第一石油類)に指定されている。また、PRTR法第1種指定化学物質でもある。さらに、後述されているがんリスクにより、労働安全衛生法の第二類物質特別有機溶剤等にも指定されている。アクリルアミドは、融点は84.5℃、常温では無臭白色結晶で、水、アルコール等に可溶である。熱や光に不安定であり、重合しやすいため、市販の試薬や工業薬品には、安定剤(重合禁止剤)としてヒドロキノンBHT等が添加される。アクリルアミドは、毒物および劇物取締法上の劇物に指定されており、神経毒性・肝毒性を有し、皮膚からも吸収されるため、取扱いには注意を必要とする。
The environmental purification method of the present invention can also be expected to purify the environment with respect to environmentally hazardous substances such as 1.4 dioxane, acrylamide, methyl mercaptan and the like.
1.4-Dioxane is a colorless and transparent liquid organic compound at normal pressure and normal temperature. The molecular formula is C 4 H 8 O 2 . It has an odor that weakens the odor of diethyl ether and is used as an aprotic solvent. Structural isomers include 1.2-dioxane and 1.3-dioxane. It is a flammable liquid and is designated as a hazardous material class 4 (first petroleum) by the Fire Service Act in Japan. It is also a PRTR Law Class 1 Designated Chemical Substance. Furthermore, it is designated as a special organic solvent of the second kind of the occupational safety and health law due to the cancer risk described later. Acrylamide has a melting point of 84.5 ° C., odorless white crystals at room temperature, and is soluble in water, alcohol, and the like. Since it is unstable to heat and light and easily polymerized, hydroquinone BHT or the like is added as a stabilizer (polymerization inhibitor) to commercially available reagents and industrial chemicals. Acrylamide is designated as a deleterious substance under the Poisonous and Deleterious Substances Control Law, has neurotoxicity and hepatotoxicity, and is absorbed from the skin.

本発明の環境負荷物質の態様は、気相(空相)、液相、固相等、どの相であっても構わない。所定の容量を装置に送り、本発明の環境浄化剤と物理的に接触させるが、所定時間経過後、本発明の環境浄化剤に紫外線(UV)を照射することで、吸着した環境負荷物質を分解し、浄化機能を落とさないで持続的に環境浄化することができる。 The aspect of the environmental load substance of the present invention may be any phase such as gas phase (air phase), liquid phase, solid phase and the like. A predetermined volume is sent to the apparatus and brought into physical contact with the environmental purification agent of the present invention. After a predetermined time has elapsed, the environmental purification material of the present invention is irradiated with ultraviolet rays (UV) to thereby adsorb the adsorbed environmental load substance. It can be decomposed and the environment can be continuously purified without degrading the purification function.

本発明の環境浄化剤の製造方法は、ホルムアルデヒド、アセトアルデヒド等の環境負荷物質を分解する環境浄化剤の製造方法において、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバー等のナノファイバーの分散流体を生成するステップと、二酸化チタンを含有するステップと、乾燥させるステップとを備え、環境浄化剤を製造することを特徴とする。 The method for producing an environmental purification agent of the present invention is a method for producing an environmental purification agent that decomposes environmentally hazardous substances such as formaldehyde and acetaldehyde, and generates a dispersion fluid of nanofibers such as cellulose nanofibers, chitin nanofibers, or chitosan nanofibers. And a step of containing titanium dioxide and a step of drying, characterized in that an environmental purification agent is produced.

本発明によれば、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバーを用いることによって、高耐水性および高強度の吸着剤のフィルムやシートを形成することができ、キトサン等を溶解させることなく水分散液を得ることができる。また、開繊・解繊された多孔質なセルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバーを足場として酸化チタンを担持させることができる。すなわち、フィルム状やシート状の表面に安定して担持できるので、簡易に幅広く環境浄化することができる。 According to the present invention, by using cellulose nanofibers, chitin nanofibers or chitosan nanofibers, it is possible to form a highly water-resistant and high-strength adsorbent film or sheet, and water without dissolving chitosan or the like. A dispersion can be obtained. In addition, titanium oxide can be supported by using a porous cellulose nanofiber, chitin nanofiber or chitosan nanofiber that has been opened and disassembled as a scaffold. That is, since it can be stably supported on a film-like or sheet-like surface, the environment can be easily and widely purified.

本発明によれば、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバーを用いることによって、高耐水性、および高強度の吸着剤のフィルム状やシート状を形成することができ、キトサンを溶解させることなく水分散液を得ることができる。その結果、フィルム内で有害物質を吸着・保持することができる。 According to the present invention, by using cellulose nanofiber, chitin nanofiber or chitosan nanofiber, it is possible to form a film or sheet of adsorbent with high water resistance and high strength, and to dissolve chitosan. An aqueous dispersion can be obtained. As a result, harmful substances can be adsorbed and retained in the film.

また、二酸化チタンは、ホルムアルデヒド、アセトアルデヒド等の環境負荷物質を分解する機能を持ち、キチンナノファイバーまたはキトサンナノファイバーのフィルムやシートによって吸着した環境負荷物質を効果的に分解することができる。
そして、本発明によれば、環境負荷物質に対して吸着・分解を効率的に行なうことができ、これらの反応を吸着飽和状態であっても、連続的に生じる持続的に環境浄化を行なうことができる。
Titanium dioxide has a function of decomposing environmentally hazardous substances such as formaldehyde and acetaldehyde, and can effectively decompose environmentally hazardous substances adsorbed by a film or sheet of chitin nanofiber or chitosan nanofiber.
According to the present invention, it is possible to efficiently adsorb and decompose environmentally hazardous substances, and to continuously perform environmental purification that continuously generates these reactions even in an adsorption saturated state. Can do.

