JP2017043846A - Porous carbon electrode for water treatment and waste water treatment method using the same - Google Patents

Porous carbon electrode for water treatment and waste water treatment method using the same Download PDF

Info

Publication number
JP2017043846A
JP2017043846A JP2016165046A JP2016165046A JP2017043846A JP 2017043846 A JP2017043846 A JP 2017043846A JP 2016165046 A JP2016165046 A JP 2016165046A JP 2016165046 A JP2016165046 A JP 2016165046A JP 2017043846 A JP2017043846 A JP 2017043846A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon electrode
water
electrode
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016165046A
Other languages
Japanese (ja)
Inventor
奈津子 岡崎
Natsuko Okazaki
奈津子 岡崎
宮永 俊明
Toshiaki Miyanaga
俊明 宮永
中川 浩行
Hiroyuki Nakagawa
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Kyoto University NUC
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Kyoto University NUC filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Publication of JP2017043846A publication Critical patent/JP2017043846A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous carbon electrode which is used for decomposing a hardly decomposable organic compound in water by a promotion oxidation method and has excellent break through property and electrical properties and mechanical strength resistant to long term use or a treatment with water pressure.SOLUTION: There is provided a porous carbon electrode which is used for a water conduction type water treatment by using an electrolytic promotion oxidation method and has communication pores, pore diameter measured by a mercury penetration method (median diameter) of 2 to 90 μm, air permeability of 0.0055 to 0.1000 cm/sec Pa and flexure strength of 10 to 100 MPa.SELECTED DRAWING: None

Description

本発明は、水処理用多孔質炭素電極及びそれを用いた排水処理方法に関し、詳しくは、促進酸化法を用いた通水型水処理により、排水に含まれた難分解性有機化合物を電気化学的に処理するために使用される多孔質炭素電極、及びそれを用いた水処理方法に関する。   The present invention relates to a porous carbon electrode for water treatment and a wastewater treatment method using the same, and more particularly, to electrochemically convert a hardly decomposable organic compound contained in wastewater by water-flowing water treatment using an accelerated oxidation method. TECHNICAL FIELD The present invention relates to a porous carbon electrode used for treatment and a water treatment method using the same.

鉱工業の排水には、芳香族化合物等の難分解性有機化合物が含まれており、生物処理や活性炭処理では分解除去できないという課題がある。特に、原油やシェールオイル等の鉱物燃料に含まれる油分は生分解性に劣ることが知られている。   Mineral wastewater contains difficult-to-decompose organic compounds such as aromatic compounds and has a problem that it cannot be decomposed and removed by biological treatment or activated carbon treatment. In particular, it is known that oil contained in mineral fuel such as crude oil and shale oil is inferior in biodegradability.

現在急速に世界各地で開発が進められているシェールオイルやシェールガスの掘削現場では、掘削した石油又はガスの量に対し3倍から10倍の油濁水が発生している。この油濁水には環境に有害であり、且つ難分解性である有機化合物が含まれているため、生産現場では油濁水を浄化処理して廃棄しなければならないが、油濁水に含まれる鉱物系油は生分解性に劣ることが問題となっている。また、海水等を使用する掘削で排出される油濁水は、塩分濃度が高いことからも生物処理による処理はさらに困難である。たとえ吸着等の物理的手法によって浄化処理しても、油濁水に含まれる難分解性有機化合物は除去は困難であり、効率が悪い。このため、油濁水は充分な浄化処理が行えないまま再び地中に埋蔵されるか、管理された貯水池に保管されるなどされているものの、不慮の事態等による環境汚染が強く懸念されている。   At shale oil and shale gas drilling sites, which are currently being rapidly developed around the world, 3 to 10 times more oily water is generated than the amount of oil or gas drilled. Since this oily water contains organic compounds that are harmful to the environment and are difficult to decompose, the oily water must be purified and disposed of at the production site. Oil is inferior in biodegradability. In addition, oily water discharged by excavation using seawater or the like is more difficult to treat by biological treatment because of its high salinity. Even if it is purified by a physical method such as adsorption, it is difficult to remove the hardly decomposable organic compound contained in the oily water and the efficiency is poor. For this reason, although oily water is buried in the ground again without being able to be sufficiently purified, or stored in a managed reservoir, there is a strong concern about environmental pollution due to unforeseen circumstances. .

近年、難分解性有機化合物を含む大量の水を効率良く、低コストで処理する手段として促進酸化法による水処理方法が開発されている。促進酸化処理は、処理装置内でOHラジカル(ヒドロキシラジカル:・OH)を生成させ、OHラジカルの強い酸化力によって、有機化合物を例えばCO、蟻酸、アルデヒド等の低分子まで分解するものである。 In recent years, a water treatment method using an accelerated oxidation method has been developed as a means for efficiently and inexpensively treating a large amount of water containing a hardly decomposable organic compound. In the accelerated oxidation treatment, OH radicals (hydroxy radicals: .OH) are generated in the treatment apparatus, and the organic compounds are decomposed into low molecules such as CO 2 , formic acid, and aldehydes by the strong oxidizing power of the OH radicals. .

従来の促進酸化法としては、オゾン(O)、過酸化水素(H)、UV照射を組み合わせる方式が一般的であり、ダイオキシンの分解処理等に実用化されている。しかし、この方式は、オゾン発生器、排ガス処理装置、UV照射装置等の特殊な設備に要するコストが大きい。一方、特殊な設備を必要とせず初期投資が少ない簡便な方式として、以下の式で示すような二価鉄イオン(Fe2+)と過酸化水素からOHラジカルを生成する反応(フェントン反応)を利用するフェントン法が知られている。
Fe2++H→Fe3++OH+・OH
As a conventional accelerated oxidation method, a method of combining ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), and UV irradiation is generally used, and has been put to practical use for dioxin decomposition treatment. However, this method requires a large cost for special equipment such as an ozone generator, an exhaust gas treatment device, and a UV irradiation device. On the other hand, as a simple method that requires little initial investment and does not require special equipment, a reaction (Fenton reaction) that generates OH radicals from divalent iron ions (Fe 2+ ) and hydrogen peroxide as shown in the following formula is used. The Fenton method is known.
Fe 2+ + H 2 O 2 → Fe 3+ + OH + · OH

また、フェントン法で必要な二価鉄イオンと過酸化水素の両方又は一方を促進酸化処理と同じ装置内で生成供給するような電解フェントン法が知られており、このような電解フェントン法では、二価鉄イオン源の投入量を大幅に低減することができるほか、負荷量などによっては初期に投入すれば反応源としての二価鉄イオン等を外部から投入しなくても済ませることも可能である。また、酸素を電解還元して過酸化水素を供給する方式では、過酸化水素の供給コストの削減が期待できる。   In addition, an electrolytic Fenton method is known in which both or one of the divalent iron ions and hydrogen peroxide required in the Fenton method are generated and supplied in the same apparatus as the accelerated oxidation treatment. In such an electrolytic Fenton method, In addition to drastically reducing the amount of divalent iron ion source input, depending on the amount of load, it is possible to eliminate the need to input divalent iron ion as a reaction source from the outside if it is initially input. is there. Further, in the method of supplying hydrogen peroxide by electrolytic reduction of oxygen, reduction of the supply cost of hydrogen peroxide can be expected.

例えば、特許文献1では、Fe3+を電気化学的に還元しつつフェントン処理を行う排水処理方法が提案されている。しかし、排水処理装置のフェントン反応槽に、陰極材料としてFeよりも貴な材料である銅、銅合金、陽極材料として白金、ダイヤモンドなどからなる電極を用いる必要があり、このような電極材料は高価なため、大型の電極の製造がコスト的に困難であることから、大量の排水を効率的に処理することは難しい。また、特許文献1のような平板状ないし棒状の電極を使った水処理は、陰極表面へのFe3+の供給速度が小さく、処理速度を上げるために高い電圧をかけると、競合反応である水素生成反応が有利になってしまう。そのため、電極近傍で非常に強く撹拌しながらフェントン処理を行わないと、排水中の有機化合物の処理率が著しく低下する課題があった。 For example, Patent Document 1 proposes a wastewater treatment method that performs Fenton treatment while electrochemically reducing Fe 3+ . However, it is necessary to use an electrode made of copper, a copper alloy, which is a noble material than Fe as a cathode material, platinum, diamond, or the like as an anode material in the Fenton reaction tank of the waste water treatment apparatus, and such an electrode material is expensive. Therefore, since it is difficult to manufacture a large electrode in terms of cost, it is difficult to efficiently treat a large amount of waste water. In addition, the water treatment using a plate-like or rod-like electrode as in Patent Document 1 has a low supply rate of Fe 3+ to the cathode surface, and hydrogen is a competitive reaction when a high voltage is applied to increase the treatment rate. The production reaction becomes advantageous. Therefore, if the Fenton treatment is not performed with very strong stirring in the vicinity of the electrode, there is a problem that the treatment rate of the organic compound in the waste water is remarkably reduced.

特許文献2は、ガラス状カーボンで被覆された炭素電極を開示し、特許文献3は、この炭素電極を使用して電気化学的に酸化処理する方法を開示している。これは、多孔質炭素電極に印加した後、微生物を含む被処理水を多孔質炭素電極内部の微細気孔中を流通する過程で分極した正極および負極における電気化学反応により微生物と電極間で電子の移動が起こり、酸化還元反応によって微生物が死滅するというものである。   Patent Document 2 discloses a carbon electrode coated with glassy carbon, and Patent Document 3 discloses a method of performing an electrochemical oxidation treatment using the carbon electrode. This is because, after being applied to the porous carbon electrode, the water to be treated containing the microorganisms is polarized in the process of flowing through the fine pores inside the porous carbon electrode. Migration occurs and microorganisms are killed by redox reactions.

特許文献2、3で開示された多孔質炭素電極は、コークス粒子とピッチを原料とした粒子結合型の多孔質炭素材の気孔を形成する炭素基材の骨格表面に、多孔質炭素材の材質強度を補強するために、緻密で硬質なガラス状カーボンが被覆された複合組織構造となっている。しかし、細孔径を大きくして、通水性を高めるために、原料として粒度の大きいコークス粒子を使用しているため、強度が低くなることは避けられず、通水量を確保するために比較的高い水圧を必要とする水処理装置での長期使用に耐えられるものではない。また、電極表面が難黒鉛化性炭素であるガラス状カーボンで被覆されていることから、電極の固有抵抗が高くなってしまい、電極の大型化ができないといった問題がある。   The porous carbon electrodes disclosed in Patent Documents 2 and 3 are made of a material of a porous carbon material on a skeleton surface of a carbon base material that forms pores of a particle-bonded porous carbon material using coke particles and pitch as raw materials. In order to reinforce the strength, it has a composite structure in which dense and hard glassy carbon is coated. However, since coke particles having a large particle size are used as a raw material in order to increase the pore size and increase the water permeability, it is inevitable that the strength is lowered, and is relatively high in order to ensure the water flow rate. It cannot withstand long-term use in water treatment equipment that requires water pressure. Further, since the electrode surface is coated with glassy carbon which is non-graphitizable carbon, there is a problem that the specific resistance of the electrode is increased and the electrode cannot be enlarged.

