JP2017042901A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2017042901A
JP2017042901A JP2016002713A JP2016002713A JP2017042901A JP 2017042901 A JP2017042901 A JP 2017042901A JP 2016002713 A JP2016002713 A JP 2016002713A JP 2016002713 A JP2016002713 A JP 2016002713A JP 2017042901 A JP2017042901 A JP 2017042901A
Authority
JP
Japan
Prior art keywords
layer
cutting tool
residual stress
base material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016002713A
Other languages
Japanese (ja)
Other versions
JP6507456B2 (en
JP2017042901A5 (en
Inventor
今村 晋也
Shinya Imamura
晋也 今村
アノンサック パサート
Paseuth Anongsack
アノンサック パサート
隆典 出谷
Takanori Idetani
隆典 出谷
秀明 金岡
Hideaki Kaneoka
秀明 金岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2016002713A priority Critical patent/JP6507456B2/en
Publication of JP2017042901A publication Critical patent/JP2017042901A/en
Publication of JP2017042901A5 publication Critical patent/JP2017042901A5/en
Application granted granted Critical
Publication of JP6507456B2 publication Critical patent/JP6507456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having coating with enhanced mechanical characteristics, and a further prolonged service life of the cutting tool.SOLUTION: A surface-coated cutting tool of the invention comprises: a base material, and a coating formed on the base material. The coating has an α-AlOa layer including a plurality of crystal grains of α-AlO. The α-AlOlayer includes: a lower layer part arranged on the base material side in a thickness direction with 1 μm thickness; and an upper layer part arranged on a front surface side opposite to the base material side, with 2 μm thickness. When crystal orientations are specified to crystal grains, respectively, to a cross section formed by cutting the α-AlOlayer, with a plane including a normal line of a surface of the α-Allayer, by EBSD analysis using FE-SEM, to create a color map based on the specified crystal orientation, the upper layer part includes 90% or more area which is occupied by crystal grains having a normal line direction of (001) surface within ±10° with regard to the normal line direction on the surface of the α-AlOlayer, while the lower layer part includes 50% or less of the above-mentioned area.SELECTED DRAWING: Figure 4

Description

本発明は、表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool.

従来より、基材上に被膜を形成した表面被覆切削工具が用いられてきた。たとえば、特開2004−284003号公報(特許文献1)は、層の表面の法線方向から平面視した場合に、(0001)面の結晶方位を示す結晶粒の総面積が70%以上のα−Al23層を含む被膜を有する表面被覆切削工具を開示している。 Conventionally, a surface-coated cutting tool in which a coating is formed on a substrate has been used. For example, Japanese Patent Laid-Open No. 2004-284003 (Patent Document 1) describes an α whose total area of crystal grains indicating the crystal orientation of the (0001) plane is 70% or more when viewed from the normal direction of the surface of the layer. It discloses a surface-coated cutting tool having a coating comprising -al 2 O 3 layer.

また、特開2010−207946号公報(特許文献2)は、層の表面の法線方向から平面視した場合に、層の表面において観察される結晶粒が特異的な大きさ区分を有するα−Al23層を含む被膜を有する表面被覆切削工具を開示している。 Japanese Patent Laid-Open No. 2010-207946 (Patent Document 2) discloses that α- in which crystal grains observed on the surface of the layer have a specific size category when viewed from the normal direction of the surface of the layer. A surface-coated cutting tool having a coating comprising an Al 2 O 3 layer is disclosed.

特開2004−284003号公報JP 2004-284003 A 特開2010−207946号公報JP 2010-207946 A

特許文献1および特許文献2では、上記のような構成のα−Al23層を含む被膜を有することにより、表面被覆切削工具の耐摩耗性や耐欠損性といった機械特性が向上し、以って切削工具の寿命が長くなることが期待されている。 In Patent Document 1 and Patent Document 2, by having a coating including the α-Al 2 O 3 layer having the above-described configuration, mechanical properties such as wear resistance and fracture resistance of the surface-coated cutting tool are improved. Therefore, it is expected that the life of the cutting tool will be extended.

しかしながら、近年の切削加工においては、高速化および高能率化が進行し、切削工具にかかる負荷が増大し、切削工具の寿命が短期化することが問題となっていた。このため、切削工具の被膜の機械特性をさらに向上させ、切削工具の寿命をさらに長寿命化することが求められている。   However, in recent cutting work, there has been a problem that speeding up and efficiency improvement have progressed, the load applied to the cutting tool has increased, and the life of the cutting tool has been shortened. For this reason, it is required to further improve the mechanical properties of the coating film of the cutting tool and further extend the life of the cutting tool.

本開示は、このような状況に鑑みなされたものであって、その目的とするところは、被膜の機械特性を向上させ、切削工具の寿命をさらに長寿命化した表面被覆切削工具を提供することにある。   The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a surface-coated cutting tool that improves the mechanical properties of the coating and further extends the life of the cutting tool. It is in.

本開示の一態様に係る表面被覆切削工具は、基材と、基材上に形成された被膜とを備える表面被覆切削工具であって、被膜は、複数のα−Al23の結晶粒を含むα−Al23層を有し、α−Al23層は、その厚み方向において、基材側に位置し、かつ1μmの厚みを有する下層部と、基材側と反対の表面側に位置し、かつ2μmの厚みを有する上層部と、を含み、α−Al23層の表面の法線を含む平面でα−Al23層を切断したときのα−Al23層の断面に対し、電界放射型走査顕微鏡(FE−SEM)を用いた電子後方散乱回折像(EBSD)解析によって結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、カラーマップにおいて、上層部は、(001)面の法線方向がα−Al23層の表面の法線方向に対して±10°以内となる結晶粒の占める面積が90%以上であり、下層部は、(001)面の法線方向がα−Al23層の表面の法線方向に対して±10°以内となる結晶粒の占める面積が50%以下である。 A surface-coated cutting tool according to an aspect of the present disclosure is a surface-coated cutting tool including a base material and a coating film formed on the base material, and the coating film includes a plurality of α-Al 2 O 3 crystal grains. has a α-Al 2 O 3 layer comprising, the α-Al 2 O 3 layer in its thickness direction, and positioned at the base material side, and a lower layer portion having a thickness of 1 [mu] m, opposite the substrate side Α-Al when the α-Al 2 O 3 layer is cut along a plane including the normal of the surface of the α-Al 2 O 3 layer, the upper layer portion having a thickness of 2 μm located on the surface side For each cross section of the 2 O 3 layer, the crystal orientation of each crystal grain is identified by electron backscatter diffraction image (EBSD) analysis using a field emission scanning microscope (FE-SEM), and a color map based on this is specified. when you create, in the color map, the upper layer portion (001) plane direction normal α-Al 2 O 3 layers Area occupied by the crystal grains is within ± 10 ° with respect to the normal direction of the surface is 90% lower section (001) plane law surface normal direction α-Al 2 O 3 layers The area occupied by crystal grains within ± 10 ° with respect to the line direction is 50% or less.

上記によれば、被膜の機械特性が向上し、切削工具の寿命をさらに長寿命化することができる。   According to the above, the mechanical properties of the coating are improved, and the life of the cutting tool can be further extended.

本開示の一実施形態に係る表面被覆切削工具の一例を示す斜視図である。It is a perspective view showing an example of a surface covering cutting tool concerning one embodiment of this indication. 図1のII−II線矢視断面図である。It is the II-II sectional view taken on the line of FIG. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 被膜の表面の法線を含む平面で被膜を切断したときのα−Al23層の断面に基づいて作成されたカラーマップである。A color map created based on the cross-section of the α-Al 2 O 3 layer obtained by cutting the film in a plane including the normal to the surface of the coating. α−Al23層の厚み方向の応力分布を概略的に示すグラフである。The stress distribution in the thickness direction of the α-Al 2 O 3 layer is a graph schematically showing. 第2中間層の厚み方向における形状を概略的に示す断面図である。It is sectional drawing which shows the shape in the thickness direction of a 2nd intermediate | middle layer roughly. 実施形態に係る被膜の製造に用いられる化学気相蒸着装置の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the chemical vapor deposition apparatus used for manufacture of the film which concerns on embodiment.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。なお、本明細書の結晶学的記載においては、個別面を()で示す。また、本明細書において「A〜B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味しており、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。また本明細書において、「TiN」、「TiCN」等の化学式において特に原子比を特定していないものは、各元素の原子比が「1」のみであることを示すものではなく、従来公知の原子比が全て含まれるものとする。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. In the crystallographic description of the present specification, individual planes are indicated by (). In addition, in the present specification, the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), the unit is not described in A, and the unit is described only in B. The unit of A is the same as the unit of B. Further, in this specification, those having no particular atomic ratio in the chemical formulas such as “TiN” and “TiCN” do not indicate that the atomic ratio of each element is only “1”, and are conventionally known. All atomic ratios are included.

〔1〕本開示の一態様に係る表面被覆切削工具は、基材と、基材上に形成された被膜とを備える表面被覆切削工具であって、被膜は、複数のα−Al23の結晶粒を含むα−Al23層を有し、α−Al23層は、その厚み方向において、基材側に位置し、かつ1μmの厚みを有する下層部と、基材側と反対の表面側に位置し、かつ2μmの厚みを有する上層部と、を含み、α−Al23層の表面の法線を含む平面でα−Al23層を切断したときのα−Al23層の断面に対し、電界放射型走査顕微鏡(FE−SEM)を用いた電子後方散乱回折像(EBSD)解析によって結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、カラーマップにおいて、上層部は、(001)面の法線方向がα−Al23層の表面の法線方向に対して±10°以内となる結晶粒の占める面積が90%以上であり、下層部は、(001)面の法線方向がα−Al23層の表面の法線方向に対して±10°以内となる結晶粒の占める面積が50%以下である。このようなα−Al23層によれば、表面側に位置する上層部において、高い耐摩耗性を発揮することができ、基材側に位置する下層部において、基材との高い密着性を発揮することができる。したがって、上記〔1〕の表面被覆切削工具は、機械特性に優れ、もって寿命が長寿命化されたものとなる。 [1] A surface-coated cutting tool according to an aspect of the present disclosure is a surface-coated cutting tool including a base material and a coating film formed on the base material, and the coating film includes a plurality of α-Al 2 O 3. An α-Al 2 O 3 layer containing crystal grains of the α-Al 2 O 3 layer, the α-Al 2 O 3 layer being positioned on the substrate side in the thickness direction and having a thickness of 1 μm, and the substrate side and located on the opposite surface side of, and including an upper layer portion having a thickness of 2 [mu] m, a, of a cutaway of the α-Al 2 O 3 layer in a plane including the normal to the surface of the α-Al 2 O 3 layer Based on the cross-section of the α-Al 2 O 3 layer, the crystal orientation of each crystal grain was determined by electron backscatter diffraction image (EBSD) analysis using a field emission scanning microscope (FE-SEM). when you create a color map, the color map, the upper layer portion, the normal direction of the (001) plane alpha-Al 2 Area occupied by the crystal grains is within ± 10 ° with respect to the normal direction of the three-layered surface of not less than 90%, the lower layer portion (001) surface normal direction is alpha-Al 2 O 3 layer The area occupied by crystal grains within ± 10 ° with respect to the normal direction of the surface is 50% or less. According to such an α-Al 2 O 3 layer, high wear resistance can be exhibited in the upper layer portion located on the surface side, and high adhesion to the substrate in the lower layer portion located on the substrate side. Can demonstrate its sexuality. Therefore, the surface-coated cutting tool [1] is excellent in mechanical properties and thus has a long life.

〔2〕上記表面被覆切削工具において好ましくは、α−Al23層は、その厚み方向に変化する応力分布を有し、α−Al23層の表面側は圧縮残留応力を有し、α−Al23層の基材側は引張残留応力を有する。この場合、表面被覆切削工具は、さらに長寿命化されたものとなる。 [2] In the above surface-coated cutting tool, preferably, the α-Al 2 O 3 layer has a stress distribution that varies in the thickness direction, and the surface side of the α-Al 2 O 3 layer has a compressive residual stress. The substrate side of the α-Al 2 O 3 layer has a tensile residual stress. In this case, the surface-coated cutting tool has a longer life.

〔3〕上記〔2〕の表面被覆切削工具において好ましくは、上記応力分布は、表面側から基材側に向けて、圧縮残留応力の絶対値が連続的に大きくなる第1領域と、第1領域よりも基材側に位置し、かつ表面側から基材側に向けて、圧縮残留応力の絶対値が連続的に小さくなって引張残留応力に転じ、引き続き、転じた引張残留応力の絶対値が連続的に大きくなる第2領域と、を有し、第1領域と第2領域とは、圧縮残留応力の絶対値が最も大きくなる中間点を介して連続する。このような表面被覆切削工具は、耐摩耗性と耐欠損性とのバランスに優れることとなる。   [3] In the surface-coated cutting tool according to [2], preferably, the stress distribution includes a first region in which an absolute value of compressive residual stress continuously increases from the surface side toward the base material side, The absolute value of the compressive residual stress is continuously reduced from the surface side to the base material side and changes to the tensile residual stress. The second region is continuously increased, and the first region and the second region are continuous via an intermediate point where the absolute value of the compressive residual stress is the largest. Such a surface-coated cutting tool has an excellent balance between wear resistance and fracture resistance.

〔4〕上記〔2〕および〔3〕の表面被覆切削工具のAl23層において好ましくは、圧縮残留応力の絶対値は1000MPa以下であり、引張残留応力の絶対値は2000MPa以下である。このような表面被覆切削工具は、耐摩耗性と耐欠損性とのバランスに優れることとなる。 [4] In the Al 2 O 3 layer of the surface-coated cutting tool of [2] and [3], preferably, the absolute value of the compressive residual stress is 1000 MPa or less, and the absolute value of the tensile residual stress is 2000 MPa or less. Such a surface-coated cutting tool has an excellent balance between wear resistance and fracture resistance.

