JP2017041920A - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP2017041920A
JP2017041920A JP2015160463A JP2015160463A JP2017041920A JP 2017041920 A JP2017041920 A JP 2017041920A JP 2015160463 A JP2015160463 A JP 2015160463A JP 2015160463 A JP2015160463 A JP 2015160463A JP 2017041920 A JP2017041920 A JP 2017041920A
Authority
JP
Japan
Prior art keywords
motor
ground terminal
side ground
inverter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015160463A
Other languages
Japanese (ja)
Inventor
正 河合
Tadashi Kawai
正 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Schneider Inverter Corp
Original Assignee
Toshiba Schneider Inverter Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Schneider Inverter Corp filed Critical Toshiba Schneider Inverter Corp
Priority to JP2015160463A priority Critical patent/JP2017041920A/en
Publication of JP2017041920A publication Critical patent/JP2017041920A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inverter device which can appropriately suppress both a high frequency leakage current and a leakage current of an AC power frequency component.SOLUTION: The inverter device includes: an inverter circuit; a housing side ground terminal to ground a device housing; a motor side ground terminal to connect a shield coating which covers the outer periphery of a cable connected to a motor and/or the ground line of the motor; and a noise filter circuit connected to a power supply line which supplies power to the inverter circuit. The noise filter circuit includes: a first grounding capacitor part which is connected between the power supply line and the motor side ground terminal; and a second grounding capacitor part which is connected between the motor side ground terminal and the housing side ground terminal.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、インバータ装置に関する。   Embodiments described herein relate generally to an inverter device.

インバータ装置は、例えばIGBT等のスイッチング素子を高速でスイッチングしてPWM制御することで、所望の周波数の交流電力をモータ等負荷に供給する。この場合、上記のスイッチング動作による電圧の急変に伴い、モータとインバータ装置との間を接続するモータケーブルや、モータの浮遊容量を介してアースへと高周波の漏れ電流が流出すると、商用交流電源を介して他の機器の動作に影響を与えるおそれがある。   The inverter device supplies AC power of a desired frequency to a load such as a motor by switching a switching element such as an IGBT at high speed and performing PWM control. In this case, if a high-frequency leakage current flows to the ground via the motor cable connecting the motor and the inverter device or the stray capacitance of the motor due to the sudden change in voltage due to the switching operation described above, the commercial AC power supply is turned off. May affect the operation of other devices.

これに対し、インバータ装置にEMC(Electromagnetic compatibility)フィルタを挿入し、商用交流電源への漏れ電流の回り込みを抑制することが一般に行われている。EMCフィルタは、接地コンデンサを含むコンデンサやコモンモードチョーク等により構成されることが多い。しかし、接地コンデンサは、EMC対策の対象である高周波の漏れ電流に効果がある一方で、交流電源周波数成分の漏れ電流を発生させる。接地コンデンサの容量に応じた、スイッチング周波数に対応する高周波の漏れ電流の増減と交流電源周波数成分の漏れ電流の増減との間には、特許文献1の図7(b)に示すように相反する関係がある。   On the other hand, it is common practice to insert an EMC (Electromagnetic compatibility) filter in the inverter device to suppress the leakage current from flowing into the commercial AC power supply. The EMC filter is often composed of a capacitor including a ground capacitor, a common mode choke, or the like. However, the grounding capacitor is effective for high-frequency leakage current that is a target of EMC countermeasures, but generates leakage current of AC power frequency components. Between the increase / decrease in the high-frequency leakage current corresponding to the switching frequency and the increase / decrease in the leakage current of the AC power supply frequency component according to the capacitance of the grounding capacitor, there is a conflict as shown in FIG. There is a relationship.

特開平1−243843号公報JP-A-1-2433843

このため、EMC対策を重視して接地コンデンサの容量を大きくし過ぎると、交流電源周波数成分の漏れ電流が増大して、例えば漏電遮断器の不要な動作を招くなどの問題が発生する。
そこで、高周波の漏れ電流と、交流電源周波数成分の漏れ電流とを双方とも適切に抑制できるインバータ装置を提供する。
For this reason, if emphasis is placed on EMC countermeasures and the capacitance of the grounding capacitor is increased too much, the leakage current of the AC power supply frequency component increases, causing problems such as unnecessary operation of the leakage breaker.
Therefore, an inverter device that can appropriately suppress both high-frequency leakage current and leakage current of AC power supply frequency component is provided.