特開2004−181329号公報JP 2004-181329 A 特開平11−139871号公報Japanese Patent Laid-Open No. 11-139871 特開平11−140681号公報JP-A-11-140681

本発明は、大型化が可能な電極材料として高い機械強度と低い固有抵抗値を備え、高水圧のかかる環境下でも長期間の使用にも耐えうる電解促進酸化法を利用する連続的な通水型水処理に適した多孔質炭素電極を提供することを目的とする。   The present invention provides a continuous water flow using an electrolysis-promoted oxidation method that has high mechanical strength and low specific resistance as an electrode material that can be increased in size, and can withstand long-term use even in environments with high water pressure. An object of the present invention is to provide a porous carbon electrode suitable for mold water treatment.

本発明者は、上記課題を解決するために検討を重ねた結果、製造が容易であり、良好な通液性を有しながら、固有抵抗値が低く、軽量で機械強度が高く、電解促進酸化法を用いた通水型水処理法に好適に使用できる多孔質炭素電極を用いることで、簡便に難分解性有機化合物を含んだ排水を処理することができることを見出し、本発明を完成するに至った。   As a result of repeated studies to solve the above problems, the present inventor is easy to manufacture, has good liquid permeability, has a low specific resistance value, is light in weight, has high mechanical strength, and promotes electrolytic oxidation. In order to complete the present invention, it is found that by using a porous carbon electrode that can be suitably used for a water-passage water treatment method using a method, wastewater containing a hardly decomposable organic compound can be treated easily. It came.

すなわち、本発明は、電解促進酸化法を用いた通水型水処理に使われる多孔質炭素電極であって、連通細孔を有し、水銀圧入法で測定される気孔径(メジアン径)が2〜90μmであり、通気率が0.0055〜0.1000cm/sec・Paであり、曲げ強度が10〜100MPaであることを特徴とする多孔質炭素電極である。 That is, the present invention relates to a porous carbon electrode used for water flow type water treatment using an electrolysis-promoted oxidation method, having a continuous pore, and having a pore diameter (median diameter) measured by a mercury intrusion method. It is a porous carbon electrode characterized by being 2 to 90 μm, an air permeability of 0.0055 to 0.1000 cm 2 / sec · Pa, and a bending strength of 10 to 100 MPa.

上記多孔質炭素電極において、固有抵抗値が0.1〜20μΩmであることが好ましい。
上記多孔質炭素電極において、電解促進酸化法がフェントン反応を利用するものであり、被処理水が電極内部を貫流する通水型水処理に使われることが好ましい。
In the porous carbon electrode, the specific resistance value is preferably 0.1 to 20 μΩm.
In the porous carbon electrode, the electrolysis-promoted oxidation method uses the Fenton reaction, and it is preferable that the water to be treated is used for water-flow type water treatment in which the inside of the electrode flows.

また、本発明は、上記多孔質炭素電極の製造方法であって、易黒鉛化性炭素粒子100重量部に対し、バインダーピッチ10〜80重量部を配合した炭素質材料を、混練、成形した後、焼成・黒鉛化させることを特徴とする多孔質炭素電極の製造方法である。   Further, the present invention is a method for producing the above porous carbon electrode, after kneading and molding a carbonaceous material containing 10 to 80 parts by weight of a binder pitch with respect to 100 parts by weight of graphitizable carbon particles. And a method for producing a porous carbon electrode, characterized by firing and graphitizing.

上記製造方法において、易黒鉛化性炭素粒子が、ピッチコークス又は石油コークスであり、その真密度が1.8g/cm以上であることが好ましい。また、焼成・黒鉛化後、過酸化水素または次亜塩素酸で表面処理してもよい。 In the above production method, the graphitizable carbon particles are preferably pitch coke or petroleum coke, and the true density is preferably 1.8 g / cm 3 or more. Further, after firing and graphitization, surface treatment may be performed with hydrogen peroxide or hypochlorous acid.

また、本発明は、有機化合物を含む排水を陰極および陽極が配置された反応槽に流通させて、電解フェントン反応を利用した促進酸化分解法により排水を処理する方法において、上記多孔質炭素電極を少なくとも陰極として使用し、多孔質炭素電極の連通細孔をマイクロ流路として排水を通水しながら、両極に電圧を印加することにより、連通細孔内において排水中の溶存酸素から過酸化水素を生成するとともに、フェントン反応に伴い生成するFe3+を電気化学的にFe2+に還元しつつ、排水中の有機化合物を連続的に電解フェントン処理して酸化分解する反応を生じさせることを特徴とする排水処理方法である。 Further, the present invention provides a method for treating waste water by an accelerated oxidative decomposition method utilizing electrolytic Fenton reaction by flowing waste water containing an organic compound through a reaction vessel in which a cathode and an anode are disposed. At least as a cathode, by applying a voltage to both electrodes while draining water through the pores of the porous carbon electrode as a microchannel, hydrogen peroxide is removed from dissolved oxygen in the drainage water in the pores. It is characterized in that, while producing Fe 3+ produced by the Fenton reaction, electrochemically reducing it to Fe 2+ , an organic compound in the waste water is continuously subjected to electrolytic Fenton treatment to cause oxidative decomposition. Wastewater treatment method.

本発明の多孔質炭素電極は、これを通水型の電解促進酸化法の電極として使用したとき、難分解性の有機化合物を長期間安定的かつ効率的に処理することができる。すなわち、多孔質炭素電極と水の界面(接触面)において、Fe3+の還元反応とHの生成反応を行い、電極構造体内部のマイクロ流路を反応場として利用することでフェントン反応による難分解性の有機化合物の分解を連続的に行うことができるものである。これまで電極の内部空間を利用したフェントン反応による通液型の水処理用多孔質炭素電極はなく、電極と反応場を一体化することで多孔質炭素電極だけでフェントン処理が完結でき、小型又は大型いずれの電極及び装置を提供することができる多孔質炭素電極である。 When the porous carbon electrode of the present invention is used as an electrode for a water flow type electrolysis-promoted oxidation method, it can stably and efficiently treat a hardly decomposable organic compound for a long period of time. That is, at the interface (contact surface) between the porous carbon electrode and water, the Fe 3+ reduction reaction and the H 2 O 2 formation reaction are performed, and the Fenton reaction is performed by using the microchannel inside the electrode structure as a reaction field. It is possible to continuously carry out the decomposition of the hardly decomposable organic compound by the above. So far, there has been no porous carbon electrode for water treatment using the Fenton reaction utilizing the internal space of the electrode, and by integrating the electrode and the reaction field, the Fenton treatment can be completed with only the porous carbon electrode, It is a porous carbon electrode that can provide any large electrode and device.

本発明に係る多孔質炭素電極を使用した排水処理方法の実施形態を示す概略工程図である。It is a schematic process drawing which shows embodiment of the waste water treatment method using the porous carbon electrode which concerns on this invention. 本発明に係る多孔質炭素電極を使用した排水処理装置の実施形態を示す概略図である。It is the schematic which shows embodiment of the waste water treatment equipment using the porous carbon electrode which concerns on this invention.

本発明の多孔質炭素電極は、被処理水が電極内部を貫流する通水型の多孔質炭素電極であって、通水性の目安となる通気率は、SI単位では0.0055〜0.1000cm/sec・Pa(慣用単位では0.55〜10cc・cm/cm・sec・cmHO)であり、好ましくは0.0080〜0.0500cm/sec・Pa(0.8〜5.0cc・cm/cm・sec・cmHO)である。通気率が0.0055cm/sec・Pa(0.55cc・cm/cm・sec・cmHO)未満であると、被処理水の通液性が悪くなるため、水処理に時間がかかってしまい、適さない。一方、通気率が0.1000cm/sec・Pa(10cc・cm/cm・sec・cmHO)を超えると被処理水が処理しきれないまま電極から流出してしまうため、適さない。 The porous carbon electrode of the present invention is a water-permeable porous carbon electrode through which water to be treated flows through the inside of the electrode, and the air permeability as a measure of water permeability is 0.0055 to 0.1000 cm in SI units. 2 / sec · Pa (0.55 to 10 cc · cm / cm 2 · sec · cmH 2 O in conventional units), preferably 0.0080 to 0.0500 cm 2 / sec · Pa (0.8 to 5 . 0 cc · cm / cm 2 · sec · cmH 2 O). If the air permeability is less than 0.0055 cm 2 / sec · Pa (0.55 cc · cm / cm 2 · sec · cmH 2 O), the water permeability of the water to be treated will deteriorate, so it takes time for water treatment. It is not suitable. On the other hand, if the air permeability exceeds 0.1000 cm 2 / sec · Pa (10 cc · cm / cm 2 · sec · cmH 2 O), the water to be treated flows out of the electrode without being completely treated, which is not suitable.

本発明の多孔質炭素電極の気孔径(メジアン径)は、2〜90μmであるが、好ましくは3〜50μmであり、より好ましくは3〜25μmである。気孔径が2μm未満だと、被処理水の電極貫流時の圧力損失が高くなるため、通液性が低下し、電極にかかる負荷の増大と処理水量の低下をまねくほか、目詰まりが起こりやすくなる等の問題が発生する。また、気孔径が90μmを超えると、被処理水と電極の接触面積が低下するため、処理が不十分のまま電極より流出してしまうほか、電極の機械強度低下の懸念がある。   The pore diameter (median diameter) of the porous carbon electrode of the present invention is 2 to 90 μm, preferably 3 to 50 μm, more preferably 3 to 25 μm. If the pore diameter is less than 2 μm, the pressure loss when the treated water flows through the electrode will be high, so the liquid permeability will be reduced, leading to an increase in load on the electrode and a decrease in the amount of treated water, and clogging is likely to occur. The problem of becoming. In addition, when the pore diameter exceeds 90 μm, the contact area between the water to be treated and the electrode is reduced, so that it may flow out of the electrode with insufficient treatment, and there is a concern that the mechanical strength of the electrode is lowered.

本発明の多孔質炭素電極は、電極の連通孔をマイクロ流路として被処理水を通水させて水処理を行うので、連通した気孔の数は多いことが望ましく、また、処理水と電極の接触面積が大きいことが処理効率の面で望ましい。このため、電極の比表面積は1.0m/g以上であることが良く、好ましくは4.0m/g以上である。また、気孔率は10〜40%が適しており、15〜30%が好ましい。気孔率が40%以上となると電極の機械強度が低下するほか、10%未満であると通液性が低下するため、処理効率が低下する。 In the porous carbon electrode of the present invention, since the water to be treated is passed through the electrode through-holes as microchannels for water treatment, it is desirable that the number of pores communicated is large. A large contact area is desirable in terms of processing efficiency. For this reason, the specific surface area of the electrode is preferably 1.0 m 2 / g or more, and preferably 4.0 m 2 / g or more. The porosity is suitably 10 to 40%, preferably 15 to 30%. When the porosity is 40% or more, the mechanical strength of the electrode is lowered, and when it is less than 10%, the liquid permeability is lowered, so that the treatment efficiency is lowered.