〔5〕上記表面被覆切削工具において好ましくは、被膜は、基材とAl23層との間に第1中間層を含み、該第1中間層はTiCN層である。TiCN層は高硬度であるため、このような第1中間層を有する被膜を含む表面被覆切削工具は、耐摩耗性に優れることとなる。 [5] In the above surface-coated cutting tool, preferably, the coating includes a first intermediate layer between the base material and the Al 2 O 3 layer, and the first intermediate layer is a TiCN layer. Since the TiCN layer has high hardness, the surface-coated cutting tool including the coating having the first intermediate layer is excellent in wear resistance.

〔6〕上記〔5〕の表面被覆切削工具において好ましくは、被膜は、第1中間層とα−Al23層との間に第2中間層を含み、第2中間層は、TiCNO層またはTiBN層であり、第2中間層の最大厚みと最小厚みとの差は、0.3μm以上である。このような第2中間層は、α−Al23層と第1中間層とを密着させるアンカーとしての効果を発揮することができるため、被膜の耐剥離性を高めることができる。したがって、このような第2中間層を有する被膜を含む表面被覆切削工具は、さらに耐欠損性に優れることとなる。 [6] In the surface-coated cutting tool according to [5], preferably, the coating includes a second intermediate layer between the first intermediate layer and the α-Al 2 O 3 layer, and the second intermediate layer is a TiCNO layer. Or it is a TiBN layer and the difference of the maximum thickness of the 2nd intermediate | middle layer and minimum thickness is 0.3 micrometer or more. The second intermediate layer, it is possible to exhibit the effect as an anchor for adhering the alpha-Al 2 O 3 layer and the first intermediate layer, it is possible to enhance the peeling resistance of the coating. Therefore, the surface-coated cutting tool including the coating having the second intermediate layer is further excellent in fracture resistance.

〔7〕上記表面被覆切削工具において好ましくは、被膜は、最表面に位置する表面層を含み、表面層は、TiC層、TiN層またはTiB2層である。これにより、被膜の靱性が向上する。 [7] In the surface-coated cutting tool, preferably, the coating includes a surface layer located on the outermost surface, and the surface layer is a TiC layer, a TiN layer, or a TiB 2 layer. Thereby, the toughness of the coating is improved.

[本発明の実施形態の詳細]
以下、本発明の一実施形態(以下「本実施形態」と記す)について説明するが、本実施形態はこれらに限定されるものではない。
[Details of the embodiment of the present invention]
Hereinafter, one embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described, but the present embodiment is not limited thereto.

〔表面被覆切削工具〕
図1を参照し、本実施形態の表面被覆切削工具10(以下、単に「工具10」と記す)は、すくい面1と、逃げ面2と、すくい面1と逃げ面2とが交差する刃先稜線部3とを有する。すなわち、すくい面1と逃げ面2とは、刃先稜線部3を挟んで繋がる面である。刃先稜線部3は、工具10の切刃先端部を構成する。このような工具10の形状は、後述する基材の形状に依拠する。
[Surface coated cutting tool]
Referring to FIG. 1, a surface-coated cutting tool 10 (hereinafter simply referred to as “tool 10”) of the present embodiment has a cutting edge at which rake face 1, flank face 2, rake face 1 and flank face 2 intersect. And a ridge line portion 3. That is, the rake face 1 and the flank face 2 are faces that are connected with the blade edge line portion 3 interposed therebetween. The cutting edge ridge line portion 3 constitutes a cutting edge tip portion of the tool 10. The shape of such a tool 10 depends on the shape of the base material described later.

図1には旋削加工用刃先交換型切削チップとしての工具10が示されるが、工具10はこれに限られず、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。   FIG. 1 shows a tool 10 as a cutting edge exchangeable cutting tip for turning, but the tool 10 is not limited to this, and a drill, an end mill, a cutting edge exchangeable cutting tip for a drill, a cutting edge exchangeable cutting tip for an end mill, a milling cutter. It can be suitably used as a cutting tool such as a cutting edge exchangeable cutting tip for processing, a metal saw, a gear cutting tool, a reamer, and a tap.

また、工具10が刃先交換型切削チップ等である場合、工具10は、チップブレーカを有するものも、有さないものも含まれ、また、刃先稜線部3は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドとを組み合せたもののいずれのものも含まれる。   Further, when the tool 10 is a cutting edge exchange type cutting tip or the like, the tool 10 includes those having a chip breaker and those having no chip breaker, and the cutting edge ridge line portion 3 has a sharp edge (rake face). And the ridge where the flank intersects), honing (having a sharp edge), negative land (having a chamfer), and a combination of honing and negative land.

図2を参照し、上記工具10は、基材11と、該基材11上に形成された被膜12とを備えた構成を有する。工具10において、被膜12は、基材11の全面を被覆することが好ましいが、基材11の一部がこの被膜12で被覆されていなかったり、被膜12の構成が部分的に異なったりしていたとしても本実施形態の範囲を逸脱するものではない。   Referring to FIG. 2, the tool 10 has a configuration including a base material 11 and a coating 12 formed on the base material 11. In the tool 10, the coating 12 preferably covers the entire surface of the substrate 11, but a part of the substrate 11 is not covered with the coating 12 or the configuration of the coating 12 is partially different. Even so, it does not depart from the scope of the present embodiment.

〔基材〕
図2を参照し、本実施形態の基材11は、すくい面11aと、逃げ面11bと、すくい面11aと逃げ面11bとが交差する刃先稜線部11cとを有する。すくい面11a、逃げ面11b、および刃先稜線部11cは、工具10のすくい面1、逃げ面2、および刃先稜線部3を構成する。
〔Base material〕
With reference to FIG. 2, the base material 11 of this embodiment has a rake face 11a, a flank face 11b, and a cutting edge ridge line portion 11c where the rake face 11a and the flank face 11b intersect. The rake face 11 a, the flank face 11 b, and the cutting edge ridge line part 11 c constitute a rake face 1, a flank face 2, and a cutting edge ridge line part 3 of the tool 10.

基材11としては、この種の基材として従来公知のものであればいずれのものも使用することができる。たとえば、超硬合金(たとえばWC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCN等を主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化硼素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。これらの各種基材の中でも、特にWC基超硬合金、サーメット(特にTiCN基サーメット)を選択することが好ましい。これは、これらの基材が特に高温における硬度と強度とのバランスに優れ、上記用途の表面被覆切削工具の基材として優れた特性を有するためである。   As the base material 11, any conventionally known base material of this type can be used. For example, cemented carbide (for example, WC-based cemented carbide, including WC, including Co, or including carbonitrides such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.) Component), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body preferable. Among these various substrates, it is particularly preferable to select a WC-based cemented carbide or cermet (particularly TiCN-based cermet). This is because these substrates are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent characteristics as substrates for surface-coated cutting tools for the above applications.

〔被膜〕
本実施形態の被膜12は、以下に詳述するα−Al23層を少なくとも1層含む。被膜12は、このα−Al23層を含む限り、他の層を含むことができる。他の層の組成は特に限定されず、TiC、TiN、TiB、TiBN、TiAlN、TiSiN、AlCrN、TiAlSiN、TiAlNO、AlCrSiCN、TiCN、TiCNO、TiSiC、CrSiN、AlTiSiCOまたはTiSiCN等を挙げることができる。その積層の順も特に限定されない。
[Coating]
The film 12 of this embodiment includes at least one α-Al 2 O 3 layer described in detail below. As long as the coating 12 includes the α-Al 2 O 3 layer, it can include other layers. The composition of the other layers is not particularly limited, and examples thereof include TiC, TiN, TiB, TiBN, TiAlN, TiSiN, AlCrN, TiAlSiN, TiAlNO, AlCrSiCN, TiCN, TiCNO, TiSiC, CrSiN, AlTiSiCO, and TiSiCN. The order of the lamination is not particularly limited.

このような本実施形態の被膜12は、基材11を被覆することにより、耐摩耗性や耐欠損性等の諸特性を向上させる作用を有するものである。   The coating film 12 of this embodiment has an effect of improving various characteristics such as wear resistance and fracture resistance by covering the base material 11.

被膜12は、3〜35μmの厚みを有することが好ましい。被膜12の厚みが3μm以上の場合、被膜12の厚みが薄いことに起因する工具寿命の低下を抑制することができる。被膜12の厚みが35μm以下の場合、切削初期における耐欠損性を向上させることができる。   The coating 12 preferably has a thickness of 3 to 35 μm. When the thickness of the coating 12 is 3 μm or more, it is possible to suppress a reduction in tool life due to the thin thickness of the coating 12. When the thickness of the coating 12 is 35 μm or less, the chipping resistance in the initial stage of cutting can be improved.

図3を参照し、本実施形態の被膜12の好ましい構成の一例として、基材側から被膜12の表面側に向かって(図中下方から上方に向かって)順に、下地層13、第1中間層14、第2中間層15、およびα−Al23層16が積層された被膜12について説明する。 With reference to FIG. 3, as an example of a preferable configuration of the coating film 12 of the present embodiment, the base layer 13 and the first intermediate layer are sequentially arranged from the substrate side to the surface side of the coating film 12 (from the lower side to the upper side in the figure). The coating film 12 in which the layer 14, the second intermediate layer 15, and the α-Al 2 O 3 layer 16 are laminated will be described.

〔α−Al23層〕
本実施形態のα−Al23層16は、複数のα−Al23(結晶構造がα型である酸化アルミニウム)の結晶粒を含んだ層である。すなわち、この層は、多結晶のα−Al23により構成される。通常この結晶粒は、約50〜3000nm程度の大きさの粒径を有する。
[Α-Al 2 O 3 layer]
The α-Al 2 O 3 layer 16 of the present embodiment is a layer including crystal grains of a plurality of α-Al 2 O 3 (aluminum oxide whose crystal structure is α-type). That is, this layer is composed of polycrystalline α-Al 2 O 3 . Usually, this crystal grain has a grain size of about 50 to 3000 nm.

また本実施形態のα−Al23層16は次の要件を満たすことを特徴とする。すなわち、その厚み方向において、基材側に位置し、かつ1μmの厚みを有する下層部と、基材側と反対の表面側に位置し、かつ2μmの厚みを有する上層部と、を含み、α−Al23層16の表面の法線を含む平面でα−Al23層16を切断したときのα−Al23層16の断面に対し、FE−SEMを用いたEBSD解析によってα−Al23からなる結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、カラーマップにおいて、上層部は、(001)面の法線方向がα−Al23層の表面の法線方向に対して±10°以内となる結晶粒(以下、「(001)面配向性結晶粒」とも記す)の占める面積が90%以上であり、下層部は、(001)面配向性結晶粒の占める面積が50%以下である。 In addition, the α-Al 2 O 3 layer 16 of this embodiment satisfies the following requirements. That is, in the thickness direction, a lower layer portion that is located on the base material side and has a thickness of 1 μm, and an upper layer portion that is located on the surface side opposite to the base material side and has a thickness of 2 μm, to the cross-section of the α-Al 2 O 3 layer 16 of a cutaway of the α-Al 2 O 3 layer 16 in a plane including the normal to the surface of -al 2 O 3 layer 16, EBSD analysis using FE-SEM When the crystal orientation of each crystal grain made of α-Al 2 O 3 is specified by and a color map based on the crystal orientation is created, the upper layer portion of the color map has the normal direction of the (001) plane being α The area occupied by crystal grains (hereinafter also referred to as “(001) plane-oriented crystal grains”) within ± 10 ° with respect to the normal direction of the surface of the Al 2 O 3 layer is 90% or more; The area occupied by the (001) plane-oriented crystal grains is 50% or less.

ここで、図2〜図4を用いながら、上記のカラーマップの具体的な作成方法について説明する。なお、図4に示されるα−Al23層16の下面16bは、図3において基材11側に位置する面、すなわち第2中間層15と接する面であり、上面16aは、基材11側と反対の被膜12の表面側に位置する面、すなわち、α−Al23層16の表面である。なお、α−Al23層16の上にさらに他の表面層等が形成されている場合、上面16aは表面層と接する面となる。 Here, a specific method for creating the color map will be described with reference to FIGS. The lower surface 16b of the α-Al 2 O 3 layer 16 shown in FIG. 4 is a surface located on the substrate 11 side in FIG. 3, that is, a surface in contact with the second intermediate layer 15, and the upper surface 16a is a substrate. The surface located on the surface side of the coating 12 opposite to the 11 side, that is, the surface of the α-Al 2 O 3 layer 16. When another surface layer or the like is formed on the α-Al 2 O 3 layer 16, the upper surface 16a is a surface in contact with the surface layer.

まずα−Al23層を後述の製造方法に基づき形成する。そして、形成されたα−Al23層を(基材なども含め)α−Al23層に垂直な断面が得られるように切断する(すなわち、α−Al23層の表面に対する法線を含む平面でα−Al23層を切断した切断面が露出するように切断する)。その後、その切断面を耐水研磨紙(研磨剤としてSiC砥粒研磨剤を含むもの)で研磨する。 First, an α-Al 2 O 3 layer is formed based on the manufacturing method described later. Then, the formed α-Al 2 O 3 layer (including the base material) is cut so that a cross section perpendicular to the α-Al 2 O 3 layer is obtained (that is, the surface of the α-Al 2 O 3 layer). And cut so that the cut surface obtained by cutting the α-Al 2 O 3 layer at a plane including the normal line to is exposed). Thereafter, the cut surface is polished with water-resistant abrasive paper (containing a SiC abrasive abrasive as an abrasive).