実施形態のインバータ装置は、
インバータ回路と、
装置筐体を接地するための筺体側アース端子と、
モータに接続されるケーブルの外周を覆うシールド被覆及び/又は前記モータのアース線を接続するためのモータ側アース端子と、
前記インバータ回路に電源を供給する電源線に接続されるノイズフィルタ回路とを備え、
前記ノイズフィルタ回路は、前記電源線と前記モータ側アース端子との間に接続される第1接地容量部と、前記モータ側アース端子と前記筺体側アース端子との間に接続される第2接地容量部とを有している。
The inverter device of the embodiment is
An inverter circuit;
A housing-side ground terminal for grounding the device housing;
A shield coating covering the outer periphery of the cable connected to the motor and / or a motor-side ground terminal for connecting the ground wire of the motor;
A noise filter circuit connected to a power line for supplying power to the inverter circuit,
The noise filter circuit includes a first grounding capacitor connected between the power line and the motor-side ground terminal, and a second ground connected between the motor-side ground terminal and the housing-side ground terminal. And a capacity portion.

第1実施形態であり、インバータ装置の構成を示す図The figure which is 1st Embodiment and shows the structure of an inverter apparatus ノイズフィルタ回路の変形例を示す図The figure which shows the modification of a noise filter circuit インバータ装置にコンデンサC3が無いノイズフィルタ回路を適用した場合と本実施形態のノイズフィルタ回路を適用した場合とについて、高周波領域ノイズの発生状態をシミュレーションした結果を示す図The figure which shows the result of having simulated the generation | occurrence | production state of the high frequency area noise about the case where the noise filter circuit without the capacitor | condenser C3 is applied to an inverter apparatus, and the case where the noise filter circuit of this embodiment is applied. 図3の結果を(a),(b)により個別に示す図The figure which shows the result of FIG. 3 separately by (a) and (b) 第2実施形態であり、インバータ装置の構成を示す図The figure which is 2nd Embodiment and shows the structure of an inverter apparatus

(第1実施形態)
以下、第1実施形態について図1から図4を参照して説明する。図1に示すように、インバータ装置1は、3相の商用交流電源2より入力される電圧を整流して直流電圧を出力する整流回路3,直流電圧を平滑する平滑コンデンサ4,直流電圧を交流に逆変換してモータMへ供給するインバータ回路5を備えている。インバータ回路5は、例えばIGBT等のスイッチング素子を3相ブリッジ接続して構成されている。インバータ回路5の各相出力端子は、ケーブル6を介してモータMの各相固定子巻線(図示せず)の一端に接続されている。
(First embodiment)
Hereinafter, a first embodiment will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, an inverter device 1 includes a rectifier circuit 3 that rectifies a voltage input from a three-phase commercial AC power supply 2 and outputs a DC voltage 3. A smoothing capacitor 4 that smoothes the DC voltage. And an inverter circuit 5 that reversely converts the signal to the motor M and supplies it to the motor M. The inverter circuit 5 is configured by connecting switching elements such as IGBTs in a three-phase bridge. Each phase output terminal of the inverter circuit 5 is connected to one end of each phase stator winding (not shown) of the motor M via the cable 6.

また、インバータ装置1は、当該装置1の筐体を接地するための筺体側アース端子G1と、ケーブル6の外周を覆うシールド被覆及び/又はモータMのアース線を接続するためのモータ側アース端子G2との、少なくとも2か所のアース端子を備えている。また、更に、インバータ装置1はノイズフィルタ回路7を備えている。   Further, the inverter device 1 includes a housing-side ground terminal G1 for grounding the casing of the device 1 and a motor-side ground terminal for connecting a shield coating covering the outer periphery of the cable 6 and / or a ground wire of the motor M. At least two ground terminals with G2 are provided. Further, the inverter device 1 includes a noise filter circuit 7.