本発明の多孔質炭素電極は、かさ密度が1.10〜2.0g/cmであることが好ましく、1.25〜1.90g/cmのものがより好ましく、最も好ましくは、1.30〜1.80g/cmの範囲にあるものである。かさ密度が低いと、機械強度が著しく低下し、かさ密度が高すぎると通気率が低下して通水型水処理に使われる多孔質炭素電極として適さない。 The porous carbon electrode of the present invention preferably has a bulk density of 1.10 to 2.0 g / cm 3 , more preferably 1.25 to 1.90 g / cm 3 , and most preferably 1. It is in the range of 30 to 1.80 g / cm 3 . If the bulk density is low, the mechanical strength is remarkably lowered, and if the bulk density is too high, the air permeability is lowered and it is not suitable as a porous carbon electrode used for water flow type water treatment.

本発明の多孔質炭素電極は、10〜100MPaの曲げ強さを持つ。曲げ強さが10MPa未満であると、高い寸法精度で形状加工を行うことができなかったり、水圧や外部からの振動や衝撃により破損してしまうことがある。他方、曲げ強さが100MPaを超えると、靱性が低下して脆くなり、精密加工ができなくなる問題がある。   The porous carbon electrode of the present invention has a bending strength of 10 to 100 MPa. If the bending strength is less than 10 MPa, shape processing cannot be performed with high dimensional accuracy, or damage may occur due to water pressure or external vibration or impact. On the other hand, when the bending strength exceeds 100 MPa, the toughness is lowered and becomes brittle, and there is a problem that precision machining cannot be performed.

本発明の多孔質炭素電極の固有抵抗は、好ましくは0.1〜20μΩmであるが、より好ましくは0.1〜15μΩmである。固有抵抗値は、低いほどよく、20μΩmを超えて抵抗が高くなると、電極を大型化すればするほど内部まで効率的に通電できず、水処理の効率が低下する。多孔質炭素電極を用いて大量の水処理を行うためには、電極をできるだけ大きくする必要があるため、固有抵抗の低い電極が好ましい。   The specific resistance of the porous carbon electrode of the present invention is preferably 0.1 to 20 μΩm, more preferably 0.1 to 15 μΩm. The specific resistance value should be as low as possible. If the resistance exceeds 20 μΩm, the larger the electrode, the more efficiently the current cannot be supplied to the inside, and the efficiency of water treatment decreases. In order to perform a large amount of water treatment using a porous carbon electrode, it is necessary to make the electrode as large as possible. Therefore, an electrode having a low specific resistance is preferable.

上記の特性を有する本発明の多孔質炭素電極は、公知の方法で製造することができる。例えば、ピッチコークスや石油コークス等の微粉状の原料コークス粒子に、タールやピッチ等のバインダーピッチを配合して炭素質材料とし、これを混練機に投入し、バインダーピッチの溶融温度以上で混練し、所定の形状の押出口を有するダイから押し出し成形を行った後、焼成、黒鉛化処理することで製造することができる。また、上記押し出し成形に変えて、コークス粉末とバインダーピッチの混練物を冷却して2次粉砕した粒子を所望の形状の成形型に入れて上部から加圧成形する形込め成形であっても良く、更には、2次粉砕した粒子を水中でのラバープレスで圧縮成型後、焼成し、黒鉛化処理する冷間静水圧プレス(CIP)成形で製造することもできる。   The porous carbon electrode of the present invention having the above characteristics can be produced by a known method. For example, fine carbonaceous coke particles such as pitch coke and petroleum coke are blended with binder pitch such as tar and pitch to make a carbonaceous material, which is put into a kneader and kneaded at a temperature higher than the melting temperature of the binder pitch. It can be manufactured by extruding from a die having an extrusion port of a predetermined shape, followed by firing and graphitization. Further, in place of the above-described extrusion molding, it is also possible to use an embedding molding in which the kneaded product of coke powder and binder pitch is cooled and secondarily pulverized particles are put into a mold having a desired shape and pressure-molded from above. Further, it can also be produced by cold isostatic pressing (CIP) molding in which the secondary pulverized particles are compression molded with a rubber press in water, then fired and graphitized.

本発明の多孔質炭素電極の製造には、真密度が1.8g/cm以上の易黒鉛化性炭素を原料コークス粒子として使用する。原料コークス粒子は好ましくは真密度1.95g/cm以上の易黒鉛化炭素粒子が良い。易黒鉛化性炭素の真密度が1.8g/cm未満であると電気抵抗が高くなり、水処理効率が低下する。 In the production of the porous carbon electrode of the present invention, graphitizable carbon having a true density of 1.8 g / cm 3 or more is used as raw coke particles. The raw coke particles are preferably graphitizable carbon particles having a true density of 1.95 g / cm 3 or more. When the true density of graphitizable carbon is less than 1.8 g / cm 3 , the electrical resistance increases and the water treatment efficiency decreases.

本発明の多孔質炭素電極の製造に用いられるバインダーには、タールやピッチが挙げられる。ピッチは石油系重質油から得られる石油ピッチ、石炭系重質油から得られる石炭ピッチのいずれを使用することができるが、原料コークス粒子として使用する易黒鉛化炭素粒子と同系の原料から得られたバインダーピッチを使用することが混練時の馴染みが良く好ましい。   Examples of the binder used for producing the porous carbon electrode of the present invention include tar and pitch. The pitch can be either petroleum pitch obtained from petroleum heavy oil or coal pitch obtained from heavy coal oil, but it can be obtained from raw materials similar to graphitizable carbon particles used as raw coke particles. It is preferable to use the obtained binder pitch because the familiarity during kneading is good.

易黒鉛化性炭素粒子とバインダーピッチの配合割合は、混練条件や成形方法によって配合量が調整されるが、易黒鉛化性炭素粒子100重量部に対し、バインダーピッチ10〜80重量部の範囲とする。例えば、押出し成形によって多孔質炭素電極を製造する場合は、易黒鉛化性炭素粒子が100重量部に対し、バインダーピッチが10部〜80部、好ましくは20部〜50部にする。バインダーピッチが10重量部未満であると、機械強度が低下するため電極が脆くなる。またバインダーピッチが80重量部を超えると電気特性が低下する。配合割合は上記の範囲で、適宜調整される。   The blending ratio of the graphitizable carbon particles and the binder pitch is adjusted depending on the kneading conditions and the molding method, but the blending pitch is 10 to 80 parts by weight with respect to 100 parts by weight of the graphitizable carbon particles. To do. For example, when producing a porous carbon electrode by extrusion molding, the binder pitch is 10 parts to 80 parts, preferably 20 parts to 50 parts, with respect to 100 parts by weight of graphitizable carbon particles. If the binder pitch is less than 10 parts by weight, the mechanical strength is lowered, and the electrode becomes brittle. On the other hand, when the binder pitch exceeds 80 parts by weight, the electrical characteristics are deteriorated. The blending ratio is appropriately adjusted within the above range.

易黒鉛化性炭素粒子とバインダーピッチとの混練物は、所望の形状に成形し、非酸化性雰囲気下800℃以上の温度で熱処理(焼成)することにより多孔質炭素成形体とする。この多孔質炭素成形体をさらに非酸化性雰囲気中1500℃以上の温度、好ましくは2000〜3000℃の温度で黒鉛化することにより、本発明の水処理用多孔質炭素電極が製造される。このとき、多孔質炭素電極の表面活性を高めて所定の黒鉛化度、結晶性状とするためには、黒鉛化は2000〜2800℃の温度で行うことがより好ましい。なお、黒鉛化を行う際の雰囲気は窒素やアルゴンガス等による不活性雰囲気下又は真空下であることが好ましい。   The kneaded product of graphitizable carbon particles and binder pitch is formed into a desired shape and heat treated (fired) at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere to obtain a porous carbon molded body. By further graphitizing this porous carbon molded body at a temperature of 1500 ° C. or higher, preferably 2000 to 3000 ° C., in a non-oxidizing atmosphere, the porous carbon electrode for water treatment of the present invention is produced. At this time, graphitization is more preferably performed at a temperature of 2000 to 2800 ° C. in order to increase the surface activity of the porous carbon electrode to obtain a predetermined degree of graphitization and crystallinity. In addition, it is preferable that the atmosphere at the time of graphitizing is an inert atmosphere by nitrogen, argon gas, etc., or a vacuum.

多孔質炭素電極の気孔径(メジアン径)と通気率は、使用する易黒鉛化性炭素粒子の粒径やバインダーピッチ又は含浸ピッチの使用量や焼成温度等によって制御できる。例えば、易黒鉛化性炭素粒子の粒径を大きくすることにより、これらの数字は大きくなる。また、焼成を複数回行い、この際に含浸ピッチを含浸させれば、これらの数字は小さくなるが、通気率が低下する。焼成温度を高くし、時間を長くすると、固有抵抗を低下させる。その他の特性の制御も公知の手法により可能であるので、所望の特性となるように上記のような条件を変化させる。具体的に、易黒鉛化性炭素粒子(コークス粒子)の粒径について言えば、その全ての粒子の粒径が、好ましくは5mm以下、より好ましくは3mm以下であり、そのうち0.1mm以下の細粒が、好ましくは10%(重量基準)以上、より好ましくは20%以上存在するとよい。また、中間的な粒径をもつ粒子、例えば0.5〜1.0mm程度のものを除外することによって、気孔径や通気率と機械強度(曲げ強さ)のバランスが良好にすることも好ましい。所定の粒径に調整された易黒鉛化性炭素粒子(コークス粒子)をバインダーピッチと混練した後、その混練物や押出成形品を粉砕し、再度粒度調整してもよい。   The pore diameter (median diameter) and air permeability of the porous carbon electrode can be controlled by the particle diameter of the graphitizable carbon particles to be used, the amount of binder pitch or impregnation pitch used, the firing temperature, and the like. For example, these numbers increase by increasing the particle size of the graphitizable carbon particles. Further, if firing is performed a plurality of times and impregnation pitch is impregnated at this time, these numbers become small, but the air permeability decreases. Increasing the firing temperature and lengthening the time decreases the specific resistance. Since other characteristics can be controlled by a known method, the above-described conditions are changed so that the desired characteristics are obtained. Specifically, regarding the particle size of the graphitizable carbon particles (coke particles), the particle size of all the particles is preferably 5 mm or less, more preferably 3 mm or less, of which 0.1 mm or less. The grains are preferably present at 10% (by weight) or more, more preferably at least 20%. It is also preferable that the balance between the pore diameter, the air permeability and the mechanical strength (bending strength) is improved by excluding particles having an intermediate particle diameter, for example, about 0.5 to 1.0 mm. . After the graphitizable carbon particles (coke particles) adjusted to a predetermined particle size are kneaded with the binder pitch, the kneaded product or the extruded product may be pulverized and the particle size adjusted again.