本発明に用いる高圧噴射装置の外観図である。It is an external view of the high-pressure injection device used for the present invention. 本発明に用いるフィルム状のキトサンナノファイバーを示す図である。It is a figure which shows the film-form chitosan nanofiber used for this invention. 本発明におけるキトサンナノファイバーとハイドロキシアパタイト被膜二酸化チタンの複合体のSEM画像である。It is a SEM image of the composite of chitosan nanofiber and hydroxyapatite-coated titanium dioxide in the present invention. 本発明の実験における液相でのレマゾールブリリアントブルーR(RBBR)の吸着分解結果を示す図である。It is a figure which shows the adsorption decomposition result of the Remazol brilliant blue R (RBBR) in the liquid phase in experiment of this invention. 本発明の環境保護剤の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the environmental protection agent of this invention.

本発明を実施するための形態を以下に説明する。 The form for implementing this invention is demonstrated below.

本発明は、ナノファイバー1に、環境負荷物質を分解するための二酸化チタン2を含浸させた環境浄化剤である。   The present invention is an environmental purification agent in which nanofibers 1 are impregnated with titanium dioxide 2 for decomposing environmental load substances.

ナノファイバー1は、例えば、キチンナノファイバーまたはキトサンナノファイバーであり、ナノファイバー1の平均径(短径)は、4〜100nm程度、好ましくは4〜50nm程度、より好ましくは4〜40nm程度、さらに好ましくは4〜25nm程度、最も好ましくは20nm程度である。ナノファイバー1は、キチン・キトサンの分散流体3を、株式会社スギノマシンが開発したウォータージェットを用いた高圧噴射装置4に投入し、高圧ノズル5から高圧噴射することによって製造することができる。高圧噴射装置4を用いて100〜245MPaの高圧噴射処理を施すと、セルロースでも同様のペースト(ゲル状)のものが得られる。こうして得られたナノファイバー1は、透明もしくは半透明なフィルム状に加工することもできる。高圧噴射処理装置4の好適な実用機としては、例えば、株式会社スギノマシン製の「スターバースト(登録商標)」が挙げられる。 The nanofiber 1 is, for example, chitin nanofiber or chitosan nanofiber, and the average diameter (short diameter) of the nanofiber 1 is about 4 to 100 nm, preferably about 4 to 50 nm, more preferably about 4 to 40 nm, Preferably it is about 4-25 nm, Most preferably, it is about 20 nm. The nanofiber 1 can be manufactured by putting the dispersion fluid 3 of chitin / chitosan into a high-pressure injection device 4 using a water jet developed by Sugino Machine Co., Ltd. and injecting the high-pressure from a high-pressure nozzle 5. When a high-pressure spraying process of 100 to 245 MPa is performed using the high-pressure spraying device 4, a similar paste (gel-like) can be obtained with cellulose. The nanofiber 1 thus obtained can be processed into a transparent or translucent film. As a suitable practical machine of the high-pressure jet processing apparatus 4, for example, “Starburst (registered trademark)” manufactured by Sugino Machine Co., Ltd. may be mentioned.

具体的には、キチン・キトサン等の結晶性ないし水難溶性の天然高分子を水の分散流体3とし、高圧噴射処理によりキチンナノファイバーまたはキトサンナノファイバーとすることができる。「分散流体」とは、キチン・キトサンを水に分散したものであり、濃度が薄い場合には、流動性の分散液になるが、特に、キチン・キトサンが微細化するにしたがって粘性が高くなり、濃度が高くなるとペーストに近い性状となる。キチンナノファイバーまたはキトサンナノファイバーの分散流体3の濃度は、高濃度ほど処理効率が高まるため好ましい。なお、分散流体3中の濃度は、例えば、1〜20重量%程度、好ましくは1〜15重量%程度、さらに好ましくは1〜10重量%程度であってもよい。 Specifically, a crystalline or sparingly water-soluble natural polymer such as chitin / chitosan can be used as the water dispersion fluid 3 to form chitin nanofibers or chitosan nanofibers by high-pressure jetting treatment. “Dispersion fluid” is a dispersion of chitin / chitosan in water. When the concentration is low, it becomes a fluid dispersion, but the viscosity increases especially as chitin / chitosan becomes finer. When the concentration is high, the properties are close to paste. The concentration of the dispersion fluid 3 of chitin nanofibers or chitosan nanofibers is preferably higher because the treatment efficiency increases. The concentration in the dispersion fluid 3 may be, for example, about 1 to 20% by weight, preferably about 1 to 15% by weight, and more preferably about 1 to 10% by weight.

キチン・キトサンの原料は、繊維状、粒状等の任意の形態であってもよい。キチンは、エビ、カニ等の甲殻類の殻等を直接原料として使用することができる。キチン・キトサンは、一般的に知られている方法で除タンパク質・脱カルシウム処理された精製キチン・キトサンを原料として使用するのが好ましい。なお、キチン・キトサンは、市販の原料を使用してもよい。 The raw material of chitin / chitosan may be in any form such as fibrous or granular. Chitin can be used as a raw material directly from shells of shellfish such as shrimps and crabs. As chitin / chitosan, it is preferable to use purified chitin / chitosan which has been subjected to deproteinization / decalcification treatment by a generally known method as a raw material. Chitin / chitosan may be a commercially available raw material.

キトサンは、カニ、エビといった甲殻類の殻からとれるキチンを脱アセチル化することで得ることができるため、海洋バイオマスとして知られる環境調和性がある高分子である。セルロースのヒドロキシル基の一つがアミノ基になった構造であり、生体適合性や発芽成長促進性を有するため、土壌改良材にも応用されており、微生物の栄養源となることも期待できる。また、有害物質の吸着機能も有しており、本研究で対象としているホルムアルデヒドを吸着することができる。 Chitosan is an environmentally friendly polymer known as marine biomass because it can be obtained by deacetylating chitin from crustacean shells such as crabs and shrimps. It has a structure in which one of the hydroxyl groups of cellulose is an amino group, and has biocompatibility and germination growth promotion. Therefore, it is also applied to soil improvement materials and can be expected to be a nutrient source for microorganisms. It also has the function of adsorbing harmful substances and can adsorb formaldehyde, which is the subject of this research.