なお、上記の切断は、たとえばα−Al23層16の表面(α−Al23層16上に他の層が形成されている場合は被膜表面とする)を十分に大きな保持用の平板上にワックス等を用いて密着固定した後、回転刃の切断機にてその平板に対して垂直方向に切断する(該回転刃と該平板とが可能な限り垂直となるように切断する)ものとする。この切断は、このような垂直方向に対して行なわれる限り、α−Al23層16の任意の部位で行なうことができるが、後述のように、刃先稜線部近傍を切断することが好ましい。 The above cleavage is, for example alpha-Al 2 surface of the O 3 layer 16 (alpha-Al 2 if O 3 layer 16 another layer is formed thereon to a film surface) for a sufficiently large hold After being fixed in close contact with a flat plate using wax or the like, it is cut in a direction perpendicular to the flat plate with a rotary blade cutter (cut so that the rotary blade and the flat plate are as vertical as possible). ) This cutting can be performed at any part of the α-Al 2 O 3 layer 16 as long as it is performed in such a vertical direction, but it is preferable to cut the vicinity of the edge of the blade edge as described later. .

また、上記の研磨は、当該耐水研磨紙#400、#800、#1500を順に用いて行なうものとする(耐水研磨紙の番号(#)は研磨剤の粒径の違いを意味し、数字が大きくなるほど研磨剤の粒径は小さくなる)。   In addition, the above polishing is performed using the water-resistant abrasive papers # 400, # 800, and # 1500 in order (the number (#) of the water-resistant abrasive paper means a difference in the particle size of the abrasive, and the number is The larger the particle size, the smaller the particle size of the abrasive).

引続き、上記の研磨面をArイオンによるイオンミーリング処理によりさらに平滑化する。イオンミーリング処理の条件は以下の通りである。
加速電圧:6kV
照射角度:α−Al23層表面の法線方向(すなわち該切断面におけるα−Al23層の厚み方向に平行となる直線方向)から0°
照射時間:6時間。
Subsequently, the polished surface is further smoothed by ion milling with Ar ions. The conditions for the ion milling treatment are as follows.
Acceleration voltage: 6 kV
Irradiation angle: 0 ° from the normal direction of the surface of the α-Al 2 O 3 layer (that is, the linear direction parallel to the thickness direction of the α-Al 2 O 3 layer at the cut surface)
Irradiation time: 6 hours.

次に、上記の平滑化処理された断面(鏡面)を、EBSDを備えたFE−SEM(製品名:「SU6600」、日立ハイテクノロジーズ社製)を用いて観察し、得られた観察像に対してEBSD解析を行う。該観察場所は、特に限定されないが、切削特性との関係を考慮すると刃先稜線部近傍を観察することが好ましい。   Next, the smoothed cross section (mirror surface) is observed using an FE-SEM (product name: “SU6600”, manufactured by Hitachi High-Technologies Corporation) equipped with EBSD, and the obtained observation image is obtained. EBSD analysis. The observation location is not particularly limited, but it is preferable to observe the vicinity of the edge portion of the blade edge in consideration of the relationship with the cutting characteristics.

またEBSD解析に関し、データは、集束電子ビームを各ピクセル上へ個別に位置させることによって順に収集する。サンプル面(平滑化処理されたα−Al23層の断面)の法線は、入射ビームに対して70°傾斜させ、解析は、15kVにて行なう。帯電効果を避けるために、10Paの圧力を印加する。開口径60μmまたは120μmと合わせて高電流モードを用いる。データ収集は、断面上、50×30μmの面領域に相当する500×300ポイントについて、0.1μm/ステップのステップにて行なう。 Also for EBSD analysis, data is collected sequentially by placing a focused electron beam onto each pixel individually. The normal of the sample surface (cross section of the smoothed α-Al 2 O 3 layer) is inclined by 70 ° with respect to the incident beam, and the analysis is performed at 15 kV. In order to avoid the charging effect, a pressure of 10 Pa is applied. The high current mode is used in combination with the opening diameter of 60 μm or 120 μm. Data collection is performed at a step of 0.1 μm / step for 500 × 300 points corresponding to a surface area of 50 × 30 μm on the cross section.

上記EBSD解析結果を、市販のソフトウェア(商品名:「orientation Imaging microscopy Ver 6.2」、EDAX社製)を用いて分析し、上記カラーマップを作成する。具体的には、まずα−Al23層16の断面に含まれる各結晶粒の結晶方位Aを特定する。ここで特定される各結晶粒の結晶方位Aは、α−Al23層16の断面に現れる各結晶粒を、該断面の法線方向(図4において紙面を貫く方向)から平面視したときに観察される面方位である。そして、得られた各結晶粒の結晶方位Aに基づいて、α−Al23層16の表面の法線方向における各結晶粒の面方位を特定する。そして、特定された面方位に基づいてカラーマップを作成する。該カラーマップの作成には、上記ソフトウェアに含まれる「Cristal Direction MAP」の手法を用いることができる。なお、カラーマップは切断面に観察されるα−Al23層16の厚さ方向の全域に亘って作成される。 The EBSD analysis result is analyzed using commercially available software (trade name: “orientation Imaging microscopy Ver 6.2”, manufactured by EDAX), and the color map is created. Specifically, first, the crystal orientation A of each crystal grain included in the cross section of the α-Al 2 O 3 layer 16 is specified. The crystal orientation A of each crystal grain specified here is a plan view of each crystal grain appearing in the cross section of the α-Al 2 O 3 layer 16 from the normal direction of the cross section (direction passing through the paper surface in FIG. 4). It is the plane orientation that is sometimes observed. Then, based on the crystal orientation A of each obtained crystal grain, the plane orientation of each crystal grain in the normal direction of the surface of the α-Al 2 O 3 layer 16 is specified. Then, a color map is created based on the specified plane orientation. To create the color map, the “Cristal Direction MAP” method included in the software can be used. The color map is created over the entire thickness direction of the α-Al 2 O 3 layer 16 observed on the cut surface.

図4においては、実線で囲まれかつ斜線のハッチングを有する各領域が、各(001)面配向性結晶粒であり、実線で囲まれかつハッチングを有さない各領域が、(001)面の法線方向が前者以外の方向となる結晶粒である。すなわち、図4では、α−Al23層16の表面の法線方向における面方位が(001)面および(001)面から10°以下ずれた面となる結晶粒がハッチングされており、α−Al23層16の表面の法線方向における面方位が前者以外の面となる結晶粒がハッチングされていないこととなる。なお、図4において黒色で示される領域があるが、これは、上記方法において結晶方位が特定されなかった結晶粒の領域とみなす。 In FIG. 4, each region surrounded by a solid line and having hatched hatching is each (001) plane-oriented crystal grain, and each region surrounded by a solid line and having no hatching is (001) plane. It is a crystal grain whose normal direction is a direction other than the former. That is, in FIG. 4, the crystal grains in which the plane orientation in the normal direction of the surface of the α-Al 2 O 3 layer 16 is shifted by 10 ° or less from the (001) plane and the (001) plane are hatched, The crystal grains whose plane orientation in the normal direction of the surface of the α-Al 2 O 3 layer 16 is a plane other than the former are not hatched. Note that although there is a region shown in black in FIG. 4, this is regarded as a region of crystal grains whose crystal orientation was not specified by the above method.

また、図4において、仮想の直線S1から、α−Al23層16の基材側に向かう直線距離(最短距離)d1は2μmであって、これが上層部16Aの厚みとなる。また、図4において、仮想の直線S2から、α−Al23層16の表面側に向かう直線距離(最短距離)d2は1μmであって、これが下層部16Bの厚みとなる。つまり、α−Al23層16のうち、表面側に位置する面から2μm内部側までの領域が上層部16Aであり、α−Al23層16のうち、基材側に位置する面から1μm内部側までの領域が下層部16Bである。なお、仮想の直線S1およびS2は、α−Al23層16の表面により構成される端縁の近似直線である。 Moreover, in FIG. 4, the linear distance (shortest distance) d 1 from the virtual straight line S1 toward the base material side of the α-Al 2 O 3 layer 16 is 2 μm, and this is the thickness of the upper layer portion 16A. In FIG. 4, the linear distance (shortest distance) d 2 from the virtual straight line S2 toward the surface side of the α-Al 2 O 3 layer 16 is 1 μm, and this is the thickness of the lower layer portion 16B. That is, in the α-Al 2 O 3 layer 16, the region from the surface located on the surface side to the 2 μm inner side is the upper layer portion 16 A, and the α-Al 2 O 3 layer 16 is located on the base material side. A region from the surface to the inner side of 1 μm is the lower layer portion 16B. The imaginary straight lines S1 and S2 are approximate straight lines of edges formed by the surface of the α-Al 2 O 3 layer 16.

上記カラーマップにおいて、上層部16Aは、上層部16Aの全体の面積に対する(001)面配向性結晶粒の面積の合計の割合が90%以上であり、下層部16Bは、下部層16Bの全体の面積に対する(001)面配向性結晶粒の面積の合計の割合が50%以下である。   In the color map, the upper layer portion 16A has a ratio of the total area of the (001) -oriented crystal grains to the entire area of the upper layer portion 16A of 90% or more, and the lower layer portion 16B has the entire area of the lower layer 16B. The ratio of the total area of (001) plane-oriented crystal grains to the area is 50% or less.

上記要件を満たすα−Al23層16を備える工具10は、機械特性に優れ、もって長寿命化されたものとなる。これについて、従来技術と比較しながら説明する。 The tool 10 including the α-Al 2 O 3 layer 16 that satisfies the above requirements is excellent in mechanical properties and has a long life. This will be described in comparison with the prior art.

従来、α−Al23層の機械特性を向上させるべくとられていたアプローチは、α−Al23層の表面における各結晶の態様を制御することによってα−Al23層の特性を向上させ、もってα−Al23層を有する被膜の特性を向上させるというものであった。このような従来のアプローチは、α−Al23層の表面が切削加工による負荷を大きく受ける部分であり、この部分の特性の制御によって、α−Al23層全体の特性が制御されるとの考えに基づいていた。このため、Al23層の厚み方向の構成については、これまで何ら着目されることはなかった。特に、化学蒸着法(CVD)または物理蒸着法(PVD)によって作製される層においてその均一性を高めることが是とされていたことも、厚み方向の構成への着目を遠ざけるものであった。 Conventional, alpha-Al 2 O 3 layer approach that has been taken to improve the mechanical properties of, alpha-Al 2 by controlling the mode of each crystal on the surface of the O 3 layer alpha-Al 2 O 3 layer The characteristics were improved, thereby improving the characteristics of the film having the α-Al 2 O 3 layer. In such a conventional approach, the surface of the α-Al 2 O 3 layer is a portion that receives a large load due to cutting, and by controlling the properties of this portion, the properties of the entire α-Al 2 O 3 layer are controlled. It was based on the idea that. For this reason, no attention has been paid to the configuration in the thickness direction of the Al 2 O 3 layer. In particular, the fact that the uniformity of a layer produced by chemical vapor deposition (CVD) or physical vapor deposition (PVD) was to be improved was also distracted from attention to the structure in the thickness direction.

しかし、本発明者らは、従来のアプローチのみでは、切削工具の寿命をさらに長寿命化させるという目的において、ブレイクスルーを図れないと考えた。そして、本発明者らは、α−Al23層の厚み方向における各結晶の態様に着眼して種々の検討を行い、これによって、α−Al23層を構成する結晶のうち、基材側に位置する結晶の態様がα−Al23層の密着性、すなわち耐欠損性に大きく寄与することを知見した。 However, the present inventors considered that the breakthrough could not be achieved with the purpose of further extending the life of the cutting tool only by the conventional approach. Then, the present inventors have conducted various studies with focusing on aspects of each crystal in the thickness direction of the α-Al 2 O 3 layer, whereby, among the crystals constituting the α-Al 2 O 3 layer, It has been found that the crystal form located on the substrate side greatly contributes to the adhesion of the α-Al 2 O 3 layer, that is, the fracture resistance.

上記知見に基づいてさらに検討を重ねることにより、α−Al23層において、(001)面配向性結晶粒の占める面積割合が増加するにつれて、層自体の硬度が高くなる傾向がある一方で、(001)面配向性結晶粒の占める面積が大きすぎると、α−Al23層と他の層との密着性が低くなる傾向があること、さらに、α−Al23層における結晶粒の配向をばらつかせることによって、反対に、上記密着性が高くなる傾向があることを見出した。 By further studying based on the above findings, in the α-Al 2 O 3 layer, the hardness of the layer itself tends to increase as the area ratio of the (001) -oriented crystal grains increases. When the area occupied by the (001) plane-oriented crystal grains is too large, the adhesion between the α-Al 2 O 3 layer and other layers tends to be lowered, and further, in the α-Al 2 O 3 layer On the contrary, it has been found that the adhesiveness tends to be increased by varying the orientation of the crystal grains.

本実施形態に係る工具10は、上記の知見に基づいて完成されたものであり、厚み方向において結晶構造が特異的に変化するα−Al23層16を有する被膜12を含む。具体的にはα−Al23層16は、厚みが2μmであり、かつ(001)面配向性結晶粒の占める面積が90%以上の上層部16Aと、厚みが1μmであり、かつ(001)面配向性結晶粒の占める面積が50%以下の下層部16Bとを有する。 The tool 10 according to the present embodiment is completed based on the above knowledge, and includes a coating 12 having an α-Al 2 O 3 layer 16 whose crystal structure specifically changes in the thickness direction. Specifically, the α-Al 2 O 3 layer 16 has a thickness of 2 μm, and an upper layer portion 16A having an area occupied by (001) plane-oriented crystal grains of 90% or more, a thickness of 1 μm, and ( And (001) a lower layer portion 16B having an area occupied by plane-oriented crystal grains of 50% or less.