本発明の多孔質炭素電極は、その酸素含有量が0.1重量%〜10重量%であることが好ましい。0.1重量%未満だと表面が撥水するため、通液性が悪化し、10重量%を超えると電気特性が低下するためである。また、多孔質炭素電極の純水による接触角は、110°以下であることが望ましく、更に好ましくは、100°以下が好ましい。接触角が110°を超えると、表面の濡れ性が低下するため撥水性が増し、通液性が悪化する。また、有機物との馴染みが良くなり、有機物が堆積して目詰まりの原因になる本発明の多孔質炭素電極を用いた水処理は、処理水が電極内部を通水しながら促進酸化反応により処理が行われることから、電極が処理水に良く濡れる必要がある。このため、水に対する濡れ性の一層の向上を目的に電極の表面処理を行ってもよい。   The porous carbon electrode of the present invention preferably has an oxygen content of 0.1 wt% to 10 wt%. If the amount is less than 0.1% by weight, the surface is water-repellent, so that the liquid permeability is deteriorated, and if it exceeds 10% by weight, the electrical characteristics are deteriorated. In addition, the contact angle of the porous carbon electrode with pure water is desirably 110 ° or less, and more preferably 100 ° or less. When the contact angle exceeds 110 °, the wettability of the surface decreases, so that the water repellency increases and the liquid permeability deteriorates. In addition, water treatment using the porous carbon electrode of the present invention, which improves familiarity with organic matter and causes organic matter to accumulate and cause clogging, is treated by an accelerated oxidation reaction while the treated water passes through the electrode. Therefore, the electrode needs to be well wetted with the treated water. For this reason, you may perform the surface treatment of an electrode for the further improvement of the wettability with respect to water.

親水化処理による表面改質は、多孔質炭素電極の気孔径や機械特性に影響を及ぼさない程度であれば、硝酸および硫酸などの酸化力の強い薬剤やフッ素ガス等の反応性ガスによる処理、高温空気酸化等、特に手法は限定されないが、反応が温和で制御が可能な過酸化水素や次亜塩素酸等による親水化処理が好ましい。   As long as the surface modification by the hydrophilization treatment does not affect the pore size and mechanical properties of the porous carbon electrode, the treatment with a strong oxidizing agent such as nitric acid and sulfuric acid or a reactive gas such as fluorine gas, The method is not particularly limited, such as high-temperature air oxidation, but hydrophilic treatment with hydrogen peroxide, hypochlorous acid, or the like, which can be controlled mildly, is preferable.

本発明の多孔質炭素電極は、固有抵抗が低く、電極内部までの通電効率がよい電極である。大型化しても集電体から電極内部においての電流損失が少ないため、集電体から離れていてもフェントン処理することが可能である。また、この材料は機械強度が高いため、材料の脱落などなく、水の圧力損失や逆洗に耐えうる材料である。電極としての特性があるだけではなく、水処理装置の大型化といった設計上の自由度が持てる。さらに、非多孔質電極材料のような電極表面での電気分解反応ではなく、多孔質炭素電極の連通した細孔により形成された多数のマイクロ流路での水処理であるため、水の流れが適度に掻き乱されることとなるので別途撹拌操作を必要としない。   The porous carbon electrode of the present invention is an electrode having a low specific resistance and good energization efficiency up to the inside of the electrode. Even if the size is increased, the current loss from the current collector to the inside of the electrode is small, so that the Fenton treatment can be performed even if the current collector is away from the current collector. Moreover, since this material has high mechanical strength, it is a material that can withstand pressure loss of water and backwashing without dropping off the material. It not only has the characteristics as an electrode, but also has design freedom such as an increase in the size of the water treatment device. Furthermore, it is not an electrolysis reaction on the electrode surface such as a non-porous electrode material, but water treatment in a large number of microchannels formed by the continuous pores of the porous carbon electrode. Since it will be moderately disturbed, a separate stirring operation is not required.

本発明の多孔質炭素電極は、表面をガラス状カーボン等で被覆しないものであることがよい。全体が一体であることにより、細孔が均一に分布するため、電極内部での水流の偏りが無く、安定して良好な水処理を行うことができる。   The porous carbon electrode of the present invention is preferably one whose surface is not covered with glassy carbon or the like. Since the whole is integrated, the pores are uniformly distributed, so there is no bias of the water flow inside the electrode, and stable and good water treatment can be performed.

本発明の多孔質炭素電極は、曲げ強度が高いため、必要に応じて電極に後加工を行うことができる。後加工としては水流の調整を目的とした電極表面の凹凸や溝形状の加工や、穴あけ加工等が挙げられる。なお、穴あけ加工については、本発明の多孔質炭素電極の性能を維持できる範囲内であれば特に問題は無いが、孔径を500〜1000μmであれば水処理性能の低下を招きにくく好ましい。   Since the porous carbon electrode of this invention has high bending strength, it can post-process to an electrode as needed. Examples of post-processing include processing of electrode surface irregularities and groove shapes for the purpose of adjusting water flow, drilling, and the like. In addition, about a drilling process, if it is in the range which can maintain the performance of the porous carbon electrode of this invention, there will be no problem in particular, However, If a hole diameter is 500-1000 micrometers, it will be hard to cause the fall of water treatment performance, and preferable.

本発明の多孔質炭素電極を使用した水処理装置で水処理をする場合、多孔質炭素電極からなる陽極と陰極とを水処理装置内に配置し、この多孔質炭素電極の連通した気孔をマイクロ流路として有機物を含む排水等の水を通過させ、且つ電圧を付与することにより行う。電解フェントン処理の場合、両極に電圧をかけて、陰極となる多孔質炭素電極のマイクロ流路に有機物、鉄イオン及び溶存酸素を含む排水を流すと、排水中の溶存酸素を由来とするHと処理水に添加したFe2+により、フェントン反応が生じて、OHラジカルが生じ、有機物を酸化分解する。フェントン反応で生じたFe3+は、陰極との界面でFe2+に還元され、再度フェントン反応によるOHラジカルの生成に使用されるが、このとき陰極のマイクロ流路を通過する水の滞留時間が全体的に均一となるような厚みとすることによって連続的にフェントン反応を起こし、一度の通液で有機物の処理を完結させることもできる。なお、陽極の材質は任意であるが耐腐食性に優れる黒鉛電極や貴金属類電極が適する。
このように、本発明の多孔質炭素電極は、電圧の印加と被処理水のマイクロ流路への貫流を行うことにより電解フェントン反応を起こし、排水の浄化処理を行うとともに、その水処理フェントン反応によって発生したFe3+のFe2+への還元と、過酸化水素水の生成反応を行っている。
さらに、本発明の多孔質炭素電極は、固有抵抗が低く、微細な気孔が連結して複雑なマイクロ流路を形成しているため、通水時に処理水が適度に掻き乱されることとなるので非多孔質電極よりも還元能力が高い。よって、電解フェントン反応に不可欠な原料である鉄(Fe)をリサイクル使用でき、過酸化水素(H)の使用量も低減できる。
When water treatment is performed with a water treatment apparatus using the porous carbon electrode of the present invention, an anode and a cathode made of a porous carbon electrode are disposed in the water treatment apparatus, and the pores communicating with the porous carbon electrode are formed in a microscopic manner. This is done by passing water such as waste water containing organic matter through the channel and applying a voltage. In the case of electrolytic Fenton treatment, when a voltage is applied to both electrodes and a wastewater containing organic matter, iron ions and dissolved oxygen is caused to flow through the microchannel of the porous carbon electrode serving as the cathode, H 2 derived from the dissolved oxygen in the wastewater. O 2 and Fe 2+ added to the treated water cause a Fenton reaction to generate OH radicals and oxidatively decompose organic matter. Fe 3+ produced by the Fenton reaction is reduced to Fe 2+ at the interface with the cathode and used again to generate OH radicals by the Fenton reaction. At this time, the total residence time of water passing through the microchannel of the cathode is reduced. By setting the thickness so as to be uniform, the Fenton reaction can be caused continuously, and the treatment of the organic matter can be completed by a single liquid flow. In addition, although the material of an anode is arbitrary, the graphite electrode and noble metal electrode which are excellent in corrosion resistance are suitable.
As described above, the porous carbon electrode of the present invention causes an electrolytic Fenton reaction by applying a voltage and flowing the water to be treated into the micro-channel, purifying the waste water, and performing the water treatment Fenton reaction. The reduction of Fe 3+ generated by the above to Fe 2+ and the generation reaction of hydrogen peroxide solution are performed.
Furthermore, the porous carbon electrode of the present invention has a low specific resistance, and fine pores are connected to form a complicated micro flow path, so that the treated water is appropriately disturbed during water flow. Therefore, the reducing ability is higher than that of non-porous electrodes. Accordingly, iron (Fe), which is an essential material for the electrolytic Fenton reaction, can be recycled and the amount of hydrogen peroxide (H 2 O 2 ) used can be reduced.

本発明の多孔質炭素電極を使用した排水処理方法について、以下に具体例を挙げて詳細に説明する。
図1は、本発明の多孔質炭素電極が適用される排水処理方法の実施形態を示す工程図である。先ず、有機化合物を含有する有機性排水は、電解フェントン反応のためのFe2+化合物および過酸化水素と、pH調整のための酸を添加されたのち、反応槽に移送される。次に、反応槽に移送された排水は、反応槽内に設置された陰極としての多孔質炭素電極を貫流する際、両極に電圧を印加すると、多孔質炭素電極の連通細孔をマイクロ流路として、排水中の有機化合物が連続的に電解フェントン反応により酸化分解され無害化される。反応槽内で無害化された排水はアルカリ等による中和が行われて鉄イオンを規制値以下となるように除去したのち、処理水として最終的には環境中に排出される。
The wastewater treatment method using the porous carbon electrode of the present invention will be described in detail below with specific examples.
FIG. 1 is a process diagram showing an embodiment of a wastewater treatment method to which a porous carbon electrode of the present invention is applied. First, an organic wastewater containing an organic compound is added to an Fe 2+ compound and hydrogen peroxide for an electrolytic Fenton reaction, and an acid for pH adjustment, and then transferred to a reaction vessel. Next, when the wastewater transferred to the reaction vessel flows through the porous carbon electrode as a cathode installed in the reaction vessel, when a voltage is applied to both electrodes, the communicating pores of the porous carbon electrode are passed through the microchannel. As a result, the organic compound in the waste water is continuously oxidatively decomposed and rendered harmless by the electrolytic Fenton reaction. The waste water detoxified in the reaction tank is neutralized with alkali or the like to remove iron ions so as to be below the regulation value, and finally discharged into the environment as treated water.