高圧噴射装置4で原料を高圧噴射処理すると、キトサン等は繊維の長さを保ったまま繊維同士の絡まりがほどけて細くなる(解繊される)。なお、「ナノファイバー」とは、繊維の径(幅)がナノサイズになったものを意味する。ナノファイバー1の直径(幅)は、電子顕微鏡写真により測定することができる。このような繊維は、長さはナノサイズではないが、直径(幅)がナノサイズであるので、ナノファイバーと記載する。 When the raw material is subjected to high-pressure injection processing with the high-pressure injection device 4, the chitosan and the like are entangled and thinned (defibrated) while maintaining the fiber length. The “nanofiber” means a fiber whose diameter (width) is nanosized. The diameter (width) of the nanofiber 1 can be measured by an electron micrograph. Such a fiber is described as a nanofiber because the length is not nano-sized but the diameter (width) is nano-sized.

ナノファイバー1の平均径(繊維の直径)は、4〜100nm程度、好ましくは4〜40nm程度、最も好ましくは4〜25nm程度である。ナノファイバー1は、繊維長/繊維幅(アスペクト比)が大きいため、強度を保ちつつ、ナノファイバー1が絡み合ったフィルム、シート状に成型することができる。 The average diameter (fiber diameter) of the nanofiber 1 is about 4 to 100 nm, preferably about 4 to 40 nm, and most preferably about 4 to 25 nm. Since the nanofiber 1 has a large fiber length / fiber width (aspect ratio), the nanofiber 1 can be formed into a film or sheet in which the nanofiber 1 is entangled while maintaining strength.

ナノファイバー1は、繊維径(繊維幅)を細くすることで、繊維同士が高密度に絡まり、強度を増加する効果が期待できる。 The nanofiber 1 can be expected to have an effect of increasing strength by thinning the fiber diameter (fiber width) so that the fibers are entangled with each other at high density.

ナノファイバー1は、繊維径が100nm以下、より好ましくは80nm以下、さらに好ましくは60nm以下、特に40nm以下である。繊維径が非常に細いため、水に分散させた場合に半透明な溶液に近い外観を有し、水の中にナノファイバー1が分散していることは肉眼では認められず、半透明な分散液を得ることもできる。 The nanofiber 1 has a fiber diameter of 100 nm or less, more preferably 80 nm or less, still more preferably 60 nm or less, particularly 40 nm or less. Since the fiber diameter is very thin, it has an appearance close to a translucent solution when dispersed in water. The nanofiber 1 is not observed by the naked eye in the water, and is translucent. A liquid can also be obtained.

キチン・キトサンの分散流体3は、高圧噴射装置4を用いて、高圧ノズル5より高圧噴射することができる(図1)。なお、高圧噴射の圧力は、30〜245MPa程度である。噴射速度は、242〜700m/s程度である。 The dispersion fluid 3 of chitin / chitosan can be jetted at a high pressure from a high-pressure nozzle 5 using a high-pressure jetting device 4 (FIG. 1). Note that the pressure of the high pressure injection is about 30 to 245 MPa. The injection speed is about 242 to 700 m / s.

高圧噴射装置4を用いたナノファイバーの製造方法としては、具体的には、キチン・キトサンの分散液を100〜245MPaに加圧し、オリフィスノズル12から噴射して衝突用硬質体15に衝突させる高圧噴射処理を少なくとも1回実施し、好ましくは複数回実施することにより製造する。1回目の高圧噴射処理で衝突用硬質体15に衝突させたキチン・キトサンの分散液は、回収用流路16から回収する。高圧噴射処理を2回以上行なう場合、回収したキチン・キトサン分散液を再度加圧し、オリフィスノズル12より衝突用硬質体15に向けて高圧噴射する操作を、繊維径の微細化に必要な回数繰り返す(図5)。本実施形態によれば、キチン・キトサンは、衝突用硬質体15に衝突することで、繊維の絡まりが解け、繊維径が縮小し、ナノサイズに微細化していく。衝突用硬質体15としては、ボール状、平板状等の形状が挙げられる。   Specifically, as a method for producing nanofibers using the high-pressure injection device 4, a high-pressure liquid in which chitin / chitosan dispersion is pressurized to 100 to 245 MPa and injected from the orifice nozzle 12 to collide with the collision hard body 15 is used. The injection process is carried out at least once, preferably by carrying out a plurality of times. The dispersion liquid of chitin / chitosan collided with the collision-use hard body 15 in the first high-pressure injection process is collected from the collection channel 16. When the high-pressure injection process is performed twice or more, the operation of pressurizing the recovered chitin / chitosan dispersion again and high-pressure injection from the orifice nozzle 12 toward the collision hard body 15 is repeated as many times as necessary to reduce the fiber diameter. (FIG. 5). According to the present embodiment, the chitin / chitosan is collided with the collision-use hard body 15 so that the fibers are entangled, the fiber diameter is reduced, and the nano-size is refined. Examples of the collision hard body 15 include a ball shape and a flat plate shape.

高圧噴射して衝突用硬質体15に衝突させたキチン・キトサンの分散流体3は回収し、再度高圧ノズル5より衝突用硬質体15に向けて高圧噴射され、この操作を必要な回数、例えば、1〜50回程度、好ましくは1〜40回程度、より好ましくは1〜30回程度、さらに好ましくは1〜20回程度、特に好ましくは1〜10回程度繰り返す。キチン・キトサンは、衝突用硬質体15に衝突することで、繊維の絡まりがほどけ、繊維径が縮小し、ナノサイズに微細化していく。なお、衝突用硬質体15としては、ボール状、平板状等の形状が挙げられる。分散流体3を高圧噴射する高圧ノズル5の直径としては、0.1〜0.8mm程度が挙げられ、ペースト、ゲル、スラリー、フィルム、シート、多孔質体、分散液、懸濁液またはエマルジョンの形態での製造もできる。 The dispersion fluid 3 of chitin / chitosan collided with the collision hard body 15 by high-pressure injection is recovered, and is again high-pressure injected from the high-pressure nozzle 5 toward the collision hard body 15, and this operation is performed a necessary number of times, for example, Repeat about 1 to 50 times, preferably about 1 to 40 times, more preferably about 1 to 30 times, still more preferably about 1 to 20 times, and particularly preferably about 1 to 10 times. When chitin / chitosan collides with the collision-use hard body 15, the fibers are untangled, the fiber diameter is reduced, and the nano-size is refined. In addition, as the hard body 15 for collision, shapes, such as ball shape and flat plate shape, are mentioned. The diameter of the high-pressure nozzle 5 that injects the dispersion fluid 3 at a high pressure includes about 0.1 to 0.8 mm, and is a paste, gel, slurry, film, sheet, porous body, dispersion, suspension, or emulsion. Production in form is also possible.