ノイズフィルタ回路7は、スター結線した一端側がそれぞれ、商用交流電源2と整流回路3の各相交流入力端子との間を接続する交流電源線8a,8b及び8cに接続される3個のコンデンサC1a,C1b及びC1cと、前記スター接続の共通接続点とモータ側アース端子G2との間に接続されるコンデンサC2と、モータ側アース端子G2と筺体側アース端子G1との間に接続されるコンデンサC3とを備えている。また、
C1=C1a=C1b=C1c
とする。ここで、コンデンサC1及びC2は第1接地容量部(コンデンサ回路)に相当し、コンデンサC3は第2接地容量部に相当する。整流回路3の直流出力端子とインバータ回路3との間は、直流電源線9a,9bにより接続されている。
The noise filter circuit 7 has three capacitors C1a connected to AC power supply lines 8a, 8b, and 8c, each connecting one end of the star connection between the commercial AC power supply 2 and each phase AC input terminal of the rectifier circuit 3. , C1b and C1c, a capacitor C2 connected between the common connection point of the star connection and the motor side ground terminal G2, and a capacitor C3 connected between the motor side ground terminal G2 and the housing side ground terminal G1. And. Also,
C1 = C1a = C1b = C1c
And Here, the capacitors C1 and C2 correspond to a first grounded capacity part (capacitor circuit), and the capacitor C3 corresponds to a second grounded capacity part. The DC output terminal of the rectifier circuit 3 and the inverter circuit 3 are connected by DC power supply lines 9a and 9b.

尚、ノイズフィルタ回路は、例えば図2に示すようにコンデンサC2を省略し、第1接地容量部をコンデンサC1のみで構成しても良い。また、図内の各コンデンサ要素を、複数の並列又は直列コンデンサで構成しても良い。更に、ノイズフィルタ回路7がコモンモードチョークを備えていても良い。   In the noise filter circuit, for example, the capacitor C2 may be omitted as shown in FIG. Further, each capacitor element in the figure may be composed of a plurality of parallel or series capacitors. Further, the noise filter circuit 7 may include a common mode choke.

ここで、第1接地容量部の等価なコンデンサ容量(第1接地容量部の各相それぞれと、共通接続点間の合成容量)は
C1×C2/(C1+C2)
で表わされる。そして、第2接地容量部のコンデンサ容量C3を、第1接地容量部のコンデンサ容量よりも小さく設定する。
Here, the equivalent capacitor capacity of the first grounded capacity section (the combined capacity between each phase of the first grounded capacity section and the common connection point) is C1 × C2 / (C1 + C2)
It is represented by Then, the capacitor capacity C3 of the second grounded capacity part is set smaller than the capacitor capacity of the first grounded capacity part.

これにより、図1に示すようにモータMやケーブル6からの漏れ電流は、ノイズフィルタ回路7における比較的大きな容量の第1接地容量部を介して回収され、商用交流電源2側への回り込みが抑制される。さらに交流電源周波数成分の漏れ電流は、第1及び第2接地容量部の直列回路を経由するが、この直列回路の等価なコンデンサ容量は
C1×C2×C3/(C1×C2+C2×C3+C3×C1)
となり、容量C3が支配的で且つ容量C3よりも小さな値となるため、交流電源周波数成分の漏れ電流も低く抑えることができる。
As a result, as shown in FIG. 1, the leakage current from the motor M and the cable 6 is recovered through the first grounded capacitor section having a relatively large capacity in the noise filter circuit 7, and is circulated to the commercial AC power supply 2 side. It is suppressed. Furthermore, the leakage current of the AC power supply frequency component passes through the series circuit of the first and second grounded capacitance units. The equivalent capacitor capacity of this series circuit is C1 × C2 × C3 / (C1 × C2 + C2 × C3 + C3 × C1)
Thus, since the capacitance C3 is dominant and has a value smaller than the capacitance C3, the leakage current of the AC power frequency component can be suppressed low.