本発明の多孔質炭素電極が適用される排水処理方法において、反応槽の陰極として多孔質炭素電極を使用した場合、陰極で起こると推定される主要な反応は、以下のとおりである。
Fe3++e → Fe2+
+2H+2e → H
+4H+4e → 2H
+Fe2+ → OH・+OH+Fe3+
In the wastewater treatment method to which the porous carbon electrode of the present invention is applied, when the porous carbon electrode is used as the cathode of the reaction vessel, the main reactions presumed to occur at the cathode are as follows.
Fe 3+ + e → Fe 2+
O 2 + 2H + + 2e → H 2 O 2
O 2 + 4H + + 4e → 2H 2 O
H 2 O 2 + Fe 2+ → OH · + OH - + Fe 3+

上記反応式から明らかなように、電解フェントン反応では、OHラジカルを生じさせるために過酸化水素と2価鉄イオンが必要であるが、過酸化水素は溶存酸素(O)を含む排水から陰極側の反応で生成させることができ、2価鉄イオンは3価鉄イオンを含む排水から陰極の反応で生成させることができる。 As is apparent from the above reaction formula, in the electrolytic Fenton reaction, hydrogen peroxide and divalent iron ions are required to generate OH radicals, but hydrogen peroxide is discharged from waste water containing dissolved oxygen (O 2 ) to the cathode. The divalent iron ions can be generated by the cathode reaction from the wastewater containing the trivalent iron ions.

鉄イオンは、pHにもよるが、最終的には3価鉄イオン(Fe3+)又は水酸化鉄となって処理水と共に反応槽から排出される。よって、処理水のpHを上げれば、鉄分は3価の水酸化鉄の沈殿となって、分離することができる。 Although iron ion depends on pH, it finally becomes trivalent iron ion (Fe 3+ ) or iron hydroxide and is discharged from the reaction tank together with the treated water. Therefore, if the pH of the treated water is raised, the iron component becomes a precipitate of trivalent iron hydroxide and can be separated.

陽極側では過酸化水素(H)の分解が起こるため、過酸化水素の供給は、陰極の直前で行うことが過酸化水素の使用量抑制の面から好ましい。また、2価鉄イオンや水酸化鉄又は3価鉄イオンの供給は、反応槽の陰極より上流側であれば特に制限はなく、排水槽へ、又は排水層への流入側配管から加えてもよい。 Since hydrogen peroxide (H 2 O 2 ) is decomposed on the anode side, it is preferable to supply hydrogen peroxide immediately before the cathode from the viewpoint of suppressing the amount of hydrogen peroxide used. The supply of divalent iron ions, iron hydroxide or trivalent iron ions is not particularly limited as long as it is upstream from the cathode of the reaction tank, and may be added to the drain tank or from the inflow side piping to the drainage layer. Good.

上記反応式に示すように、ヒドロキシラジカル(OH・)を生成するフェントン反応は、主に陰極側で生じる。後述する図2に示すような構造であれば、排水は陰極側から陽極側へと一方向に連続的に流れていくため、陽極での過酸化水素の分解を抑制することができる。なお、陽極に使用される電極は公知の電極であってもよいが、電解フェントン反応は液性が酸性側で反応効率が良く、排水中に塩素イオンを含む場合は金属電極が侵されてしまう可能性があるため、陰極だけでなく陽極についても本発明の多孔質炭素電極にすることが電極の耐久性などの面から好ましい。   As shown in the above reaction formula, the Fenton reaction that generates hydroxy radicals (OH.) Occurs mainly on the cathode side. If the structure is as shown in FIG. 2 described later, the waste water continuously flows in one direction from the cathode side to the anode side, so that decomposition of hydrogen peroxide at the anode can be suppressed. The electrode used for the anode may be a known electrode. However, the electrolytic Fenton reaction is acidic on the acidic side and has good reaction efficiency. If the drainage contains chlorine ions, the metal electrode is affected. In view of the durability of the electrode, it is preferable to use the porous carbon electrode of the present invention not only for the cathode but also for the anode.

多孔質炭素電極からなる陰極を反応槽の断面形状に合わせた板状とし、これを反応槽の流路を塞ぐように設置すれば、反応槽を流れる排水の殆どは、多孔質炭素電極の連通細孔がマイクロ流路となり、この流路内を通過することになる。そして、陰極側では上記反応式に示した各種反応が起こり、この反応で生じたOHラジカルによるフェントン反応によって排水中に含まれる有機化合物の酸化反応が生じるが、多孔質炭素電極はマイクロ流路を有していることから、陰極表面へのFe3+の供給速度が大きくなるため、電極表面又は細孔表面付近での還元反応が優勢となり、マイクロ流路内での反応が効率的に生じることになる。結果として、連通細孔を有しない電極を使用した場合に比べ、反応効率が非常に高いものとなる。 If the cathode made of a porous carbon electrode is shaped like a plate that matches the cross-sectional shape of the reaction tank and is installed so as to block the flow path of the reaction tank, most of the wastewater flowing through the reaction tank is in communication with the porous carbon electrode. The pores become microchannels and pass through the channel. Various reactions shown in the above reaction formula occur on the cathode side, and an oxidation reaction of the organic compound contained in the wastewater occurs due to the Fenton reaction by the OH radical generated by this reaction. Therefore, since the supply rate of Fe 3+ to the cathode surface increases, the reduction reaction near the electrode surface or the pore surface becomes dominant, and the reaction in the microchannel is efficiently generated. Become. As a result, the reaction efficiency is very high compared to the case where an electrode having no communication pores is used.

電解フェントン反応による排水処理は、Fe2+と過酸化水素からOHラジカルを生成し、有機化合物を酸化分解する方法である。本発明に用いられる鉄化合物の量は、水中有機物の種類、濃度、処理水のpH、反応時間などによって異なるが、加えるFe2+化合物の量は、1〜200mg/lであることがよく、好ましくは5〜100mg/lであることがよい。鉄の濃度は高い方が電解フェントン処理は進行しやすくなるが、鉄は濃度が高いと沈殿しやすくなるため、この濃度が好ましい。なお、2価鉄イオンの供給源となるFe2+化合物は、硫酸第一鉄、塩化第一鉄、硝酸第一鉄などが挙げられるが、活性度、価格などを考慮すると硫酸第一鉄が最も好ましく選ばれる。 Waste water treatment by electrolytic Fenton reaction is a method of generating OH radicals from Fe 2+ and hydrogen peroxide to oxidatively decompose organic compounds. The amount of the iron compound used in the present invention varies depending on the type and concentration of organic matter in water, the pH of the treated water, the reaction time, etc., but the amount of Fe 2+ compound added is preferably 1 to 200 mg / l, preferably Is preferably 5 to 100 mg / l. The higher the concentration of iron, the easier the electrolytic Fenton treatment proceeds, but this concentration is preferable because iron tends to precipitate when the concentration is high. Examples of the Fe 2+ compounds that supply divalent iron ions include ferrous sulfate, ferrous chloride, and ferrous nitrate, but ferrous sulfate is the most important in terms of activity and price. Preferably selected.

本発明の多孔質炭素電極が適用される排水処理方法において、電解フェントン反応に必要な2価鉄イオン(Fe2+)は、外部から添加してフェントン反応に用いられるが、本発明の排水処理方法では、電解フェントン反応によって酸化したFe3+は反応槽内に設置した多孔質炭素電極の連通細孔からなるマイクロ流路内で電気化学的な還元が行われ、繰り返しフェントン反応に使用されるので、外部からの添加量を低減することができる。 In the wastewater treatment method to which the porous carbon electrode of the present invention is applied, divalent iron ions (Fe 2+ ) necessary for the electrolytic Fenton reaction are added from the outside and used for the Fenton reaction. Then, Fe 3+ oxidized by the electrolytic Fenton reaction is electrochemically reduced in the micro flow channel composed of the communicating pores of the porous carbon electrode installed in the reaction tank, and is used repeatedly for the Fenton reaction. The amount of external addition can be reduced.

本発明の多孔質炭素電極が適用される排水処理方法に必要な過酸化水素は、陰極において排水中の溶存酸素からも生成させることができるが、このとき排水中の溶存酸素量が10mg/l以上であることが好ましい。なお、排水中の溶存酸素量は、排水を撹拌や曝気することにより増やすことができる。本発明の排水処理方法における電解フェントン反応に必要な過酸化水素は、排水の負荷量に応じて外部より供給されるが、水中の溶存酸素から電解生成することによって供給量を低減することができるので好ましい。
排水処理の負荷量に応じて過酸化水素を外部より添加する場合は、排水中の有機物濃度に応じて、Fe2+濃度の1〜20モル倍、好ましくは5〜10モル倍の濃度の過酸化水素を加えることが好ましい。
Hydrogen peroxide necessary for the wastewater treatment method to which the porous carbon electrode of the present invention is applied can also be generated from dissolved oxygen in the wastewater at the cathode. At this time, the amount of dissolved oxygen in the wastewater is 10 mg / l. The above is preferable. The amount of dissolved oxygen in the waste water can be increased by stirring or aeration of the waste water. The hydrogen peroxide necessary for the electrolytic Fenton reaction in the wastewater treatment method of the present invention is supplied from the outside according to the load amount of the wastewater, but the supply amount can be reduced by electrolytic generation from dissolved oxygen in water. Therefore, it is preferable.
When hydrogen peroxide is added from the outside in accordance with the load of wastewater treatment, it is peroxidized at a concentration of 1 to 20 mol times, preferably 5 to 10 mol times the Fe 2+ concentration, depending on the organic matter concentration in the wastewater. It is preferred to add hydrogen.

本発明の多孔質炭素電極が適用される排水処理方法においては、反応槽ではフェントン法による有機物の分解と電気化学的方法によるFe3+のFe2+への還元とを同時に行わせる。従って、被処理水は上記二つの反応が適切に進行する状態に維持することが必要であり、具体的には、常温でpH を1.5〜5.0、好ましくは2.0〜4.0にすることが好ましい。pH調製には、塩酸、硫酸など任意の酸が加えられる。上記のpH条件は汚泥が発生した場合に、再度汚泥中の鉄化合物を溶解させるにも都合のよい条件である。 In the wastewater treatment method to which the porous carbon electrode of the present invention is applied, the decomposition of the organic substance by the Fenton method and the reduction of Fe 3+ to Fe 2+ by the electrochemical method are simultaneously performed in the reaction tank. Accordingly, the water to be treated needs to be maintained in a state in which the above two reactions proceed appropriately. Specifically, the pH is 1.5 to 5.0 at room temperature, preferably 2.0 to 4. It is preferably 0. For adjusting the pH, an arbitrary acid such as hydrochloric acid or sulfuric acid is added. The above pH conditions are convenient for dissolving the iron compound in the sludge again when the sludge is generated.

このようにして、有機性排水中の有機物がフェントン反応により酸化分解され、同時にフェントン反応により生成したFe3+が反応槽内で再度Fe2+へ還元されてフェントン反応に再利用されるので、外部から添加するFe2+の量を少なくしても目的が達せられる。一方、電気化学的に還元する能力が充分大きければ、反応槽にはFe2+化合物に代えてFe3+化合物を加えてもよい。 In this way, the organic matter in the organic wastewater is oxidatively decomposed by the Fenton reaction, and at the same time, Fe 3+ generated by the Fenton reaction is reduced again to Fe 2+ in the reaction tank and reused for the Fenton reaction. The object can be achieved even if the amount of Fe 2+ to be added is reduced. On the other hand, if the ability to reduce electrochemically is sufficiently large, an Fe 3+ compound may be added to the reaction tank instead of the Fe 2+ compound.

