JP2017043911A - Aseismatic reinforcement structure - Google Patents

Aseismatic reinforcement structure Download PDF

Info

Publication number
JP2017043911A
JP2017043911A JP2015165535A JP2015165535A JP2017043911A JP 2017043911 A JP2017043911 A JP 2017043911A JP 2015165535 A JP2015165535 A JP 2015165535A JP 2015165535 A JP2015165535 A JP 2015165535A JP 2017043911 A JP2017043911 A JP 2017043911A
Authority
JP
Japan
Prior art keywords
plate
reinforcement structure
joined
column
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015165535A
Other languages
Japanese (ja)
Other versions
JP6645770B2 (en
Inventor
円 山高
Madoka Yamataka
円 山高
星川 努
Tsutomu Hoshikawa
努 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2015165535A priority Critical patent/JP6645770B2/en
Publication of JP2017043911A publication Critical patent/JP2017043911A/en
Application granted granted Critical
Publication of JP6645770B2 publication Critical patent/JP6645770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aseismatic reinforcement structure capable of effective aseismatic reinforcement, even of a structure using a skeletal member having a low stickiness characteristic.SOLUTION: An aseismatic reinforcement structure has a metallic diagonal member fitted on a steel skeletal member for aseismatic reinforcement. The aseismatic reinforcement structure includes a metallic enclosing plate that surrounds a range of the skeletal member from four sides and has the diagonal member connected thereon directly or through an interposing member. The enclosing plate is of a bent plate form, and has a plate surface placed opposite and close to an outer periphery of the skeletal member at a plurality of locations. Furthermore, the enclosing plate surrounds the skeletal member without being rigidly connected to the skeletal member.SELECTED DRAWING: Figure 1

Description

本発明は、骨組部材に斜材を取り付けて建造物を補強する耐震補強構造に関する。   The present invention relates to a seismic reinforcement structure for reinforcing a building by attaching a diagonal member to a frame member.

以前より、骨組部材に斜材を取り付けて既存の建造物を耐震補強することが一般に行われている。例えば、柱と梁との間に斜材を取り付けることで水平力に対する建造物の耐力が向上する。
従来、柱等に溶接を行わずに斜材を取り付けて耐震補強を行う幾つかの提案がなされている(特許文献1〜特許文献4を参照)。特許文献1〜特許文献4では、建造物の設置された現場で溶接を行うには、大規模な養生が必要となりコストが高騰するという課題、或いは、現場の環境によっては溶接の品質が低下するという課題が指摘されている。
In the past, it has been generally practiced to retrofit existing structures by attaching diagonal members to the frame members. For example, the strength of a building against horizontal force is improved by attaching diagonal materials between columns and beams.
Conventionally, some proposals have been made to attach an oblique material to a column or the like without performing welding and perform seismic reinforcement (see Patent Documents 1 to 4). According to Patent Documents 1 to 4, in order to perform welding at a site where a building is installed, a large-scale curing is required and the cost is increased, or the quality of welding is lowered depending on the environment of the site. The problem is pointed out.

特開2013−032689号公報JP 2013-032688 A 特開2013−083040号公報JP 2013-083040 A 特開2013−177797号公報JP 2013-177797 A 特開2014−101655号公報JP 2014-101655 A

鉄道の施設には、古レールを骨組部材に使用した建造物がある。例えば2本の古レールの互いの底面部同士が接合されて、1本の骨組部材として用いられている。古レールは含有炭素量が多く、溶接を施すと、粘りが小さくなるといった特性がある。このため、溶接が施された古レールを利用した骨組部材に、曲げモーメントを加えていくと、骨組部材が降伏して塑性化する前に、溶接個所の近傍が損傷する可能性がある。   Railway facilities include buildings that use old rails as frame members. For example, the bottom surfaces of two old rails are joined together and used as one frame member. The old rail has a large amount of carbon, and has a characteristic that it becomes less viscous when welded. For this reason, when a bending moment is applied to the frame member using the old rail to which welding has been applied, the vicinity of the welded portion may be damaged before the frame member yields and plasticizes.

このような特性から、骨組部材への斜材の取り付け方法に溶接を用いないことが望ましい。また、斜材あるいは骨組部材と斜材の接合部に粘りが大きい材料を用いて、粘りが小さい古レールを利用した骨組部材よりも先にいずれかが塑性化することが望ましいと考えられる。
本発明は、一般的な骨組部材を用いた建造物の耐震補強はもとより、古レールのように粘りの少ない特性を有する骨組部材を用いた建造物に対しても効果的な耐震補強を行うことのできる耐震補強構造を提供することを目的としている。
From such characteristics, it is desirable not to use welding in the method of attaching the diagonal member to the frame member. In addition, it is considered that it is desirable to use a material having a high viscosity at the joint between the diagonal member or the frame member and the diagonal member, and to make one of them plastic before the frame member using the old rail having a low viscosity.
The present invention provides effective seismic reinforcement not only for buildings using general frame members but also for buildings using frame members with less stickiness like old rails. It aims to provide a seismic reinforcement structure that can be used.

本発明は、上記目的を達成するため、鋼製の骨組部材に金属製の斜材が取り付けられて補強される耐震補強構造であって、
前記骨組部材の一範囲を四方から囲い、且つ、前記斜材が直接または介在部材を介して接合される金属製の囲い板を備え、
前記囲い板は、板を曲げた形状を有し、前記骨組部材の外周の複数個所に板面を対向かつ近接させ、前記骨組部材と剛接合されずに前記骨組部材を囲っていることを特徴としている。
In order to achieve the above object, the present invention is a seismic reinforcement structure in which a metal diagonal member is attached to a steel frame member and reinforced,
A metal enclosure that encloses a range of the framework member from four sides and to which the diagonal member is joined directly or via an intervening member;
The enclosure plate has a shape obtained by bending a plate, and the plate surfaces are opposed and close to a plurality of locations on the outer periphery of the framework member, and the framework member is enclosed without being rigidly joined to the framework member. It is said.