このようなα−Al23層16によれば、切削加工時にクラックが発生し易い領域である上層部16Aにおいて、切削加工時の衝撃によるクラックの発生を抑えることができ、切削工具の靭性を大幅に向上させることができ、もって高い耐摩耗性を有することができる。一方で、下層部16Bと接する層に対し高い密着性を有することができる。故に、本実施形態の被膜12は、耐摩耗性および耐欠損性の両特性に優れるため、工具10の機械特性が従来と比して向上し、もって長寿命化されたものとなる。 According to the α-Al 2 O 3 layer 16 as described above, in the upper layer portion 16A, which is an area where cracks are likely to occur during cutting, the occurrence of cracks due to impact during cutting can be suppressed, and the toughness of the cutting tool Can be greatly improved, and thus high wear resistance can be achieved. On the other hand, it can have high adhesiveness to the layer in contact with the lower layer portion 16B. Therefore, since the coating film 12 of this embodiment is excellent in both wear resistance and fracture resistance characteristics, the mechanical characteristics of the tool 10 are improved as compared with the conventional one, and the life is extended.

上述の本実施形態において、上層部16Aにおける上記面積割合は、より好ましくは92%以上である。また上層部16Aの上記面積割合の上限値は特に限定されず、たとえば100%であってもよい。また下層部16Bにおける上記面積割合は、より好ましくは45%以下である。また下層部16Bの上記面積割合の下限値は特に限定されず、たとえば0%であってもよい。   In the above-described embodiment, the area ratio in the upper layer portion 16A is more preferably 92% or more. Moreover, the upper limit of the said area ratio of 16 A of upper layer parts is not specifically limited, For example, 100% may be sufficient. The area ratio in the lower layer portion 16B is more preferably 45% or less. Moreover, the lower limit of the said area ratio of the lower layer part 16B is not specifically limited, For example, 0% may be sufficient.

〔α−Al23層の厚み〕
本実施形態において、α−Al23層16は、好ましくは3〜25μmの厚みを有する。これにより、上記のような優れた効果を発揮することができる。その厚みは、より好ましくは3〜22μmであり、さらに好ましくは3〜10μmである。
[Thickness of α-Al 2 O 3 layer]
In the present embodiment, the α-Al 2 O 3 layer 16 preferably has a thickness of 3 to 25 μm. Thereby, the above excellent effects can be exhibited. The thickness is more preferably 3 to 22 μm, still more preferably 3 to 10 μm.

α−Al23層16の厚みが3μm未満の場合、α−Al23層16の存在に起因する耐摩耗性の向上の程度が低い傾向がある。25μmを超えると、α−Al23層16と他の層との線膨張係数の差に起因する界面応力が大きくなり、α−Al23の結晶粒が脱落する場合がある。したがって、α−Al23層16が、上層部16Aおよび下層部16Bの間に中層部を有する場合、該中層部の厚みは22μm以下であることが好ましいこととなる。このような厚みは、走査型電子顕微鏡(SEM)等を用いて基材11と被膜12の垂直断面観察により確認することができる。 If the thickness of the α-Al 2 O 3 layer 16 is less than 3 μm, the degree of improvement in wear resistance due to the presence of the α-Al 2 O 3 layer 16 tends to be low. If it exceeds 25 μm, the interfacial stress due to the difference in coefficient of linear expansion between the α-Al 2 O 3 layer 16 and the other layers may increase, and the α-Al 2 O 3 crystal grains may fall off. Therefore, when the α-Al 2 O 3 layer 16 has an intermediate layer portion between the upper layer portion 16A and the lower layer portion 16B, the thickness of the intermediate layer portion is preferably 22 μm or less. Such a thickness can be confirmed by observation of a vertical cross section of the substrate 11 and the coating 12 using a scanning electron microscope (SEM) or the like.

また、上記中層部は、上記カラーマップにおける配向性結晶粒の割合が、50%超であることが好ましい。この場合、中間部が存在することに起因するα−Al23層16の硬度の低下を抑制することができる。中層部の上記割合は、より好ましくは90%以上であり、さらに好ましくは92%以上である。 Moreover, it is preferable that the ratio of the orientation crystal grain in the said color map is more than 50% in the said middle layer part. In this case, a decrease in the hardness of the α-Al 2 O 3 layer 16 due to the presence of the intermediate portion can be suppressed. The proportion of the middle layer is more preferably 90% or more, and still more preferably 92% or more.

〔α−Al23層の応力分布〕
本実施形態のα−Al23層16は、その厚み方向に変化する応力分布を有し、α−Al23層16の上面16a側(すなわち表面側)が圧縮残留応力を有し、α−Al23層16の下面16b側(すなわち基材側)が引張残留応力を有することが好ましい。このようなα−Al23層16は、切削加工時に衝撃がダイレクトに加わる上面16a側において、より高い硬度を有することができ、α−Al23層16の耐密着性に大きく関与する下面16b側において、より高い密着性を有することができる。これは、上面16a側に圧縮残留応力を有することによって、層の硬度が高くなる傾向があり、下面16b側に引張残留応力を有することによって、下面16b側のα−Al23層16と基材11との応力差が小さくなる傾向があるためである。
[Stress distribution of α-Al 2 O 3 layer]
The α-Al 2 O 3 layer 16 of the present embodiment has a stress distribution that changes in its thickness direction, and the upper surface 16a side (that is, the surface side) of the α-Al 2 O 3 layer 16 has a compressive residual stress. The lower surface 16b side (that is, the base material side) of the α-Al 2 O 3 layer 16 preferably has a tensile residual stress. Such an α-Al 2 O 3 layer 16 can have higher hardness on the upper surface 16a side to which an impact is directly applied during cutting, and is greatly involved in the adhesion resistance of the α-Al 2 O 3 layer 16. It is possible to have higher adhesion on the lower surface 16b side. This is because the hardness of the layer tends to be increased by having compressive residual stress on the upper surface 16a side, and the α-Al 2 O 3 layer 16 on the lower surface 16b side by having tensile residual stress on the lower surface 16b side. This is because the stress difference with the base material 11 tends to be small.

ここで、「圧縮残留応力」および「引張残留応力」とは、層内に存する内部応力(固有ひずみ)の一種である。圧縮残留応力は、「−」(マイナス)の数値(本明細書においてその単位は「MPa」で表す)で表される応力をいう。このため、圧縮残留応力が大きいという概念は、上記数値の絶対値が大きくなることを示し、圧縮残留応力が小さいという概念は、上記数値の絶対値が小さくなることを示す。引張残留応力は、「+」(プラス)の数値(本明細書においてその単位は「MPa」で表す)で表される応力をいう。このため、引張残留応力が大きいという概念は、上記数値が大きくなることを示し、引張残留応力が小さいという概念は、上記数値が小さくなることを示す。α−Al23層16の応力分布は、従来公知のX線を用いたsin2ψ法、侵入深さ一定法等により測定することができる。 Here, “compressive residual stress” and “tensile residual stress” are a kind of internal stress (intrinsic strain) existing in the layer. The compressive residual stress refers to a stress represented by a numerical value “−” (minus) (in this specification, the unit is represented by “MPa”). For this reason, the concept that the compressive residual stress is large indicates that the absolute value of the numerical value is large, and the concept that the compressive residual stress is small indicates that the absolute value of the numerical value is small. The tensile residual stress refers to a stress represented by a numerical value “+” (plus) (in this specification, the unit is represented by “MPa”). For this reason, the concept that the tensile residual stress is large indicates that the numerical value is large, and the concept that the tensile residual stress is small indicates that the numerical value is small. The stress distribution of the α-Al 2 O 3 layer 16 can be measured by a conventionally known sin 2 ψ method using X-rays, a constant penetration depth method, or the like.

上記応力分布の好ましい分布の一例を図5に示す。図5のグラフにおいて、縦軸は残留応力を示しており、横軸はα−Al23層16の厚み方向における位置を示している。縦軸に関し、その値が「−」の場合、α−Al23層16内に圧縮残留応力が存在することを意味し、その値が「+」の場合、α−Al23層16内に引張残留応力が存在することを意味し、その値が「0」の場合、α−Al23層16内に応力が存在しないことを意味する。 An example of a preferable distribution of the stress distribution is shown in FIG. In the graph of FIG. 5, the vertical axis indicates the residual stress, and the horizontal axis indicates the position in the thickness direction of the α-Al 2 O 3 layer 16. Regarding the vertical axis, when the value is “−”, it means that compressive residual stress exists in the α-Al 2 O 3 layer 16, and when the value is “+”, the α-Al 2 O 3 layer 16 means that there is a tensile residual stress in the layer 16. When the value is “0”, it means that there is no stress in the α-Al 2 O 3 layer 16.

図4および図5を参照し、α−Al23層16における厚み方向の応力分布は、上面16a側(表面側)から下面16b側(基材側)に向けて、圧縮残留応力の絶対値が連続的に大きくなる第1領域P1と、第1領域よりも下面16b側に位置し、かつ上面16a側から下面16b側に向けて、圧縮残留応力の絶対値が連続的に小さくなって引張残留応力に転じ、引き続き、転じた引張残留応力の絶対値が連続的に大きくなる第2領域P2と、を有し、第1領域と第2領域とは、圧縮残留応力の絶対値が最も大きくなる中間点P3を介して連続することが好ましい。この中間点P3は、下面16bよりも、上面16aに近いところに位置するものである。 4 and 5, the stress distribution in the thickness direction of the α-Al 2 O 3 layer 16 is the absolute value of the compressive residual stress from the upper surface 16a side (front surface side) to the lower surface 16b side (base material side). The absolute value of the compressive residual stress continuously decreases from the first region P 1 where the value increases continuously, to the lower surface 16b side of the first region and from the upper surface 16a side to the lower surface 16b side. The second region P 2 in which the absolute value of the changed tensile residual stress is continuously increased, and the first region and the second region are the absolute values of the compressive residual stress. It is preferable to continue through an intermediate point P 3 where becomes the largest. The intermediate point P 3 is the lower surface 16b, in which is located close to the upper surface 16a.

α−Al23層16が上述のような応力分布を有することにより、断続切削時において、α−Al23層16の耐摩耗性と耐欠損性とのバランスがより優れることとなる。これは、α−Al23層16の上面16a側からα−Al23層16に加えられる衝撃が、上面16a側から中間点P3の間において十分に吸収されるとともに、中間点P3よりも下面16b側においては高い密着性が発揮されるためである。 Since the α-Al 2 O 3 layer 16 has the stress distribution as described above, the balance between the wear resistance and the fracture resistance of the α-Al 2 O 3 layer 16 is more excellent during intermittent cutting. . Herewith, the impact applied from the upper surface 16a side of the α-Al 2 O 3 layer 16 in α-Al 2 O 3 layer 16 is sufficiently absorbed in between the upper surface 16a side of the intermediate point P 3, the midpoint This is because the high adhesion is exhibited in the lower surface 16b side of the P 3.

特に、本実施形態のα−Al23層16に関し、上面16a側に位置する上層部16Aは、配向性結晶粒が占める面積が90%以上であって(001)面に対する高い配向性を有するが、このような部分が高い圧縮残留応力を有することによって、耐摩耗性と靱性との両特性に優れる傾向がある。一方、下面16b側に位置する下層部16Bは、配向性結晶粒が占める面積が50%以下であって(001)面に対する低い配向性を有するが、このような部分が引張残留応力を有することによって、接する層に対する密着性がさらに向上する傾向がある。 In particular, regarding the α-Al 2 O 3 layer 16 of the present embodiment, the upper layer portion 16A located on the upper surface 16a side has an area occupied by oriented crystal grains of 90% or more and has a high orientation with respect to the (001) plane. However, when such a part has a high compressive residual stress, it tends to be excellent in both characteristics of wear resistance and toughness. On the other hand, the lower layer portion 16B located on the lower surface 16b side has an area occupied by orientation crystal grains of 50% or less and has a low orientation with respect to the (001) plane, but such a portion has a tensile residual stress. Therefore, the adhesion to the contacting layer tends to be further improved.

上記応力分布において、圧縮残留応力の絶対値は1000MPa以下(すなわち、−1000MPa以上0MPa未満)であり、引張残留応力の絶対値は2000MPa以下(すなわち、0MPa超2000MPa以下)であることが好ましい。この場合、耐摩耗性と耐欠損性との両特性が適切に発揮される傾向がある。   In the stress distribution, the absolute value of the compressive residual stress is preferably 1000 MPa or less (that is, −1000 MPa or more and less than 0 MPa), and the absolute value of the tensile residual stress is preferably 2000 MPa or less (that is, more than 0 MPa and 2000 MPa or less). In this case, both characteristics of wear resistance and fracture resistance tend to be exhibited appropriately.

また、上記応力分布において、上面16aからα−Al23層16の厚みの5〜50%の距離(直線距離)を有する位置までの領域が、圧縮残留応力を有し、それ以外の領域が引張残留応力を有することが好ましい。この場合にも、耐摩耗性と耐欠損性とのバランスが特に優れることとなる。上記距離は、より好ましくは5〜45%であり、さらに好ましくは10〜40%である。 In the stress distribution, a region from the upper surface 16a to a position having a distance (linear distance) of 5 to 50% of the thickness of the α-Al 2 O 3 layer 16 has compressive residual stress, and other regions. Preferably has a tensile residual stress. Also in this case, the balance between wear resistance and fracture resistance is particularly excellent. The distance is more preferably 5 to 45%, and still more preferably 10 to 40%.