二酸化チタン2は、市販のものを利用することができる。例えば、二酸化チタン2としては、本発明において、ハイドロキシアパタイト被膜二酸化チタン(Hap−TiO)2を使用し、各種検証を実施した。アパタイトは、リン酸カルシウム化合物の一種の鉱物名である。ハイドロキシアパタイトとは、A=Ca、M=P、X=OHとしたアパタイトのことである。二酸化チタンは、地球上に豊富な元素として存在する安全で無害な光触媒である。光触媒とは、光を吸収してエネルギーの高い状態となり、そのエネルギーを反応物質に与えて化学反応を起こさせる物質である。典型的な光触媒は半導体であり、半導体は、バンドギャップエネルギー以上の光を吸収すると価電子帯の電子が伝導帯に励起され、価電子帯には正孔ができる。これらの電子と正孔が反応を起こす。正孔は、水や溶存酸素と反応し、OHラジカル等を生成し、これが有害物質を分解する。OHラジカルは、消毒や殺菌に主に使われている塩素やオゾンよりも強い酸化力を持つ。
本実験で用いた二酸化チタンは、アナターゼ型のものであり、バンドギャップエネルギーは3.2eVで、約380nm以下の波長の光に相当する。波長(nm)へのeV換算は1240÷Eg(バンドギャップエネルギー)という非常に単純な計算で行なうことができる。
Commercially available titanium dioxide 2 can be used. For example, as titanium dioxide 2, in the present invention, hydroxyapatite-coated titanium dioxide (Hap-TiO 2 ) 2 was used and various verifications were performed. Apatite is a kind of mineral name of the calcium phosphate compound. Hydroxyapatite is apatite with A = Ca, M = P, and X = OH. Titanium dioxide is a safe and harmless photocatalyst that exists as an abundant element on the earth. A photocatalyst is a substance that absorbs light and becomes in a high energy state, and gives that energy to a reactant to cause a chemical reaction. A typical photocatalyst is a semiconductor. When a semiconductor absorbs light having a band gap energy or higher, electrons in the valence band are excited to the conduction band, and holes are formed in the valence band. These electrons and holes react. Holes react with water and dissolved oxygen to generate OH radicals and the like, which decompose harmful substances. OH radicals have stronger oxidizing power than chlorine and ozone mainly used for disinfection and sterilization.
The titanium dioxide used in this experiment is of anatase type, has a band gap energy of 3.2 eV, and corresponds to light having a wavelength of about 380 nm or less. The eV conversion to the wavelength (nm) can be performed by a very simple calculation of 1240 ÷ Eg (band gap energy).

(環境浄化剤の製造方法および環境浄化方法)
本発明は、ナノファイバー1の分散流体3を生成するステップS1と、二酸化チタン2を含有するステップS2と、その後、乾燥させるステップSaを備える(図6(a))。また、本発明は、ナノファイバー1の分散流体3を生成するステップS1の後に、乾燥させるステップS2を備えても良い。また、乾燥させるステップSaの後に紫外線(UV)を照射するステップS3を備えても良い(図6(b))。環境浄化剤を製造後、紫外線(UV)を照射するステップS3は、所定時間おいて行なっても良い。
そして、キチン・キトサンを分散流体3とし、分散流体3を高圧噴射処理により、繊維の径をナノサイズにし、その後、二酸化チタン2を混合するが、ここで生成したものを、1.液体状のまま利用するか、2.シート状にするか、3.多孔質状にするか、4.粉状態にするかを選択することができる。上記2.シート状にする場合は、自然乾燥になり、上記3.多孔質状にする場合は凍結乾燥になる。
(Environmental purification agent manufacturing method and environmental purification method)
The present invention includes a step S1 for producing a dispersion fluid 3 of nanofibers 1, a step S2 containing titanium dioxide 2, and then a drying step Sa (FIG. 6 (a)). In addition, the present invention may include a step S2 of drying after the step S1 of generating the dispersion fluid 3 of the nanofiber 1. Moreover, you may provide step S3 which irradiates an ultraviolet-ray (UV) after step Sa to dry (FIG.6 (b)). Step S3 of irradiating ultraviolet rays (UV) after manufacturing the environmental purification agent may be performed after a predetermined time.
Then, chitin / chitosan is used as the dispersion fluid 3, and the dispersion fluid 3 is subjected to a high-pressure injection treatment so that the diameter of the fiber is nanosized, and then the titanium dioxide 2 is mixed. 1. Use as liquid or 2. 2. Make a sheet or 3. Make it porous or It is possible to select whether to make a powder. 2. When it is made into a sheet, it is naturally dried, and the above 3. When it is made porous, it is freeze-dried.

ナノファイバー1の分散流体3を生成するステップS1では、高圧噴射装置4を用いて生成したナノファイバー1を、分散流体3として希釈化等を行なう。ナノファイバー1は、3次元構造を有していることから、環境負荷物質が内部に吸着しやすい構造である。環境浄化剤としては、利便性やリサイクルの面で、水分散体ではなく、できるだけ広い範囲で環境負荷物質を吸着させるために、フィルム形状、シート形状にすることが好ましい。図2は、本発明に用いるキトサンナノファイバーのフィルム状またはシート状11である。   In step S <b> 1 for generating the dispersion fluid 3 of the nanofiber 1, the nanofiber 1 generated by using the high-pressure injection device 4 is diluted as the dispersion fluid 3. Since the nanofiber 1 has a three-dimensional structure, it is a structure in which an environmentally hazardous substance is easily adsorbed inside. In terms of convenience and recycling, the environmental purification agent is preferably not a water dispersion but a film shape or a sheet shape in order to adsorb environmental load substances in as wide a range as possible. FIG. 2 shows a film or sheet 11 of chitosan nanofibers used in the present invention.