本発明の多孔質炭素電極が適用される排水処理方法は、電気化学的な反応を用いて排水に含まれる有機化合物を酸化分解する方法である。このため、排水中に電解質となる化合物を添加することで導電率を上げ、処理効率を向上させる必要がある。電解質となる化合物は、硫酸ナトリウムや塩化カリウム、塩化ナトリウム、硫酸カリウム、または2種以上の化合物を組み合わせる等の水に可溶性のイオン性の化合物であれば特に限定はされないが、食塩の生成等の問題から硫酸ナトリウムが好ましい。なお、電解質の添加量は炭素電極に通電できる濃度であればよく、排水の負荷量に応じて濃度は調整されるが、0.01〜3%が好ましい。   The wastewater treatment method to which the porous carbon electrode of the present invention is applied is a method for oxidizing and decomposing an organic compound contained in wastewater using an electrochemical reaction. For this reason, it is necessary to increase the conductivity and improve the processing efficiency by adding a compound serving as an electrolyte to the waste water. The electrolyte compound is not particularly limited as long as it is an ionic compound that is soluble in water, such as sodium sulfate, potassium chloride, sodium chloride, potassium sulfate, or a combination of two or more compounds. Sodium sulfate is preferred because of problems. The amount of the electrolyte added may be a concentration that allows the carbon electrode to be energized, and the concentration is adjusted according to the load of the drainage, but is preferably 0.01 to 3%.

本発明の多孔質炭素電極が設置された排水処理装置の実施形態の一例を、図2に示す。図2において、電解フェントン反応槽1は、その排水供給側に多孔質炭素電極からなる陰極2が、また排水出口側に白金電極からなる陽極3が、それぞれ、反応槽内の水の流れに対して直交するように設けられている。そして、陰極2には集電体4が密着されており、導線5によって陽極3とともに直流電源6に接続されている。また、排水の流れを均一にするために、反応槽1の排水供給側へ必要に応じて底板やプラスチック充填物(例えばテラレット)を設置してもよい。   An example of the embodiment of the waste water treatment apparatus in which the porous carbon electrode of the present invention is installed is shown in FIG. In FIG. 2, an electrolytic Fenton reaction tank 1 has a cathode 2 made of a porous carbon electrode on the drainage supply side and an anode 3 made of a platinum electrode on the drainage outlet side with respect to the flow of water in the reaction tank. So as to be orthogonal to each other. A current collector 4 is in close contact with the cathode 2, and is connected to a DC power source 6 together with the anode 3 by a conducting wire 5. Moreover, in order to make the flow of waste water uniform, a bottom plate or a plastic filler (for example, terralet) may be installed on the waste water supply side of the reaction tank 1 as necessary.

有機化合物を含む排水11は、排水槽8で電解質が混合されたのち、電解フェントン反応槽1に供給される。このとき、排水のpHに応じてさらにpH調整が行われることが好ましく、電解フェントン反応槽内での水酸化鉄化合物生成による閉塞の予防のため、pHを酸性側に調製することがより好ましい。   The waste water 11 containing an organic compound is supplied to the electrolytic Fenton reaction tank 1 after the electrolyte is mixed in the drain tank 8. At this time, it is preferable to further adjust the pH according to the pH of the wastewater, and it is more preferable to adjust the pH to the acidic side in order to prevent clogging due to the generation of iron hydroxide compounds in the electrolytic Fenton reaction tank.

電解フェントン反応槽1の排水供給側は、送水ポンプ9を介して配管7によって排水槽8に接続されており、排出側は配管7によって処理水槽10に接続されている。送水ポンプ9を稼働すると排水槽8内の排水11は電解フェントン反応槽1に供給される。   The drainage supply side of the electrolytic Fenton reaction tank 1 is connected to the drainage tank 8 by a pipe 7 via a water pump 9, and the discharge side is connected to the treated water tank 10 by a pipe 7. When the water pump 9 is operated, the drainage 11 in the drainage tank 8 is supplied to the electrolytic Fenton reaction tank 1.

電解フェントン反応槽1で、有機化合物を含む排水は、過酸化水素および2価鉄イオンが必要量添加されるとともに、通電された多孔質炭素電極からなる陰極2を貫流させることによって、電解フェントン反応により排水中に含まれる有機化合物を分解する。このとき、多孔質炭素電極からなる陰極2の連通細孔がマイクロ流路となり、マイクロ流路を排水が流れていく際に、電解フェントン反応により生じたOHラジカルによって排水中の有機化合物が酸化分解される。   In the electrolytic Fenton reaction tank 1, the wastewater containing the organic compound is added with the necessary amounts of hydrogen peroxide and divalent iron ions, and is allowed to flow through the cathode 2 made of a porous carbon electrode that is energized. Decomposes organic compounds contained in the wastewater. At this time, the communicating pores of the cathode 2 made of a porous carbon electrode serve as a microchannel, and when the drainage flows through the microchannel, the organic compounds in the drainage are oxidatively decomposed by OH radicals generated by the electrolytic Fenton reaction. Is done.

その後、電解フェントン処理後の排水は、処理水12として反応槽1の排出側の配管7から処理水槽10に移送されるが、処理水12には鉄イオン又は過酸化水素を含むため、環境への排出時は法規制等による基準値を下回るように処理水のpH調整および鉄イオンの除去が行われる。鉄イオンの除去は、例えばキレート樹脂等による鉄イオンの捕集分離や水酸化物として析出させる沈降分離法などの方法が挙げられるが、キレート樹脂等による鉄イオンの捕集分離が汚泥の発生がなく好ましい。   Thereafter, the waste water after the electrolytic Fenton treatment is transferred to the treated water tank 10 from the piping 7 on the discharge side of the reaction tank 1 as treated water 12, but since the treated water 12 contains iron ions or hydrogen peroxide, At the time of discharge, the pH of the treated water is adjusted and the iron ions are removed so as to be lower than the standard value according to laws and regulations. Examples of the removal of iron ions include methods such as collection and separation of iron ions using a chelate resin or the like, and a sedimentation separation method for precipitation as a hydroxide, but the collection and separation of iron ions using a chelate resin or the like may generate sludge. Less preferred.

本発明の多孔質炭素電極を使用する排水処理は、電解フェントン反応槽1内に設置された連通細孔を有する多孔質炭素電極によって、多孔質炭素電極のマイクロ流路内で電解フェントン反応が起こり、その結果生じたOHラジカルで排水中の有機化合物の酸化分解を行うと同時に、排水中の溶存酸素からも過酸化水素を生じさせ、さらに電解フェントン反応で消費されたFe2+をFe3+から電気化学的に還元することで、排水の効率的かつ連続的な処理を可能としている。
このため、電解フェントン反応槽1は、槽内に供給された排水の全量が槽内に設置された多孔質炭素電極を貫流するような構造となっていることが好ましく、反応槽内の排水の流れ方向に直交するように多孔質炭素電極が設けられていることがより好ましい。
In the wastewater treatment using the porous carbon electrode of the present invention, the electrolytic Fenton reaction occurs in the microchannel of the porous carbon electrode by the porous carbon electrode having the communicating pores installed in the electrolytic Fenton reaction tank 1. The resulting OH radicals oxidize and decompose organic compounds in the wastewater. At the same time, hydrogen peroxide is also produced from dissolved oxygen in the wastewater, and Fe 2+ consumed in the electrolytic Fenton reaction is converted from Fe 3+ into electricity. Chemical reduction enables efficient and continuous treatment of wastewater.
For this reason, it is preferable that the electrolytic Fenton reaction tank 1 has a structure in which the entire amount of wastewater supplied into the tank flows through the porous carbon electrode installed in the tank. More preferably, a porous carbon electrode is provided so as to be orthogonal to the flow direction.

有機化合物を含む排水11は、多孔質炭素電極の連通細孔を流れる際に、フェントン反応により生じたOHラジカルによって、有機化合物が酸化分解される。多孔質炭素電極の連通細孔は微細で複雑なマイクロ流路であるため、排水が適度に掻き乱されるため撹拌操作が必須ではなく、排水と電極の接触面積が大きく、平板状ないし棒状の電極を用いた反応槽よりも処理効率が高い。   When the waste water 11 containing an organic compound flows through the communicating pores of the porous carbon electrode, the organic compound is oxidatively decomposed by OH radicals generated by the Fenton reaction. The communicating pores of the porous carbon electrode are fine and complex micro-channels, so that the drainage is disturbed appropriately, so stirring operation is not essential, the contact area between the drainage and the electrode is large, flat or rod-like The processing efficiency is higher than that of a reaction tank using electrodes.

さらに、多孔質炭素電極に電圧を印加すると、電解フェントン反応による排水中の有機化合物の酸化分解と同時に、多孔質炭素電極のマイクロ流路内で水中の溶存酸素からも過酸化水素が生成されるほか、フェントン反応で生じたFe3+のFe2+への還元も行われる。このため、排水11は多孔質炭素電極からなる陽極2および陰極3を貫流する間、連続的に電解フェントン反応を起こすことが可能であり、鉄イオンおよび過酸化水素を効率的に使用して排水を連続的に電解フェントン反応により処理を行うことが可能である。 Furthermore, when a voltage is applied to the porous carbon electrode, hydrogen peroxide is also generated from dissolved oxygen in the water in the microchannel of the porous carbon electrode simultaneously with the oxidative decomposition of the organic compound in the wastewater by the electrolytic Fenton reaction. In addition, Fe 3+ generated by the Fenton reaction is reduced to Fe 2+ . For this reason, the waste water 11 can continuously cause an electrolytic Fenton reaction while flowing through the anode 2 and the cathode 3 made of porous carbon electrodes, and the waste water is efficiently discharged using iron ions and hydrogen peroxide. Can be continuously processed by electrolytic Fenton reaction.

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although the content of this invention is demonstrated concretely based on an Example, this invention is not limited to the range of these Examples.

実施例1
真密度1.82g/cmのピッチコークスを粉砕し、1.000〜2.380mm:40%、0.074〜0.297mm:35%、0.074mm以下:25%の粒度配合になるように調整したピッチコークス粒子100重量部に、石炭系重質油から得られたバインダーピッチ(軟化点97℃)40重量部を添加し、200℃で20分間加熱混練した。この混練物を20mmφ×100mmの大きさに押出し成型した。成型後1000℃で焼成を行い、その後2800℃で黒鉛化し、多孔質炭素電極Aを得た。
Example 1
Pitch coke with a true density of 1.82 g / cm 3 is pulverized to have a particle size blend of 1.000 to 2.380 mm: 40%, 0.074 to 0.297 mm: 35%, 0.074 mm or less: 25% 40 parts by weight of a binder pitch (softening point 97 ° C.) obtained from coal-based heavy oil was added to 100 parts by weight of the pitch coke particles adjusted to the above, and heated and kneaded at 200 ° C. for 20 minutes. This kneaded material was extruded to a size of 20 mmφ × 100 mm. After molding, firing was performed at 1000 ° C., followed by graphitization at 2800 ° C. to obtain a porous carbon electrode A.