ここで一例として、各容量の数値を
C1:1μF
C2:0.47μF
C3:0.047μF
とすると、第1接地容量部の等価なコンデンサ容量は
C1×C2/(C1+C2)≒0.32μF
であるのに対し、第1及び第2接地容量部の直列回路の等価容量は
C1×C2×C3/(C1×C2+C2×C3+C3×C1)≒0.041μF
となる。
Here, as an example, the value of each capacitance is C1: 1 μF.
C2: 0.47 μF
C3: 0.047 μF
Then, the equivalent capacitor capacity of the first ground capacitance part is C1 × C2 / (C1 + C2) ≈0.32 μF
On the other hand, the equivalent capacitance of the series circuit of the first and second grounded capacitance units is C1 × C2 × C3 / (C1 × C2 + C2 × C3 + C3 × C1) ≈0.041 μF
It becomes.

また、図3は、インバータ装置に、コンデンサC3が無くモータ側アース端子G2と筺体側アース端子G1とを直接接続したノイズフィルタ回路を適用した場合(図中に実線で示す)と、本実施形態のノイズフィルタ回路7を適用した場合(図中に破線で示す)とについて、高周波領域ノイズの発生状態をシミュレーションした結果である。図4(a),(b)は、同じ結果を個別に示している。本実施形態のノイズフィルタ回路7の方が、概ねノイズレベルが低くなっている。   FIG. 3 shows the case where a noise filter circuit in which the motor side ground terminal G2 and the housing side ground terminal G1 are directly connected without the capacitor C3 is applied to the inverter device (shown by a solid line in the figure). This is a result of simulating the generation state of high-frequency region noise when the above noise filter circuit 7 is applied (indicated by a broken line in the figure). 4 (a) and 4 (b) individually show the same results. The noise level of the noise filter circuit 7 of this embodiment is generally lower.

また、電源周波数50Hzでの漏れ電流をシミュレーションした結果では、コンデンサC3が無いノイズフィルタ回路では2.4mAであったのに対し、本実施形態のノイズフィルタ回路7では0.2mAと極めて小さい値となった。   Further, the simulation result of the leakage current at the power supply frequency of 50 Hz is 2.4 mA in the noise filter circuit without the capacitor C3, whereas the noise filter circuit 7 of the present embodiment has an extremely small value of 0.2 mA. became.

以上のように本実施形態によれば、ノイズフィルタ回路7は、高周波漏れ電流の対策に支配的な第1接地容量部と、交流電源周波数漏れ電流に支配的な第2接地容量部とを独立して設計できるため、高周波漏れ電流が商用交流電源2側へ回り込むことを防止する効果を高めると共に、電源周波数成分の漏れ電流が増加することを防止できる。
また、第2接地容量部の容量を第1接地容量部よりも小さく設定したので、これらを直列に接続した場合の合成容量値をより小さくして、電源周波数成分の漏れ電流が増加することを一層抑制できる。
As described above, according to the present embodiment, the noise filter circuit 7 has an independent first grounded capacitor part that is dominant in measures against high-frequency leakage current and a second grounded capacitor part that is dominant in AC power supply frequency leakage current. Therefore, it is possible to enhance the effect of preventing the high frequency leakage current from flowing to the commercial AC power supply 2 side and to prevent the leakage current of the power frequency component from increasing.
In addition, since the capacitance of the second grounded capacitance unit is set smaller than that of the first grounded capacitance unit, the combined capacitance value when these are connected in series is made smaller, and the leakage current of the power supply frequency component is increased. It can be further suppressed.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図5に示すように、第2実施形態のインバータ装置11は、コンデンサC3に対して並列にスイッチ回路12(短絡回路)を接続した構成である。インバータ装置の各ユーザにおける設置条件は個々に異なる。このため、モータMやケーブル6からアースへの浮遊容量(図中に破線で示す)が比較的大きな場合は、その浮遊容量を経由した高周波漏れ電流が問題となるケースもある。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. As shown in FIG. 5, the inverter device 11 of the second embodiment has a configuration in which a switch circuit 12 (short circuit) is connected in parallel to the capacitor C3. The installation conditions for each user of the inverter device are individually different. For this reason, when the stray capacitance from the motor M or the cable 6 to the ground (shown by a broken line in the figure) is relatively large, a high-frequency leakage current via the stray capacitance may be a problem.