また、上記の中間点P3は、上面16aからα−Al23層16の厚みの0.1〜40%の距離を有して位置することが好ましい。この場合、α−Al23層16の損傷形態が安定し、たとえば突発的な欠損を抑制することができ、もって工具10の寿命のばらつきを低減することができる。たとえば、α−Al23層16の厚みが3〜10μmの場合、中間点P3の上面16aからの距離は、0.5〜2μmであることが好ましい。また中間点P3における圧縮残留応力の絶対値は、好ましくは、100〜900MPaであり、より好ましくは200〜890MPaであり、さらに好ましくは350〜890MPaである。 The intermediate point P 3 is preferably located at a distance of 0.1 to 40% of the thickness of the α-Al 2 O 3 layer 16 from the upper surface 16a. In this case, the form of damage to the α-Al 2 O 3 layer 16 is stabilized, and for example, sudden chipping can be suppressed, so that variations in the life of the tool 10 can be reduced. For example, when the thickness of the α-Al 2 O 3 layer 16 is 3 to 10 μm, the distance from the upper surface 16a of the midpoint P 3 is preferably 0.5 to 2 μm. The absolute value of the compressive residual stress at the midpoint P 3 is preferably a 100~900MPa, more preferably 200~890MPa, more preferably from 350~890MPa.

〔第1中間層〕
図3に戻り、本実施形態に係る被膜12は、基材11とα−Al23層16との間に第1中間層14としてのTiCN層を有する。TiCN層は耐摩耗性に優れているため、これにより被膜12の耐摩耗性をさらに向上させることができる。
[First intermediate layer]
Returning to FIG. 3, the coating film 12 according to this embodiment includes a TiCN layer as the first intermediate layer 14 between the base material 11 and the α-Al 2 O 3 layer 16. Since the TiCN layer is excellent in wear resistance, the wear resistance of the coating 12 can be further improved.

〔第2中間層〕
図3を参照し、本実施形態に係る被膜12は、第1中間層14とα−Al23層16との間に第2中間層15を有する。図6に示されるように、第2中間層15は針状結晶から構成されることが好ましい。
[Second intermediate layer]
With reference to FIG. 3, the coating 12 according to the present embodiment includes a second intermediate layer 15 between the first intermediate layer 14 and the α-Al 2 O 3 layer 16. As shown in FIG. 6, the second intermediate layer 15 is preferably composed of acicular crystals.

針状結晶とは、その結晶成長方向が一方向であるために針のように細長い形状を有する結晶である。針状結晶からなる層は、図6に示されるように、その厚みが大きくばらつき、表面形状が複雑になるという特徴を有するため、接する層に対してアンカーとしての効果を発揮することができる。したがって、基材11とα−Al23層16との間にこのような第2中間層15を有することにより、α−Al23層16を基材11から剥離し難くすることができ、もって被膜12を含む工具10の耐欠損性がさらに優れることとなる。 The acicular crystal is a crystal having an elongated shape like a needle because the crystal growth direction is one direction. As shown in FIG. 6, the layer made of acicular crystals has the characteristics that the thickness varies greatly and the surface shape becomes complicated. Therefore, the effect as an anchor can be exerted on the contacting layer. Therefore, by having such a second intermediate layer 15 between the base material 11 and the α-Al 2 O 3 layer 16, the α-Al 2 O 3 layer 16 may be difficult to peel from the base material 11. Therefore, the fracture resistance of the tool 10 including the coating 12 is further improved.

第2中間層15は、TiCNO層またはTiBN層であることが好ましい。TiCNOおよびTiBNは針状結晶を構成し易いためである。また、第2中間層15の最大厚みd3と最小厚みd4との差は、0.3μm以上であることが好ましい。この場合、上記特性が効果的に発揮される。また、上記差は1.0μm以下であることが好ましい。上記差が1.0μmを超えると、第2中間層15の形状が被膜12の形状に悪影響を及ぼす恐れがあるためである。なお、上記差は、上記のEBSDを備えたFE−SEMを用いて確認することができる。 The second intermediate layer 15 is preferably a TiCNO layer or a TiBN layer. This is because TiCNO and TiBN can easily form needle crystals. In addition, the difference between the maximum thickness d 3 and the minimum thickness d 4 of the second intermediate layer 15 is preferably 0.3 μm or more. In this case, the above characteristics are effectively exhibited. The difference is preferably 1.0 μm or less. This is because if the difference exceeds 1.0 μm, the shape of the second intermediate layer 15 may adversely affect the shape of the coating 12. In addition, the said difference can be confirmed using FE-SEM provided with said EBSD.

〔下地層〕
図3を参照し、本実施形態に係る被膜12は、基材11と接する下地層13を有する。下地層13として、たとえばTiN層を用いることにより、基材11と被膜12との密着性をさらに高めることができる。
[Underlayer]
With reference to FIG. 3, the film 12 according to the present embodiment includes a base layer 13 that is in contact with the substrate 11. By using, for example, a TiN layer as the underlayer 13, the adhesion between the substrate 11 and the coating 12 can be further enhanced.

〔その他の層〕
本実施形態に係る被膜12は、α−Al23層16上に、表面層を有していてもよい。表面層は、TiC層、TiN層、またはTiB2層であることが好ましい。α−Al23層16の上面16a側は、(001)面の高い配向性を有するが、このようなα−Al23層16上に形成されたTiC層、TiN層、およびTiB2層は、断続切削時時の亀裂伝搬抑制に特に効果がある。したがって、このような組成の表面層を有する被膜12は、靭性向上の点で有利である。なかでも、TiN層は色彩が明瞭な金色を呈するため、切削使用後の刃先の識別が容易であり、経済性の観点で有利である。
[Other layers]
The coating film 12 according to the present embodiment may have a surface layer on the α-Al 2 O 3 layer 16. The surface layer is preferably a TiC layer, a TiN layer, or a TiB 2 layer. Although the upper surface 16a side of the α-Al 2 O 3 layer 16 has a high (001) orientation, a TiC layer, a TiN layer, and a TiB layer formed on the α-Al 2 O 3 layer 16 are used. The two layers are particularly effective in suppressing crack propagation during intermittent cutting. Therefore, the coating film 12 having a surface layer having such a composition is advantageous in terms of improving toughness. Especially, since the TiN layer exhibits a clear gold color, it is easy to identify the cutting edge after cutting use, which is advantageous from the viewpoint of economy.

〔製造方法〕
上述の本実施形態に係る工具10は、基材11の表面に被膜12を作製することにより製造することができる。被膜12は、図7に例示する化学気相蒸着(CVD)装置を用いたCVD法により形成することができる。
〔Production method〕
The tool 10 according to the above-described embodiment can be manufactured by forming the coating 12 on the surface of the substrate 11. The coating 12 can be formed by a CVD method using a chemical vapor deposition (CVD) apparatus illustrated in FIG.

図7を参照し、CVD装置30は、基材11を保持するための基材セット治具31の複数と、基材セット治具31を覆う耐熱合金鋼製の反応容器32とを備えている。また、反応容器32の周囲には、反応容器32内の温度を制御するための調温装置33が設けられている。反応容器32にはガス導入口34を有するガス導入管35が設けられている。ガス導入管35は、基材セット治具31が配置される反応容器32の内部空間において、鉛直方向に延在するように配置されており、またガスを反応容器32内に噴出するための複数の噴出孔36が設けられている。このCVD装置30を用いて、次のようにして各層を形成することができる。   With reference to FIG. 7, the CVD apparatus 30 includes a plurality of base material setting jigs 31 for holding the base material 11 and a reaction vessel 32 made of heat-resistant alloy steel that covers the base material setting jig 31. . A temperature control device 33 for controlling the temperature in the reaction vessel 32 is provided around the reaction vessel 32. The reaction vessel 32 is provided with a gas introduction pipe 35 having a gas introduction port 34. The gas introduction pipe 35 is arranged so as to extend in the vertical direction in the internal space of the reaction container 32 in which the base material setting jig 31 is arranged, and a plurality of gas introduction pipes 35 for ejecting gas into the reaction container 32. Are provided. Using this CVD apparatus 30, each layer can be formed as follows.

まず、基材11を基材セット治具31に配置し、反応容器32内の温度および圧力を所定の範囲に制御しながら、下地層13用の原料ガスをガス導入管35から反応容器32内に導入させる。これにより、基材11の表面に下地層13が作製される。同様に、第1中間層14用の原料ガス、第2中間層15用の原料ガスを順に反応容器32内に導入させることにより、下地層13上に、第1中間層14および第2中間層15が順に形成される。   First, the base material 11 is placed on the base material setting jig 31, and the source gas for the underlayer 13 is supplied from the gas introduction pipe 35 into the reaction container 32 while controlling the temperature and pressure in the reaction container 32 within a predetermined range. To introduce. Thereby, the base layer 13 is produced on the surface of the base material 11. Similarly, by introducing the raw material gas for the first intermediate layer 14 and the raw material gas for the second intermediate layer 15 into the reaction vessel 32 in this order, the first intermediate layer 14 and the second intermediate layer are formed on the underlayer 13. 15 are formed in order.

たとえば、TiN層を製造する場合、原料ガスとして、TiCl4およびN2を用いることができる。TiCN層を製造する場合、TiCl4、N2およびCH3CNを用いることができる。TiCNO層を製造する場合、TiCl4、N2、COおよびCH4を用いることができる。 For example, when manufacturing a TiN layer, TiCl 4 and N 2 can be used as source gases. When manufacturing the TiCN layer, TiCl 4 , N 2 and CH 3 CN can be used. When manufacturing the TiCNO layer, TiCl 4 , N 2 , CO and CH 4 can be used.

各層を形成する際の反応容器32内の温度は、1000〜1100℃に制御されることが好ましく、反応容器32内の圧力は0.1〜1013hPaに制御されることが好ましい。また、上記の原料ガスとともにHClを導入してもよい。HClの導入により、各層の厚みの均一性を向上させることができる。なお、キャリアガスとしては、H2を用いることが好ましい。また、ガス導入時、不図示の駆動部によりガス導入管35を回転させることが好ましい。これにより、反応容器32内において各ガスを均一に分散させることができる。 The temperature in the reaction vessel 32 when forming each layer is preferably controlled to 1000 to 1100 ° C., and the pressure in the reaction vessel 32 is preferably controlled to 0.1 to 1013 hPa. Further, HCl may be introduced together with the above source gas. By introducing HCl, the uniformity of the thickness of each layer can be improved. Note that H 2 is preferably used as the carrier gas. Further, it is preferable to rotate the gas introduction pipe 35 by a driving unit (not shown) at the time of gas introduction. Thereby, each gas can be uniformly dispersed in the reaction vessel 32.

さらに、上記層のうち、少なくとも1層を、MT(Medium Temperature)−CVD法で形成してもよい。MT−CVD法は、1000℃〜1100℃の温度で実施されるCVD法(以下、「HT−CVD法」ともいう)とは異なり、反応容器32内の温度を850〜950℃といった比較的マイルドな温度に維持して層を形成する方法である。MT−CVD法は、HT−CVD法と比して比較的低温で実施されるため、加熱による基材11へのダメージを低減することができる。特に、TiCN層をMT−CVD法で形成することが好ましい。   Further, at least one of the above layers may be formed by MT (Medium Temperature) -CVD. Unlike the CVD method (hereinafter also referred to as “HT-CVD method”) performed at a temperature of 1000 ° C. to 1100 ° C., the MT-CVD method has a relatively mild temperature of 850 to 950 ° C. This is a method of forming a layer while maintaining a proper temperature. Since the MT-CVD method is performed at a relatively low temperature compared to the HT-CVD method, damage to the base material 11 due to heating can be reduced. In particular, it is preferable to form the TiCN layer by MT-CVD.

次に、第2中間層15上にα−Al23層16を形成する。本実施形態に係るα−Al23層16は、以下の第1のα−Al23形成工程および第2のα−Al23形成工程を含むCVD法を実施することによって形成することができる。特に、上述の応力分布を有するα−Al23層16は、さらに圧縮残留応力付与工程を実施することによって形成することができる。以下、第1のα−Al23形成工程、第2のα−Al23形成工程および圧縮残留応力付与工程について順に説明する。 Next, the α-Al 2 O 3 layer 16 is formed on the second intermediate layer 15. The α-Al 2 O 3 layer 16 according to the present embodiment is formed by performing a CVD method including the following first α-Al 2 O 3 formation step and second α-Al 2 O 3 formation step. can do. In particular, the α-Al 2 O 3 layer 16 having the stress distribution described above can be formed by further performing a compressive residual stress applying step. Hereinafter, the first α-Al 2 O 3 forming step, the second α-Al 2 O 3 forming step, and the compressive residual stress applying step will be described in order.

第1に、第1のα−Al23形成工程を実施する。原料ガスとしては、AlCl3、N2、CO2、およびH2Sを用いる。このとき、CO2とH2Sとの流量(l/min)に関し、CO2/H2S≧2を満たすような流量比とする。これにより、上述の配向性を有する下層部16Bが形成される。CO2およびH2Sの最も好ましい各流量は、0.4〜2.0l/minおよび0.1〜0.8l/minであり、最も好ましくは1l/minおよび0.5l/minである。なおCO2/H2Sの上限値は特に制限されないが、層の厚みの均一性の観点から、5以下が好ましい。 First, the first α-Al 2 O 3 formation step is performed. As the source gas, AlCl 3 , N 2 , CO 2 , and H 2 S are used. At this time, regarding the flow rate (l / min) between CO 2 and H 2 S, the flow rate ratio is set so as to satisfy CO 2 / H 2 S ≧ 2. Thereby, the lower layer part 16B which has the above-mentioned orientation is formed. The most preferred that each flow rate of CO 2 and H 2 S are 0.4~2.0l / min and 0.1~0.8l / min, and most preferably from 1l / min and 0.5 l / min. The upper limit of CO 2 / H 2 S is not particularly limited, but is preferably 5 or less from the viewpoint of the uniformity of the layer thickness.