二酸化チタン2を含有させるステップS2では、ステップS1で得たナノファイバー1の分散流体3に、二酸化チタン2を混合する。ナノファイバー1の多孔質体の内部構造は、多数の内部空間(多孔質)を有しており、内部空間に二酸化チタン2が含有されることによって、ナノファイバー1に二酸化チタン2を併存させることができる。図3は、本発明におけるキトサンナノファイバーとハイドロキシアパタイト被膜二酸化チタン2の複合体のSEM画像である。   In step S2 containing titanium dioxide 2, titanium dioxide 2 is mixed with the dispersion fluid 3 of nanofiber 1 obtained in step S1. The internal structure of the porous body of the nanofiber 1 has a large number of internal spaces (porous), and the titanium dioxide 2 is contained in the internal space, so that the nanofiber 1 coexists with the titanium dioxide 2. Can do. FIG. 3 is an SEM image of a composite of chitosan nanofibers and hydroxyapatite-coated titanium dioxide 2 in the present invention.

乾燥させるステップSaでは、二酸化チタン2を含有したナノファイバー1を凍結乾燥し、組織内の余分な水分を除去する。余分な水分を除去することによって、ナノファイバー1と二酸化チタン2の結合度を高めることができる。凍結乾燥は、多孔質状態を維持する上でも好ましい乾燥方法である。   In the drying step Sa, the nanofibers 1 containing the titanium dioxide 2 are freeze-dried to remove excess moisture in the tissue. By removing excess moisture, the bonding degree between the nanofiber 1 and the titanium dioxide 2 can be increased. Freeze-drying is a preferable drying method for maintaining a porous state.

このようにして製造した二酸化チタン2を含有したナノファイバー1を、環境負荷物質の存在下に置くことによって、ナノファイバー1の吸着能により、環境負荷物質を吸着する。   By placing the nanofiber 1 containing the titanium dioxide 2 thus produced in the presence of an environmental load substance, the environmental load substance is adsorbed by the adsorption ability of the nanofiber 1.

その後、紫外線(UV)を照射することで(ステップS3)、ナノファイバー1の3次元構造に吸着されていた環境負荷物質が、二酸化チタン2によって環境負荷物質を分解する。   Thereafter, by irradiating with ultraviolet rays (UV) (step S3), the environmental load substance adsorbed on the three-dimensional structure of the nanofiber 1 is decomposed by the titanium dioxide 2.

作製した二酸化チタン2を含有したナノファイバー1の効果を検証するために、気相、液相でのRBBRをいかに吸着分解するか、実験を行なった。図4は、検証結果である。なお、RBBRとは、合成色素の一種であり、ダイオキシン類と似た形状を持つ物質である。今回の実験において、ダイオキシン疑似物質として使用した。   In order to verify the effect of the nanofiber 1 containing the produced titanium dioxide 2, an experiment was conducted on how RBBR in the gas phase and liquid phase is adsorbed and decomposed. FIG. 4 shows the verification result. Note that RBBR is a kind of synthetic pigment and is a substance having a shape similar to that of dioxins. In this experiment, it was used as a dioxin pseudo-material.

(実験)
実験の方法としては、RBBR溶液内に、ハイドロキシアパタイト被膜二酸化チタン複合キトサンナノファイバーフィルム11を入れて、紫外線(UV)を照射した場合(実施例1)と、ハイドロキシアパタイト被膜二酸化チタン複合キトサンナノファイバーフィルム11を入れて紫外線(UV)を照射しなかった場合(実施例2)と、キトサンナノファイバーフィルム11に二酸化チタン2を含有しなかった場合(実施例3)を約3日間、比較した。
(Experiment)
As an experimental method, a hydroxyapatite-coated titanium dioxide composite chitosan nanofiber film 11 was put in an RBBR solution and irradiated with ultraviolet rays (UV) (Example 1), and a hydroxyapatite-coated titanium dioxide composite chitosan nanofiber. The case where the film 11 was put and ultraviolet rays (UV) were not irradiated (Example 2) and the case where the chitosan nanofiber film 11 did not contain titanium dioxide 2 (Example 3) were compared for about 3 days.

Hap-TiO 2 の合成
Hap-TiO2は、湿式法によって合成した。0.2Mリン酸水素二ナトリウム61mlと0.2Mリン酸二水素ナトリウム39ml、RO水200mlからpH7のリン酸緩衝液300mlを作製した。次に、0.1Mリン酸水素二アンモニウム水溶液と0.1M硝酸カルシウム水溶液を調製した。その後、緩衝液にリン酸水素二アンモニウムと二酸化チタン(アナターゼ型)を加えた。緩衝液を80℃のウォーターバスで加熱、撹拌しながら0.1M硝酸カルシウムを少しずつ滴下しながら合成を行なった。その後、沈殿物を遠心機にかけながら分離、洗浄を行い、100℃の恒温槽で乾燥させることにより、Hap-TiO2粉末を得た。
Synthesis Hap-TiO 2 of Hap-TiO 2 was synthesized by the wet process. 300 ml of pH 7 phosphate buffer was prepared from 61 ml of 0.2 M disodium hydrogen phosphate, 39 ml of 0.2 M sodium dihydrogen phosphate, and 200 ml of RO water. Next, a 0.1M diammonium hydrogen phosphate aqueous solution and a 0.1M calcium nitrate aqueous solution were prepared. Thereafter, diammonium hydrogen phosphate and titanium dioxide (anatase type) were added to the buffer solution. The buffer solution was heated and stirred in an 80 ° C. water bath, and 0.1M calcium nitrate was added little by little while stirring. Thereafter, the precipitate was separated and washed while being centrifuged, and dried in a constant temperature bath at 100 ° C. to obtain Hap—TiO 2 powder.