このような場合はスイッチ回路12を閉じてコンデンサC3を短絡した状態で使用する。これにより、電源周波数成分の漏れ電流は増加することになるが、図中に破線で示した経路での高周波漏れ電流を回収する効果を向上させることができる。これにより電源周波数成分の漏れ電流は増加するが、標準のインバータ装置11で広範なユーザの要望に答えることができ、個々のユーザに対応するため複数種類のインバータ装置を提供する事態を回避できる。   In such a case, the switch circuit 12 is closed and the capacitor C3 is short-circuited. As a result, the leakage current of the power supply frequency component increases, but the effect of collecting the high-frequency leakage current in the path indicated by the broken line in the figure can be improved. As a result, the leakage current of the power supply frequency component increases, but the standard inverter device 11 can answer a wide range of user requests, and the situation of providing a plurality of types of inverter devices can be avoided in order to deal with individual users.

(その他の実施形態)
第2接地容量部の容量値は、必ずしも第1接地容量部の容量値より小さく設定する必要はない。
インバータ装置が、単相の商用交流電源より電源供給を受ける場合について適用しても良い。
第1接地容量部は、直流電源線9a,9bに接続されていても良い。
(Other embodiments)
The capacitance value of the second grounded capacitance portion does not necessarily need to be set smaller than the capacitance value of the first grounded capacitance portion.
You may apply about the case where an inverter apparatus receives power supply from a single phase commercial alternating current power supply.
The first grounded capacitance unit may be connected to the DC power supply lines 9a and 9b.

本発明のいくつかの実施形態を説明したが、各実施形態に示した構成に限定されることはなく、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although some embodiments of the present invention have been described, the present invention is not limited to the configurations shown in each embodiment, and these embodiments are presented as examples and are not intended to limit the scope of the invention. Not intended. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1はインバータ装置、2は商用交流電源、3は整流回路、5はインバータ回路、6はケーブル、7はノイズフィルタ回路、8は交流電源線、9は直流電源線、C1及びC2はコンデンサ(第1接地容量部)、C3はコンデンサ(第2接地容量部)、11はインバータ装置、12はスイッチ回路(短絡回路)、G1は筺体側アース端子、G2はモータ側アース端子、Mはモータを示す。   In the drawings, 1 is an inverter device, 2 is a commercial AC power supply, 3 is a rectifier circuit, 5 is an inverter circuit, 6 is a cable, 7 is a noise filter circuit, 8 is an AC power supply line, 9 is a DC power supply line, and C1 and C2 are Capacitor (first grounded capacity part), C3 is a capacitor (second grounded capacity part), 11 is an inverter device, 12 is a switch circuit (short circuit), G1 is a housing side ground terminal, G2 is a motor side ground terminal, and M is Indicates a motor.

Claims (3)

インバータ回路と、
装置筐体を接地するための筺体側アース端子と、
モータに接続されるケーブルの外周を覆うシールド被覆及び/又は前記モータのアース線を接続するためのモータ側アース端子と、
前記インバータ回路に電源を供給する電源線に接続されるノイズフィルタ回路とを備え、
前記ノイズフィルタ回路は、前記電源線と前記モータ側アース端子との間に接続される第1接地容量部と、前記モータ側アース端子と前記筺体側アース端子との間に接続される第2接地容量部とを有しているインバータ装置。
An inverter circuit;
A housing-side ground terminal for grounding the device housing;
A shield coating covering the outer periphery of the cable connected to the motor and / or a motor-side ground terminal for connecting the ground wire of the motor;
A noise filter circuit connected to a power line for supplying power to the inverter circuit,
The noise filter circuit includes a first grounding capacitor connected between the power line and the motor-side ground terminal, and a second ground connected between the motor-side ground terminal and the housing-side ground terminal. An inverter device having a capacity unit.
前記第2接地容量部の容量は、前記第1接地容量部よりも小さく設定されている請求項1記載のインバータ装置。   2. The inverter device according to claim 1, wherein a capacity of the second grounded capacity portion is set smaller than that of the first grounded capacity portion. 前記第2接地容量部を短絡するための短絡回路を備える請求項1又は2記載のインバータ装置。   The inverter device according to claim 1, further comprising a short circuit for short-circuiting the second grounded capacitance unit.
JP2015160463A 2015-08-17 2015-08-17 Inverter device Pending JP2017041920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160463A JP2017041920A (en) 2015-08-17 2015-08-17 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160463A JP2017041920A (en) 2015-08-17 2015-08-17 Inverter device