実施例2
成型方法をモールド(型枠)成型に置き換え、バインダーピッチを30重量部とした以外は、実施例1と同様の方法で作成し、多孔質炭素電極Bを得た。
Example 2
A porous carbon electrode B was obtained in the same manner as in Example 1 except that the molding method was replaced with mold (formwork) molding and the binder pitch was 30 parts by weight.

実施例3
粉砕したピッチコークスを0.250〜1.000mm:20%、0.074〜0.250mm:45%、0.074mm以下:35%の粒度配合に置き換えた以外は、実施例1と同様の条件で作成し多孔質炭素電極Cを得た。
Example 3
The same conditions as in Example 1 except that the pulverized pitch coke was replaced with a particle size blend of 0.250 to 1.000 mm: 20%, 0.074 to 0.250 mm: 45%, 0.074 mm or less: 35%. A porous carbon electrode C was obtained.

実施例4
バインダーピッチの添加量を35重量部とした以外は、実施例3と同様の工程で作成し多孔質炭素電極Dを得た。
Example 4
A porous carbon electrode D was obtained by the same process as in Example 3 except that the amount of binder pitch added was 35 parts by weight.

比較例1
実施例1と同様の方法で1000℃で焼成を終えたものを230℃に加温した含浸ピッチ(軟化点78℃)に浸漬し、減圧含浸させたのち、再び1000℃で焼成を行い、その後2800℃で黒鉛化し、多孔質炭素電極Eを得た。
Comparative Example 1
What was baked at 1000 ° C. in the same manner as in Example 1 was immersed in an impregnation pitch (softening point 78 ° C.) heated to 230 ° C., impregnated under reduced pressure, fired again at 1000 ° C., and then Graphitized at 2800 ° C. to obtain a porous carbon electrode E.

比較例2
粉砕したピッチコークスを0.250〜1.000mm:60%、0.074〜0.250mm:40%(0.074mm以下:0%)の粒度配合に置き換え、成型方法をモールド成型で0.2MPa程度の弱い荷重で成型した以外は、実施例1と同様の条件で作成し、多孔質炭素電極Fを得た。
Comparative Example 2
The pulverized pitch coke is replaced with a particle size blend of 0.250 to 1.000 mm: 60%, 0.074 to 0.250 mm: 40% (0.074 mm or less: 0%), and the molding method is 0.2 MPa by molding. A porous carbon electrode F was obtained under the same conditions as in Example 1 except that it was molded with a moderately weak load.

比較例3
多孔質炭素電極Fをフェノール樹脂を溶解させたエタノール溶液に減圧下に10分間浸漬した。その後、余剰の樹脂溶液の液切りを行い、24時間風乾させた後、180℃で熱処理して樹脂を加熱硬化し、非酸化性雰囲気下で最高温度2800℃の熱処理をすることによりガラス状炭素で被覆された多孔質炭素電極Gを得た。
Comparative Example 3
The porous carbon electrode F was immersed in an ethanol solution in which a phenol resin was dissolved for 10 minutes under reduced pressure. Thereafter, the excess resin solution is drained, air-dried for 24 hours, heat-treated at 180 ° C. to heat and cure the resin, and subjected to heat treatment at a maximum temperature of 2800 ° C. in a non-oxidizing atmosphere. A porous carbon electrode G coated with was obtained.

これらの多孔質炭素電極A〜Gを使用して、通水試験を行った。多孔質炭素電極A〜Gの特性及び通水試験の結果を表1に示す。
[通水試験]
流路の途中で、流路に直交し、流路の全面を遮断するように、22mm×22mm×15mmに加工した多孔質炭素電極を配置し、ペリスタルティックポンプを用いて、流速2ml/minで水温20℃の純水を流すことにより通水試験を行った。なお、通水性は、ポンプの出力を一定としたまま12hrの連続運転を行っても純水の流速が2ml/min以上を維持できれば合格(○)とし、電極を貫流した純水を5Bのろ紙でろ過することにより、脱落粒子の有無を確認した。
Using these porous carbon electrodes A to G, a water passage test was conducted. Table 1 shows the characteristics of the porous carbon electrodes A to G and the results of the water flow test.
[Water flow test]
In the middle of the flow path, a porous carbon electrode processed to 22 mm × 22 mm × 15 mm is arranged so as to be perpendicular to the flow path and block the entire flow path, and at a flow rate of 2 ml / min using a peristaltic pump. A water flow test was conducted by flowing pure water having a water temperature of 20 ° C. In addition, the water flow is acceptable (◯) if the flow rate of pure water can be maintained at 2 ml / min or higher even if the pump output is kept constant for 12 hours with the pump output kept constant, and the pure water that has flowed through the electrode is 5B filter paper. The presence or absence of dropped particles was confirmed by filtering with a filter.

Figure 2017043846
表1において、通気率の括弧内の数値は、SI単位に換算する前の慣用単位[cc・cm/cm・sec・cmHO]での値を示す。
Figure 2017043846
In Table 1, numerical values in parentheses of the air permeability indicate values in conventional units [cc · cm / cm 2 · sec · cmH 2 O] before conversion into SI units.

実施例5〜7、比較例4
多孔質炭素電極について、鉄の還元実験および難分解性有機化合物の分解試験を実施した。
これらの試験においては、電極として、多孔質炭素電極A、G、および多孔質炭素電極Aを表面処理した電極A1及び電極A2を使用した。
電極A1は、多孔質炭素電極Aを、50℃の30%過酸化水素水に24時間浸漬して表面処理したものであり、電極A2は、多孔質炭素電極Aを、50℃の30%次亜塩素酸ナトリウム水に8時間浸漬して表面処理したものである。
Examples 5-7, Comparative Example 4
The porous carbon electrode was subjected to an iron reduction experiment and a decomposition test of a hardly decomposable organic compound.
In these tests, the porous carbon electrodes A and G and the electrode A1 and the electrode A2 obtained by surface-treating the porous carbon electrode A were used as electrodes.
The electrode A1 is obtained by immersing the porous carbon electrode A in a 30% hydrogen peroxide solution at 50 ° C. for 24 hours for surface treatment, and the electrode A2 is obtained by subjecting the porous carbon electrode A to a 30% order at 50 ° C. The surface treatment was performed by immersing in sodium chlorite water for 8 hours.

[鉄の還元試験]
多孔質炭素電極によって、Fe3+を還元し、Fe2+を生成することができるか否かを検証する試験である。装置は陰極に22mm×22mm×15mmに加工した多孔質炭素電極を、陽極には白金電極を用い、両極間における電位差が1.5Vとなるように電圧を印加しながら、電解質は50mMのNaSOを、Fe3+にはFe(SO)を0.5mMになるように調整した試験水を装置中に1.54ml/minの割合(電極部における液空間速度が12.7h−1)で250ml供給した。評価は通電時の電流値を測定したほか、試験後の試料水中のFe2+の濃度をバソフェナントロリン法による吸光光度測定法を用いて測定することにより行った。
[Iron reduction test]
This test verifies whether Fe 3+ can be reduced and Fe 2+ can be produced by the porous carbon electrode. The apparatus uses a porous carbon electrode processed to 22 mm × 22 mm × 15 mm for the cathode and a platinum electrode for the anode, and the electrolyte is 50 mM Na 2 while applying a voltage so that the potential difference between both electrodes is 1.5V. The test water prepared by adjusting SO 4 to Fe 3+ so that Fe 2 (SO 4 ) 3 is 0.5 mM is fed into the apparatus at a rate of 1.54 ml / min (the liquid space velocity at the electrode portion is 12.7 h − In 1 ), 250 ml was supplied. The evaluation was carried out by measuring the current value at the time of energization and measuring the Fe 2+ concentration in the sample water after the test using an absorptiometric method based on the bathophenanthroline method.

[分解試験]
多孔質炭素電極によって、難分解性有機化合物が実際に分解できるか否かを検証する試験である。装置は陰極に22mm×22mm×15mmに加工した多孔質炭素電極を、陽極には白金電極を用い、両極間の電位差が1.5Vとなるように電圧を印加しながら、電解質として50mMのNaSOを用い、難分解性有機化合物としてのジメチルスルホキシド(DMSO)を100mg/L、過酸化水素1mM、Fe3+としてFe(SO)を0.5mMになるように調整した模擬排水を装置内に1.54ml/minの割合(電極部における液空間速度12.7h−1)で250ml供給した。評価は試験後の試料水中のDMSO量を高速液体クロマトクロマトグラフィー(HPLC)法を用いて測定し、DMSO分解量を算出して行った。
それらの試験結果について、表2に示す。
[Decomposition test]
This test verifies whether or not a hardly decomposable organic compound can actually be decomposed by a porous carbon electrode. The apparatus uses a porous carbon electrode processed to 22 mm × 22 mm × 15 mm for the cathode, a platinum electrode for the anode, and 50 mM Na 2 as an electrolyte while applying a voltage so that the potential difference between both electrodes is 1.5V. Simulated wastewater prepared by using SO 4 and adjusting dimethyl sulfoxide (DMSO) as a hardly decomposable organic compound to 100 mg / L, hydrogen peroxide 1 mM, and Fe 3+ Fe 2 (SO 4 ) 3 to 0.5 mM. 250 ml was supplied into the apparatus at a rate of 1.54 ml / min (liquid space velocity at the electrode part: 12.7 h −1 ). The evaluation was performed by measuring the amount of DMSO in the sample water after the test using a high performance liquid chromatography (HPLC) method, and calculating the amount of DMSO decomposition.
The test results are shown in Table 2.

Figure 2017043846
Figure 2017043846

なお、各物性の測定方法は、以下のとおりである。   In addition, the measuring method of each physical property is as follows.

[気孔径(メジアン径)の測定]
水銀圧入法により測定した。測定装置は(株)島津製作所製 micromeritics Auto PoreIIIを用い、水銀の圧力を1.9〜14400psiとなる条件で測定した。
[Measurement of pore diameter (median diameter)]
Measured by mercury intrusion method. The measuring device was a micromeritics Auto Pore III manufactured by Shimadzu Corporation, and the mercury pressure was measured under the conditions of 1.9 to 14400 psi.

[通気率の測定]
円柱形(底面積A(cm),高さL(cm))の試料に対して、軸心方向に圧力P(cmHO)の窒素を常温で供給し、このときの流量Q(cm/sec)を測定することによって下式から慣用単位での通気率を算出するとともに、SI単位にも換算した。
慣用単位での通気率(cc・cm/cm・sec・cmHO)
=Q(cc/sec)×L(cm)/[A(cm)×P(cmHO)]
SI単位での通気率(cm/sec・Pa)
=Q(cm/sec)×L(cm)/[A(cm)×98.0665P(Pa)]
[Measurement of air permeability]
A cylindrical sample (bottom area A (cm 2 ), height L (cm)) is supplied with nitrogen at a pressure P (cmH 2 O) in the axial direction at room temperature, and the flow rate Q (cm 3 / sec) was measured to calculate the air permeability in conventional units from the following formula and also converted to SI units.
Air permeability in conventional units (cc · cm / cm 2 · sec · cmH 2 O)
= Q (cc / sec) × L (cm) / [A (cm 2 ) × P (cmH 2 O)]
Air permeability in SI units (cm 2 / sec · Pa)
= Q (cm 3 / sec) × L (cm) / [A (cm 2 ) × 98.0665P (Pa)]

[真密度、かさ密度、固有抵抗、曲げ強さの測定]
材料の各物性について、JIS R7222「黒鉛素材の物理特性測定方法」に従い、測定した。
[Measurement of true density, bulk density, resistivity, bending strength]
Each physical property of the material was measured according to JIS R7222 “Method for measuring physical properties of graphite material”.