第1のα−Al23形成工程は、少なくとも1μmの厚みのα−Al23層が形成されるように、その成膜時間が制御される。第1のα−Al23形成工程により形成されるα−Al23層のうち、最も下部(第2中間層15と接する側を下とする)に位置するα−Al23層が、下層部16Bとなるためである。このため、第1のα−Al23形成工程の成膜時間は、少なくとも5分以上である。一方、成膜時間を長くし過ぎると、比較的硬度の低い層が厚く形成されることとなり、被膜12の硬度の点で好ましくないことから、第1のα−Al23形成工程の成膜時間は、少なくとも30分以下である。 In the first α-Al 2 O 3 formation step, the film formation time is controlled so that an α-Al 2 O 3 layer having a thickness of at least 1 μm is formed. The first alpha-Al 2 O 3 formation of alpha-Al 2 O 3 layer formed by the process, is located in the most lower (the side contacting the second intermediate layer 15 and bottom) α-Al 2 O 3 This is because the layer becomes the lower layer portion 16B. For this reason, the film-forming time of the first α-Al 2 O 3 forming step is at least 5 minutes. On the other hand, if the film formation time is excessively long, a layer having a relatively low hardness is formed thick, which is not preferable in terms of the hardness of the coating 12, and therefore, the first α-Al 2 O 3 formation step is completed. The membrane time is at least 30 minutes or less.

なお、第1のα−Al23形成工程により、1μmを超える厚みのα−Al23層が形成された場合、最も下部に位置する1μmの厚みの層を下層部16Bとみなし、それ以外の部分は、中層部(第1の中層部)とみなす。 When an α-Al 2 O 3 layer having a thickness of more than 1 μm is formed by the first α-Al 2 O 3 formation step, the lowermost layer having a thickness of 1 μm is regarded as the lower layer portion 16B. The other part is regarded as a middle layer part (first middle layer part).

第2に、第2のα−Al23形成工程を実施する。原料ガスとしては、AlCl3、N2、CO2、およびH2Sを用いる。このとき、CO2ガスとH2Sガスとの流量(l/min)に関し、0.5≦CO2/H2S≦1を満たすような流量比とする。これにより、上述の配向性を有する上層部16Aが形成される。 Second, a second α-Al 2 O 3 formation step is performed. As the source gas, AlCl 3 , N 2 , CO 2 , and H 2 S are used. At this time, regarding the flow rate (l / min) between the CO 2 gas and the H 2 S gas, the flow rate ratio is set so as to satisfy 0.5 ≦ CO 2 / H 2 S ≦ 1. Thereby, the upper layer portion 16A having the above-described orientation is formed.

第2のα−Al23形成工程は、少なくとも2μmの厚みのα−Al23層が形成されるように、その成膜時間が制御される。第2のα−Al23形成工程により形成されるα−Al23形成工程のうち、最も上部(被膜12の表面を形成する側を上とする)に位置するα−Al23層が、上層部16Aとなるためである。このため、第2のα−Al23形成工程の成膜時間は、少なくとも30分以上である。成膜時間の上限値は特に制限されないが、α−Al23層16の厚みが過剰に厚いと、結晶粒の脱落が懸念されることから、第2のα−Al23形成工程の成膜時間は、500分以下とすることが好ましい。 In the second α-Al 2 O 3 formation step, the film formation time is controlled so that an α-Al 2 O 3 layer having a thickness of at least 2 μm is formed. Of the α-Al 2 O 3 forming step formed by the second α-Al 2 O 3 forming step, α-Al 2 O located at the uppermost position (the side on which the surface of the coating 12 is formed is the top). This is because the three layers become the upper layer portion 16A. For this reason, the film-forming time of the second α-Al 2 O 3 forming step is at least 30 minutes or longer. The upper limit value of the film formation time is not particularly limited, but if the thickness of the α-Al 2 O 3 layer 16 is excessively thick, there is a concern that crystal grains may fall off, so the second α-Al 2 O 3 formation step. The film formation time is preferably 500 minutes or less.

なお、第2のα−Al23形成工程により、2μmを超える厚みのα−Al23層が形成された場合、最も上部に位置する2μmの厚みの層を上層部16Aとみなし、それ以外の部分は、中層部(第2の中層部)とみなす。 When an α-Al 2 O 3 layer having a thickness exceeding 2 μm is formed by the second α-Al 2 O 3 formation step, the uppermost layer having a thickness of 2 μm is regarded as the upper layer portion 16A. The other part is regarded as a middle layer (second middle layer).

第1のα−Al23形成工程および第2のα−Al23形成工程において、反応容器32内の温度は1000〜1100℃に制御されることが好ましく、反応容器32内の圧力は0.1〜100hPaに制御されることが好ましい。また、上記に列挙の原料ガスとともにHClを導入してもよく、キャリアガスとしてはH2を用いることができる。なお、ガス導入時、ガス導入管35を回転させることが好ましいことは、上記と同様である。 In the first α-Al 2 O 3 formation step and the second α-Al 2 O 3 formation step, the temperature in the reaction vessel 32 is preferably controlled to 1000 to 1100 ° C., and the pressure in the reaction vessel 32 Is preferably controlled to 0.1 to 100 hPa. Further, HCl may be introduced together with the above listed source gases, and H 2 can be used as the carrier gas. In addition, it is the same as the above that it is preferable to rotate the gas introduction pipe 35 when introducing the gas.

第3に、成膜されたα−Al23層16に対し、表面側(上面16a側)からブラスト処理を実施して、α−Al23層16に圧縮残留応力を付与する(圧縮残留応力付与工程)。CVD法によって形成された層は、全体に引張残留応力を有する傾向があるが、本工程により、α−Al23層16の表面側に圧縮残留応力を付与することができ、もって、上述の応力分布を有するα−Al23層16を作製することができる。 Third, the formed α-Al 2 O 3 layer 16 is subjected to a blasting process from the surface side (upper surface 16a side) to apply compressive residual stress to the α-Al 2 O 3 layer 16 ( Compression residual stress application step). The layer formed by the CVD method tends to have tensile residual stress as a whole, but this step can apply compressive residual stress to the surface side of the α-Al 2 O 3 layer 16. The α-Al 2 O 3 layer 16 having the stress distribution can be produced.

ブラスト処理において、メディアの投射圧、投射時間、投射距離を制御することにより、応力分布における上記中間点P3の有無、およびその位置(上面16aからの距離)を制御することができる。また、投射時間を制御することにより、圧縮残留応力を有する領域を制御することができ、もって上面16aからAl23層16の厚み方向における所望の領域に、圧縮残留応力を付与することができる。 In blasting media projection pressure, projection time, by controlling the projection distance, it is possible to control the presence or absence of the intermediate point P 3 in the stress distribution, and its position (distance from the upper surface 16a). In addition, by controlling the projection time, it is possible to control the region having the compressive residual stress, and thereby applying the compressive residual stress to the desired region in the thickness direction of the Al 2 O 3 layer 16 from the upper surface 16a. it can.

なお、被膜12が、α−Al23層16の上面16a上に形成された表面層を有する場合、該表面層が形成された後に、圧縮残留応力付与工程を実施することが好ましい。圧縮残留応力付与工程を実施した後に表面層を形成するためには、CVD装置30の停止、反応容器32内からの基材11の取り出し等が必要となり、製造工程が煩雑となるためである。この表面層は、工具10の表面の一部に残存していれば足りるため、上記ブラスト処理によって表面層が部分的に除去されてもよい。 In addition, when the film 12 has a surface layer formed on the upper surface 16a of the α-Al 2 O 3 layer 16, it is preferable to perform a compressive residual stress applying step after the surface layer is formed. In order to form the surface layer after performing the compressive residual stress applying step, it is necessary to stop the CVD apparatus 30, to take out the base material 11 from the reaction vessel 32, and the manufacturing process becomes complicated. Since this surface layer only needs to remain on a part of the surface of the tool 10, the surface layer may be partially removed by the blast treatment.

上述の製造方法により、被膜12を製造することができ、もって被膜12を含む工具10を製造することができる。   The coating 12 can be manufactured by the manufacturing method described above, and thus the tool 10 including the coating 12 can be manufactured.

また、α−Al23層の基材側においても(001)面配向性結晶粒の占める面積割合が大きい場合、α−Al23層の基材側の面と接する層の組成等は制限される傾向がある。たとえば、該接する層が多結晶からなる場合、その上に配向性の高いα−Al23層を形成することが難しい場合がある。これに対し、本実施形態のα−Al23層16は、(001)面配向性結晶粒の占める面積割合が50%以下の下層部16Bを有するため、上述の制限を受けることがない。 Further, α-Al 2 O case in a three-layer base material side of the area ratio of (001) plane orientation crystal grains large, α-Al 2 O 3 layer a layer in contact with the substrate-side surface of the composition and the like Tend to be limited. For example, when the contacted layer is made of polycrystal, it may be difficult to form an α-Al 2 O 3 layer with high orientation on the layer. In contrast, the α-Al 2 O 3 layer 16 of the present embodiment has the lower layer portion 16B in which the area ratio of the (001) plane-oriented crystal grains is 50% or less, and thus is not subject to the above-described limitation. .

上記製造方法に関し、CVD法の各条件を制御することによって、各層の態様が変化する。たとえば、反応容器32内に導入する原料ガスの組成によって、各層の組成が決定され、実施時間(成膜時間)により、各層の厚みが制御される。また、第2中間層15は針状結晶であることが好ましいが、これは、原料ガスの流量と成膜温度とを制御することによって、結晶の形状を針状結晶とすることができる。また、成膜時の圧力の制御により、各針状結晶の長さを不均一にすることができ、もって、上述のような最大厚みd1と最小厚みd2との差を生じさせることができる。なかでも、α−Al23層16においては、原料ガスのうち、CO2ガスとH2Sガスとの流量比(CO2/H2S)の制御により、その厚み方向に関して結晶の配向性を変化させることができる。 With respect to the manufacturing method described above, the aspect of each layer changes by controlling each condition of the CVD method. For example, the composition of each layer is determined by the composition of the source gas introduced into the reaction vessel 32, and the thickness of each layer is controlled by the implementation time (film formation time). In addition, the second intermediate layer 15 is preferably a needle crystal, but this can change the crystal shape into a needle crystal by controlling the flow rate of the source gas and the film formation temperature. Further, the length of each needle-like crystal can be made non-uniform by controlling the pressure during film formation, thereby causing the difference between the maximum thickness d 1 and the minimum thickness d 2 as described above. it can. In particular, in the α-Al 2 O 3 layer 16, the crystal orientation in the thickness direction is controlled by controlling the flow ratio (CO 2 / H 2 S) of the CO 2 gas and the H 2 S gas in the source gas. Sex can be changed.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。試料No.1〜12が実施例に該当し、試料No.13〜20は比較例である。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these. Sample No. 1 to 12 correspond to examples, and sample Nos. 13 to 20 are comparative examples.

〔試料の作製〕
まず、試料No.1の作製について説明する。基材として、TaC(2.0質量%)、NbC(1.0質量%)、Co(10.0質量%)およびWC(残部)からなる組成(ただし不可避不純物を含む)の超硬合金製切削チップ(形状:CNMG120408N−UX、住友電工ハードメタル株式会社製、JIS B4120(2013))を準備した。準備した基材に対し、CVD装置を用いて、下地層、第1中間層、第2中間層、α−Al23層および表面層をこの順に形成させて、基材の表面に被膜を作製した。各層の形成条件を以下に示す。なお、各ガス組成に続く括弧内は、各ガスの流量(l/min)を示す。
[Sample preparation]
First, sample no. 1 will be described. Made of cemented carbide with a composition (including inevitable impurities) consisting of TaC (2.0 mass%), NbC (1.0 mass%), Co (10.0 mass%) and WC (balance) as the base material A cutting tip (shape: CNMG120408N-UX, manufactured by Sumitomo Electric Hardmetal Co., Ltd., JIS B4120 (2013)) was prepared. A base layer, a first intermediate layer, a second intermediate layer, an α-Al 2 O 3 layer and a surface layer are formed in this order on the prepared base material using a CVD apparatus, and a coating is formed on the surface of the base material. Produced. The conditions for forming each layer are shown below. The parentheses following each gas composition indicate the flow rate (l / min) of each gas.

(下地層:TiN層)
ガス:TiCl4(5)、N2(15)、H2(45)
圧力および温度:130hPaおよび900℃。
(Underlayer: TiN layer)
Gas: TiCl 4 (5), N 2 (15), H 2 (45)
Pressure and temperature: 130 hPa and 900 ° C.

(第1中間層:TiCN層)
ガス:TiCl4(10)、N2(15)、CH3CN(1.0)、H2(85)
圧力および温度:90hPaおよび860℃(MT−CVD法)。
(First intermediate layer: TiCN layer)
Gas: TiCl 4 (10), N 2 (15), CH 3 CN (1.0), H 2 (85)
Pressure and temperature: 90 hPa and 860 ° C. (MT-CVD method).