Publications (1)

Publication Number Publication Date
JP2017041920A true JP2017041920A (en) 2017-02-23

Family

ID=58206815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160463A Pending JP2017041920A (en) 2015-08-17 2015-08-17 Inverter device

Country Status (1)

Country Link
JP (1) JP2017041920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201309A (en) * 2017-05-29 2018-12-20 アズビル株式会社 Noise countermeasure circuit and field apparatus
KR20190076669A (en) * 2017-12-22 2019-07-02 엘지전자 주식회사 Power converting apparatus and air conditioner including the same
EP3547515A1 (en) * 2018-03-29 2019-10-02 Diehl AKO Stiftung & Co. KG Power supply for an electric motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035657A (en) * 2006-07-31 2008-02-14 Fuji Electric Device Technology Co Ltd Power module for power converter
JP2008295126A (en) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp Power converter system
JP2009148162A (en) * 2009-03-30 2009-07-02 Toshiba Corp Noise filter
JP2010208750A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator control system
JP2014050260A (en) * 2012-08-31 2014-03-17 Fuji Electric Co Ltd Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035657A (en) * 2006-07-31 2008-02-14 Fuji Electric Device Technology Co Ltd Power module for power converter
JP2008295126A (en) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp Power converter system
JP2010208750A (en) * 2009-03-09 2010-09-24 Toshiba Elevator Co Ltd Elevator control system
JP2009148162A (en) * 2009-03-30 2009-07-02 Toshiba Corp Noise filter
JP2014050260A (en) * 2012-08-31 2014-03-17 Fuji Electric Co Ltd Power conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201309A (en) * 2017-05-29 2018-12-20 アズビル株式会社 Noise countermeasure circuit and field apparatus
KR20190076669A (en) * 2017-12-22 2019-07-02 엘지전자 주식회사 Power converting apparatus and air conditioner including the same
KR102074777B1 (en) 2017-12-22 2020-02-07 엘지전자 주식회사 Power converting apparatus and air conditioner including the same
EP3547515A1 (en) * 2018-03-29 2019-10-02 Diehl AKO Stiftung & Co. KG Power supply for an electric motor

Similar Documents

Publication Publication Date Title
US9300241B2 (en) Methods and systems for reducing conducted electromagnetic interference
KR102031688B1 (en) Cooling device, in particular for cooling components housed in a switchgear cabinet, corresponding use, and corresponding method
JP2012175833A (en) Switching power supply device
JP6388151B2 (en) Power supply
JP2017041920A (en) Inverter device
US9344029B2 (en) Asynchronous motor unit comprising a frequency converter with electrical isolation in the DC voltage intermediate circuit
EP2680427A1 (en) Inverter integrated motor-driven compressor
JP2020520223A (en) Inverter having intermediate circuit capacitor cascade and DC side common mode/differential mode filter
TWI678870B (en) Power conversion device and power conversion system
JP6650109B2 (en) Noise filter
US10090753B1 (en) Power conversion device and power conversion system
JP2016181989A (en) Circuit board for power conversion, and electric compressor
JP2016010308A (en) Power conversion device
JP6254779B2 (en) Power converter
JP2016158316A (en) Power supply device
US11374548B2 (en) Filter circuit for reducing feedback of a consumer on an energy supply
EP2874298A2 (en) Pre-charging circuit of inverter
JP2009095183A (en) Switching power-supply device
JP2010259245A (en) Output filter and power converter
JP2007236137A (en) Noise filter
JP6887057B1 (en) Power converter and open phase detector
JP2008067534A (en) Filter and power converter
JP7238284B2 (en) electric motor drive
WO2020178929A1 (en) Rotating electric machine, drive device of rotating electric machine, and drive system of rotating electric machine
WO2017158783A1 (en) Power conversion device and air conditioning device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820