Hap-TiO 2 のキトサンへの複合
前記の方法によって得られたHap-TiO2を、10wt%のキトサン懸濁液に対して1wt%となるように混合し、24時間凍結乾燥することにより、Hap-TiO2複合化キトサンを得た。
The Hap-TiO 2 obtained by the composite the way to Hap-TiO 2 of chitosan, were mixed so that 1 wt% relative to 10 wt% of chitosan suspension by freeze drying for 24 hours, Hap -TiO 2 to obtain a composite chitosan.

Hap-TiO 2 複合キトサンの吸着・分解評価
前記の方法によって得られたHap-TiO2複合キトサンを用いて、RBBR溶液に対する吸着・分解評価を行なった。1.0×10-3MのRBBRを調製し、Hap-TiO2複合キトサンと比較のために用意したHap複合キトサンを0.3g量り取った。RBBR溶液を20mlずつ分注し、それぞれに各試料をいれた。その後、それらの試料に350nmの紫外線(UV-A)を照射しながら吸着を行なった。この時、比較のため紫外線(UV)を照射しない試料を用意した(実施例2)。
Hap-TiO 2 with Hap-TiO 2 composite chitosan obtained by adsorption and decomposition Evaluation of methods for composite chitosan was carried out adsorption and degradation evaluation of RBBR solution. 1.0 × 10 −3 M RBBR was prepared, and 0.3 g of Hap-complexed chitosan prepared for comparison with Hap-TiO 2 composited chitosan was weighed. 20 ml of RBBR solution was dispensed, and each sample was put in each. Thereafter, the samples were adsorbed while being irradiated with 350 nm ultraviolet rays (UV-A). At this time, a sample not irradiated with ultraviolet (UV) was prepared for comparison (Example 2).

実施例1と実施例2を比較すると、キトサンのSEM写真には、特に表面等に物質が付着している様子は見られなかったが、Hap-TiO2を複合化したキトサンのSEM写真には表裏面や微細孔内部にHap-TiO2粉末の付着が見られた。このことからキトサンにHap-TiO2が複合化されていることが確認された。 When comparing Example 1 and Example 2, the SEM photograph of chitosan did not show any particular substance attached to the surface or the like, but the SEM photograph of chitosan combined with Hap-TiO 2 Adhesion of Hap-TiO 2 powder was observed on the front and back surfaces and inside the fine holes. This confirmed that Hap-TiO 2 was complexed with chitosan.

Hap-TiO 2 複合化キトサンの有害物質吸着・分解結果
図4に浸漬時間とRBBRの吸着・分解率の関係を表わしたグラフを示した。グラフ中の破線はRBBR溶液を追加した時を意味する。
Results of Adsorption / Decomposition of Hap-TiO 2 Composite Chitosan FIG. 4 is a graph showing the relationship between the immersion time and the RBBR adsorption / decomposition rate. The broken line in the graph means the time when the RBBR solution is added.

図4より、TiO2を複合化していないキトサンと紫外線(UV)を照射していないキトサンは、二回目のRBBR溶液追加後から飽和状態となり、変化が見られない。一方、紫外線(UV)を照射したHap-TiO2複合化キトサンは、2回目の溶液追加後も吸着が進んでおり、それ以降にRBBR溶液を追加で添加しても、RBBRは持続的に吸着された。このため、Hap-TiO2複合化キトサンは、紫外線(UV)を当てることにより、吸着・分解を同時に行なっているということが確認できた。なお、吸着・分解の機構としては、キトサン、アパタイトがRBBRを二酸化チタン2の近くに吸着して収集することにより、二酸化チタン2が分解を効率よく行っていたと考えられる。 From FIG. 4, chitosan not complexed with TiO 2 and chitosan not irradiated with ultraviolet light (UV) are saturated after the second addition of the RBBR solution, and no change is observed. On the other hand, adsorption of Hap-TiO 2 composite chitosan irradiated with ultraviolet rays (UV) continues even after the second addition of the solution, and RBBR is continuously adsorbed even if additional RBBR solution is added thereafter. It was done. For this reason, it was confirmed that the Hap-TiO 2 composite chitosan was simultaneously adsorbed and decomposed by applying ultraviolet rays (UV). In addition, as a mechanism of adsorption / decomposition, it is considered that the titanium dioxide 2 was efficiently decomposed by chitosan and apatite adsorbing and collecting RBBR near the titanium dioxide 2.

紫外線(UV)を照射しない試料よりも紫外線(UV)を照射した試料の方が環境負荷物質に対すると吸着・分解能が高いことが分かる。また、実施例2、3の場合、50時間あたりを越えると、吸着・分解能が飽和して、進まなくなるのに対し、紫外線(UV)を照射した試料は、RBBR溶液を添加してもRBBRの吸着・分解が進むことが確認できた(図4)。すなわち、実施例の環境浄化剤は、紫外線(UV)を照射することにより(図4の符号S3)、実施例1の場合も吸着・分解が持続して、RBBR溶液の量が持続的に減少した。吸着・分解が同時に効率的に行なっていると考えられる。 It can be seen that the sample irradiated with ultraviolet rays (UV) has higher adsorption and resolution with respect to environmental load substances than the sample not irradiated with ultraviolet rays (UV). Further, in the case of Examples 2 and 3, the adsorption / resolution is saturated and does not progress after about 50 hours. On the other hand, the sample irradiated with ultraviolet rays (UV) does not have the RBBR even when the RBBR solution is added. It was confirmed that the adsorption and decomposition proceeded (Fig. 4). That is, the environmental purification agent of the example is irradiated with ultraviolet rays (UV) (reference numeral S3 in FIG. 4), and in the case of Example 1, the adsorption / decomposition is continued and the amount of the RBBR solution is continuously reduced. did. It is thought that adsorption and decomposition are performed efficiently at the same time.