この構成によれば、囲い板が骨組部材と剛接合されずに骨組部材を囲っている。よって、骨組部材と斜材とに水平方向の力が加わって、骨組部材と斜材との接合部位に比較的に大きな力が生じた場合、先ず、囲い板が変位または弾性変形しつつ骨組部材の一部を支える。これにより、骨組部材の斜材との接合部位に曲げ応力を過度に集中させることなく、骨組部材の剛性を向上させることができる。よって、粘りの少ない骨組部材であっても、接合部位に応力が集中して損傷するといった事態を防ぐことができ、斜材と囲い板とによって建造物の効果的な耐震補強を行うことができる。   According to this configuration, the surrounding plate surrounds the frame member without being rigidly joined to the frame member. Therefore, when a horizontal force is applied to the frame member and the diagonal member, and a relatively large force is generated at the joint portion between the frame member and the diagonal member, the frame member is first moved while the enclosure plate is displaced or elastically deformed. Support a part of. Thereby, the rigidity of the frame member can be improved without excessively concentrating bending stress on the joint portion of the frame member with the diagonal member. Therefore, even if it is a framework member with little stickiness, it can prevent the situation where stress concentrates and damages to a joint part, and an effective seismic reinforcement of a building can be performed by using diagonal members and a shroud. .

好ましくは、前記囲い板は、板の曲り部分の内側に空間を開けて前記骨組部材を囲っているとよい。
この構成によれば、板の曲り部分の変形により、骨組部材の斜材との接合部位に曲げ応力が過度に集中することを、より確実に回避することができる。
好ましくは、前記囲い板の耐力は、前記骨組部材の降伏曲げ耐力よりも小さくなるように構成されるとよい。
この構成によれば、骨組部材が降伏して曲がる以前に、前記斜材および囲い板が降伏して力を吸収する。よって、建造物の一部が降伏するような非常に大きな振動に対しても建造物の効果的な補強を図ることができる。
Preferably, the surrounding plate may surround the frame member by opening a space inside a bent portion of the plate.
According to this configuration, it is possible to more reliably avoid the bending stress from being excessively concentrated on the joint portion of the frame member with the diagonal member due to the deformation of the bent portion of the plate.
Preferably, the yield strength of the shroud is configured to be smaller than the yield bending strength of the frame member.
According to this structure, before the frame member yields and bends, the diagonal member and the shroud yield and absorb force. Therefore, it is possible to effectively reinforce the building even against a very large vibration in which a part of the building yields.

また好ましくは、前記囲い板は、
前記骨組部材の一側方を囲い、且つ、一端部と他端部とに一対のフランジ部を有する第1部分と、
前記骨組部材の他側方を囲い、且つ、一端部と他端部とに一対のフランジ部を有する第2部分とを有し、
前記第1部分の前記一対のフランジ部と前記第2部分の前記一対のフランジ部とが互いに接合されて前記囲い板が前記骨組部材を囲い、
前記第1部分のフランジ部と前記第2部分のフランジ部に前記介在部材の一部が接合され、
前記斜材が前記介在部材の他の部位に接合されるように構成するとよい。
このような構成によれば、既存の建造物に囲い板と斜材とを設ける場合に、施工を容易に行うことができる。
Also preferably, the shroud is
A first portion surrounding one side of the framework member and having a pair of flange portions at one end and the other end;
A second portion surrounding the other side of the framework member and having a pair of flange portions at one end and the other end;
The pair of flange portions of the first portion and the pair of flange portions of the second portion are joined to each other, and the surrounding plate surrounds the frame member,
A part of the interposed member is joined to the flange portion of the first portion and the flange portion of the second portion,
It is good to comprise so that the said diagonal material may be joined to the other site | part of the said interposed member.
According to such a structure, when providing a surrounding board and diagonal material in the existing building, construction can be performed easily.

また好ましくは、前記骨組部材は、鉄道用の2本のレールを互いの底面部同士を接合して構成され、
前記囲い板は、骨組部材の長手方向に垂直な断面の内周が六角形状であり、前記六角形状の第1頂点を挟む2辺に対応する2つの面が、前記2本のレールのうち一方のレールの頭頂部の両縁部分にそれぞれ近接且つ対向し、前記六角形状の前記第1頂点の反対側の第2頂点を挟む2辺に対応する2つの面が、前記2本のレールのうち他方のレールの頭頂部の両縁部分にそれぞれ近接且つ対向しているとよい。
2本のレールを前記レールの底面部同士を接合して骨組部材とした場合、骨組部材の断面の寸法は、縦寸(一方のレールの頭頂部から他方のレールの頭頂部までの寸法)が横寸(レールの横方の寸法)よりも2倍程度長くなる。よって、骨組部材の囲い方によっては、囲い板が安定的に固定され難くなったり、或いは、囲い板の曲げ成形が行いにくくなったりする。しかしながら、上記構成によれば、囲い板を骨組部材へ安定的に固定でき、且つ、囲い板の曲げ成形も容易に行うことができる。
Preferably, the frame member is configured by joining two railroad rails to each other at the bottoms,
The surrounding plate has a hexagonal inner periphery in a cross section perpendicular to the longitudinal direction of the frame member, and two surfaces corresponding to two sides sandwiching the first vertex of the hexagonal shape are one of the two rails. The two surfaces corresponding to the two sides that are adjacent to and opposite to both edge portions of the top of the rail of the rail and sandwich the second vertex on the opposite side of the first vertex of the hexagonal shape are the two rails. It is good that it is close to and opposite to both edge portions of the top of the other rail.
When two rails are joined to the bottom surface of the rail to form a frame member, the cross-sectional dimension of the frame member is the vertical dimension (the dimension from the top of one rail to the top of the other rail). It is about twice as long as the horizontal dimension (the horizontal dimension of the rail). Therefore, depending on how the frame members are enclosed, the enclosure plate may not be stably fixed, or the enclosure plate may be difficult to be bent. However, according to the said structure, a surrounding board can be stably fixed to a frame member, and the bending shaping | molding of a surrounding board can also be performed easily.

本発明の耐震補強構造によれば、一般的な骨組部材を使用した建造物の耐震補強はもとより、古レールのように粘りの少ない特性を有する骨組部材を用いた建造物に対しても効果的な耐震補強を行うことかできるという効果が得られる。   According to the seismic reinforcement structure of the present invention, it is effective not only for the seismic reinforcement of a building using a general frame member but also for a building using a frame member having a less sticky characteristic like an old rail. The effect that it is possible to perform the seismic reinforcement is obtained.