(第2中間層:TiCNO層)
ガス:TiCl4(0.003)、CH4(2.2)、N2(6.7)、CO(0.5)、HCl(1.5)、H2(40)
圧力および温度:180hPaおよび1010℃。
(Second intermediate layer: TiCNO layer)
Gas: TiCl 4 (0.003), CH 4 (2.2), N 2 (6.7), CO (0.5), HCl (1.5), H 2 (40)
Pressure and temperature: 180 hPa and 1010 ° C.

(α−Al23層)
(1)第1のα−Al23形成工程のCVD条件
ガス:AlCl3(2.5)、CO2(1.3)、H2S(0.4)、H2(40)
圧力および温度:80hPaおよび1000℃
(2)第2のα−Al23形成工程のCVD条件
ガス:AlCl3(3)、CO2(1.0)、H2S(1.4)、H2(38)
圧力および温度:80hPaおよび1000℃。
(Α-Al 2 O 3 layer)
(1) CVD conditions for the first α-Al 2 O 3 formation process Gas: AlCl 3 (2.5), CO 2 (1.3), H 2 S (0.4), H 2 (40)
Pressure and temperature: 80 hPa and 1000 ° C
(2) CVD conditions for second α-Al 2 O 3 formation step Gas: AlCl 3 (3), CO 2 (1.0), H 2 S (1.4), H 2 (38)
Pressure and temperature: 80 hPa and 1000 ° C.

(表面層:TiB2層)
ガス:TiCl4(9)、BCl3(1.0)、HCl(0.6)、H2(30)
圧力および温度:70hPaおよび1000℃。
(Surface layer: TiB 2 layer)
Gas: TiCl 4 (9), BCl 3 (1.0), HCl (0.6), H 2 (30)
Pressure and temperature: 70 hPa and 1000 ° C.

次に、被膜が形成された基材である旋削加工用刃先交換型切削チップに対し、以下のブラスト処理を行った。すなわち、チップを100rpmで回転させながら、刃先稜線部の45°方向から、すくい面、逃げ面に均等に、平均粒径50μmの酸化アルミニウム製のボールを0.15MPaの圧縮空気(投射圧)で5秒間衝突させた。   Next, the following blasting treatment was performed on the cutting edge exchangeable cutting tip for turning which is a base material on which a coating film was formed. That is, while rotating the tip at 100 rpm, aluminum oxide balls having an average particle diameter of 50 μm are uniformly applied to the rake face and flank face from the 45 ° direction of the edge of the cutting edge with compressed air (projection pressure) of 0.15 MPa. Collided for 5 seconds.

以上のようにして、試料No.1の工具を作製した。試料No.2〜20に関しても、同様の基材上に、下地層、第1中間層、第2中間層、α−Al23層および表面層からなる被膜を形成することにより、各工具を作製した。各試料において、第2中間層および表面層の成膜に用いる原料ガスを変更することにより、第2中間層および表面層の組成を適宜変更した。各試料において被膜を構成する各層の組成および厚みを表1に示す。なお、各層の厚みは、成膜時間を適宜調節することにより調整した。 As described above, sample No. 1 tool was produced. Sample No. As for 2 to 20, each tool was produced by forming a film comprising a base layer, a first intermediate layer, a second intermediate layer, an α-Al 2 O 3 layer and a surface layer on the same base material. . In each sample, the composition of the second intermediate layer and the surface layer was appropriately changed by changing the source gas used for forming the second intermediate layer and the surface layer. Table 1 shows the composition and thickness of each layer constituting the coating in each sample. The thickness of each layer was adjusted by appropriately adjusting the film formation time.

Figure 2017042901
Figure 2017042901

また、第2中間層およびα−Al23層については、原料ガス、成膜時間以外の他の条件についても適宜変更した。具体的には、第2中間層においては、成膜時の圧力を表2に示すように変更した。これにより、各試料において、針状結晶からなる第2中間層の最大厚みと最小厚みとの差は、表2に示すように異なっていた。 For the second intermediate layer and the α-Al 2 O 3 layer, conditions other than the source gas and the film formation time were appropriately changed. Specifically, in the second intermediate layer, the pressure during film formation was changed as shown in Table 2. Thereby, in each sample, the difference between the maximum thickness and the minimum thickness of the second intermediate layer made of acicular crystals was different as shown in Table 2.

Figure 2017042901
Figure 2017042901

また、α−Al23層については、導入するガスのうち、CO2とH2Sとの流量比(CO2/H2S)を表3に示すように変更させることにより、上層部および下層部の配向の程度を制御した。試料No.1〜20の全てにおいて、第1のα−Al23形成工程を30分間実施した後、第2のα−Al23形成工程をそれぞれ所定時間実施した。そして、形成された下層部および上層部における(001)面配向性結晶粒の占める面積割合(%)を、上述の方法により求めた。その結果を表3に示す。表3において、「第1」および「第2」の欄は、それぞれ第1のα−Al23形成工程時および第2のα−Al23形成工程時の、CO2とH2Sとの流量比を示している。 For the α-Al 2 O 3 layer, by changing the flow ratio (CO 2 / H 2 S) of CO 2 and H 2 S among the gases to be introduced as shown in Table 3, the upper layer portion And the degree of orientation of the lower layer was controlled. Sample No. In all of 1 to 20, after the first α-Al 2 O 3 formation step was performed for 30 minutes, the second α-Al 2 O 3 formation step was performed for a predetermined time. And the area ratio (%) which the (001) plane orientation crystal grain accounts in the formed lower layer part and upper layer part calculated | required by the above-mentioned method. The results are shown in Table 3. In Table 3, the “first” and “second” columns indicate CO 2 and H 2 during the first α-Al 2 O 3 formation step and the second α-Al 2 O 3 formation step, respectively. The flow ratio with S is shown.

Figure 2017042901
Figure 2017042901

表3を参照し、試料No.1〜12は、上述の方法により作成されたカラーマップにおいて、上層部における(001)面配向性結晶粒の占める面積割合が90%以上であり、かつ下層部における(001)面配向性結晶粒の占める面積割合が50%以下であった。
一方、試料No.13〜20においては、上層部における(001)面配向性結晶粒の占める面積割合が90%以上であり、かつ下層部における(001)面配向性結晶粒の占める面積割合が50%以下である、という条件を満たすものはなかった。
Referring to Table 3, sample no. 1 to 12, in the color map created by the above method, the area ratio of the (001) plane-oriented crystal grains in the upper layer part is 90% or more, and the (001) plane-oriented crystal grains in the lower layer part The area ratio occupied by was 50% or less.
On the other hand, Sample No. 13 to 20, the area ratio of the (001) plane-oriented crystal grains in the upper layer part is 90% or more, and the area ratio of the (001) plane-oriented crystal grains in the lower layer part is 50% or less. There was no one that met the condition.

また、試料1〜20の作製に際し、ブラスト処理の条件についても変更した。試料毎のブラスト処理の条件を表4に示す。また、α−Al23層の厚み方向に関し、上述のsin2ψ法により、深さ(上面からの距離)の異なる任意の6点の残留応力を測定した。上面から0.5μmの距離を有する位置(表4中の「上面側」)おける残留応力、および、下面から0.5μmの距離を有する位置(表4中の「下面側」)における残留応力を表4に示す。なお、各深さに関し、任意の3点における残留応力を測定し、これらの平均値を各深さにおける残留応力とした。 In addition, the conditions for the blast treatment were also changed when the samples 1 to 20 were produced. Table 4 shows the blasting conditions for each sample. Further, with respect to the thickness direction of the α-Al 2 O 3 layer, residual stresses at six arbitrary points having different depths (distance from the upper surface) were measured by the above-described sin 2 ψ method. Residual stress at a position having a distance of 0.5 μm from the upper surface (“upper surface side” in Table 4) and residual stress at a position having a distance of 0.5 μm from the lower surface (“lower surface side” in Table 4) Table 4 shows. In addition, regarding each depth, the residual stress in arbitrary 3 points | pieces was measured, and these average values were made into the residual stress in each depth.

さらに、残留応力の測定結果から、各試料に第1領域P1および第2領域P2が存在するか否かを確認し、第1領域P1および第2領域P2が確認された試料については、中間点P3が存在すると判断した。また、同測定結果から、Al23層の厚み方向に関し、Al23層の厚みに対する圧縮残留応力を有する領域の厚みの比率(%)を算出した。これらの結果を表4に示す。 Further, from the measurement result of the residual stress, it is confirmed whether or not the first region P 1 and the second region P 2 exist in each sample, and the sample in which the first region P 1 and the second region P 2 are confirmed. Determined that an intermediate point P 3 exists. Further, from the same measurement result relates the thickness direction of the Al 2 O 3 layer was calculated the ratio of the area of thickness having a compressive residual stress to the thickness of the Al 2 O 3 layer (%). These results are shown in Table 4.

Figure 2017042901
Figure 2017042901

表4を参照し、試料No.9、10および17においては、ブラスト処理において、投射圧を低くしたため、中間点P3が存在しなかった。つまり、試料No.9、10および17においては、上面側(表面側)から下面側(基材側)に向けて残留応力が圧縮残留応力から引張残留応力へと徐々に変化するような応力分布が観察された。また、試料13〜16においては、ブラスト処理が実施されなかったため、Al23層において上述の応力分布は観察されず、上面側においても下面側においても引張残留応力が存在するのみであった。 Referring to Table 4, sample no. In 9, 10 and 17, since the projection pressure was lowered in the blasting process, the intermediate point P 3 did not exist. That is, sample no. In 9, 10, and 17, a stress distribution was observed in which the residual stress gradually changed from the compressive residual stress to the tensile residual stress from the upper surface side (front surface side) to the lower surface side (base material side). In Samples 13 to 16, since the blast treatment was not performed, the above stress distribution was not observed in the Al 2 O 3 layer, and there was only a tensile residual stress on the upper surface side and the lower surface side. .

また、中間点P3が確認された試料No.1〜8、11、12および18〜20において、その位置は、α−Al23層の表面から0.5μmの距離を有する位置であった。このため、表4の「上面側」の欄に示される値は、各試料におけるAl23層が有する圧縮残留応力の最大値である。 Further, the sample No. in which the intermediate point P 3 was confirmed. In 1-8, 11, 12, and 18-20, the position was a position having a distance of 0.5 μm from the surface of the α-Al 2 O 3 layer. Therefore, the value shown in the “upper surface side” column of Table 4 is the maximum value of the compressive residual stress of the Al 2 O 3 layer in each sample.

〔評価1:耐欠損性〕
各試料のチップを、型番PCLNR2525−43(住友電気工業株式会社製)のバイトにセットし、これを用いて合金鋼の繰り返し旋削加工による耐欠損性の評価を行った。
[Evaluation 1: Fracture resistance]
The chip of each sample was set on a bite of model number PCLNR2525-43 (manufactured by Sumitomo Electric Industries, Ltd.), and this was used to evaluate the fracture resistance by repeated turning of alloy steel.

切削加工の条件は、以下のとおりである。試料毎に20個のチップを用い、20秒間旋削加工を行い、全20個のチップのうち、破損が生じたチップの割合(数)を破損率(%)として算出した。その結果を表5に示す。表5において破損率(%)が低いほど、耐欠損性に優れることを示す。   The cutting conditions are as follows. 20 chips were used for each sample, turning was performed for 20 seconds, and the ratio (number) of broken chips among all 20 chips was calculated as the breakage rate (%). The results are shown in Table 5. In Table 5, it shows that it is excellent in fracture resistance, so that a failure rate (%) is low.

被削材:SCM440(6本溝入り、φ350mm)
切削速度:120m/min
切り込み量:2.0mm
切削油:なし。
Work material: SCM440 (6 grooves, φ350mm)
Cutting speed: 120 m / min
Cutting depth: 2.0mm
Cutting oil: None.

〔評価2:耐摩耗性〕
各試料のチップを、型番PCLNR2525−43(住友電気工業株式会社製)のバイトにセットし、これを用いて合金鋼の繰り返し旋削加工による耐摩耗性の評価を行った。
[Evaluation 2: Abrasion resistance]
The chip of each sample was set on a bite of model number PCLNR2525-43 (manufactured by Sumitomo Electric Industries, Ltd.), and the wear resistance was evaluated by repeated turning of the alloy steel using this.

旋削加工の条件は、以下のとおりである。試料毎に20個のチップを用い、15分間旋削加工を行い、全20個のチップの逃げ面側の摩耗量Vb(mm)を測定し、各試料の平均値を算出した。その結果を表5に示す。表5においてVb(mm)の値が小さいほど、耐摩耗性に優れることを示す。   The conditions for turning are as follows. Using 20 tips for each sample, turning was performed for 15 minutes, the wear amount Vb (mm) on the flank side of all 20 tips was measured, and the average value of each sample was calculated. The results are shown in Table 5. In Table 5, it shows that it is excellent in abrasion resistance, so that the value of Vb (mm) is small.

被削材:SCr420H(φ250mm)
切削速度:280m/min
切り込み量:2.0mm
送り量:0.2mm/rev
切削油:水溶性油。
Work material: SCr420H (φ250mm)
Cutting speed: 280 m / min
Cutting depth: 2.0mm
Feed amount: 0.2mm / rev
Cutting oil: Water-soluble oil.