本実施の形態では、気相中での環境浄化方法を例に説明したが、液相中での環境浄化、例えば、環境に負荷をかけない天然無機質系の安心安全な水質浄化剤(凝集剤)としての使用や、固相での環境浄化材料(例えば、地質改良剤、土壌改良剤)にも適用可能である。 In the present embodiment, the environmental purification method in the gas phase has been described as an example. However, environmental purification in the liquid phase, for example, a natural inorganic-based safe and safe water purification agent (flocculating agent that does not impose a burden on the environment). ) And environmental purification materials in the solid phase (for example, geological improvers, soil improvers).

1 ナノファイバー(キトサンナノファイバー)、
2 二酸化チタン、
3 分散流体、
4 高圧噴射装置、
5 高圧ノズル、
11 本発明に用いるキトサンナノファイバーのフィルム
15 衝突用硬質体。


1 Nanofiber (chitosan nanofiber),
2 Titanium dioxide,
3 Dispersed fluid,
4 High-pressure injection device,
5 High pressure nozzle,
11 Film of chitosan nanofiber used in the present invention 15 Hard body for impact.


Claims (9)

ホルムアルデヒド、アセトアルデヒド、ダイオキシン等の環境負荷物質を分解する環境浄化剤において、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバー等のナノファイバーに二酸化チタンを含有させたことを特徴とする環境浄化剤。 An environmental purification agent for decomposing environmentally hazardous substances such as formaldehyde, acetaldehyde, dioxin, etc., wherein titanium dioxide is contained in nanofibers such as cellulose nanofibers, chitin nanofibers or chitosan nanofibers. 前記ナノファイバーは、高圧噴射処理により解繊されたキチンナノファイバーまたはキトサンナノファイバーであることを特徴とする請求項1記載の環境浄化剤。   The environmental purification agent according to claim 1, wherein the nanofiber is chitin nanofiber or chitosan nanofiber defibrated by a high-pressure jet treatment. 高圧噴射処理により解繊されたキチンナノファイバーまたはキトサンナノファイバーをフィルム状またはシート状に加工し、これらの表裏面や多孔質内に前記二酸化チタンが担持されていることを特徴とする請求項2記載の環境浄化剤。   The chitin nanofibers or chitosan nanofibers defibrated by the high-pressure spraying process are processed into a film or sheet, and the titanium dioxide is supported on the front and back surfaces and the porous body. The environmental purification agent described. 前記二酸化チタンは、ハイドロキシアパタイト被膜二酸化チタンであることを特徴とする請求項1記載の環境浄化剤。   2. The environmental purification agent according to claim 1, wherein the titanium dioxide is hydroxyapatite-coated titanium dioxide. 環境負荷物質は、ホルムアルデヒド、アセトアルデヒド、ダイオキシン、硝酸、亜硝酸アンモニウム、アンモニア、1.4ジオキサン(1.4-Dioxane)、アクリルアミド、トルエン、キシレン、硫化水素、トリメチルアミン、メチルメルカプタンのうちの少なくとも1つを含み、本発明の請求項1〜4のいずれか1項記載の環境浄化剤を使用して、前記ナノファイバーで環境負荷物質の吸着を行い、前記二酸化チタンで環境負荷物質の分解を行なうことを特徴とする環境浄化方法。   The environmentally hazardous substance is at least one of formaldehyde, acetaldehyde, dioxin, nitric acid, ammonium nitrite, ammonia, 1.4 dioxane, acrylamide, toluene, xylene, hydrogen sulfide, trimethylamine, and methyl mercaptan. And using the environmental purification agent according to any one of claims 1 to 4 of the present invention, adsorbing environmental load substances with the nanofibers, and decomposing environmental load substances with the titanium dioxide. A characteristic environmental purification method. 環境負荷物質を、所定の気相中に配するか、所定の液相中に配するか、または、所定の固相中に配するかして、前記環境負荷物質を増加させながら本発明の請求項1〜4のいずれか1項記載の環境浄化剤を使用して吸着と分解を同時に行なうことを特徴とする請求項5記載の環境浄化方法。   The environmental load substance is arranged in a predetermined gas phase, in a predetermined liquid phase, or in a predetermined solid phase, and the environmental load substance is increased while increasing the environmental load substance. 6. The environmental purification method according to claim 5, wherein adsorption and decomposition are simultaneously performed using the environmental purification agent according to any one of claims 1 to 4. ホルムアルデヒド、アセトアルデヒド等の環境負荷物質を分解する環境浄化剤の製造方法において、セルロースナノファイバー、キチンナノファイバーまたはキトサンナノファイバー等のナノファイバーの分散流体を生成するステップと、二酸化チタンを含有するステップと、乾燥させるステップとを備え、環境負荷物質を分解する環境浄化剤を製造することを特徴とする環境浄化剤の製造方法。   In a method for producing an environmental purification agent that decomposes environmental load substances such as formaldehyde and acetaldehyde, a step of generating a dispersion fluid of nanofibers such as cellulose nanofiber, chitin nanofiber, or chitosan nanofiber, and a step of containing titanium dioxide And a step of drying, and manufacturing an environmental purification agent that decomposes environmentally hazardous substances. 前記ナノファイバーは、高圧噴射処理により解繊されたキチンナノファイバーまたはキトサンナノファイバーであり、前記二酸化チタンは、ハイドロキシアパタイト被膜二酸化チタンであることを特徴とする請求項7記載の環境浄化剤の製造方法。 The said nanofiber is chitin nanofiber or chitosan nanofiber defibrated by a high-pressure jet treatment, and said titanium dioxide is hydroxyapatite-coated titanium dioxide. Method. 前記乾燥させるステップは、凍結乾燥であることを特徴とする請求項7記載の環境浄化剤の製造方法。

The method for producing an environmental purification agent according to claim 7, wherein the drying step is freeze-drying.