本発明の実施の形態に係る耐震補強構造を示す斜視図である。It is a perspective view which shows the earthquake-proof reinforcement structure which concerns on embodiment of this invention. 本発明の実施の形態に係る耐震補強構造を示す正面図である。It is a front view which shows the earthquake-proof reinforcement structure which concerns on embodiment of this invention. 実施の形態の柱と斜材の接合部の横断面を示すもので、(a)は図2の矢印A−A線断面図、(b)は第1変形例の断面図、(c)は第2変形例の断面図である。The cross section of the junction part of the pillar and diagonal of an embodiment is shown, (a) is an AA line sectional view of Drawing 2, (b) is a sectional view of the 1st modification, and (c). It is sectional drawing of a 2nd modification. 囲い板の耐力を説明するグラフである。It is a graph explaining the yield strength of a shroud. 柱と斜材とを囲い板を用いて接合した場合と剛接合した場合とを比較したグラフである。It is the graph which compared the case where a pillar and a diagonal are joined using a surrounding board, and the case where it joins rigidly. 本発明の実施の形態に係る耐震補強構造の耐震実験の結果の一例を示すグラフである。It is a graph which shows an example of the result of the earthquake-proof experiment of the earthquake-proof reinforcement structure which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の実施の形態に係る耐震補強構造を示す斜視図である。図2は、本発明の実施の形態に係る耐震補強構造を示す正面図である。図3は、実施の形態の柱と斜材の接合部の横断面を示すもので、(a)は図2の矢印A−A線断面図、(b)は第1変形例の断面図、(c)は第2変形例の断面図である。
本発明の実施の形態に係る耐震補強構造は、骨組部材としての柱100および梁200の間に斜材30を設けて建造物の耐震性を向上する構造である。この耐震補強構造は、既存の建造物に対して後から付加できるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a seismic reinforcement structure according to an embodiment of the present invention. FIG. 2 is a front view showing the seismic reinforcement structure according to the embodiment of the present invention. 3 shows a cross section of the joint between the column and the diagonal member of the embodiment, (a) is a cross-sectional view taken along the line AA in FIG. 2, (b) is a cross-sectional view of the first modification, (C) is sectional drawing of a 2nd modification.
The seismic reinforcement structure according to the embodiment of the present invention is a structure in which the diagonal member 30 is provided between the column 100 and the beam 200 as a frame member to improve the earthquake resistance of the building. This seismic reinforcement structure can be added later to existing buildings.

本実施の形態の耐震補強構造を有する建造物は、柱100と、梁200と、囲い板10と、斜材30と、接合板21、22とを備えている。一対の接合板21、21は、本発明に係る介在部材の一例に相当する。
柱100は、鉄道の古レールを利用した構成であり、鉄道の2本のレール101、101の底面部b、b同士を接合して構成される。2本のレール101、101の頭頂部h、hは、互いに逆向きに配置される。レール101の底面部bおよび頭頂部hは、レールが鉄道路線に敷設されているときの底面部および頭頂部を意味する。
The building having the seismic reinforcement structure of the present embodiment includes a column 100, a beam 200, a surrounding plate 10, a diagonal member 30, and joining plates 21 and 22. The pair of joining plates 21 and 21 correspond to an example of an interposed member according to the present invention.
The pillar 100 has a configuration using an old rail of the railway, and is configured by joining the bottom portions b of the two rails 101 and 101 of the railway. The tops h, h of the two rails 101, 101 are arranged in opposite directions. The bottom part b and the top part h of the rail 101 mean the bottom part and the top part when the rail is laid on the railway line.

囲い板10は、柱100と斜材30とを結び付ける部材であり、鋼板を折り曲げ加工して構成される。囲い板10は、柱100の外周の複数の箇所に板面を対向かつ近接させ、柱100と剛接合されずに柱100の高さ方向の一範囲を四方から囲う。
また、囲い板10は、特に制限されないが、板の曲り部分の内側に空間を設けて、柱100の一範囲を囲うようにしてもよい。
ここで、剛接合とは、骨組に外力が加わり骨組が変形しても接合部が変形しない接合を意味し、溶接又はボルトによる剛接合、強固に引き締められた金属バンドによる接合などが含まれる。
The enclosure plate 10 is a member that connects the column 100 and the diagonal member 30 and is configured by bending a steel plate. The surrounding board 10 makes a board | plate surface oppose and adjoin to the several location of the outer periphery of the pillar 100, and encloses the range of the height direction of the pillar 100 from four directions, without being rigidly joined with the pillar 100. FIG.
Further, the enclosure plate 10 is not particularly limited, but a space may be provided inside the bent portion of the plate so as to enclose a range of the pillar 100.
Here, the rigid joint means a joint in which an external force is applied to the framework and the joint is not deformed even when the framework is deformed, and includes a rigid joint using welding or a bolt, a joint using a metal band that is firmly tightened, and the like.

以下、本実施の形態の柱100に適した囲い板10の具体的な一例について説明する。図3(a)に示すように、本実施の形態の囲い板10の横断面の内周形状は六角形であり、六角形の第1頂点P1を挟む2つの面S1、S2が一方のレール101の頭頂部hの両縁部分E1、E2にそれぞれ近接且つ対向するように配置されている。また、第1頂点P1と反対の第2頂点P4を挟む2つの面S4、S5が他方のレール101の頭頂部hの両縁部分E3、E4にそれぞれ近接且つ対向するように配置されている。さらに、横断面内周の六角形の6つの頂点P1〜P6と柱100の外周面とは離間しており、頂点P1〜P6の内側には空間が設けられている。また、残りの2つの面S3、S6(接合板21の端面を含んでいてもよい)が、2つのレール101の底面部b、bの両端部分E5、E6に対向かつ近接している。囲い板10は、柱100に対して溶接等の接合はなされておらず、斜材30の接合、および、柱100との接触により固定されている。
なお、2つのレール101と囲い板10の内周面S1〜S6との近接は、わずかな隙間が設けられる近接であってもよいし、隙間のない接触した近接であってもよい。
Hereinafter, a specific example of the surrounding board 10 suitable for the pillar 100 of this Embodiment is demonstrated. As shown in FIG. 3A, the inner peripheral shape of the cross section of the enclosure 10 of the present embodiment is a hexagon, and the two surfaces S1 and S2 sandwiching the first vertex P1 of the hexagon are one rail. 101 are arranged so as to be close to and opposite to both edge portions E1 and E2 of the head top portion h. Further, the two surfaces S4 and S5 sandwiching the second vertex P4 opposite to the first vertex P1 are arranged so as to be close to and opposed to both edge portions E3 and E4 of the top portion h of the other rail 101, respectively. Further, the six hexagonal vertices P1 to P6 of the inner periphery of the cross section are separated from the outer peripheral surface of the column 100, and a space is provided inside the vertices P1 to P6. Further, the remaining two surfaces S3 and S6 (which may include the end surface of the joining plate 21) are opposed and close to the both end portions E5 and E6 of the bottom surface portions b and b of the two rails 101. The enclosure plate 10 is not joined to the column 100 by welding or the like, but is fixed by joining the diagonal member 30 and contacting the column 100.
The proximity between the two rails 101 and the inner peripheral surfaces S1 to S6 of the surrounding plate 10 may be a proximity in which a slight gap is provided, or may be a close proximity without a gap.