実施例の水処理用多孔質炭素電極は、優れた貫流性及び電気特性を備え、長期の使用や水圧のかかる処理に耐えられる機械強度を有した電解促進酸化法による難分解性の有機化合物を含む排水処理の電極に適した材料である。また、通水実験および還元実験によれば、優れた通電性、通液性および鉄の還元反応を確認し、実際に難分解性有機化合物であるDMSOを効率よく分解できたことから、促進酸化法による水処理、特に電気化学的なフェントン反応法を行うのに良好な材料である。   The porous carbon electrode for water treatment of the example is composed of a persistent organic compound having an excellent flow-through property and electrical characteristics, and has a mechanical strength that can withstand long-term use and treatment with water pressure, by an electrolysis-promoted oxidation method. It is a material suitable for wastewater treatment electrodes. In addition, according to the water flow experiment and the reduction experiment, it was confirmed that excellent electrical conductivity, liquid permeability and iron reduction reaction, and DMSO, which is actually a hardly decomposable organic compound, could be efficiently decomposed. It is a good material for water treatment by the method, especially the electrochemical Fenton reaction method.

1 反応槽
2 陰極(多孔質炭素電極)
3 陽極
11 排水
12 処理水
1 Reaction tank 2 Cathode (porous carbon electrode)
3 Anode 11 Drainage 12 Treated water

Claims (7)

電解促進酸化法を用いた通水型水処理に使われる多孔質炭素電極であって、連通細孔を有し、水銀圧入法で測定される気孔径(メジアン径)が2〜90μmであり、通気率が0.0055〜0.1000cm/sec・Paであり、曲げ強度が10〜100MPaであることを特徴とする多孔質炭素電極。 It is a porous carbon electrode used for water flow type water treatment using an electrolysis-promoted oxidation method, has a continuous pore, and has a pore diameter (median diameter) measured by a mercury intrusion method of 2 to 90 μm, A porous carbon electrode having an air permeability of 0.0055 to 0.1000 cm 2 / sec · Pa and a bending strength of 10 to 100 MPa. 固有抵抗値が0.1〜20μΩmであることを特徴とする請求項1に記載の多孔質炭素電極。   The porous carbon electrode according to claim 1, wherein the specific resistance value is 0.1 to 20 μΩm. 電解促進酸化法がフェントン反応を利用するものであり、被処理水が電極内部を貫流する通水型水処理に使われる請求項1または2に記載の多孔質炭素電極。   The porous carbon electrode according to claim 1 or 2, wherein the electrolysis-promoted oxidation method uses a Fenton reaction, and is used for water-through water treatment in which treated water flows through the inside of the electrode. 請求項1〜3のいずれかに記載の多孔質炭素電極の製造方法であって、易黒鉛化性炭素粒子100重量部に対し、バインダーピッチ10〜80重量部を配合した炭素質材料を、混練、成形した後、焼成・黒鉛化させることを特徴とする多孔質炭素電極の製造方法。   It is a manufacturing method of the porous carbon electrode in any one of Claims 1-3, Comprising: Carbonaceous material which mix | blended 10-80 weight part of binder pitch with respect to 100 weight part of graphitizable carbon particles is knead | mixed. A method for producing a porous carbon electrode, characterized by firing and graphitizing after molding. 易黒鉛化性炭素粒子が、ピッチコークス又は石油コークスであり、その真密度が1.8g/cm以上であることを特徴とする請求項4に記載の多孔質炭素電極の製造方法。 The method for producing a porous carbon electrode according to claim 4, wherein the graphitizable carbon particles are pitch coke or petroleum coke, and the true density thereof is 1.8 g / cm 3 or more. 焼成・黒鉛後、過酸化水素または次亜塩素酸で表面処理する請求項4に記載の多孔質炭素電極の製造方法。   The method for producing a porous carbon electrode according to claim 4, wherein the surface treatment is performed with hydrogen peroxide or hypochlorous acid after firing and graphite. 有機化合物を含む排水を陰極および陽極が配置された反応槽に流通させて、電解フェントン反応を利用した促進酸化分解法により排水を処理する方法において、請求項1〜3のいずれかに記載の多孔質炭素電極を少なくとも陰極として使用し、多孔質炭素電極の連通細孔をマイクロ流路として排水を通水しながら、両極に電圧を印加することにより、連通細孔内において排水中の溶存酸素から過酸化水素を生成するとともに、フェントン反応に伴い生成するFe3+を電気化学的にFe2+に還元しつつ、排水中の有機化合物を連続的に電解フェントン処理して酸化分解する反応を生じさせることを特徴とする排水処理方法。 The method according to any one of claims 1 to 3, wherein a wastewater containing an organic compound is circulated through a reaction vessel in which a cathode and an anode are disposed, and the wastewater is treated by an accelerated oxidative decomposition method utilizing an electrolytic Fenton reaction. By using a porous carbon electrode as at least a cathode and applying a voltage to both electrodes while passing drainage through the pores of the porous carbon electrode as a microchannel, In addition to producing hydrogen peroxide, the organic compound in the waste water is continuously subjected to electrolytic Fenton treatment to oxidatively decompose, while electrochemically reducing Fe 3+ produced by the Fenton reaction to Fe 2+ Wastewater treatment method characterized by.
JP2016165046A 2015-08-25 2016-08-25 Porous carbon electrode for water treatment and waste water treatment method using the same Pending JP2017043846A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015166160 2015-08-25
JP2015166160 2015-08-25

Publications (1)

Publication Number Publication Date
JP2017043846A true JP2017043846A (en) 2017-03-02

Family

ID=58211453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165046A Pending JP2017043846A (en) 2015-08-25 2016-08-25 Porous carbon electrode for water treatment and waste water treatment method using the same

Country Status (1)

Country Link
JP (1) JP2017043846A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966392B1 (en) * 2018-11-15 2019-08-13 서울대학교산학협력단 Treating method of organic matter in waste water and apparatus of the same
CN112551681A (en) * 2020-12-07 2021-03-26 上海海事大学 Single-chamber type microbial electro-Fenton system and application thereof
CN113023835A (en) * 2021-03-12 2021-06-25 北京工业大学 Preparation method of electro-Fenton cathode material based on sludge-based biomass carbon, product and application thereof
CN114213128A (en) * 2021-12-28 2022-03-22 成都炭素有限责任公司 Preparation method for preparing fluorocarbon anode plate by isostatic pressing
JP2022087164A (en) * 2017-12-13 2022-06-09 東洋炭素株式会社 Microbial immobilization carrier
CN114618554A (en) * 2022-03-24 2022-06-14 湖南大学 Porous iron nitrogen doped carbon composite electro-Fenton catalytic material derived from ferriporphyrin and preparation method and application thereof
CN114870616A (en) * 2022-06-10 2022-08-09 盐城工学院 Electrobiological-Fenton-like integrated reactor for treating volatile organic waste gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087164A (en) * 2017-12-13 2022-06-09 東洋炭素株式会社 Microbial immobilization carrier
KR101966392B1 (en) * 2018-11-15 2019-08-13 서울대학교산학협력단 Treating method of organic matter in waste water and apparatus of the same
CN112551681A (en) * 2020-12-07 2021-03-26 上海海事大学 Single-chamber type microbial electro-Fenton system and application thereof
CN113023835A (en) * 2021-03-12 2021-06-25 北京工业大学 Preparation method of electro-Fenton cathode material based on sludge-based biomass carbon, product and application thereof
CN114213128A (en) * 2021-12-28 2022-03-22 成都炭素有限责任公司 Preparation method for preparing fluorocarbon anode plate by isostatic pressing
CN114618554A (en) * 2022-03-24 2022-06-14 湖南大学 Porous iron nitrogen doped carbon composite electro-Fenton catalytic material derived from ferriporphyrin and preparation method and application thereof
CN114618554B (en) * 2022-03-24 2023-11-07 湖南大学 Iron porphyrin derived porous iron-nitrogen doped carbon composite electro-Fenton catalytic material, and preparation method and application thereof
CN114870616A (en) * 2022-06-10 2022-08-09 盐城工学院 Electrobiological-Fenton-like integrated reactor for treating volatile organic waste gas

Similar Documents

Publication Publication Date Title
JP2017043846A (en) Porous carbon electrode for water treatment and waste water treatment method using the same
JP2017060942A (en) Wastewater treatment device
KR102128134B1 (en) Efficient treatment of wastewater using electrochemical cell
KR102128132B1 (en) Method for imparting filtering capability in electrolytic cell for wastewater treatment
Li et al. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment
KR101935075B1 (en) Efficient treatment of wastewater using electrochemical cell
JP4116726B2 (en) Electrochemical treatment method and apparatus
AU2012267124A1 (en) Efficient treatment of wastewater using electrochemical cell
CN105293643B (en) The method of catalytic and oxidative electrolysis technology treated sewage
Wang et al. Treatment of high-ammonia-nitrogen landfill leachate nanofiltration concentrate using an Fe-loaded Ni-foam-based electro-Fenton cathode
CN105084648A (en) Treatment method for hardly biodegraded sewage
Fahim et al. Treatment of petroleum refinery wastewater by electro-Fenton process using porous graphite electrodes
CN105417643A (en) Oxidation and reduction double-effect micro electrolysis combined reactor and application thereof
Liu et al. Dual-function conductive copper hollow fibers for microfiltration and anti-biofouling in electrochemical membrane bioreactors
Candido et al. Electrochemical treatment of oil refinery wastewater for NH3-N and COD removal
CN112624274A (en) Method for advanced treatment of secondary effluent of petrochemical wastewater by electrochemical oxidation
Si et al. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation
EP3509998B1 (en) Device and process for electrocoagulation
CN111056598A (en) Electrochemical oxygen catalytic reduction cathode material for water treatment and preparation method thereof
Zhang et al. Deep Denitrification of the Simulated Coastal Secondary Effluent with High Chloride Ion by Electrolysis.
CN207659151U (en) A kind of composite electrochemical catalytic oxidizing equipment
Zahran Iron-and carbon-based nanocomposites as anode modifiers in microbial fuel cells for wastewater treatment and power generation applications
CN105036258A (en) Application method of porous graphite electrode in industrial wastewater treatment
Ahmed Electrochemical oxidation of acid yellow and acid violet dyes assisted by transition metal modified kaolin
JP2006341213A (en) Apparatus and method for electrolyzing waste electroless copper plating liquid

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20161128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216