Figure 2017042901
Figure 2017042901

表5を参照し、試料No.1〜12においては、試料No.13〜17と比較して、高い耐欠損性と高い耐摩耗性が確認された。試料No.1〜12は、上層部においては、(001)面配向性結晶粒の占める面積割合が90%以上であり、下層部においては、(001)面配向性結晶粒の占める面積割合が50%以下であった。一方、試料No.13〜20はこれを満たしていなかった。これらの結果から、本実施形態の一例となる試料No.1〜12のチップは、高い耐欠損性と高い耐摩耗性とを有し、故に機械特性に優れ、もって、安定した長寿命を有することが確認された。   Referring to Table 5, sample no. In Nos. 1-12, Sample No. Compared with 13-17, the high fracture resistance and high abrasion resistance were confirmed. Sample No. 1 to 12, in the upper layer part, the area ratio occupied by (001) plane-oriented crystal grains is 90% or more, and in the lower layer part, the area ratio occupied by (001) plane-oriented crystal grains is 50% or less. Met. On the other hand, sample No. 13-20 did not satisfy this. From these results, sample No. 1 as an example of the present embodiment is obtained. It has been confirmed that the chips 1 to 12 have high fracture resistance and high wear resistance, and therefore have excellent mechanical properties and thus have a stable long life.

なお、試料No.13および16においては、下層部における(001)面配向性結晶粒の占める面積割合が50%以下であることから、耐欠損性に優れることが予想されたが、評価1において、破損率は100%であった。これは、硬度に寄与する上層部に相応する層が存在しないために、α−Al23層の基材からの剥離という観点での欠損ではなく、α−Al23層自体が破壊されたことによって引き起こされた欠損であった。 Sample No. In Nos. 13 and 16, since the area ratio of the (001) -oriented crystal grains in the lower layer portion was 50% or less, it was predicted that the fracture resistance was excellent. %Met. This is not a defect in terms of peeling from the base material of the α-Al 2 O 3 layer because the layer corresponding to the upper layer part contributing to the hardness does not exist, but the α-Al 2 O 3 layer itself is broken. It was a deficit caused by

今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.

1 すくい面
2 逃げ面
3 刃先稜線部
10 表面被覆切削工具
11 基材
11a すくい面
11b 逃げ面
11c 刃先稜線部
12 被膜
13 下地層
14 第1中間層
15 第2中間層
16 α−Al23
16a 上面
16b 下面
16A 上層部
16B 下層部
30 CVD装置
31 基材セット治具
32 反応容器
33 調温装置
34 ガス導入口
35 ガス導入管
36 貫通孔
1 第1領域
2 第2領域
3 中間点。
DESCRIPTION OF SYMBOLS 1 Rake face 2 Flank face 3 Cutting edge ridge part 10 Surface covering cutting tool 11 Base material 11a Rake face 11b Flank face 11c Cutting edge edge part 12 Coating 13 Underlayer 14 First intermediate layer 15 2nd intermediate layer 16 α-Al 2 O 3 Layer 16a Upper surface 16b Lower surface 16A Upper layer portion 16B Lower layer portion 30 CVD device 31 Base material setting jig 32 Reaction vessel 33 Temperature control device 34 Gas introduction port 35 Gas introduction pipe 36 Through hole P 1 First region P 2 Second region P 3 Midpoint.

Claims (7)

基材と、該基材上に形成された被膜とを備える表面被覆切削工具であって、
前記被膜は、複数のα−Al23の結晶粒を含むα−Al23層を有し、
前記α−Al23層は、その厚み方向において、基材側に位置し、かつ1μmの厚みを有する下層部と、前記基材側と反対の表面側に位置し、かつ2μmの厚みを有する上層部と、を含み、
前記α−Al23層の表面の法線を含む平面で前記α−Al23層を切断したときの断面に対し、電界放射型走査顕微鏡を用いた電子後方散乱回折像解析によって前記結晶粒のそれぞれの結晶方位を特定し、これに基づいたカラーマップを作成した場合に、
前記カラーマップにおいて、
前記上層部は、(001)面の法線方向が前記α−Al23層の表面の法線方向に対して±10°以内となる前記結晶粒の占める面積が90%以上であり、
前記下層部は、(001)面の法線方向が前記α−Al23層の表面の法線方向に対して±10°以内となる前記結晶粒の占める面積が50%以下である、表面被覆切削工具。
A surface-coated cutting tool comprising a substrate and a coating formed on the substrate,
The coating has an α-Al 2 O 3 layer including a plurality of α-Al 2 O 3 crystal grains,
The α-Al 2 O 3 layer is located on the base material side in the thickness direction and has a thickness of 1 μm, a surface portion opposite to the base material side, and a thickness of 2 μm. And an upper layer portion having
To the cross-section obtained by cutting the α-Al 2 O 3 layer in a plane including the normal to the surface of the α-Al 2 O 3 layer, wherein the electron backscatter diffraction image analysis using a field emission scanning microscope When the crystal orientation of each crystal grain is specified and a color map based on this is created,
In the color map,
In the upper layer portion, the area occupied by the crystal grains in which the normal direction of the (001) plane is within ± 10 ° with respect to the normal direction of the surface of the α-Al 2 O 3 layer is 90% or more,
In the lower layer portion, the area occupied by the crystal grains in which the normal direction of the (001) plane is within ± 10 ° with respect to the normal direction of the surface of the α-Al 2 O 3 layer is 50% or less. Surface coated cutting tool.
前記α−Al23層は、その厚み方向に変化する応力分布を有し、
前記α−Al23層の前記表面側は圧縮残留応力を有し、
前記α−Al23層の前記基材側は引張残留応力を有する、請求項1に記載の表面被覆切削工具。
The α-Al 2 O 3 layer has a stress distribution that changes in its thickness direction,
The surface side of the α-Al 2 O 3 layer has a compressive residual stress,
The surface-coated cutting tool according to claim 1, wherein the base side of the α-Al 2 O 3 layer has a tensile residual stress.
前記応力分布は、
前記表面側から前記基材側に向けて、前記圧縮残留応力の絶対値が連続的に大きくなる第1領域と、
前記第1領域よりも前記基材側に位置し、かつ前記表面側から前記基材側に向けて、前記圧縮残留応力の絶対値が連続的に小さくなって前記引張残留応力に転じ、引き続き、前記転じた引張残留応力の絶対値が連続的に大きくなる第2領域と、を有し、
前記第1領域と前記第2領域とは、前記圧縮残留応力の絶対値が最も大きくなる中間点を介して連続する、請求項1または請求項2に記載の表面被覆切削工具。
The stress distribution is
A first region in which the absolute value of the compressive residual stress continuously increases from the surface side toward the base material side;
The absolute value of the compressive residual stress is continuously reduced from the surface side toward the base material side from the surface side to the base material side with respect to the first region, and subsequently changed to the tensile residual stress, A second region in which the absolute value of the turned tensile residual stress continuously increases,
The surface-coated cutting tool according to claim 1 or 2, wherein the first region and the second region are continuous via an intermediate point where the absolute value of the compressive residual stress is the largest.
前記α−Al23層において、前記圧縮残留応力の絶対値は1000MPa以下であり、前記引張残留応力の絶対値は2000MPa以下である、請求項2または請求項3に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 2 or 3, wherein in the α-Al 2 O 3 layer, the absolute value of the compressive residual stress is 1000 MPa or less, and the absolute value of the tensile residual stress is 2000 MPa or less. . 前記被膜は、前記基材と前記α−Al23層との間に第1中間層を含み、
前記第1中間層は、TiCN層である、請求項1から請求項4のいずれか1項に記載の表面被覆切削工具。
The coating includes a first intermediate layer between the substrate and the α-Al 2 O 3 layer,
The surface-coated cutting tool according to any one of claims 1 to 4, wherein the first intermediate layer is a TiCN layer.
前記被膜は、前記第1中間層と前記α−Al23層との間に第2中間層を含み、
前記第2中間層は、TiCNO層またはTiBN層であり、
前記第2中間層の最大厚みと最小厚みとの差は、0.3μm以上である、請求項5に記載の表面被覆切削工具。
The coating includes a second intermediate layer between the first intermediate layer and the α-Al 2 O 3 layer,
The second intermediate layer is a TiCNO layer or a TiBN layer;
The surface-coated cutting tool according to claim 5, wherein a difference between the maximum thickness and the minimum thickness of the second intermediate layer is 0.3 μm or more.
前記被膜は、最表面に位置する表面層を含み、
前記表面層は、TiC層、TiN層またはTiB2層である、請求項1から請求項6のいずれか1項に記載の表面被覆切削工具。
The coating includes a surface layer located on the outermost surface,
The surface-coated cutting tool according to any one of claims 1 to 6, wherein the surface layer is a TiC layer, a TiN layer, or a TiB 2 layer.
JP2016002713A 2016-01-08 2016-01-08 Method of manufacturing surface coated cutting tool Active JP6507456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002713A JP6507456B2 (en) 2016-01-08 2016-01-08 Method of manufacturing surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002713A JP6507456B2 (en) 2016-01-08 2016-01-08 Method of manufacturing surface coated cutting tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015554923A Division JP5872747B1 (en) 2015-08-28 2015-08-28 Surface coated cutting tool

Publications (3)

Publication Number Publication Date
JP2017042901A true JP2017042901A (en) 2017-03-02
JP2017042901A5 JP2017042901A5 (en) 2018-04-12
JP6507456B2 JP6507456B2 (en) 2019-05-08

Family

ID=58209290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002713A Active JP6507456B2 (en) 2016-01-08 2016-01-08 Method of manufacturing surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP6507456B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004018A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Coated tool, cutting tool, and method for manufacturing cut workpiece
KR20210045498A (en) * 2018-10-15 2021-04-26 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cutting tool
CN112839760A (en) * 2018-10-15 2021-05-25 住友电工硬质合金株式会社 Cutting tool
EP3868502A4 (en) * 2018-10-15 2022-04-27 Sumitomo Electric Hardmetal Corp. Cutting tool
EP3868501A4 (en) * 2018-10-15 2022-04-27 Sumitomo Electric Hardmetal Corp. Cutting tool
US11964328B2 (en) 2018-09-05 2024-04-23 Kyocera Corporation Coated tool and cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063515A1 (en) * 2010-11-10 2012-05-18 住友電工ハードメタル株式会社 Surface-coated cutting tool
WO2013031952A1 (en) * 2011-08-31 2013-03-07 三菱マテリアル株式会社 Surface-coated cutting tool
DE102011053705A1 (en) * 2011-09-16 2013-03-21 Walter Ag Cutting insert and method for its production
US20130149527A1 (en) * 2011-06-03 2013-06-13 Korloy Inc. Coating layer for cutting tools
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063515A1 (en) * 2010-11-10 2012-05-18 住友電工ハードメタル株式会社 Surface-coated cutting tool
US20130149527A1 (en) * 2011-06-03 2013-06-13 Korloy Inc. Coating layer for cutting tools
WO2013031952A1 (en) * 2011-08-31 2013-03-07 三菱マテリアル株式会社 Surface-coated cutting tool
DE102011053705A1 (en) * 2011-09-16 2013-03-21 Walter Ag Cutting insert and method for its production
JP2014526391A (en) * 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004018A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Coated tool, cutting tool, and method for manufacturing cut workpiece
CN110799293A (en) * 2017-06-29 2020-02-14 京瓷株式会社 Coated cutting tool, and method for manufacturing cut product
JPWO2019004018A1 (en) * 2017-06-29 2020-04-16 京セラ株式会社 Coated tool, cutting tool, and method of manufacturing cut product
US11241743B2 (en) 2017-06-29 2022-02-08 Kyocera Corporation Coated tool, cutting tool, and method for manufacturing machined product
US11964328B2 (en) 2018-09-05 2024-04-23 Kyocera Corporation Coated tool and cutting tool
US11103930B2 (en) 2018-10-15 2021-08-31 Sumitomo Electric Hardmetal Corp. Cutting tool
CN112839761A (en) * 2018-10-15 2021-05-25 住友电工硬质合金株式会社 Cutting tool
US11167355B2 (en) * 2018-10-15 2021-11-09 Sumitomo Electric Hardmetal Corp. Cutting tool
CN112839760A (en) * 2018-10-15 2021-05-25 住友电工硬质合金株式会社 Cutting tool
EP3868502A4 (en) * 2018-10-15 2022-04-27 Sumitomo Electric Hardmetal Corp. Cutting tool
EP3868501A4 (en) * 2018-10-15 2022-04-27 Sumitomo Electric Hardmetal Corp. Cutting tool
KR102495052B1 (en) * 2018-10-15 2023-02-06 스미또모 덴꼬오 하드메탈 가부시끼가이샤 cutting tool
CN112839760B (en) * 2018-10-15 2023-06-06 住友电工硬质合金株式会社 Cutting tool
CN112839761B (en) * 2018-10-15 2023-08-22 住友电工硬质合金株式会社 cutting tool
KR20210045498A (en) * 2018-10-15 2021-04-26 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cutting tool

Also Published As

Publication number Publication date
JP6507456B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5872747B1 (en) Surface coated cutting tool
JP5872748B1 (en) Surface coated cutting tool
JP6507457B2 (en) Method of manufacturing surface coated cutting tool
JP6507456B2 (en) Method of manufacturing surface coated cutting tool
JP5884004B1 (en) Surface coated cutting tool
JPWO2006064724A1 (en) Surface coated cutting tool
JP5871354B1 (en) Surface coated cutting tool
JP6604553B2 (en) Surface coated cutting tool
JP5871353B1 (en) Surface coated cutting tool
JP6439200B2 (en) Method for manufacturing surface-coated cutting tool
JP5871355B1 (en) Surface coated cutting tool
JP6550661B2 (en) Method of manufacturing surface coated cutting tool
JP6641661B1 (en) Cutting tools
JP6535922B2 (en) Method of manufacturing surface coated cutting tool
JP6439201B2 (en) Method for manufacturing surface-coated cutting tool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190315

R150 Certificate of patent or registration of utility model

Ref document number: 6507456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250