なお、囲い板10の横断面形状は、様々に変更可能である。例えば、図3(b)に示すように、囲い板10の横断面形状を片側台形形状としてもよい。図3(b)の囲い板10では、一方の台形の2つの斜辺に対応する2つの面S11、S12が、一方のレール101の頭頂部hの両縁部分E1、E2にそれぞれ近接且つ対向する。同様に他方の台形の2つの斜辺に対応する2つの面S13、S14が、他方のレール101の頭頂部hの両縁部分E3、E4にそれぞれ近接且つ対向する。このような形状でも、囲い板10が柱100を保持しつつ、囲い板10の折れ曲がり部分P11〜P14の内側に空間が設けられる。
また、図3(c)に示すように、囲い板10の曲がり部分を、屈曲でなく、湾曲状に曲げた構成としてもよい。図3(c)の囲い板10では、一方の湾曲した面S21が一方のレール101の頭頂部hの両縁部分E1、E2にそれぞれ近接且つ対向する。同様に他方の湾曲した面S22が、他方のレール101の頭頂部hの両縁部分E3、E4にそれぞれ近接且つ対向する。このような形状でも、囲い板10が柱100を保持しつつ、囲い板10の曲がり部分P21、P22の内側に空間が設けられる
In addition, the cross-sectional shape of the surrounding board 10 can be changed variously. For example, as shown in FIG. 3B, the cross-sectional shape of the surrounding plate 10 may be a one-side trapezoidal shape. 3B, two surfaces S11 and S12 corresponding to two oblique sides of one trapezoid are close to and opposite to both edge portions E1 and E2 of the top portion h of one rail 101, respectively. . Similarly, the two surfaces S13 and S14 corresponding to the two hypotenuses of the other trapezoid are adjacent to and opposed to both edge portions E3 and E4 of the top portion h of the other rail 101, respectively. Even in such a shape, a space is provided inside the bent portions P <b> 11 to P <b> 14 of the enclosure plate 10 while the enclosure plate 10 holds the pillar 100.
Moreover, as shown in FIG.3 (c), it is good also as a structure which bent the bent part of the surrounding board 10 not in bending but in the curved shape. In the surrounding board 10 of FIG. 3C, one curved surface S21 is close to and opposed to both edge portions E1 and E2 of the top portion h of one rail 101. Similarly, the other curved surface S22 is close to and faces both edge portions E3 and E4 of the top portion h of the other rail 101, respectively. Even in such a shape, a space is provided inside the bent portions P21 and P22 of the enclosure plate 10 while the enclosure plate 10 holds the pillar 100.

囲い板10は、2つに分離可能な第1部分11と第2部分12とをボルト等により接合して構成される。第1部分11は、柱100の一側方を囲い、且つ、柱100の周方向の一端部と他端部とに一対のフランジ13、14を有する。第2部分12は、柱100の他側方を囲い、且つ、柱100の周方向の一端部と他端部とに一対のフランジ15、16を有する。第1部分11の一方のフランジ13と、第2部分12の一方のフランジ15とは、1つの接合板21を挟んでボルト等により接合されている。同様に、第1部分11の他方のフランジ14と、第2部分12の他方のフランジ16とは、1つの接合板21を挟んでボルト等により共に接合されている。   The enclosure plate 10 is configured by joining a first part 11 and a second part 12 that can be separated into two parts by bolts or the like. The first portion 11 surrounds one side of the pillar 100 and has a pair of flanges 13 and 14 at one end and the other end in the circumferential direction of the pillar 100. The second portion 12 surrounds the other side of the column 100 and has a pair of flanges 15 and 16 at one end and the other end in the circumferential direction of the column 100. One flange 13 of the first portion 11 and one flange 15 of the second portion 12 are joined by a bolt or the like with one joining plate 21 interposed therebetween. Similarly, the other flange 14 of the first portion 11 and the other flange 16 of the second portion 12 are joined together by a bolt or the like with one joining plate 21 interposed therebetween.

接合板21は、囲い板10と斜材30とを接合するための板状の部材である。2つの接合板21は、各々の一部が囲い板10に剛接合され、柱100の鉛直方向の中心線を挟んで左右対称に配置されている。2つの接合板21には、2本の斜材30、30の各端部がボルト等によりそれぞれ接合されている。   The joining plate 21 is a plate-like member for joining the enclosure plate 10 and the diagonal member 30. A part of each of the two joining plates 21 is rigidly joined to the surrounding plate 10, and is arranged symmetrically with respect to the vertical center line of the column 100. The end portions of the two diagonal members 30, 30 are joined to the two joining plates 21 by bolts or the like.

梁200側の接合板22は、梁200と斜材30とを接合するための板状の部材である。2つの接合板22には2本の斜材30、30の各端部がボルト等によりそれぞれ剛接合されている。梁200と斜材30との接合方法は、特に制限されないが、例えば梁200が古レールを利用した構成であれば、囲い板10を用いた柱100と斜材30との接合方法と同様の接合方法を適用してもよい。或いは、梁200が十分な耐性を有する場合には、梁200と接合板22とを剛接合してもよい。   The joining plate 22 on the beam 200 side is a plate-like member for joining the beam 200 and the diagonal member 30. The two diagonal members 30, 30 are rigidly joined to the two joining plates 22 by bolts or the like. The method for joining the beam 200 and the diagonal member 30 is not particularly limited. For example, if the beam 200 is configured using an old rail, the same method as the method for joining the column 100 and the diagonal member 30 using the shroud 10 is used. A joining method may be applied. Alternatively, when the beam 200 has sufficient resistance, the beam 200 and the joining plate 22 may be rigidly joined.