JP2015175214A 2015-09-04 2015-09-04 Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent Pending JP2017047135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175214A JP2017047135A (en) 2015-09-04 2015-09-04 Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175214A JP2017047135A (en) 2015-09-04 2015-09-04 Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent

Publications (1)

Publication Number Publication Date
JP2017047135A true JP2017047135A (en) 2017-03-09

Family

ID=58277987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175214A Pending JP2017047135A (en) 2015-09-04 2015-09-04 Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent

Country Status (1)

Country Link
JP (1) JP2017047135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199613A (en) * 2017-06-09 2017-09-26 安徽启威生物科技有限公司 It is a kind of that formalin is removed based on mushroom extract solution
CN107715570A (en) * 2017-12-01 2018-02-23 净典环保科技(上海)有限公司 It is a kind of except the preparation method of the net gustatory organ filter core of aldehyde
CN109794159A (en) * 2017-11-17 2019-05-24 上海青木环保工程有限公司 A kind of preparation method of the formaldehyde scavenger using biological decomposition
CN114752315A (en) * 2021-11-10 2022-07-15 兰舍硅藻新材料有限公司 Wall cloth glue with formaldehyde purification function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329433A (en) * 2000-05-22 2001-11-27 Omikenshi Co Ltd Textile product, film or their secondary product adsorbing and eliminating unpleasant odor
JP2005264386A (en) * 2004-03-19 2005-09-29 Keio Gijuku Nanofiber sheet having photocatalytic function and method for producing the same
JP2005280267A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Environment cleaning membrane material
JP2009102782A (en) * 2007-10-25 2009-05-14 Univ Of Tokyo beta-CHITIN NANOFIBER AND METHOD FOR PRODUCING THE SAME, beta-CHITIN NANOFIBER DISPERSION, NANOFIBRIL STRUCTURE, AND CHITIN COMPOSITE
JP2009172550A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Toxic substance removal material and method for removing toxic substance
JP2011167237A (en) * 2010-02-16 2011-09-01 Kanazawa Inst Of Technology Bio-applicable material
JP2014223777A (en) * 2013-05-17 2014-12-04 日本バルカー工業株式会社 Functional structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329433A (en) * 2000-05-22 2001-11-27 Omikenshi Co Ltd Textile product, film or their secondary product adsorbing and eliminating unpleasant odor
JP2005264386A (en) * 2004-03-19 2005-09-29 Keio Gijuku Nanofiber sheet having photocatalytic function and method for producing the same
JP2005280267A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Environment cleaning membrane material
JP2009102782A (en) * 2007-10-25 2009-05-14 Univ Of Tokyo beta-CHITIN NANOFIBER AND METHOD FOR PRODUCING THE SAME, beta-CHITIN NANOFIBER DISPERSION, NANOFIBRIL STRUCTURE, AND CHITIN COMPOSITE
JP2009172550A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Toxic substance removal material and method for removing toxic substance
JP2011167237A (en) * 2010-02-16 2011-09-01 Kanazawa Inst Of Technology Bio-applicable material
JP2014223777A (en) * 2013-05-17 2014-12-04 日本バルカー工業株式会社 Functional structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩田 匡平: "アパタイト被覆二酸化チタン光触媒の応用", JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 55, no. 12, JPN6019000125, 2005, pages 624 - 628, ISSN: 0004080390 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107199613A (en) * 2017-06-09 2017-09-26 安徽启威生物科技有限公司 It is a kind of that formalin is removed based on mushroom extract solution
CN107199613B (en) * 2017-06-09 2020-03-20 安徽启威生物科技有限公司 Formaldehyde removing liquid based on mushroom extracting solution
CN109794159A (en) * 2017-11-17 2019-05-24 上海青木环保工程有限公司 A kind of preparation method of the formaldehyde scavenger using biological decomposition
CN107715570A (en) * 2017-12-01 2018-02-23 净典环保科技(上海)有限公司 It is a kind of except the preparation method of the net gustatory organ filter core of aldehyde
CN114752315A (en) * 2021-11-10 2022-07-15 兰舍硅藻新材料有限公司 Wall cloth glue with formaldehyde purification function
CN114752315B (en) * 2021-11-10 2023-06-20 兰舍硅藻新材料有限公司 Wall cloth adhesive with formaldehyde purifying function

Similar Documents

Publication Publication Date Title
KR100723956B1 (en) Functional adsorbent and environment purification product
JP2017047135A (en) Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent
CN106267300A (en) A kind of multifunctional material having bactericidal haemostatic and biochemical war agent protective concurrently and preparation method thereof
Semeraro et al. Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads
Nithya et al. Chitosan based nanocomposite materials as photocatalyst–a review
Chakhtouna et al. Novel photocatalyst based on date palm fibers for efficient dyes removal
CN107233923B (en) Material for decomposing formaldehyde and organic gas through photodynamic catalysis and preparation method thereof
Sarvalkar et al. A review on multifunctional nanotechnological aspects in modern textile
CN103341356A (en) Processing method of water purifying agent of ceramic tourmaline-loaded titanium dioxide film
Lukhele et al. Synthesis of silver impregnated carbon nanotubes and cyclodextrin polyurethanes for the disinfection of water
JP4621859B2 (en) Method for producing porous photocatalyst
JP4445789B2 (en) Apatite coating composition and method for producing apatite coated titanium dioxide
CN103977759B (en) A kind of diatom ball and its preparation method
JPWO2008072747A1 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
WO2003000587A1 (en) Active oxygen generating material
JP2017047136A (en) Environment cleaning agent, environment cleaning method, and production method for environment cleaning agent
KR20090105769A (en) The method of nano composites synthesis for fabric coating
Zhou et al. In-situ synthesized Ag@ AgCl-collagen fiber nano-hybrid materials and their photocatalytic activities
JP2022022923A (en) Paste protection material
JP2021066856A (en) Cellulose separation method
JP2021066855A (en) Cellulose powder and method for producing the same
Gadkari et al. Nanoparticles: a novel use in bioactive textiles
Xia et al. Recent advances in cotton fabric-based photocatalytic composites for the degradation of organic contaminants
JP2019118844A (en) Manufacturing method of photocatalytic composite generated by using calcium oxide/calcium hydroxide dissolved in saccharides, and manufactured article thereof
Faria Competitive adsorption between natural organic matter and sodium tripolyphosphate cross-linked chitosan microspheres by Cd (II) ions in aqueous media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723