<囲い板の耐力>
次に、囲い板10の耐力について説明する。
図4は、囲い板10の耐力を説明するグラフである。図4のグラフは、耐震補強構造に水平方向の力を付加したときの柱100の角度変化量θと囲い板10に生じる曲げモーメントMとの関係を模式的に示している。図2に示すように、角度変化量θは、梁200を固定して柱100の一部に水平力を与えたときに、梁200との接合点Oを中心とする柱100の初期位置からの角度の変化量を示す。
図4のグラフにおいて、Muは耐震上の必要最小の水平力を建造物に加えたときの囲い板10に生じる曲げモーメントを示している。cMyは柱100が降伏するときの柱100の曲げモーメントを示している。以下、これらを、必要最小曲げモーメントMu、および、降伏曲げモーメントcMyと呼ぶ。
<Strength of shroud>
Next, the proof stress of the enclosure board 10 is demonstrated.
FIG. 4 is a graph for explaining the yield strength of the enclosure plate 10. The graph of FIG. 4 schematically shows the relationship between the angle change amount θ of the column 100 and the bending moment M generated in the enclosure plate 10 when a horizontal force is applied to the seismic reinforcement structure. As shown in FIG. 2, when the beam 200 is fixed and a horizontal force is applied to a part of the column 100, the angle change amount θ is determined from the initial position of the column 100 centering on the junction O with the beam 200. The amount of change in angle is shown.
In the graph of FIG. 4, Mu represents a bending moment generated in the shroud 10 when the minimum horizontal force necessary for earthquake resistance is applied to the building. cMy indicates the bending moment of the column 100 when the column 100 yields. Hereinafter, these are referred to as a necessary minimum bending moment Mu and a yield bending moment cMy.

必要最小曲げモーメントMuは、建造物の構造特性係数Dsおよび形状特性係数Fesと、層せん断力係数Co=1.0のときの地震層せん断力Qiと、耐震性能を割り増す係数αと、柱100の下端から斜材30の接合部までの長さh1とから、例えば、次式(1)に示すように求めることができる。
Mu=Ds×Fes×Qi×α×h1/2 ・・・ (1)
降伏曲げモーメントcMyは、柱100の降伏応力度σyと、柱100の断面係数Zとから、例えば、次式(2)に示すように求めることができる。
cMy=σy×Z ・・・ (2)
The required minimum bending moment Mu is the structural characteristic coefficient Ds and shape characteristic coefficient Fes of the building, the seismic layer shearing force Qi when the layer shearing force coefficient Co = 1.0, the coefficient α that increases the seismic performance, the column From the length h1 from the lower end of 100 to the joint portion of the diagonal member 30, for example, it can be obtained as shown in the following equation (1).
Mu = Ds × Fes × Qi × α × h1 / 2 (1)
The yield bending moment cMy can be obtained from the yield stress degree σy of the column 100 and the section modulus Z of the column 100, for example, as shown in the following equation (2).
cMy = σy × Z (2)

また、図4のグラフにおいて、jM1/50は柱100の角度変化量が1/50のときの囲い板10に生じる曲げモーメントを示し、以下ではθ1/50時の囲い板曲げ耐力と呼ぶ。角度変化量「1/50」は、建物の骨組に倒壊の危険があり建物の使用停止の判断基準となる値を示している。このため、曲げモーメントの特性線と、1/50radの角度変化量θのラインとの交点により、θ1/50時の囲い板曲げ耐力jM1/50が表わされる。
囲い板10は、柱100が降伏する曲げモーメントより小さい曲げモーメントが柱100に生じた段階で降伏変形するよう、耐力が設定されている。加えて、囲い板10は、耐震上の必要最小の水平力が建造物に加わった場合でも降伏変形しないよう、耐力が設定されるとよい。このような条件は、次式(3)に示すように、各曲げモーメントとの関係式により表わすことができる。
Mu < jM1/50 < cMy ・・・ (3)
In the graph of FIG. 4, jM 1/50 indicates a bending moment generated in the enclosure plate 10 when the angle change amount of the column 100 is 1/50, and is hereinafter referred to as enclosure plate bending strength at θ 1/50. The angle change amount “1/50” indicates a value that is a criterion for determining whether to stop using the building because there is a risk of collapse of the building framework. For this reason, the enclosure bending strength jM 1/50 at θ1 / 50 is represented by the intersection of the characteristic line of the bending moment and the line of the angle change amount θ of 1/50 rad.
The shroud 10 is proof set so that it yields and deforms when a bending moment smaller than the bending moment at which the column 100 yields is generated in the column 100. In addition, the proof strength of the shroud 10 is preferably set so that it does not yield and deform even when the minimum horizontal force required for earthquake resistance is applied to the building. Such a condition can be expressed by a relational expression with each bending moment as shown in the following expression (3).
Mu <jM 1/50 <cMy (3)

このような条件を満たす場合、図4のグラフに示すように、曲げモーメントの特性線は目標性能ラインL1とクロスすることになる。目標性能ラインL1は、角度変化量θが1/50radで、且つ、曲げモーメントが必要最小曲げモーメントMuから降伏曲げモーメントcMyまでの範囲を示す。
囲い板10は、高さ、厚さ、柱100との隙間、材質、斜材30の断面積など、によって耐力が変化する。よって、これらのパラメータの値を適宜選定することで、θ1/50時の囲い板曲げ耐力jM1/50が式(3)の条件を満たすように、囲い板10を構成することができる。
When such a condition is satisfied, as shown in the graph of FIG. 4, the characteristic line of the bending moment crosses the target performance line L1. The target performance line L1 indicates a range in which the angle change amount θ is 1/50 rad and the bending moment is from the necessary minimum bending moment Mu to the yield bending moment cMy.
The yield strength of the surrounding plate 10 varies depending on the height, thickness, gap between the column 100, material, cross-sectional area of the diagonal member 30, and the like. Therefore, by appropriately selecting the values of these parameters, the enclosure plate 10 can be configured so that the enclosure bending resistance jM 1/50 at θ 1/50 satisfies the condition of Expression (3).

図5は、柱と斜材とを囲い板を用いて接合した場合と剛接合した場合とを比較したグラフである。
図5の剛接合の特性線に示すように、柱100と斜材30とを剛接合した場合、柱100の曲げモーメントと角度変化量θとの関係は、目標性能ラインL1から大きく外れてしまう。このため、粘りの少ない特性を有する柱100を用いた場合、柱100の降伏曲げ耐力と比較して、接合部の耐力が非常に大きくなる。よって、このような構造の建造物に非常に大きな水平力が生じた場合、接合部が降伏するより前に、柱100が降伏してしまう。図5の剛接合の特性線では、大きな曲げモーメントの範囲まで特性線が延びているが、このような大きな曲げモーメントが生じる前に、柱100が降伏すると考えられる。
FIG. 5 is a graph comparing the case where the column and the diagonal member are joined using a surrounding plate and the case where they are joined rigidly.
As shown in the characteristic line of the rigid connection in FIG. 5, when the column 100 and the diagonal member 30 are rigidly connected, the relationship between the bending moment of the column 100 and the angle change amount θ greatly deviates from the target performance line L1. . For this reason, when the column 100 having a low-viscosity characteristic is used, the yield strength of the joint portion becomes very large as compared with the yield bending strength of the column 100. Therefore, when a very large horizontal force is generated in a building having such a structure, the pillar 100 yields before the joint yields. In the characteristic line of the rigid joint in FIG. 5, the characteristic line extends to the range of a large bending moment, but it is considered that the column 100 yields before such a large bending moment occurs.

一方、図5の囲い板接合の特性線に示すように、囲い板10を用いた接合では、柱100と斜材30との接合部に適宜な剛性が得られるので、特性線を目標性能のラインL1にクロスさせることができる。
図5には、囲い板10と柱100の頭頂部hの両縁部分E1〜E4とが接触している場合の特性線と、これらの部分に少しの隙間を有する場合の特性線とを示している。隙間を有する場合、隙間の分だけ、特性線がシフトするが、柱100の変位により隙間がなくなると、柱100に初めから接触している場合と同様の特性が得られることが分かる。
On the other hand, as shown in the characteristic line of the enclosure plate bonding in FIG. 5, in the case of using the enclosure plate 10, an appropriate rigidity can be obtained at the joint portion between the column 100 and the diagonal member 30. The line L1 can be crossed.
FIG. 5 shows characteristic lines when the enclosure plate 10 and both edge portions E1 to E4 of the top part h of the column 100 are in contact with each other, and characteristic lines when there is a slight gap between these parts. ing. When there is a gap, the characteristic line shifts by the gap, but when the gap disappears due to the displacement of the column 100, it can be seen that the same characteristics as when the column 100 is contacted from the beginning can be obtained.

図6は、本発明の実施の形態に係る耐震補強構造の耐震実験の結果の一例を示すグラフである。
本実施の形態に係る耐震補強構造について、本発明者らが耐震実験を行ったところ、図6に示すような耐震挙動を示すことが明らかになった。この耐震実験は、梁200または柱100に大きな水平力を繰り返し加えて、梁200に対する柱100の相対変位を観察したものである。
図6に示すように、大きな水平力により柱100と梁200とが相対的に大きく揺れ動くと、先ず、囲い板10の面外曲げと圧縮される側の斜材30の曲がりとが進展する(図6の区間T1、T2を参照)。これにより、力の吸収が行われて、柱100の降伏が避けられる。さらに、大きな水平力が繰り返されると、斜材30が座屈し、その後、柱100の変位が一方に大きくなって耐震実験の限界点に達する(図6の区間T3を参照)。このように、本実施の形態の耐震補強構造によれば、柱100が降伏するより前に、囲い板10と斜材30とが降伏変形することにより振動の力が吸収され、これにより柱100が先に降伏して塑性化したり、柱100における囲い板10の近傍が損傷するといった課題を回避できると考えられる。
FIG. 6 is a graph showing an example of the result of the earthquake resistance test of the earthquake resistant reinforcement structure according to the embodiment of the present invention.
About the earthquake-proof reinforcement structure which concerns on this Embodiment, when the present inventors conducted an earthquake-proof experiment, it became clear that an earthquake-proof behavior as shown in FIG. 6 was shown. In this seismic test, a large horizontal force is repeatedly applied to the beam 200 or the column 100, and the relative displacement of the column 100 with respect to the beam 200 is observed.
As shown in FIG. 6, when the column 100 and the beam 200 are swung relatively large due to a large horizontal force, first, the out-of-plane bending of the shroud 10 and the bending of the diagonal member 30 on the compressed side develop ( (See sections T1 and T2 in FIG. 6). Thereby, force absorption is performed and yielding of the pillar 100 is avoided. Furthermore, when a large horizontal force is repeated, the diagonal member 30 buckles, and then the displacement of the column 100 increases to one side and reaches the limit point of the seismic experiment (see section T3 in FIG. 6). As described above, according to the seismic reinforcement structure of the present embodiment, the vibration force is absorbed by the yield deformation of the enclosure plate 10 and the diagonal member 30 before the column 100 yields, whereby the column 100 is absorbed. It is considered that problems such as yielding first and plasticizing can be avoided, or the vicinity of the surrounding plate 10 in the column 100 is damaged.

以上のように、本実施の形態の耐震補強構造によれば、囲い板10と柱100とが剛接合されずに、囲い板10が柱100を囲っている。よって、建造物に揺れが生じて、柱100と梁200との間に相対的な水平力が生じた場合、先ず、囲い板10が弾性変形しつつ、柱100と斜材30とを結び付ける。これにより、柱100と斜材30との接合部に過度に曲げ応力が集中することなく、柱100と梁200との剛性を向上させることができる。よって、粘りの少ない特性を有する柱100を用いた建造物であっても、耐震性能を向上できる。
さらに、建造物の各要素が降伏するような非常に大きな揺れが生じた場合でも、柱100が降伏するより先に、囲い板10の変位又は変形と斜材30の降伏とが生じ、これにより揺れの力を吸収することができる。よって、このような大きな揺れに対しても、効果的な耐震補強が実現される。
As described above, according to the seismic retrofit structure of the present embodiment, the surrounding plate 10 surrounds the column 100 without rigidly joining the surrounding plate 10 and the column 100. Therefore, when the building is shaken and a relative horizontal force is generated between the column 100 and the beam 200, first, the enclosure plate 10 is elastically deformed, and the column 100 and the diagonal member 30 are connected. Thereby, the rigidity of the column 100 and the beam 200 can be improved without excessively bending stress being concentrated at the joint portion between the column 100 and the diagonal member 30. Therefore, even if it is a building using the pillar 100 which has the characteristic with little stickiness, a seismic performance can be improved.
Furthermore, even if a very large shaking occurs that causes each element of the building to yield, the displacement or deformation of the shroud 10 and the yielding of the diagonal member 30 occur before the column 100 yields. Can absorb the force of shaking. Therefore, effective seismic reinforcement is realized even for such a large shaking.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限られるものではない。例えば、上記実施の形態では、骨組部材としてレールを利用した建造物に耐震補強を行う構成を示しているが、骨組部材は一般的な断面H型の鋼材を用いていてもよい。
また、上記実施の形態では、囲い板の横断面の内周形状について幾つかの例を示したが、囲い板の内周形状はこれらに限定されるものではない。例えば、骨組部材が、囲い板に対して、骨組部材の長手方向以外の方向に相対的に変位したとき、骨組部材が囲い板に接触して骨組部材から囲い板に力が伝わり、且つ、囲い板の内側の空間により囲い板が面外変形可能になっていれば、囲い板の断面の内周形状はどのような形状であってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. For example, in the said embodiment, although the structure which performs earthquake-proof reinforcement to the building using a rail as a frame member is shown, the frame member may use the general cross-section H type steel material.
Moreover, in the said embodiment, some examples were shown about the inner peripheral shape of the cross section of a surrounding board, However, The inner peripheral shape of a surrounding board is not limited to these. For example, when the frame member is displaced relative to the enclosure plate in a direction other than the longitudinal direction of the frame member, the frame member contacts the enclosure plate and the force is transmitted from the frame member to the enclosure plate. The inner peripheral shape of the cross section of the enclosure plate may be any shape as long as the enclosure plate can be deformed out of plane by the space inside the plate.

また、上記実施の形態では、囲い板10の横断面の内周形状の全ての頂点P1〜P6と柱100の外周面との間に、空間が設けられている構成例を示したが、一部の頂点のみ、その内側に空間が設けられていればよい。また、上記実施の形態では、囲い板は折り曲げ加工により形成されると説明したが、予め曲げられた形状に成形してもよい。また、折り曲げ部分は湾曲状に曲がった形状としてもよい。
さらに、上記の実施の形態では、囲い板10の曲り部分の内側に空間を設けた構成とした。しかしながら、このような空間を設けずに、囲い板10と柱100とを剛接合せずに、囲い板10により柱100を囲う構成にしてもよい。例えば、断面矩形の柱であれば、囲い板10の内周面と柱の外面との間を離間させずに、囲い板10が柱の高さ方向の一範囲を囲っている構成としてもよい。このような構成でも、実施の形態と同様の作用を得ることができる。
また、上記実施の形態では、斜材と囲い板とが接合板を介して接合された構成を示したが、直接に接合される構成を採用してもよい。
また、上記実施の形態では、建物の使用停止の判断基準となる柱の角度変化量を1/50として、囲い板の耐力の設定値を計算する例を示した。しかしながら、この角度変化量1/50は一例であり、建物の使用停止の判断基準となる値が別に定められる場合には、その値に基づいて同様に囲い板の耐力の設定値を計算すればよい。
また、上記実施の形態では、柱と斜材との接合に囲い板を用いた構成を一例として示したが、梁と斜材との接合、その他の骨組部材と斜材との接合に、本発明に係る構造を適用することができる。
Moreover, in the said embodiment, although the space example was shown between all the vertexes P1-P6 of the inner peripheral shape of the cross section of the surrounding board 10, and the outer peripheral surface of the pillar 100, one structure was shown. Only the apex of the part needs to have a space inside. Moreover, in the said embodiment, although demonstrated that the enclosure board was formed by the bending process, you may shape | mold in the shape bent beforehand. Further, the bent portion may have a curved shape.
Furthermore, in the above embodiment, the space is provided inside the bent portion of the surrounding plate 10. However, without providing such a space, the pillar 100 may be enclosed by the enclosure plate 10 without rigidly joining the enclosure plate 10 and the pillar 100. For example, in the case of a column having a rectangular cross section, the surrounding plate 10 may be configured to surround a range in the height direction of the column without separating the inner peripheral surface of the surrounding plate 10 and the outer surface of the column. . Even with such a configuration, the same operation as in the embodiment can be obtained.
Moreover, in the said embodiment, although the diagonal material and the surrounding board showed the structure joined via the joining board, the structure joined directly may be employ | adopted.
Moreover, in the said embodiment, the example which calculates the setting value of the yield strength of a shroud was shown by making the angle change amount of the pillar used as the judgment reference | standard of a use stop of a building into 1/50. However, this angle change amount 1/50 is an example, and when a value that is a criterion for determining the suspension of use of a building is determined separately, the setting value of the yield strength of the shroud is similarly calculated based on that value. Good.
In the above embodiment, the structure using the shroud for joining the column and the diagonal member is shown as an example. However, the present embodiment is used for joining the beam and the diagonal member, and joining other frame members and the diagonal member. The structure according to the invention can be applied.

10 囲い板
13〜16 フランジ
21、22 接合板
30 斜材
100 柱
101 レール
200 梁
P1〜P6 頂点
h 頭頂部
E1、E2、E3、E4 頭頂部の両縁部分
b 底面部
DESCRIPTION OF SYMBOLS 10 Enclosure board 13-16 Flange 21, 22 Joining board 30 Diagonal material 100 Column 101 Rail 200 Beam P1-P6 Vertex h Head top part E1, E2, E3, E4 Both edge part of head part b Bottom part

Claims (5)

鋼製の骨組部材に金属製の斜材が取り付けられて補強される耐震補強構造であって、
前記骨組部材の一範囲を四方から囲い、且つ、前記斜材が直接または介在部材を介して接合される金属製の囲い板を有し、
前記囲い板は、板を曲げた形状を有し、前記骨組部材の外周の複数個所に板面を対向かつ近接させ、前記骨組部材と剛接合されずに前記骨組部材を囲っていることを特徴とする耐震補強構造。
A seismic reinforcement structure in which a metal diagonal member is attached to a steel frame member and reinforced,
A metal enclosure that encloses a range of the framework member from four sides and to which the diagonal member is joined directly or via an intervening member;
The enclosure plate has a shape obtained by bending a plate, and the plate surfaces are opposed and close to a plurality of locations on the outer periphery of the framework member, and the framework member is enclosed without being rigidly joined to the framework member. Seismic reinforcement structure.
前記囲い板は、板の曲り部分の内側に空間を開けて前記骨組部材を囲っていることを特徴とする請求項1記載の耐震補強構造。   The seismic reinforcement structure according to claim 1, wherein the surrounding plate surrounds the frame member by opening a space inside a bent portion of the plate. 前記囲い板の耐力は、前記骨組部材の降伏曲げ耐力よりも小さいことを特徴とする請求項1又は請求項2に記載の耐震補強構造。   The seismic reinforcement structure according to claim 1 or 2, wherein the yield strength of the shroud is smaller than the yield bending strength of the frame member. 前記囲い板は、
前記骨組部材の一側方を囲い、且つ、一端部と他端部とに一対のフランジ部を有する第1部分と、
前記骨組部材の他側方を囲い、且つ、一端部と他端部とに一対のフランジ部を有する第2部分とを有し、
前記第1部分の前記一対のフランジ部と前記第2部分の前記一対のフランジ部とが互いに接合されて前記囲い板が前記骨組部材を囲い、
前記第1部分のフランジ部と前記第2部分のフランジ部に前記介在部材の一部が接合され、
前記斜材が前記介在部材の他の部位に接合されていることを特徴とする請求項1又は請求項2に記載の耐震補強構造。
The shroud is
A first portion surrounding one side of the framework member and having a pair of flange portions at one end and the other end;
A second portion surrounding the other side of the framework member and having a pair of flange portions at one end and the other end;
The pair of flange portions of the first portion and the pair of flange portions of the second portion are joined to each other, and the surrounding plate surrounds the frame member,
A part of the interposed member is joined to the flange portion of the first portion and the flange portion of the second portion,
The seismic reinforcement structure according to claim 1 or 2, wherein the diagonal member is joined to another part of the interposition member.
前記骨組部材は、鉄道用の2本のレールを互いの底面部同士を接合して構成され、
前記囲い板は、骨組部材の長手方向に垂直な断面の内周が六角形状であり、前記六角形状の第1頂点を挟む2辺に対応する2つの面が、前記2本のレールのうち一方のレールの頭頂部の両縁部分にそれぞれ近接且つ対向し、前記六角形状の前記第1頂点の反対側の第2頂点を挟む2辺に対応する2つの面が、前記2本のレールのうち他方のレールの頭頂部の両縁部分にそれぞれ近接且つ対向していることを特徴とする請求項1又は請求項2に記載の耐震補強構造。
The skeleton member is composed of two railroad rails joined to each other at the bottoms,
The surrounding plate has a hexagonal inner periphery in a cross section perpendicular to the longitudinal direction of the frame member, and two surfaces corresponding to two sides sandwiching the first vertex of the hexagonal shape are one of the two rails. The two surfaces corresponding to the two sides that are adjacent to and opposite to both edge portions of the top of the rail of the rail and sandwich the second vertex on the opposite side of the first vertex of the hexagonal shape are the two rails. The seismic reinforcement structure according to claim 1, wherein the structure is adjacent to and opposed to both edge portions of the top of the other rail.
JP2015165535A 2015-08-25 2015-08-25 Seismic reinforcement structure Expired - Fee Related JP6645770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165535A JP6645770B2 (en) 2015-08-25 2015-08-25 Seismic reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165535A JP6645770B2 (en) 2015-08-25 2015-08-25 Seismic reinforcement structure

Publications (2)

Publication Number Publication Date
JP2017043911A true JP2017043911A (en) 2017-03-02
JP6645770B2 JP6645770B2 (en) 2020-02-14

Family

ID=58211318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165535A Expired - Fee Related JP6645770B2 (en) 2015-08-25 2015-08-25 Seismic reinforcement structure

Country Status (1)

Country Link
JP (1) JP6645770B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137978A (en) * 2018-02-06 2019-08-22 東日本旅客鉄道株式会社 Reinforcing member for skeleton and building

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520807A (en) * 1978-07-31 1980-02-14 Taisei Corp Method of reinforcing alreadyybuilt structure by adding oblique material
JP2003074019A (en) * 2001-09-07 2003-03-12 Ohbayashi Corp Pedestal structure, and aseismatic reinforcement structure
JP2009179931A (en) * 2008-01-29 2009-08-13 Takenaka Komuten Co Ltd Seismic strengthening structure and seismic strengthening method for existing column base

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520807A (en) * 1978-07-31 1980-02-14 Taisei Corp Method of reinforcing alreadyybuilt structure by adding oblique material
JP2003074019A (en) * 2001-09-07 2003-03-12 Ohbayashi Corp Pedestal structure, and aseismatic reinforcement structure
JP2009179931A (en) * 2008-01-29 2009-08-13 Takenaka Komuten Co Ltd Seismic strengthening structure and seismic strengthening method for existing column base

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磯部真行: "鉄道用レールを用いた建築の調査", 2000年大会学術講演会, vol. 1129, JPN6019009733, 5 October 2000 (2000-10-05), JP, pages p.121−p.124 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137978A (en) * 2018-02-06 2019-08-22 東日本旅客鉄道株式会社 Reinforcing member for skeleton and building
JP7029751B2 (en) 2018-02-06 2022-03-04 東日本旅客鉄道株式会社 Reinforcing members for the skeleton and buildings

Also Published As

Publication number Publication date
JP6645770B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2017026113A1 (en) Column and beam connection structure and method
JP6656857B2 (en) Beam-column joint structure
KR101808909B1 (en) Method for constructing connection structure of steel beam
JP2018009410A (en) Pillar beam joint structure
JP5948963B2 (en) Beam-column joint structure
KR20180062357A (en) Connecting method for beam and column
JP2017043911A (en) Aseismatic reinforcement structure
JP2018127826A (en) Joining method of column and beam
JP2015068005A (en) Welding joining continuous beam structure
JP6432155B2 (en) Beam-column joint structure
JP6669088B2 (en) Steel plate shear walls, frames and buildings equipped with them
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
JP2020094344A (en) Steel column-beam joining structure
JP6012398B2 (en) Steel tower reinforcement structure
JP6494488B2 (en) Seismic reinforcement structure for concrete structures
JP7098363B2 (en) Ladder type bearing wall frame
JP5344702B2 (en) Column and slab joint structure
JP3639552B2 (en) Damping structure for ramen frame
JP6164010B2 (en) Reinforcement structure for beam-column joints
JP5777316B2 (en) Reinforcement structure of fixing part for support
JP2015021309A (en) Reinforcement structure for columnar structure
JP6964422B2 (en) Structure
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure
KR102407718B1 (en) Damper structure and joint structure for beam to column connection
JP6185680B1 (en) Damping device and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees