JP2017040484A - Electromagnetic device - Google Patents

Electromagnetic device Download PDF

Info

Publication number
JP2017040484A
JP2017040484A JP2015160654A JP2015160654A JP2017040484A JP 2017040484 A JP2017040484 A JP 2017040484A JP 2015160654 A JP2015160654 A JP 2015160654A JP 2015160654 A JP2015160654 A JP 2015160654A JP 2017040484 A JP2017040484 A JP 2017040484A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
detection
passage
transmitting portion
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015160654A
Other languages
Japanese (ja)
Inventor
田鶴子 北澤
Tazuko Kitazawa
田鶴子 北澤
小川 雄一
Yuichi Ogawa
雄一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Kyoto University NUC
Original Assignee
Sharp Corp
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Kyoto University NUC filed Critical Sharp Corp
Priority to JP2015160654A priority Critical patent/JP2017040484A/en
Publication of JP2017040484A publication Critical patent/JP2017040484A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic device capable of preventing generation of diffraction of electromagnetic wave even when the beam diameter of electromagnetic wave of 0.01-10 mm in wavelength is narrowed.SOLUTION: An electromagnetic wave measurement device (10) has a detect electromagnetic wave passage part (3) in which a specific line in an entrance outer edge shape has a length of 10 times of wavelength of electromagnetic wave; the specific line at exit opening is longer than the specific line at entrance.SELECTED DRAWING: Figure 1

Description

本発明は、0.01mm以上10mm以下の波長を有する電磁波を取り扱う電磁波対応装置に関する。   The present invention relates to an electromagnetic wave handling apparatus that handles electromagnetic waves having a wavelength of 0.01 mm or more and 10 mm or less.

従来技術として知られている電磁波測定装置には、0.01mm以上10mm以下の波長を有する電磁波を検出する測定装置がある。例えば、特許文献1には、人体から放射された赤外線を検出し、体温を測定する放射体温計が開示されている。また特許文献2には、基板の平均温度検出のために、マイクロ波帯の電磁波を検出する半導体成長装置が開示されている。さらに特許文献3には、光源から発せられたテラヘルツ波を被測定物に照射し、被測定物から放射されたテラヘルツ波を検出し、被測定物の光学定数を計測するテラヘルツ波分光計測装置が開示されている。   As an electromagnetic wave measuring apparatus known as a prior art, there is a measuring apparatus that detects an electromagnetic wave having a wavelength of 0.01 mm or more and 10 mm or less. For example, Patent Literature 1 discloses a radiation thermometer that detects infrared rays emitted from a human body and measures body temperature. Patent Document 2 discloses a semiconductor growth apparatus that detects an electromagnetic wave in a microwave band for detecting an average temperature of a substrate. Further, Patent Document 3 discloses a terahertz wave spectrometer that irradiates a target object with terahertz waves emitted from a light source, detects a terahertz wave emitted from the target object, and measures an optical constant of the target object. It is disclosed.

特開2002−340680号公報(2002年11月27日公開)JP 2002-340680 A (released November 27, 2002) 特開2011−054871号公報(2011年03月17日公開)JP 2011-048771 A (published March 17, 2011) 特開2012−207975号公報(2012年10月25日公開)JP 2012-207975 A (released on October 25, 2012)

ここで、測定装置を数mm〜数cmのサイズに小型化しようとした場合、測定装置が検出する電磁波のビームの直径(以下、ビーム径。すなわち、電磁波を検出する検出部と対向するように配置された、電磁波が出射する開口部の幅)は数mm程度まで小さくなる。このとき、測定する電磁波の波長が0.01mm以上10mm以下の場合、上記開口部から出射された電磁波が回折し、電磁波の一部の進行方向が所望の方向と異なってしまう。これにより、検出誤差が発生し、測定装置の測定精度が低下するという問題がある。   Here, when the measuring device is to be downsized to several mm to several centimeters, the diameter of the electromagnetic wave beam detected by the measuring device (hereinafter referred to as the beam diameter, that is, to face the detection unit detecting the electromagnetic wave). The width of the arranged opening from which the electromagnetic wave is emitted is reduced to about several mm. At this time, when the wavelength of the electromagnetic wave to be measured is 0.01 mm or more and 10 mm or less, the electromagnetic wave emitted from the opening is diffracted, and the traveling direction of a part of the electromagnetic wave is different from a desired direction. As a result, a detection error occurs, and there is a problem that the measurement accuracy of the measuring device is lowered.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、0.01mm以上10mm以下の波長の電磁波のビーム径を絞った場合でも、電磁波の回折の発生を抑える電磁波対応装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is an electromagnetic wave response device that suppresses the generation of electromagnetic wave diffraction even when the beam diameter of the electromagnetic wave having a wavelength of 0.01 mm to 10 mm is narrowed. Is to provide.

上記の課題を解決するために、本発明の一態様に係る測定装置は、0.01mm以上10mm以下の波長を有する電磁波を透過させない第1の遮光部と、上記第1の遮光部を貫通して、上記電磁波を透過させる第1の電磁波透過部と、を備え、上記第1の電磁波透過部の開口のうち、自装置の対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、上記近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、上記近位開口における上記特定線より、上記遠位開口における上記特定線が長い。   In order to solve the above problems, a measuring device according to one embodiment of the present invention penetrates through a first light-shielding portion that does not transmit electromagnetic waves having a wavelength of 0.01 mm or more and 10 mm or less, and the first light-shielding portion. A first electromagnetic wave transmitting part that transmits the electromagnetic wave, and among the openings of the first electromagnetic wave transmitting part, a proximal opening that is close to the object of the device and a distal opening that is far from the object Each of the outer edge shapes is a circle or a convex polygon, and the proximal opening is an arbitrary diameter in the diameter of the circle, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle The length of the specific line that is one of the shortest straight lines connecting one side to the other side that is not in contact with the one side is not more than 10 times the wavelength of the electromagnetic wave, and the specific line in the proximal opening More than The line is long.

本発明の一態様によれば、0.01mm以上10mm以下の波長の電磁波のビーム径を絞った場合でも、電磁波の回折の発生を抑える電磁波対応装置を提供することができるという効果を奏する。   According to one embodiment of the present invention, even when the beam diameter of an electromagnetic wave having a wavelength of 0.01 mm or more and 10 mm or less is narrowed, an electromagnetic wave corresponding device that suppresses generation of electromagnetic wave diffraction can be provided.

本発明の実施形態1に係る電磁波測定装置の斜視図である。It is a perspective view of the electromagnetic wave measuring device concerning Embodiment 1 of the present invention. サブmm程度の波長の電磁波が、外縁形状が数mmの半径を有する円形である開口部を通過するときの回折について説明するためのグラフおよびテーブルである。It is a graph and a table for explaining diffraction when an electromagnetic wave having a wavelength of about sub-mm passes through an opening having a circular outer shape with a radius of several millimeters. (a)は、図1に示す電磁波測定装置の上面図であり、(b)は、(a)のAA断面図であり、(c)は、図1に示す電磁波測定装置の側面図であり、(d)は、(c)のBB断面図である。(A) is a top view of the electromagnetic wave measuring apparatus shown in FIG. 1, (b) is an AA sectional view of (a), and (c) is a side view of the electromagnetic wave measuring apparatus shown in FIG. (D) is BB sectional drawing of (c). (a)は、本発明の実施形態2に係る電磁波測定装置の上面図であり、(b)は、(a)のAA断面図であり、(c)は、(a)の断面図であり、(b)とは別の例を示す図である。(A) is a top view of the electromagnetic wave measuring device which concerns on Embodiment 2 of this invention, (b) is AA sectional drawing of (a), (c) is sectional drawing of (a). It is a figure which shows another example from (b). (a)は、本発明の実施形態3に係る電磁波測定装置の上面図であり、(b)は、(a)のAA断面図である。(A) is a top view of the electromagnetic wave measuring device which concerns on Embodiment 3 of this invention, (b) is AA sectional drawing of (a). 本発明の実施形態4に係る電磁波測定装置の斜視図である。It is a perspective view of the electromagnetic wave measuring device which concerns on Embodiment 4 of this invention. (a)は、図6に示す電磁波測定装置の側面図であり、(b)は、(a)のBB断面図である。(A) is a side view of the electromagnetic wave measuring apparatus shown in FIG. 6, (b) is BB sectional drawing of (a). 本発明の変形例に係る電磁波測定装置の斜視図である。It is a perspective view of the electromagnetic wave measuring device which concerns on the modification of this invention. 本発明の実施形態5に係る電磁波照射装置の斜視図である。It is a perspective view of the electromagnetic wave irradiation apparatus which concerns on Embodiment 5 of this invention. (a)は、図9に示す電磁波照射装置の上面図であり、(b)は、(a)のAA断面図である。(A) is a top view of the electromagnetic wave irradiation apparatus shown in FIG. 9, (b) is AA sectional drawing of (a).

〔実施形態1〕
本発明の一実施形態について、図1〜3に基づいて説明すれば、以下のとおりである。
Embodiment 1
An embodiment of the present invention will be described below with reference to FIGS.

(電磁波測定装置10)
まず、本実施形態に係る電磁波測定装置10(電磁波対応装置)の要部構成について、図1を参照して説明する。図1は電磁波測定装置10の斜視図である。
(Electromagnetic wave measuring apparatus 10)
First, a configuration of a main part of an electromagnetic wave measuring apparatus 10 (electromagnetic wave corresponding apparatus) according to the present embodiment will be described with reference to FIG. FIG. 1 is a perspective view of the electromagnetic wave measuring apparatus 10.

電磁波測定装置10は、被測定物(対象物、以下、サンプル)に電磁波を照射することによりサンプルから発せられる電磁波を検出する装置である。なお以降、サンプルに照射する電磁波を照射電磁波、サンプルから発せられる電磁波を検出電磁波(測定電磁波)と称し、これら2つを区別する。また、電磁波測定装置10は、サンプルの温度を変化させながら測定を行うことが可能な装置である。電磁波測定装置10は、図1に示すように、電磁波源1、電磁波検出部2(検出部)、検出電磁波通過部3(第1の電磁波透過部)、伝熱部4(壁面部)、サンプル保持部5(保持部)、温度調整部6、および照射電磁波通過部7(第2の電磁波透過部、図3参照)を備えている。なお、電磁波測定装置10は、検出電磁波通過部3、伝熱部4、サンプル保持部5、温度調整部6、および照射電磁波通過部7からなる部分(以下、本体部分)が、数mm〜数cmのサイズである。   The electromagnetic wave measuring apparatus 10 is an apparatus that detects an electromagnetic wave emitted from a sample by irradiating the object to be measured (object, hereinafter, sample) with the electromagnetic wave. Hereinafter, the electromagnetic wave applied to the sample is referred to as an irradiation electromagnetic wave, and the electromagnetic wave emitted from the sample is referred to as a detection electromagnetic wave (measurement electromagnetic wave), and these two are distinguished. The electromagnetic wave measuring device 10 is a device that can perform measurement while changing the temperature of the sample. As shown in FIG. 1, the electromagnetic wave measuring apparatus 10 includes an electromagnetic wave source 1, an electromagnetic wave detection unit 2 (detection unit), a detection electromagnetic wave passage unit 3 (first electromagnetic wave transmission unit), a heat transfer unit 4 (wall surface unit), a sample A holding unit 5 (holding unit), a temperature adjusting unit 6, and an irradiation electromagnetic wave passing unit 7 (second electromagnetic wave transmitting unit, see FIG. 3) are provided. In addition, the electromagnetic wave measuring apparatus 10 has a part (hereinafter referred to as a main body part) composed of a detection electromagnetic wave passage part 3, a heat transfer part 4, a sample holding part 5, a temperature adjustment part 6, and an irradiation electromagnetic wave passage part 7 in the order of several mm to several millimeters. The size is cm.

(電磁波源1)
電磁波源1はサブmm程度(具体的には、0.01mm以上10mm以下)の波長の照射電磁波を出射する。例えば電磁波源1は、レーザやLED(light emitting diode)であるが、サブmm程度の波長の照射電磁波を出射することができれば、この例に限定されない。
(Electromagnetic wave source 1)
The electromagnetic wave source 1 emits an irradiation electromagnetic wave having a wavelength of about sub-mm (specifically, 0.01 mm or more and 10 mm or less). For example, the electromagnetic wave source 1 is a laser or an LED (light emitting diode), but is not limited to this example as long as it can emit an irradiation electromagnetic wave having a wavelength of about sub-mm.

(電磁波検出部2)
電磁波検出部2はサブmm程度の波長の検出電磁波を検出する。例えば電磁波検出部2は、ボロメータ、フォトディテクタ、ショットキーダイオードなどの検出電磁波を検出する素子を含むものであるが、サブmm程度の検出電磁波を検出することができれば、その構成は特に限定されない。なお、電磁波検出部2は検出結果を処理するパーソナルコンピュータなどの情報処理装置、および情報処理装置が処理した結果を表示するディスプレイなどの表示装置を含んでもよい。また、サブmm程度の波長の電磁波の具体例としては、遠赤外線、テラヘルツ波、マイクロ波などが挙げられる。
(Electromagnetic wave detector 2)
The electromagnetic wave detection unit 2 detects a detection electromagnetic wave having a wavelength of about sub-mm. For example, the electromagnetic wave detection unit 2 includes an element for detecting a detected electromagnetic wave, such as a bolometer, a photodetector, and a Schottky diode. However, the configuration is not particularly limited as long as the detected electromagnetic wave of about sub-mm can be detected. The electromagnetic wave detection unit 2 may include an information processing device such as a personal computer that processes the detection result, and a display device such as a display that displays the result processed by the information processing device. Specific examples of electromagnetic waves having a wavelength of about sub-mm include far infrared rays, terahertz waves, and microwaves.

(伝熱部4)
伝熱部4は、サンプルを保持するサンプル保持部5を囲うように設けられ、温度調整部6による温度変化をサンプル保持部5において保持されているサンプルに伝えるものである。伝熱部4は、熱伝導率が高く、サブmm程度の電磁波を透過せず、かつ低コストの材料が好ましく、例えば銅などの金属材料が用いられるが、この例に限定されるものではない。また、伝熱部4は、サンプルを均一かつ迅速に温度変化させ易くするために、サンプルに対してなるべく広い面積で接触していることが好ましい。
(Heat transfer part 4)
The heat transfer unit 4 is provided so as to surround the sample holding unit 5 that holds the sample, and transmits a temperature change by the temperature adjusting unit 6 to the sample held in the sample holding unit 5. The heat transfer section 4 is preferably a low-cost material having high thermal conductivity and not transmitting electromagnetic waves of about sub-mm, and a metal material such as copper is used, but is not limited to this example. . Moreover, in order to make it easy to change the temperature of the sample uniformly and quickly, it is preferable that the heat transfer section 4 is in contact with the sample in as wide an area as possible.

なお、図1に示すように、伝熱部4において、サンプル保持部5と電磁波検出部2との間に設けられている部分は、検出電磁波を透過しない第1の遮光部4aと表現することもできる。また、同様に電磁波源1とサンプル保持部5との間に設けられている部分は、照射電磁波を透過しない第2の遮光部4bと表現することもできる。   In addition, as shown in FIG. 1, in the heat transfer part 4, the part provided between the sample holding part 5 and the electromagnetic wave detection part 2 is expressed as a first light shielding part 4a that does not transmit the detected electromagnetic wave. You can also. Similarly, the portion provided between the electromagnetic wave source 1 and the sample holding unit 5 can also be expressed as a second light shielding unit 4b that does not transmit the irradiated electromagnetic wave.

(サンプル保持部5)
サンプル保持部5は、サンプルを保持するためのものであり、具体的には、伝熱部4に設けられた空洞である。なお、サンプルは当該空洞に直接導入されてもよいし、当該空洞にセルなどを挿入した後、当該セル内に導入されてもよい(図3の(b)参照)。また、サンプルはその形態を問わない。つまり、気体、液体、ゲル状、固体などどのような形態であってもよい。
(Sample holder 5)
The sample holding part 5 is for holding a sample, and is specifically a cavity provided in the heat transfer part 4. Note that the sample may be introduced directly into the cavity, or may be introduced into the cell after inserting a cell or the like into the cavity (see FIG. 3B). Moreover, the sample does not ask | require the form. In other words, any form such as gas, liquid, gel or solid may be used.

(温度調整部6)
温度調整部6は、伝熱部4と接触した温度調整部6の面での発熱または吸熱によって、サンプルの温度を変化(昇降)させるものである。温度調整部6はペルチェ素子を使用してもよいし、ペルチェ素子と銅などの熱伝導率が高い材料とが一体化したものを使用してもよい。
(Temperature adjuster 6)
The temperature adjustment unit 6 changes (lifts) the temperature of the sample by heat generation or heat absorption on the surface of the temperature adjustment unit 6 that is in contact with the heat transfer unit 4. The temperature adjusting unit 6 may use a Peltier element, or may be an integrated Peltier element and a material having high thermal conductivity such as copper.

温度調整部6の伝熱部4と接触した面は、サンプル保持部5の底面となる(図3参照)。すなわち、温度調整部6と伝熱部4とで囲われた空間がサンプル保持部5となる。換言すれば、温度調整部と伝熱部4とは、サンプルを囲うように設けられている。   The surface in contact with the heat transfer unit 4 of the temperature adjustment unit 6 becomes the bottom surface of the sample holding unit 5 (see FIG. 3). That is, the space surrounded by the temperature adjustment unit 6 and the heat transfer unit 4 becomes the sample holding unit 5. In other words, the temperature adjustment unit and the heat transfer unit 4 are provided so as to surround the sample.

(検出電磁波通過部3)
検出電磁波通過部3は、検出電磁波を電磁波検出部2に導くものである。本実施形態に係る検出電磁波通過部3は伝熱部4を貫通する穴であり、サンプルから発せられた検出電磁波は、検出電磁波通過部3を通って電磁波検出部2に入射する。なお、検出電磁波通過部3は、穴に検出電磁波の透過率の高い材質が充填されたものであってもよい。
(Detected electromagnetic wave passage 3)
The detected electromagnetic wave passage 3 guides the detected electromagnetic wave to the electromagnetic wave detector 2. The detection electromagnetic wave passage part 3 according to the present embodiment is a hole that penetrates the heat transfer part 4, and the detection electromagnetic wave emitted from the sample enters the electromagnetic wave detection part 2 through the detection electromagnetic wave passage part 3. In addition, the detection electromagnetic wave passage 3 may be one in which a hole is filled with a material having a high detection electromagnetic wave transmittance.

本実施形態に係る検出電磁波通過部3は、出射口(遠位開口)、すなわち電磁波検出部2側の端部の形状と、入射口(近位開口)、すなわちサンプル保持部5側の端部の形状とがともに円形である。ただし、この構成に限定されず、入射口および出射口の形状は例えば正方形や長方形などの凸四角形状であってもよいし、その他の凸多角形状であってもよい。   The detection electromagnetic wave passage part 3 according to the present embodiment includes an emission port (distal opening), that is, an end shape on the electromagnetic wave detection unit 2 side, and an incident port (proximal opening), that is, an end part on the sample holding unit 5 side. Are both circular. However, the shape of the entrance and the exit is not limited to this configuration, and may be a convex quadrangle such as a square or a rectangle, or may be another convex polygon.

なお、検出電磁波通過部3の入射口は、外縁形状(開口形状)が円形の場合は当該円形の直径、外縁形状が三角形の場合は当該三角形の最短の一辺、また、外縁形状が三角形を除く凸多角形の場合は当該凸多角形における任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線(特定線)が、検出電磁波の波長の10倍以下の長さであると表現することもできる。   The entrance of the detection electromagnetic wave passage 3 has a diameter of the circle when the outer edge shape (opening shape) is circular, the shortest side of the triangle when the outer edge shape is a triangle, and the outer edge shape excludes a triangle. In the case of a convex polygon, the shortest straight line (specific line) connecting any one side of the convex polygon and the other side that is not in contact with the one side is expressed as being 10 times or less the wavelength of the detected electromagnetic wave. You can also

また、検出電磁波通過部3は、上述したように、伝熱部4をサンプルになるべく広い面積で接触させるために、入射口の外縁形状の直径(以下、入射口の幅)をなるべく小さくする必要がある。このため、本実施形態に係る検出電磁波通過部3では、入射口の幅が検出電磁波の波長の10倍以下となっている。ここで、検出電磁波通過部3の入射口と出射口の幅を略同一、すなわち、出射口の幅についても検出電磁波の波長の10倍以下とすると、検出電磁波の回折が発生してしまう。これについて、図2を参照して説明する。   In addition, as described above, the detection electromagnetic wave passage 3 needs to make the diameter of the outer edge shape of the entrance (hereinafter referred to as the width of the entrance) as small as possible in order to bring the heat transfer section 4 into contact with the sample in as wide an area as possible. There is. For this reason, in the detection electromagnetic wave passage part 3 according to the present embodiment, the width of the entrance is not more than 10 times the wavelength of the detection electromagnetic wave. Here, if the width of the entrance and exit of the detection electromagnetic wave passage 3 is substantially the same, that is, if the width of the exit is also 10 times or less the wavelength of the detection electromagnetic wave, diffraction of the detection electromagnetic wave occurs. This will be described with reference to FIG.

(電磁波の回折について)
図2は、サブmm程度の波長の電磁波が、外縁形状が数mmの半径を有する円形である開口部を通過するときの回折について説明するためのグラフおよびテーブルである。
(About electromagnetic wave diffraction)
FIG. 2 is a graph and table for explaining diffraction when an electromagnetic wave having a wavelength of about sub-mm passes through an opening having a circular outer shape with a radius of several millimeters.

図2の(a)は、周波数500GHz(すなわち、波長0.6mm)の電磁波が、それぞれ半径が1.0mm、2.5mm、4.0mmの開口部を通過した後、100mm進んだときのビーム径方向の位置におけるビーム断面強度をフラウンホーファー近似で計算したものをプロットしたグラフである。フラウンホーファー近似によると、開口部の外縁形状が上述したように円形である場合、回折パターン中央における光の強さをI、第1種ベッセル関数をJ、電磁波の波数をk、上記半径をa、開口の光軸と回折後の電磁波の光線がなす角をθとすると、 FIG. 2A shows a beam when an electromagnetic wave having a frequency of 500 GHz (that is, a wavelength of 0.6 mm) travels 100 mm after passing through openings having a radius of 1.0 mm, 2.5 mm, and 4.0 mm, respectively. It is the graph which plotted what calculated the beam cross-sectional intensity | strength in the position of radial direction by Fraunhofer approximation. According to the Fraunhofer approximation, when the outer edge shape of the opening is circular as described above, the light intensity at the center of the diffraction pattern is I 0 , the first type Bessel function is J 1 , the wave number of electromagnetic waves is k, and the radius is A, and the angle between the optical axis of the aperture and the diffracted electromagnetic wave is θ,

Figure 2017040484
Figure 2017040484

で表される。また、開口部の外縁形状が矩形である場合、矩形の辺の長さをaおよびa、回折像平面における座標を(p,q)とすると、 It is represented by Further, when the outer edge shape of the opening is a rectangle, the length of the side of the rectangle is a 1 and a 2 , and the coordinates in the diffraction image plane are (p, q).

Figure 2017040484
Figure 2017040484

で表される。なお、電磁波は平行光で均一な強度分布としている。また、開口部の厚みは考慮していない。すなわち、開口部を設けた部材は、その厚みが非常に薄いものである。 It is represented by The electromagnetic waves are parallel light and have a uniform intensity distribution. Further, the thickness of the opening is not taken into consideration. That is, the member provided with the opening is very thin.

また、図2の(b)は、開口部の半径が1.0mm、2.5mm、4.0mmのときの、電磁波が100mm進んだ後のビーム半径(ビームの中心から規格化強度が1/eとなる位置までの長さ、eはネイピア数)および、電磁波が100mm進んだ後のビーム広がり角(100mm進む前後でビーム径がどれくらい広がったか)を示すテーブルである。   FIG. 2 (b) shows the beam radius after the electromagnetic wave has advanced 100 mm when the radius of the opening is 1.0 mm, 2.5 mm, and 4.0 mm (the normalized intensity is 1/0 from the center of the beam). This is a table showing the length to the position e, e being the number of Napiers) and the beam divergence angle after the electromagnetic wave has advanced 100 mm (how much the beam diameter has expanded before and after 100 mm).

図2の(a)および(b)によれば、100mm進んだ後のビーム半径は、開口部の半径が小さくなるにつれて大きくなる。すなわち、電磁波は、開口部の半径が小さくなるにつれて、大きく回折する。例えば、半径1.0mmの開口部の場合、100mm進んだ後のビーム半径が20mm、ビーム広がり角が10.8°であり、また、半径2.5mmの開口部の場合、100mm進んだ後のビーム半径が8mm、ビーム広がり角が3.1°である。このように、開口部の幅(換言すれば、検出電磁波通過部3の入射口および出射口の幅)が電磁波の波長の10倍以下の長さであると、電磁波は回折する。なお、図2では開口部の厚みを考慮していないが、開口部の厚みを考慮した場合、さらに回折が大きくなる。   According to FIGS. 2A and 2B, the beam radius after traveling 100 mm increases as the radius of the opening decreases. That is, the electromagnetic wave is greatly diffracted as the radius of the opening is reduced. For example, in the case of an opening having a radius of 1.0 mm, the beam radius after traveling 100 mm is 20 mm and the beam divergence angle is 10.8 °. In the case of an opening having a radius of 2.5 mm, The beam radius is 8 mm and the beam divergence angle is 3.1 °. Thus, the electromagnetic wave is diffracted when the width of the opening (in other words, the width of the entrance and exit of the detection electromagnetic wave passage 3) is 10 times or less the wavelength of the electromagnetic wave. In FIG. 2, the thickness of the opening is not taken into account, but diffraction is further increased when the thickness of the opening is taken into consideration.

以上より、サンプルの温度変化を均一かつ迅速に行うためには、検出電磁波通過部3の入射口の幅を小さくすることが好ましく、当該幅は、装置サイズを鑑みると検出電磁波の波長の10倍以下の長さとすることが好ましいが、検出電磁波通過部3の出射口を入射口と略同一の幅とすると、電磁波は回折し、測定精度の低下を招いてしまう。   From the above, in order to perform the temperature change of the sample uniformly and quickly, it is preferable to reduce the width of the entrance of the detection electromagnetic wave passage 3, which is 10 times the wavelength of the detection electromagnetic wave in view of the apparatus size. The following length is preferable, but if the exit of the detection electromagnetic wave passage portion 3 has substantially the same width as the entrance, the electromagnetic wave is diffracted, resulting in a decrease in measurement accuracy.

これに対して、開口部の幅が電磁波の波長の10倍より長い場合、電磁波の回折が抑えられる。図2の(a)および(b)に示すように、半径が4.0mmの開口部の場合、100mm進んだ後のビーム半径が5mm、ビーム広がり角が0.6°となっており、ほとんど回折していないことが分かる。   On the other hand, when the width of the opening is longer than 10 times the wavelength of the electromagnetic wave, diffraction of the electromagnetic wave is suppressed. As shown in FIGS. 2 (a) and 2 (b), in the case of an opening having a radius of 4.0 mm, the beam radius after advancing 100 mm is 5 mm and the beam divergence angle is 0.6 °. It can be seen that it is not diffracted.

(回折を抑える検出電磁波通過部3の構成について)
そこで本発明では、検出電磁波通過部3の出射口の外縁形状である円形の直径を、入射口の外縁形状である円形の直径より長くすることで、電磁波の回折を抑えている。これについて、図3を参照して説明する。図3の(a)は、電磁波測定装置10の上面図であり、図3の(b)は、図3の(a)のAA断面図であり、図3の(c)は、電磁波測定装置10の側面図であり、図3の(d)は、図3の(c)のBB断面図である。なお、図3では、電磁波源1および電磁波検出部2を省略している。また、本実施形態では、検出電磁波通過部3の入射口および出射口の外縁形状が円形であるため、出射口の外縁形状の直径が入射口の外縁形状の直径より長い構成となるが、検出電磁波通過部3の入射口および出射口の外縁形状が三角形である場合は、出射孔の外縁形状における最短の辺が入射口の外縁形状における最短の辺より長い構成となり、検出電磁波通過部3の入射口および出射口の外縁形状が、三角形を除く凸多角形である場合は、出射口の外縁形状における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線が入射口の外縁形状における当該直線より長い構成となる。
(About the structure of the detection electromagnetic wave passage part 3 which suppresses diffraction)
Therefore, in the present invention, the diffraction of the electromagnetic wave is suppressed by making the circular diameter, which is the outer edge shape of the exit opening of the detection electromagnetic wave passage part 3, longer than the circular diameter, which is the outer edge shape of the incident opening. This will be described with reference to FIG. 3A is a top view of the electromagnetic wave measuring apparatus 10, FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 3C is an electromagnetic wave measuring apparatus. FIG. 3D is a cross-sectional view taken along the line BB in FIG. In FIG. 3, the electromagnetic wave source 1 and the electromagnetic wave detector 2 are omitted. In this embodiment, since the outer edge shape of the entrance and the exit of the detection electromagnetic wave passage 3 is circular, the diameter of the outer edge of the exit is longer than the diameter of the outer edge of the entrance. When the outer edge shape of the entrance and exit of the electromagnetic wave passage part 3 is a triangle, the shortest side in the outer edge shape of the exit hole is longer than the shortest side in the outer edge shape of the entrance hole. When the outer edge shape of the entrance and exit is a convex polygon excluding a triangle, the shortest straight line connecting any one side and the other side that is not in contact with the outside edge of the exit edge is the outer edge of the entrance The configuration is longer than the straight line in the shape.

検出電磁波通過部3は、入射口から出射口に進むにつれて、その外縁形状である円形の直径が長くなるように形成されている。これにより、検出電磁波通過部3は、図3の(b)に示すように、当該円形の面積(以下、開口サイズ)もまた、入射口から出射口に進むにつれて大きくなる。つまり本実施形態の場合、検出電磁波通過部3の形状は円錐台形である。なお、入射口から出射口に進むにつれて、その開口サイズが大きくなるように形成されていれば、検出電磁波通過部3の形状は円錐台形に限定されない。本実施形態の場合、検出電磁波通過部3は、図3の(b)に示すように、開口サイズが直線的に変化しているが、開口サイズは曲線的に変化してもよいし、階段状に変化してもよい。換言すれば、本実施形態では、図3の(b)に示す入射口と出射口とを結ぶ2本の線が直線であるが、これが曲線であってもよいし、階段状の線であってもよい。   The detection electromagnetic wave passage part 3 is formed so that the circular diameter which is the outer edge shape thereof becomes longer as it proceeds from the entrance to the exit. As a result, as shown in FIG. 3B, the detected electromagnetic wave passage portion 3 also has a larger circular area (hereinafter referred to as an opening size) as it goes from the entrance to the exit. That is, in the case of this embodiment, the shape of the detection electromagnetic wave passage part 3 is a truncated cone. Note that the shape of the detection electromagnetic wave passage portion 3 is not limited to the truncated cone shape as long as the opening size is increased from the entrance to the exit. In the case of the present embodiment, the detected electromagnetic wave passage 3 has an opening size that changes linearly as shown in FIG. 3B, but the opening size may change in a curved line or a staircase. The shape may change. In other words, in this embodiment, the two lines connecting the entrance and the exit shown in FIG. 3B are straight lines, but this may be a curve or a stepped line. May be.

また、本実施形態に係る検出電磁波通過部3は、その形状が円錐台形であるため、図3の(d)に示すように、上方向から見た断面図でも入射口から出射口に進むにつれて、その開口サイズが大きくなるように形成されているが、この例に限定されず、上方向から見た断面図では、入射口から出射口に進んでも、その開口サイズは変わらないように形成されていてもよい。   Moreover, since the shape of the detection electromagnetic wave passage part 3 according to the present embodiment is a truncated cone, as shown in FIG. 3D, the cross-sectional view seen from above also progresses from the entrance to the exit. However, the opening size is not limited to this example, and the sectional view seen from above is formed so that the opening size does not change even if the opening proceeds from the entrance to the exit. It may be.

以上のように、検出電磁波通過部3は、出射口の外縁形状である円形の直径が、入射口の外縁形状である円形の直径より長いため、出射口の開口サイズが入射口の開口サイズより大きくなっている。ここで、出射口の開口サイズは、入射口の開口サイズより少しでも大きければ、入射口の開口サイズと略同一である場合と比べて、電磁波の回折を抑えることができる。なお、出射口の開口サイズは、上述したフラウンホーファー近似を用いて算出される、電磁波が検出電磁波通過部3の入射口から出射口まで進んだ後のビーム半径から決めてもよい。これにより、広がったビームがほぼ出射口を通るような出射口の開口サイズとなり、電磁波の回折がほぼ発生しないようにすることができる。図2の例を用いて具体的に説明すると、電磁波の波長が0.6mm、入射口の幅が2.5mm、入射口から出射口までの距離が100mmである場合、フラウンホーファー近似を用いると、電磁波が100mm進んだ後のビーム半径は8mmとなる。つまり、出射口を8mmの2倍である16mmより長い直径を有する円形とすれば、電磁波のビームがほぼ出射口を通ることとなり、電磁波の回折がほぼ発生しないようにすることができる。   As described above, the detection electromagnetic wave passage 3 has a circular diameter that is the outer edge shape of the exit opening longer than the circular diameter that is the outer edge shape of the entrance opening, and therefore the opening size of the exit opening is larger than the opening size of the entrance opening. It is getting bigger. Here, if the aperture size of the exit port is slightly larger than the aperture size of the entrance port, diffraction of electromagnetic waves can be suppressed as compared with the case where the aperture size is substantially the same as the aperture size of the entrance port. Note that the opening size of the exit port may be determined from the beam radius after the electromagnetic wave travels from the entrance to the exit of the detection electromagnetic wave passage 3 calculated using the Fraunhofer approximation described above. Thereby, the opening size of the emission port is such that the spread beam almost passes through the emission port, and electromagnetic wave diffraction can be hardly generated. Specifically, using the example of FIG. 2, when the wavelength of the electromagnetic wave is 0.6 mm, the width of the entrance is 2.5 mm, and the distance from the entrance to the exit is 100 mm, the Fraunhofer approximation is used. The beam radius after the electromagnetic wave has advanced 100 mm is 8 mm. That is, if the exit port is a circle having a diameter longer than 16 mm, which is twice 8 mm, the electromagnetic wave beam almost passes through the exit port, so that almost no diffraction of the electromagnetic wave occurs.

(照射電磁波通過部7)
照射電磁波通過部7は、照射電磁波をサンプル保持部5に導くものである。本実施形態に係る照射電磁波通過部7は伝熱部4を貫通する穴であり、電磁波源1から出射された照射電磁波は、照射電磁波通過部7を通ってサンプルに照射される。なお、照射電磁波通過部7は、穴に検出電磁波の透過率の高い材質が充填されたものであってもよい。
(Irradiated electromagnetic wave passage 7)
The irradiation electromagnetic wave passage part 7 guides the irradiation electromagnetic wave to the sample holding part 5. The irradiation electromagnetic wave passage part 7 according to the present embodiment is a hole that penetrates the heat transfer part 4, and the irradiation electromagnetic wave emitted from the electromagnetic wave source 1 is irradiated to the sample through the irradiation electromagnetic wave passage part 7. In addition, the irradiation electromagnetic wave passage 7 may be one in which a hole is filled with a material having a high detection electromagnetic wave transmittance.

本実施形態に係る照射電磁波通過部7は、入射口(遠位開口)、すなわち電磁波源1側の端部の形状と、出射口(近位開口)、すなわちサンプル保持部5側の端部の形状とがともに円形である。ただし、この構成に限定されず、入射口および出射口の形状は例えば正方形や長方形などの凸四角形状であってもよいし、その他の凸多角形状であってもよい。   The irradiation electromagnetic wave passage 7 according to the present embodiment includes an incident port (distal opening), that is, an end shape on the electromagnetic wave source 1 side, and an exit port (proximal opening), that is, an end portion on the sample holding unit 5 side. Both shapes are circular. However, the shape of the entrance and the exit is not limited to this configuration, and may be a convex quadrangle such as a square or a rectangle, or may be another convex polygon.

また、本実施形態に係る照射電磁波通過部7は、電磁波の回折を抑えるために、入射口における直径と出射口における直径とを電磁波の波長の10倍より長くした構成である。また、入射口の開口サイズと出射口との開口サイズとは略同一である。すなわち、本実施形態に係る照射電磁波通過部7の形状は円柱形状である。なお、照射電磁波通過部7の形状は、この例に限定されない。その他の形状の照射電磁波通過部7については、後述する実施形態2および3にて説明する。   Moreover, the irradiation electromagnetic wave passage part 7 which concerns on this embodiment is the structure which made the diameter in an entrance port and the diameter in an exit port longer than 10 times the wavelength of electromagnetic waves, in order to suppress the diffraction of electromagnetic waves. The opening size of the entrance and the opening size of the exit are substantially the same. That is, the shape of the irradiation electromagnetic wave passage part 7 according to the present embodiment is a cylindrical shape. In addition, the shape of the irradiation electromagnetic wave passage part 7 is not limited to this example. The irradiated electromagnetic wave passage 7 having other shapes will be described in Embodiments 2 and 3 described later.

なお、照射電磁波通過部7の入射口および出射口の開口サイズは、照射電磁波のビーム径より十分大きいことが好ましい。これにより、照射電磁波がすべて照射電磁波通過部7に入射することとなる。   In addition, it is preferable that the opening size of the entrance and exit of the irradiated electromagnetic wave passage 7 is sufficiently larger than the beam diameter of the irradiated electromagnetic wave. As a result, all of the irradiated electromagnetic wave enters the irradiated electromagnetic wave passage 7.

また、検出電磁波通過部3および照射電磁波通過部7は、電磁波のビームが検出電磁波通過部3および照射電磁波通過部7の壁面に当たらないように形成されることが好ましい。これにより、入射した照射電磁波および検出電磁波のすべてを、入射した方向のままで出射することができる。   The detection electromagnetic wave passage 3 and the irradiation electromagnetic wave passage 7 are preferably formed such that the electromagnetic wave beam does not hit the wall surfaces of the detection electromagnetic wave passage 3 and the irradiation electromagnetic wave passage 7. As a result, all of the incident irradiated electromagnetic waves and detected electromagnetic waves can be emitted in the incident direction.

なお、赤外領域より長波長の電磁波を検出する場合、黒体輻射によって周囲にある物体から放射される電磁波により、バックグラウンドノイズが発生しやすい。このため、本実施形態に係る電磁波測定装置10は、電磁波源1および照射電磁波通過部7、並びに電磁波検出部2および検出電磁波通過部3が、その間に隙間ができないように直接接続されているか、または遮光性を有する別の通過部を介して接続されていることが好ましい。これにより、バックグラウンドノイズの原因となる電磁波源1以外からの電磁波をカットすることができる。また、検出電磁波通過部3および照射電磁波通過部7の入射口および出射口の開口サイズを小さくすれば、周囲にある物体から放射される電磁波が検出電磁波通過部3および照射電磁波通過部7に入射しづらくなるので、バックグラウンドノイズの発生を抑えることができる。なお、この構成はその他の実施形態および変形例に適用可能である。   When detecting electromagnetic waves having a wavelength longer than that in the infrared region, background noise is likely to be generated by electromagnetic waves radiated from surrounding objects by black body radiation. For this reason, the electromagnetic wave measuring apparatus 10 according to the present embodiment is directly connected so that there is no gap between the electromagnetic wave source 1 and the irradiated electromagnetic wave passing portion 7, and the electromagnetic wave detecting portion 2 and the detected electromagnetic wave passing portion 3, Or it is preferable that it connects through another passage part which has light-shielding property. Thereby, electromagnetic waves from other than the electromagnetic wave source 1 that cause background noise can be cut. Moreover, if the opening size of the entrance and exit of the detection electromagnetic wave passage 3 and the irradiation electromagnetic wave passage 7 is reduced, the electromagnetic wave radiated from a surrounding object enters the detection electromagnetic wave passage 3 and the irradiation electromagnetic wave passage 7. Since it becomes difficult, background noise can be suppressed. This configuration can be applied to other embodiments and modifications.

(作用効果)
以上のように、本実施形態に係る電磁波測定装置10は、検出電磁波通過部3の入射口の幅(直径)が検出電磁波の波長の10倍以下の長さであり、検出電磁波通過部3の出射口の開口サイズが、入射口の開口サイズより大きくなっている。
(Function and effect)
As described above, in the electromagnetic wave measurement device 10 according to the present embodiment, the width (diameter) of the entrance of the detection electromagnetic wave passage 3 is 10 times or less the wavelength of the detection electromagnetic wave, The opening size of the exit opening is larger than the opening size of the entrance opening.

これにより、検出電磁波の回折を抑えることができ、測定誤差の発生を抑えることができる。また、入射口の開口サイズをなるべく小さくしているので、サンプル(またはサンプルを導入したセル)と接触する伝熱部4の面積が広くなり、サンプルを均一かつ迅速に温度変化させ易くすることができる。   Thereby, diffraction of a detection electromagnetic wave can be suppressed and generation | occurrence | production of a measurement error can be suppressed. In addition, since the opening size of the entrance is made as small as possible, the area of the heat transfer section 4 that comes into contact with the sample (or the cell into which the sample is introduced) is increased, and the temperature of the sample can be easily and uniformly changed. it can.

また、本実施形態に係る電磁波測定装置10は、照射電磁波通過部7の入射口の開口サイズと出射口の開口サイズとが略同一であり、当該入射口と出射口とは、その幅が照射電磁波の波長の10倍より長い。これにより、照射電磁波の回折を抑えることができる。   Further, in the electromagnetic wave measuring apparatus 10 according to the present embodiment, the opening size of the incident port of the irradiation electromagnetic wave passage unit 7 and the opening size of the output port are substantially the same, and the width of the incident port and the output port is irradiated. It is longer than 10 times the wavelength of electromagnetic waves. Thereby, diffraction of irradiation electromagnetic waves can be suppressed.

(適用例)
本実施形態に係る電磁波測定装置10は、例えば、電磁波源1から照射され、サンプルを透過して電磁波検出部2で検出された電磁波と、サンプルが無い状態において電磁波検出部2で検出された電磁波との強度を比較することで、当該サンプルにおける電磁波の透過率を測定する装置に適用することができる。また、照射電磁波通過部7、検出電磁波通過部3、およびサンプル保持部5などを適宜調整することで、サンプルにおける電磁波の反射率や散乱係数を測定する装置に適用することも可能である。なお、この適用例は後述する実施形態2および3でも同様である。
(Application example)
The electromagnetic wave measuring apparatus 10 according to the present embodiment is, for example, an electromagnetic wave that is irradiated from the electromagnetic wave source 1 and transmitted through the sample and detected by the electromagnetic wave detecting unit 2, and an electromagnetic wave that is detected by the electromagnetic wave detecting unit 2 when there is no sample. Can be applied to an apparatus for measuring the transmittance of electromagnetic waves in the sample. Moreover, it is also possible to apply to the apparatus which measures the reflectance and scattering coefficient of the electromagnetic wave in a sample by adjusting the irradiation electromagnetic wave passage part 7, the detection electromagnetic wave passage part 3, the sample holding part 5, etc. suitably. This application example is the same in Embodiments 2 and 3 described later.

〔実施形態2〕
本発明の他の実施形態について、図4に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.

図4の(a)は、本実施形態に係る電磁波測定装置10aの上面図であり、図4の(b)は、図4の(a)のAA断面図であり、図4の(c)は、図4の(a)のAA断面図であって、図4の(b)とは別の例を示す図である。なお、図4では、電磁波源1および電磁波検出部2を省略している。   4A is a top view of the electromagnetic wave measuring apparatus 10a according to the present embodiment, FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. These are AA sectional drawing of (a) of FIG. 4, Comprising: It is a figure which shows an example different from (b) of FIG. In FIG. 4, the electromagnetic wave source 1 and the electromagnetic wave detector 2 are omitted.

本実施形態に係る電磁波測定装置10aは、図4の(b)に示すように、実施形態1にて説明した照射電磁波通過部7に代えて、照射電磁波通過部7aを備えている。なお以下では、照射電磁波通過部7aにおいて、照射電磁波通過部7と同様の構成についてはその説明を省略している。   As shown in FIG. 4B, the electromagnetic wave measurement device 10a according to the present embodiment includes an irradiation electromagnetic wave passage 7a instead of the irradiation electromagnetic wave passage 7 described in the first embodiment. In the following description, the description of the configuration similar to that of the irradiation electromagnetic wave passage 7 in the irradiation electromagnetic wave passage 7a is omitted.

照射電磁波通過部7aは、実施形態1にて説明した照射電磁波通過部7と比較して、その形状が異なる。具体的には、照射電磁波通過部7aは、図4の(b)に示すように、入射口から出射口に進むにつれて、その開口サイズが小さくなるように形成されている。ここで、照射電磁波通過部7aの出射口および入射口の外縁形状は円形であるため、照射電磁波通過部7aの形状は円錐台形である。   The shape of the irradiated electromagnetic wave passage portion 7a is different from that of the irradiated electromagnetic wave passage portion 7 described in the first embodiment. Specifically, as shown in FIG. 4B, the irradiation electromagnetic wave passage 7a is formed so that the opening size decreases as it proceeds from the entrance to the exit. Here, since the outer edge shape of the radiation | emission electromagnetic wave passage part 7a and the incident port is circular, the shape of the radiation electromagnetic wave passage part 7a is a truncated cone.

なお、入射口から出射口に進むにつれて、その開口サイズが小さくなるように形成されていれば、照射電磁波通過部7aの形状は円錐台形に限定されない。本実施形態の場合、照射電磁波通過部7aは、図4の(b)に示すように、開口サイズが直線的に変化しているが、曲線的に変化してもよいし、階段状に変化してもよい。換言すれば、本実施形態では、図4の(b)に示す入射口と出射口とを結ぶ2本の線が直線であるが、これが曲線であってもよいし、階段状の線であってもよい。   Note that the shape of the irradiated electromagnetic wave passage portion 7a is not limited to the truncated cone shape as long as the opening size is reduced from the entrance to the exit. In the case of this embodiment, as shown in FIG. 4B, the irradiation electromagnetic wave passage portion 7a has an opening size that changes linearly, but may change in a curved line, or change in a staircase pattern. May be. In other words, in this embodiment, the two lines connecting the entrance and the exit shown in FIG. 4B are straight lines, but this may be a curve or a stepped line. May be.

また、本実施形態に係る照射電磁波通過部7aは、その形状が円錐台形であるため、実施形態1にて説明した照射電磁波通過部7と同様に、上方向から見た断面図でも入射口から出射口に進むにつれて、その開口サイズが小さくなるように形成されているが、この例に限定されず、上方向から見た断面図では、入射口から出射口に進んでも、その開口サイズは変わらないように形成されていてもよい。   Moreover, since the irradiation electromagnetic wave passage part 7a according to the present embodiment has a truncated cone shape, similarly to the irradiation electromagnetic wave passage part 7 described in the first embodiment, the cross-sectional view seen from above also shows from the entrance. The aperture size is formed so that the aperture size decreases as it proceeds to the exit port. However, the present invention is not limited to this example, and in the cross-sectional view seen from above, the aperture size changes even if the entrance port proceeds to the exit port. It may be formed so that there is no.

以上のように、本実施形態に係る電磁波測定装置10aは、照射電磁波通過部7aの出射口の開口サイズが入射口の開口サイズより小さくなっている。これにより、出射口の開口サイズが小さくなるため、実施形態1にて説明した電磁波測定装置10に比べて、サンプル(またはサンプルを導入したセル)と接触する伝熱部4の面積が広くなる。これにより、サンプルを均一かつ迅速に温度変化させ易くすることができるとともに、精密な温度調整が可能となる。   As described above, in the electromagnetic wave measurement device 10a according to the present embodiment, the opening size of the emission port of the irradiated electromagnetic wave passage 7a is smaller than the opening size of the incident port. Thereby, since the opening size of the emission port is reduced, the area of the heat transfer section 4 that comes into contact with the sample (or the cell into which the sample is introduced) is increased as compared with the electromagnetic wave measurement apparatus 10 described in the first embodiment. This makes it easy to change the temperature of the sample uniformly and quickly, and enables precise temperature adjustment.

なお、本実施形態に係る電磁波測定装置10aは、照射電磁波通過部7a(第1の電磁波透過部)の出射口の外縁形状である、円形の直径(または、三角形における最短の辺、三角形を除く凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線)が波長の10倍以下の長さであることが好ましい。これにより、照射電磁波通過部7aから出射した電磁波の回折を抑えることができるとともに、検出電磁波通過部3に入射する電磁波(検出電磁波)の回折を抑えることができる。   In addition, the electromagnetic wave measuring apparatus 10a according to the present embodiment excludes a circular diameter (or the shortest side in the triangle, the triangle) which is the outer edge shape of the emission port of the irradiated electromagnetic wave passage part 7a (first electromagnetic wave transmission part). It is preferable that the shortest straight line connecting any one side and the other side not in contact with the one side in the convex polygon has a length of 10 times or less of the wavelength. Thereby, the diffraction of the electromagnetic wave emitted from the irradiated electromagnetic wave passage 7a can be suppressed, and the diffraction of the electromagnetic wave (detection electromagnetic wave) incident on the detection electromagnetic wave passage 3 can be suppressed.

また、この例の場合、検出電磁波通過部3の入射口の外縁形状である、円形の直径(または、三角形における最短の辺、三角形を除く凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線)が、波長の10倍以下の長さでなくてもよく、検出電磁波通過部3の出射口の開口サイズが、検出電磁波通過部3の入射口の開口サイズより大きくなくてもよい。具体的には、図4の(c)に示すように、検出電磁波通過部3a(第3の電磁波透過部)は、入射口における直径と出射口における直径とを電磁波の波長の10倍より長くし、また、入射口の開口サイズと出射口との開口サイズとを略同一とした円柱形状であってもよい。   In the case of this example, a circular diameter (or the shortest side of a triangle, or a convex polygon excluding a triangle, which is the outer edge shape of the entrance of the detection electromagnetic wave passage 3 does not contact the one side. The shortest straight line connecting the other side may not be 10 times or less the wavelength, and the opening size of the exit of the detection electromagnetic wave passage 3 is larger than the opening size of the entrance of the detection electromagnetic wave passage 3 It doesn't have to be big. Specifically, as shown in FIG. 4 (c), the detected electromagnetic wave passage part 3a (third electromagnetic wave transmission part) has a diameter at the incident port and a diameter at the emission port longer than 10 times the wavelength of the electromagnetic wave. In addition, a cylindrical shape in which the opening size of the entrance and the opening size of the exit is substantially the same may be used.

また、この例の場合、図4の(c)に示すように、伝熱部4において、電磁波源1とサンプル保持部5との間に設けられている部分は、照射電磁波を透過しない第3の遮光部4c(第1の遮光部)と表現することもできる。また同様に、サンプル保持部5と電磁波検出部2との間に設けられている部分は、検出電磁波を透過しない第4の遮光部4d(第3の遮光部)と表現することもできる。   In the case of this example, as shown in FIG. 4C, the portion provided between the electromagnetic wave source 1 and the sample holding unit 5 in the heat transfer unit 4 does not transmit the irradiated electromagnetic wave. The light shielding part 4c (first light shielding part) can also be expressed. Similarly, a portion provided between the sample holding unit 5 and the electromagnetic wave detection unit 2 can also be expressed as a fourth light shielding unit 4d (third light shielding unit) that does not transmit the detected electromagnetic wave.

〔実施形態3〕
本発明のさらに別の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.

図5の(a)は、本実施形態に係る電磁波測定装置10bの上面図であり、図5の(b)は、図5の(b)のAA断面図である。なお、図5では、電磁波源1および電磁波検出部2を省略している。   FIG. 5A is a top view of the electromagnetic wave measuring apparatus 10b according to the present embodiment, and FIG. 5B is a cross-sectional view taken along the line AA in FIG. In FIG. 5, the electromagnetic wave source 1 and the electromagnetic wave detector 2 are omitted.

本実施形態に係る電磁波測定装置10bは、図5の(b)に示すように、実施形態1にて説明した検出電磁波通過部3および照射電磁波通過部7に代えて、検出電磁波通過部3bおよび照射電磁波通過部7bを備えている。なお以下では、検出電磁波通過部3bおよび照射電磁波通過部7bにおいて、検出電磁波通過部3および照射電磁波通過部7と同様の構成についてはその説明を省略している。   As shown in FIG. 5B, the electromagnetic wave measuring device 10b according to the present embodiment replaces the detected electromagnetic wave passage 3 and the irradiated electromagnetic wave passage 7 described in the first embodiment with a detected electromagnetic wave passage 3b and An irradiation electromagnetic wave passage 7b is provided. Hereinafter, in the detection electromagnetic wave passage 3b and the irradiation electromagnetic wave passage 7b, the description of the same configurations as those of the detection electromagnetic wave passage 3 and the irradiation electromagnetic wave passage 7 is omitted.

検出電磁波通過部3bは、検出電磁波通過部3と同様に、入射口から出射口に進むにつれて、その開口サイズが大きくなるように形成された円錐台形状である。また、照射電磁波通過部7bは、照射電磁波通過部7と同様に円柱形状である。   Similarly to the detection electromagnetic wave passage part 3, the detection electromagnetic wave passage part 3b has a truncated cone shape formed so that its opening size increases as it proceeds from the entrance to the exit. Further, the irradiated electromagnetic wave passage 7 b has a cylindrical shape like the irradiated electromagnetic wave passage 7.

実施形態1に係る電磁波測定装置10では、サンプル(またはサンプルを導入するセル)と伝熱部4との接触面積を広くするために、検出電磁波通過部3の入射口の幅は、検出電磁波の波長の10倍以下となっている。また、照射電磁波の回折を抑えるために、照射電磁波通過部7の出射口の幅は、照射電磁波の波長の10倍より長くなっている。つまり、実施形態1で説明した電磁波測定装置10では、図3の(b)に示すように、照射電磁波通過部7の出射口の開口サイズに対して、検出電磁波通過部3の入射口の開口サイズが小さくなっている。   In the electromagnetic wave measurement apparatus 10 according to the first embodiment, in order to increase the contact area between the sample (or the cell into which the sample is introduced) and the heat transfer unit 4, the width of the incident port of the detection electromagnetic wave passing unit 3 is the detection electromagnetic wave. The wavelength is 10 times or less. Moreover, in order to suppress the diffraction of the irradiated electromagnetic wave, the width of the exit port of the irradiated electromagnetic wave passage 7 is longer than 10 times the wavelength of the irradiated electromagnetic wave. That is, in the electromagnetic wave measuring apparatus 10 described in the first embodiment, as shown in FIG. 3B, the opening of the entrance of the detection electromagnetic wave passage 3 is larger than the opening size of the exit of the irradiation electromagnetic wave passage 7. The size is getting smaller.

これに対して、本実施形態に係る電磁波測定装置10bでは、図5の(b)に示すように、照射電磁波通過部7bの出射口の開口サイズに対して、検出電磁波通過部3bの入射口の開口サイズが大きくなっている。ここで、検出電磁波通過部3bの入射口の幅は、サンプル(またはサンプルを導入するセル)と伝熱部4との接触面積を広くするために、電磁波測定装置10と同様に、検出電磁波の波長の10倍以下の長さである。すなわち、本実施形態に係る電磁波測定装置10bは、電磁波測定装置10と比較して、照射電磁波通過部7bの出射口(および入射口)の開口サイズが小さくなっているとも表現できる。   On the other hand, in the electromagnetic wave measurement device 10b according to the present embodiment, as shown in FIG. 5B, the incident port of the detection electromagnetic wave passage 3b is larger than the opening size of the emission port of the irradiation electromagnetic wave passage 7b. The opening size of is large. Here, in order to increase the contact area between the sample (or the cell into which the sample is introduced) and the heat transfer unit 4, the width of the incident port of the detected electromagnetic wave passage 3b is the same as that of the electromagnetic wave measuring device 10 in order to detect the detected electromagnetic wave. The length is 10 times or less of the wavelength. That is, the electromagnetic wave measurement device 10b according to the present embodiment can also be expressed as the opening size of the exit (and entrance) of the irradiated electromagnetic wave passage 7b is smaller than that of the electromagnetic wave measurement device 10.

これにより、照射電磁波通過部7bの出射口の幅は、照射電磁波の波長の10倍以下の長さとなるので、出射口から出射された照射電磁波は回折する。しかしながら、検出電磁波通過部3bの入射口の開口サイズが照射電磁波通過部7bの開口サイズより大きいため、回折によって所望の方向以外に進んだ電磁波についても、検出電磁波通過部3bを通過させることができる。これにより、伝熱部4にて反射される(換言すれば、検出電磁波通過部3bを通過しない)電磁波を少なくすることができる。   As a result, the width of the exit port of the irradiated electromagnetic wave passage portion 7b is not more than 10 times the wavelength of the irradiated electromagnetic wave, so that the irradiated electromagnetic wave emitted from the exit port is diffracted. However, since the opening size of the entrance of the detection electromagnetic wave passage portion 3b is larger than the opening size of the irradiation electromagnetic wave passage portion 7b, the detection electromagnetic wave passage portion 3b can also pass through the electromagnetic wave that has traveled in a direction other than the desired direction due to diffraction. . Thereby, the electromagnetic waves reflected by the heat transfer section 4 (in other words, do not pass through the detected electromagnetic wave passing section 3b) can be reduced.

なお、伝熱部4にて反射される電磁波をより少なくするためには、検出電磁波通過部3bの入射口の開口サイズはなるべく大きくすることが好ましい。ただし、最大でも検出電磁波の波長の10倍以下の幅とすることが好ましい。これにより、伝熱部4にて反射される電磁波をより少なくするという機能と、サンプルを均一かつ迅速に温度変化させ易くするという機能とを両立することができる。   In addition, in order to reduce the electromagnetic wave reflected by the heat transfer part 4, it is preferable to make the opening size of the entrance of the detection electromagnetic wave passage part 3b as large as possible. However, the width is preferably 10 times or less the wavelength of the detected electromagnetic wave at the maximum. Thereby, it is possible to achieve both the function of reducing the electromagnetic wave reflected by the heat transfer section 4 and the function of easily and uniformly changing the temperature of the sample.

〔実施形態4〕
本発明のさらに別の実施形態について、図6および7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe still another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.

図6は、本実施形態に係る電磁波測定装置10cの斜視図である。また、図7の(a)は、電磁波測定装置10cの側面図であり、図7の(b)は、図7の(a)のBB断面図である。なお、図7では、電磁波源1および電磁波検出部2を省略している。   FIG. 6 is a perspective view of the electromagnetic wave measurement device 10c according to the present embodiment. 7A is a side view of the electromagnetic wave measuring device 10c, and FIG. 7B is a cross-sectional view taken along the line BB in FIG. 7A. In FIG. 7, the electromagnetic wave source 1 and the electromagnetic wave detector 2 are omitted.

本実施形態に係る電磁波測定装置10cは、図6および図7の(b)に示すように、実施形態1にて説明した検出電磁波通過部3、サンプル保持部5、および照射電磁波通過部7に代えて、検出電磁波通過部3c、サンプル保持部5cおよび照射電磁波通過部7cを備えている。また、電磁波測定装置10cは、新たに電磁波方向変換部8(プリズム)を備えている。   As shown in FIG. 6 and FIG. 7B, the electromagnetic wave measuring device 10 c according to the present embodiment includes the detection electromagnetic wave passage unit 3, the sample holding unit 5, and the irradiation electromagnetic wave passage unit 7 described in the first embodiment. Instead, a detection electromagnetic wave passage part 3c, a sample holding part 5c, and an irradiation electromagnetic wave passage part 7c are provided. Moreover, the electromagnetic wave measuring apparatus 10c is newly provided with an electromagnetic wave direction conversion unit 8 (prism).

なお以下では、検出電磁波通過部3c、サンプル保持部5c、および照射電磁波通過部7cにおいて、検出電磁波通過部3、サンプル保持部5、および照射電磁波通過部7と同様の構成については、その説明を省略している。   In the following, in the detection electromagnetic wave passage part 3c, the sample holding part 5c, and the irradiation electromagnetic wave passage part 7c, the same configurations as those of the detection electromagnetic wave passage part 3, the sample holding part 5 and the irradiation electromagnetic wave passage part 7 will be described. Omitted.

電磁波方向変換部8は、入射した電磁波の方向を変換するものであり、いわゆるプリズムである。具体的には、電磁波方向変換部8は、図7の(b)に示すように、底面が直角二等辺三角形の三角柱形状のプリズムであり、当該直角二等辺三角形の斜辺を一辺とする側面(以下、斜辺側面)が、サンプル保持部5cの一側面となっている。そして、電磁波方向変換部8の残りの二側面はそれぞれ、照射電磁波通過部7cの出射口、および検出電磁波通過部3cの入射口とそれぞれ接触している。これにより、照射電磁波通過部7cの出射口から電磁波方向変換部8に入射した照射電磁波はその進行方向を変え、サンプル保持部5cの方向へ進む。そして、照射電磁波は斜辺側面で全反射し、検出電磁波として検出電磁波通過部3cの方向に進む。最後に、検出電磁波通過部3cと接触した面を通過するとき、その進行方向を変える。その結果、検出電磁波は検出電磁波通過部3cを通過し、電磁波検出部2に入射することとなる。   The electromagnetic wave direction conversion unit 8 converts the direction of the incident electromagnetic wave, and is a so-called prism. Specifically, as shown in FIG. 7B, the electromagnetic wave direction conversion unit 8 is a prism having a triangular prism shape whose bottom surface is a right-angled isosceles triangle, and a side surface having the hypotenuse of the right-angled isosceles triangle as one side ( Hereinafter, the hypotenuse side surface is one side surface of the sample holding portion 5c. The remaining two side surfaces of the electromagnetic wave direction changing unit 8 are in contact with the exit port of the irradiated electromagnetic wave passage unit 7c and the entrance port of the detection electromagnetic wave passage unit 3c, respectively. As a result, the irradiated electromagnetic wave incident on the electromagnetic wave direction converting unit 8 from the exit of the irradiated electromagnetic wave passing unit 7c changes its traveling direction and proceeds in the direction of the sample holding unit 5c. Then, the irradiated electromagnetic wave is totally reflected on the side surface of the hypotenuse and proceeds in the direction of the detection electromagnetic wave passage 3c as the detection electromagnetic wave. Finally, when passing through the surface in contact with the detected electromagnetic wave passage 3c, the traveling direction is changed. As a result, the detected electromagnetic wave passes through the detected electromagnetic wave passage 3 c and enters the electromagnetic wave detector 2.

以上より、電磁波方向変換部8の各側面については、照射電磁波通過部7cと接触している面が、照射電磁波が入射する入射面であり、サンプル保持部5cの一側面となっている面が、照射電磁波が反射する反射面であり、検出電磁波通過部3cと接触している面が、検出電磁波が出射する出射面であると表現することもできる。   As mentioned above, about each side surface of the electromagnetic wave direction conversion part 8, the surface which is in contact with the irradiation electromagnetic wave passage part 7c is an incident surface on which the irradiation electromagnetic wave is incident, and the surface which is one side surface of the sample holding unit 5c. Further, it can be expressed that the surface that is a reflection surface that reflects the irradiated electromagnetic wave and that is in contact with the detection electromagnetic wave passage 3c is an emission surface from which the detection electromagnetic wave is emitted.

なお、電磁波方向変換部8は、シリコン、ゲルマニウム、ダイヤモンドなどといった、サブmm程度の波長の電磁波を透過することができる材質にて形成される。   The electromagnetic wave direction changing unit 8 is formed of a material that can transmit an electromagnetic wave having a wavelength of about sub-mm, such as silicon, germanium, diamond, or the like.

検出電磁波通過部3cは、実施形態1にて説明した検出電磁波通過部3と異なり、その入射口はサンプル保持部5と接触していない。その代わりに、上述したように検出電磁波通過部3cの入射口は、三角柱形状の電磁波方向変換部8の一側面(出射面)と接触している。   Unlike the detection electromagnetic wave passage portion 3 described in the first embodiment, the detection electromagnetic wave passage portion 3 c is not in contact with the sample holding portion 5. Instead, as described above, the incident port of the detection electromagnetic wave passage 3c is in contact with one side surface (outgoing surface) of the electromagnetic wave direction conversion unit 8 having a triangular prism shape.

照射電磁波通過部7cは、実施形態1にて説明した照射電磁波通過部7と異なり、その出射口はサンプル保持部5と接触していない。その代わりに、上述したように照射電磁波通過部7cの出射口は、三角柱形状の電磁波方向変換部8の一側面(入射面)と接触している。   Unlike the irradiation electromagnetic wave passage part 7 described in the first embodiment, the emission electromagnetic wave passage part 7 c does not contact the sample holding part 5. Instead, as described above, the emission port of the irradiation electromagnetic wave passage 7c is in contact with one side surface (incident surface) of the triangular-pole electromagnetic wave direction conversion unit 8.

サンプル保持部5cは、実施形態1にて説明したサンプル保持部5と異なり、検出電磁波通過部3cの入射口、および照射電磁波通過部7cの出射口と接触していない。その代わりに、上述したようにサンプル保持部5cは電磁波方向変換部8となっている。換言すれば、サンプル保持部5cの一側面を上記斜辺側面(反射面)が担っている。   Unlike the sample holder 5 described in the first embodiment, the sample holder 5c is not in contact with the entrance of the detection electromagnetic wave passage 3c and the exit of the irradiated electromagnetic wave passage 7c. Instead, as described above, the sample holding unit 5c is an electromagnetic wave direction changing unit 8. In other words, the oblique side surface (reflection surface) bears one side surface of the sample holding portion 5c.

なお、検出電磁波通過部3cの入射口および電磁波方向変換部8の出射面、並びに、照射電磁波通過部7cの出射口および電磁波方向変換部8の入射面は、直接接触せず、互いに対向し、その間に熱伝導性の高い物質からなる熱伝導部(不図示)が備えられている(換言すれば、熱伝導部を介して接触している)構成であってもよい。   In addition, the incident port of the detection electromagnetic wave passage 3c and the emission surface of the electromagnetic wave direction conversion unit 8, and the emission port of the irradiation electromagnetic wave passage 7c and the incident surface of the electromagnetic wave direction conversion unit 8 are not in direct contact with each other, There may be a configuration in which a heat conduction portion (not shown) made of a material having high heat conductivity is provided (in other words, in contact with the heat conduction portion).

ここで、照射電磁波通過部7cの出射口の開口サイズが、照射電磁波の回折が発生するようなサイズである場合、具体的には、出射口が照射電磁波の波長の10倍以下の幅を有する場合、照射電磁波のビーム径は、電磁波方向変換部8内で広がり、サンプルに照射されることとなる。つまり、サンプルにおける電磁波が照射された範囲が、照射電磁波のビーム径と異なるようになるため、当該範囲が分かりにくいという問題が発生する。   Here, when the opening size of the emission port of the irradiated electromagnetic wave passage portion 7c is such a size that diffraction of the irradiated electromagnetic wave occurs, specifically, the emission port has a width of 10 times or less the wavelength of the irradiated electromagnetic wave. In this case, the beam diameter of the irradiated electromagnetic wave spreads within the electromagnetic wave direction changing unit 8 and is irradiated to the sample. In other words, since the range of the sample irradiated with the electromagnetic wave becomes different from the beam diameter of the irradiated electromagnetic wave, there is a problem that the range is difficult to understand.

このような問題を発生させないための解決策の一例としては、本実施形態に係る電磁波測定装置10cにおいて、照射電磁波通過部7cの出射口の開口サイズを、検出電磁波通過部3cの入射口の開口サイズより大きくすればよい。具体的には、検出電磁波通過部3cの入射口の幅は、検出電磁波の波長の10倍以下の長さとすればよい。これは、伝熱部4と電磁波方向変換部8との接触面積を広くして伝熱部4と電磁波方向変換部8との温度差を小さくすることにより、サンプルを均一かつ迅速に温度変化させ易くするためである。一方、この例の場合、照射電磁波通過部7cの出射口の幅は、検出電磁波の波長の10倍より長くなっている。これにより、照射電磁波通過部7cを通過して電磁波方向変換部8に入射した照射電磁波の回折を抑えることができる。   As an example of a solution for preventing such a problem from occurring, in the electromagnetic wave measuring apparatus 10c according to the present embodiment, the opening size of the exit port of the irradiated electromagnetic wave passage portion 7c is set to the opening size of the entrance port of the detection electromagnetic wave passage portion 3c. It can be larger than the size. Specifically, the width of the entrance of the detection electromagnetic wave passage 3c may be a length that is 10 times or less the wavelength of the detection electromagnetic wave. This is to change the temperature of the sample uniformly and quickly by widening the contact area between the heat transfer section 4 and the electromagnetic wave direction conversion section 8 and reducing the temperature difference between the heat transfer section 4 and the electromagnetic wave direction conversion section 8. This is to make it easier. On the other hand, in the case of this example, the width of the exit of the irradiated electromagnetic wave passage 7c is longer than 10 times the wavelength of the detected electromagnetic wave. Thereby, the diffraction of the irradiation electromagnetic wave which passed through the irradiation electromagnetic wave passage part 7c and entered into the electromagnetic wave direction conversion part 8 can be suppressed.

また、本実施形態に係る電磁波測定装置10cは、サンプル保持部5cと電磁波方向変換部8との接触面積、換言すれば、斜辺側面のうち、サンプル保持部5cの一側面と接触する領域の面積を広くしている。これにより、すべての照射電磁波が確実にサンプルに照射されるようになる。   Moreover, the electromagnetic wave measuring apparatus 10c according to the present embodiment has a contact area between the sample holding unit 5c and the electromagnetic wave direction changing unit 8, in other words, an area of a region in contact with one side surface of the sample holding unit 5c among the oblique side surfaces. Is wide. This ensures that the sample is irradiated with all irradiated electromagnetic waves.

以上より、照射電磁波のビーム径は、電磁波方向変換部8への入射前後でほぼ変わらなくなる。そして、電磁波方向変換部8に入射した照射電磁波は、そのすべてが確実にサンプルに照射される。これにより、サンプルに対して電磁波が照射された範囲が分かりやすくなる。換言すれば、当該範囲は照射電磁波のビーム径の範囲となる。   As described above, the beam diameter of the irradiated electromagnetic wave is almost unchanged before and after being incident on the electromagnetic wave direction changing unit 8. All of the irradiated electromagnetic waves incident on the electromagnetic wave direction changing unit 8 are reliably irradiated on the sample. This makes it easy to understand the range in which the sample is irradiated with electromagnetic waves. In other words, this range is the range of the beam diameter of the irradiated electromagnetic wave.

なお、本実施形態に係る電磁波測定装置10cは、電磁波方向変換部8の反射面で電磁波が全反射するため、電磁波はサンプルを通過しない。つまり電磁波源1から出射された照射電磁波は、反射面にごく近いサンプル(つまり、反射面の近傍にあるサンプル)に浸み出し、相互作用した後、検出電磁波として検出電磁波通過部3cに入射することとなる。以上より、本実施形態に係る電磁波測定装置10cは、反射面の近傍にあるサンプルのみを測定することが可能な構成であり、電磁波の吸収量が多いサンプルや粉体などの測定に適している。   In the electromagnetic wave measurement device 10c according to the present embodiment, the electromagnetic wave does not pass through the sample because the electromagnetic wave is totally reflected by the reflection surface of the electromagnetic wave direction conversion unit 8. That is, the irradiated electromagnetic wave emitted from the electromagnetic wave source 1 immerses in a sample very close to the reflecting surface (that is, a sample in the vicinity of the reflecting surface), interacts, and then enters the detected electromagnetic wave passing portion 3c as a detected electromagnetic wave. It will be. As described above, the electromagnetic wave measurement device 10c according to the present embodiment is configured to be able to measure only the sample in the vicinity of the reflecting surface, and is suitable for measuring a sample or powder having a large amount of electromagnetic wave absorption. .

〔変形例1〕
上述した実施形態1〜4に共通の一変形例について、図8を参照して説明する。図8は、本変形例に係る電磁波測定装置10dの斜視図である。
[Modification 1]
One modification common to Embodiments 1 to 4 described above will be described with reference to FIG. FIG. 8 is a perspective view of an electromagnetic wave measurement device 10d according to this modification.

上述した実施形態1〜4では、電磁波源1から出射された照射電磁波をサンプルに照射する構成であった。しかしながら、本発明に係る電磁波測定装置は、電磁波源1を備えない構成であってもよい。   In Embodiments 1 to 4 described above, the sample is irradiated with the irradiated electromagnetic wave emitted from the electromagnetic wave source 1. However, the electromagnetic wave measuring apparatus according to the present invention may be configured not to include the electromagnetic wave source 1.

具体的には、図8に示すように、電磁波源1を備えない電磁波測定装置10dであってもよい。電磁波測定装置10dにて使用されるサンプルは、サブmm程度の波長の電磁波を放射するものが使用される。つまり、電磁波測定装置10dは、サンプルから放射される電磁波(検出電磁波)が検出電磁波通過部3を通過し、電磁波検出部2に入射する構成である。また、検出電磁波通過部3の入射口のサイズが波長の10倍以下であり、かつ当該入射口のサイズより出射口のサイズが大きいため、サンプルを均一かつ迅速に温度変化させ易くすることができるとともに、サンプルから放射される電磁波を、効率よく検出することができる。   Specifically, as illustrated in FIG. 8, an electromagnetic wave measurement device 10 d that does not include the electromagnetic wave source 1 may be used. As the sample used in the electromagnetic wave measuring apparatus 10d, one that emits electromagnetic waves having a wavelength of about sub-mm is used. That is, the electromagnetic wave measuring device 10d has a configuration in which an electromagnetic wave (detected electromagnetic wave) radiated from the sample passes through the detected electromagnetic wave passing part 3 and enters the electromagnetic wave detecting part 2. In addition, since the size of the entrance of the detection electromagnetic wave passage 3 is not more than 10 times the wavelength and the size of the exit is larger than the size of the entrance, the temperature of the sample can be easily and uniformly changed. At the same time, the electromagnetic waves radiated from the sample can be detected efficiently.

〔変形例2〕
上述した実施形態1〜4では、伝熱部4および温度調整部6を備える構成であった。しかしながら、本発明に係る電磁波測定装置は、伝熱部4および温度調整部6を備えない構成であってもよい。
[Modification 2]
In Embodiments 1 to 4 described above, the heat transfer unit 4 and the temperature adjustment unit 6 are provided. However, the electromagnetic wave measuring apparatus according to the present invention may be configured not to include the heat transfer unit 4 and the temperature adjustment unit 6.

具体的には、本変形例に係る電磁波測定装置(不図示)は、温度調整部6を備えず、また、伝熱部4の代わりに第1の遮光部および第2の遮光部を備える構成であってもよい。第1の遮光部および第2の遮光部は、サブmm程度の電磁波を透過しない材料で形成されていればよく、伝熱部4(第1の遮光部4aおよび第2の遮光部4b)のように熱伝導率が高い材料で形成されている必要は無い。第1の遮光部および第2の遮光部は、例えば、金属材料、または使用する電磁波に対して不透明な樹脂材料(すなわち、使用する電磁波の透過率が小さい樹脂材料)から形成される。   Specifically, the electromagnetic wave measurement device (not shown) according to the present modification does not include the temperature adjustment unit 6 and includes a first light shielding unit and a second light shielding unit instead of the heat transfer unit 4. It may be. The first light-shielding part and the second light-shielding part are only required to be formed of a material that does not transmit electromagnetic waves of about sub-mm, and the heat transfer part 4 (the first light-shielding part 4a and the second light-shielding part 4b). Thus, it is not necessary to be formed of a material having a high thermal conductivity. The first light-shielding part and the second light-shielding part are formed of, for example, a metal material or a resin material that is opaque with respect to the electromagnetic wave to be used (that is, a resin material having a low transmittance of the electromagnetic wave to be used).

第1の遮光部は、実施形態1にて説明した第1の遮光部4aと同様に、サンプル保持部5と電磁波検出部2との間に設けられ、第1の遮光部を貫通して、検出電磁波を電磁波検出部に導波する検出電磁波通過部3を有している。また、第2の遮光部は、電磁波源1とサンプル保持部5との間に設けられ、第2の遮光部を貫通して、照射電磁波をサンプルに導波する照射電磁波通過部7を有している。   Similar to the first light shielding part 4a described in the first embodiment, the first light shielding part is provided between the sample holding part 5 and the electromagnetic wave detection part 2, and penetrates the first light shielding part. A detection electromagnetic wave passage 3 for guiding the detection electromagnetic wave to the electromagnetic wave detection unit is provided. The second light shielding part is provided between the electromagnetic wave source 1 and the sample holding part 5, and has an irradiation electromagnetic wave passage part 7 that penetrates the second light shielding part and guides the irradiation electromagnetic wave to the sample. ing.

なお、本変形例の場合、バックグラウンドノイズの原因となる電磁波が、照射および検出したい電磁波と同じ方向から照射されるのであれば、第1の遮光部および第2の遮光部のみが必須であり、実施形態1にて説明した伝熱部4のように、サンプル保持部5の4つの側面を形成する必要はない。換言すれば、本変形例に係るサンプル保持部5は、図1の手前側の側面と、奥側の側面とを有していない構成であってもよい。   In the case of this modification, if the electromagnetic wave causing the background noise is emitted from the same direction as the electromagnetic wave to be irradiated and detected, only the first light shielding part and the second light shielding part are essential. Unlike the heat transfer unit 4 described in the first embodiment, it is not necessary to form the four side surfaces of the sample holding unit 5. In other words, the sample holding unit 5 according to this modification may have a configuration that does not have the front side surface and the back side surface in FIG.

〔変形例3〕
上述した変形例1では、電磁波源1を備えない電磁波測定装置について説明した。また、上述した変形例2では、伝熱部4の代わりに遮光部を備え、温度調整部6を備えない電磁波測定装置について説明した。
[Modification 3]
In the modified example 1 described above, the electromagnetic wave measuring apparatus that does not include the electromagnetic wave source 1 has been described. In the second modification described above, the electromagnetic wave measurement apparatus that includes the light shielding unit instead of the heat transfer unit 4 and does not include the temperature adjustment unit 6 has been described.

さらに、本発明に係る電磁波測定装置はサンプル保持部5を備えない構成であってもよい。つまり、本発明に係る電磁波測定装置は、電磁波検出部2と、電磁波検出部2に電磁波を導波する検出電磁波通過部3と、当該検出電磁波通過部3を囲う(換言すれば、検出電磁波通過部3が設けられた)遮光部とを備える構成であってもよい。   Furthermore, the electromagnetic wave measuring apparatus according to the present invention may be configured not to include the sample holding unit 5. That is, the electromagnetic wave measuring apparatus according to the present invention surrounds the electromagnetic wave detection unit 2, the detection electromagnetic wave passage unit 3 for guiding the electromagnetic wave to the electromagnetic wave detection unit 2, and the detection electromagnetic wave passage unit 3 (in other words, the detection electromagnetic wave passage). It may be configured to include a light shielding portion (provided with the portion 3).

本変形例に係る電磁波測定装置は、例えば、人体に検出電磁波通過部3の入射口を接触させ、人体から放射される赤外線を電磁波検出部2に導くことで、体温を測定する体温計などに利用できる。これにより、検出電磁波通過部3の入射口を皮膚に接触させて使用する場合、当該入射口のサイズが波長の10倍以下のサイズで、かつ、入射口のサイズより出射口のサイズが大きいため、電磁波の回折を抑えることができる。また、検出電磁波通過部3を囲う遮光部を備えるため、検出電磁波通過部3を通過した電磁波のバックグラウンドノイズを抑えることができる。   The electromagnetic wave measurement device according to this modification is used for a thermometer that measures body temperature by bringing the incident port of the detection electromagnetic wave passage unit 3 into contact with a human body and guiding infrared rays radiated from the human body to the electromagnetic wave detection unit 2, for example. it can. Thereby, when using the incident port of the detection electromagnetic wave passage part 3 in contact with the skin, the size of the incident port is not more than 10 times the wavelength, and the size of the output port is larger than the size of the incident port. , Electromagnetic wave diffraction can be suppressed. Moreover, since the light shielding part which surrounds the detection electromagnetic wave passage part 3 is provided, the background noise of the electromagnetic wave which has passed the detection electromagnetic wave passage part 3 can be suppressed.

〔実施形態5〕
本発明のさらに別の実施形態について、図9および図10を参照して説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
The following will describe still another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.

本実施形態では、電磁波を照射対象物(以下、サンプル)に照射してサンプルを加工するための電磁波照射装置について説明する。図9は、本実施形態に係る電磁波照射装置10eの斜視図であり、図10の(a)は、電磁波照射装置10eの上面図であり、図10の(b)は、図10の(a)のAA断面図である。なお、本実施形態に係るサンプルは固体であるため、上述した他の実施形態と異なり、セルを用いない構成となっている(図10の(b)参照)。   In this embodiment, an electromagnetic wave irradiation apparatus for irradiating an irradiation object (hereinafter referred to as a sample) with an electromagnetic wave to process the sample will be described. FIG. 9 is a perspective view of the electromagnetic wave irradiation apparatus 10e according to the present embodiment, FIG. 10A is a top view of the electromagnetic wave irradiation apparatus 10e, and FIG. It is AA sectional drawing of). In addition, since the sample which concerns on this embodiment is solid, it has the structure which does not use a cell unlike other embodiment mentioned above (refer FIG.10 (b)).

本実施形態に係る電磁波照射装置10e(電磁波対応装置)は、図9および図10に示すように、電磁波源1、伝熱部4、サンプル保持部5、温度調整部6、および照射電磁波通過部7e(第1の電磁波透過部)を備えている。なお、電磁波源1、伝熱部4、サンプル保持部5、および温度調整部6については、実施形態1にて既に説明しているため、ここでの説明を省略する。なお、図9に示すように、伝熱部4において、電磁波源1とサンプル保持部5との間に設けられている部分は、電磁波(照射電磁波)を透過しない第5の遮光部4e(第1の遮光部)と表現することもできる。また、本実施形態のようにサンプルが固体である場合、温度変化を迅速かつ均一にし易くするために、図10の(b)に示すように、伝熱部4とサンプルとが接触することが好ましい。   As shown in FIGS. 9 and 10, the electromagnetic wave irradiation device 10 e (electromagnetic wave corresponding device) according to the present embodiment includes an electromagnetic wave source 1, a heat transfer unit 4, a sample holding unit 5, a temperature adjustment unit 6, and an irradiation electromagnetic wave passage unit. 7e (first electromagnetic wave transmitting portion). The electromagnetic wave source 1, the heat transfer unit 4, the sample holding unit 5, and the temperature adjustment unit 6 have already been described in the first embodiment, and thus description thereof is omitted here. In addition, as shown in FIG. 9, in the heat transfer part 4, the part provided between the electromagnetic wave source 1 and the sample holding | maintenance part 5 is the 5th light-shielding part 4e (1st) which does not permeate | transmit electromagnetic waves (irradiated electromagnetic waves). 1 light-shielding portion). Further, when the sample is a solid as in this embodiment, the heat transfer section 4 and the sample may come into contact with each other as shown in FIG. preferable.

照射電磁波通過部7eは、図10の(b)に示すように、出射口(近位開口)の外縁形状である、円形の直径が波長の10倍以下の長さであり、かつ、入射口(遠位開口)から出射口に進むにつれて、その開口サイズが小さくなるように形成されている。ここで、照射電磁波通過部7eの出射口および入射口の外縁形状は円形であるため、照射電磁波通過部7eの形状は円錐台形である。   As shown in FIG. 10B, the irradiation electromagnetic wave passing portion 7e is an outer edge shape of the emission port (proximal opening), the circular diameter is 10 times or less the wavelength, and the incident port. It is formed so that the opening size becomes smaller as it goes from the (distal opening) to the emission port. Here, since the outer edge shape of the exit and entrance of the irradiated electromagnetic wave passage 7e is circular, the shape of the irradiated electromagnetic wave passage 7e is a truncated cone.

なお、入射口から出射口に進むにつれて、その開口サイズが小さくなるように形成されていれば、照射電磁波通過部7eの形状は円錐台形に限定されない。本実施形態の場合、照射電磁波通過部7eは、図10の(b)に示すように、開口サイズが直線的に変化しているが、曲線的に変化してもよいし、階段状に変化してもよい。換言すれば、本実施形態では、図7の(b)に示す入射口と出射口とを結ぶ2本の線が直線であるが、これが曲線であってもよいし、階段状の線であってもよい。   Note that the shape of the irradiation electromagnetic wave passage portion 7e is not limited to the truncated cone shape as long as the opening size is reduced from the entrance to the exit. In the case of this embodiment, as shown in FIG. 10B, the irradiation electromagnetic wave passage portion 7e has an opening size that changes linearly, but may change in a curved line, or change in a staircase pattern. May be. In other words, in the present embodiment, the two lines connecting the entrance and the exit shown in FIG. 7B are straight lines, but this may be a curve or a stepped line. May be.

また、本実施形態に係る照射電磁波通過部7eは、その形状が円錐台形であるため、実施形態1にて説明した照射電磁波通過部7と同様に、上方向から見た断面図でも入射口から出射口に進むにつれて、その開口サイズが小さくなるように形成されているが、この例に限定されず、上方向から見た断面図では、入射口から出射口に進んでも、その開口サイズは変わらないように形成されていてもよい。   Moreover, since the irradiation electromagnetic wave passage part 7e which concerns on this embodiment is the truncated cone shape, similarly to the irradiation electromagnetic wave passage part 7 demonstrated in Embodiment 1, it is a cross-sectional view seen from the upper direction from the entrance. The aperture size is formed so that the aperture size decreases as it proceeds to the exit port. However, the present invention is not limited to this example, and in the cross-sectional view seen from above, the aperture size changes even if the entrance port proceeds to the exit port. It may be formed so that there is no.

また、本実施形態に係る照射電磁波通過部7eは、入射口および出射口の外縁形状がともに円形である。ただし、この構成に限定されず、入射口および出射口の外縁形状は例えば正方形や長方形などの凸四角形状であってもよいし、その他の凸多角形状であってもよい。例えば、外縁形状が三角形である場合、照射電磁波通過部7aの出射口は、当該三角形の最短の一辺が波長の10倍以下の長さであればよく、外縁形状が三角形を除く凸多角形である場合、照射電磁波通過部7aの出射口は、当該凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線が波長の10倍以下の長さであればよい。   Moreover, as for the irradiation electromagnetic wave passage part 7e which concerns on this embodiment, the outer edge shape of an entrance and an exit is both circular. However, it is not limited to this configuration, and the outer edge shape of the entrance and exit may be a convex quadrangle such as a square or a rectangle, or may be another convex polygon. For example, when the outer edge shape is a triangle, the exit of the irradiated electromagnetic wave passage 7a may be a convex polygon excluding the triangle, as long as the shortest side of the triangle has a length equal to or less than 10 times the wavelength. In some cases, the exit opening of the irradiated electromagnetic wave passage 7a may be such that the shortest straight line connecting any one side and the other side not in contact with the one side in the convex polygon has a length of 10 times or less of the wavelength.

(作用効果)
以上のように、本実施形態に係る電磁波照射装置10eは、照射電磁波通過部7eの出射口の外縁形状の直径が波長の10倍以下の長さであり、かつ、出射口の開口サイズが入射口の開口サイズより小さくなっている。これにより、検出電磁波の回折を抑えることができるので、サンプルに対して局所的に電磁波を照射することができ、空間分解能の高い加工が可能となる。また、出射口の開口サイズをなるべく小さくしているので、サンプル(またはサンプルを導入したセル)と接触する伝熱部4の面積が広くなり、サンプルを均一かつ迅速に温度変化させ易くすることができる。
(Function and effect)
As described above, in the electromagnetic wave irradiation device 10e according to the present embodiment, the diameter of the outer edge shape of the emission port of the irradiation electromagnetic wave passage 7e is 10 times the wavelength or less, and the opening size of the emission port is incident. It is smaller than the opening size of the mouth. As a result, diffraction of the detected electromagnetic wave can be suppressed, so that the sample can be irradiated with the electromagnetic wave locally, and processing with high spatial resolution becomes possible. Further, since the opening size of the emission port is made as small as possible, the area of the heat transfer section 4 that comes into contact with the sample (or the cell into which the sample is introduced) is increased, and the temperature of the sample can be easily and uniformly changed. it can.

なお、サンプルの温度を変化させる必要が無い場合、伝熱部4は遮光部(不図示)に置き換えられてもよい。この場合、遮光部としては不透明な樹脂材料などの熱伝導率が低い物質であってもよい。またこの場合、温度調整部6は省略されてもよい。   Note that when there is no need to change the temperature of the sample, the heat transfer section 4 may be replaced with a light shielding section (not shown). In this case, the light shielding portion may be a substance having a low thermal conductivity such as an opaque resin material. In this case, the temperature adjustment unit 6 may be omitted.

(適用例)
本実施形態に係る電磁波照射装置は、例えばサンプルに電磁波を照射し、エネルギーを与えることにより、サンプルを加工する装置に適用することができる。ここで「加工」とは。電磁波を照射した部分のサンプルをマクロに切削することや、サンプル内の分子の結合を切ることによる構造変成を起こすことなどを含む。
(Application example)
The electromagnetic wave irradiation apparatus according to the present embodiment can be applied to an apparatus that processes a sample by, for example, irradiating the sample with an electromagnetic wave and applying energy. What is “processing” here? This includes cutting macroscopically the sample of the part irradiated with electromagnetic waves, and causing structural transformation by cutting the bonds of molecules in the sample.

〔まとめ〕
本発明の態様1に係る電磁波対応装置(電磁波測定装置10)は、0.01mm以上10mm以下の波長を有する電磁波を透過させない第1の遮光部(第1の遮光部4a)と、上記第1の遮光部を貫通して、上記電磁波を透過させる第1の電磁波透過部(検出電磁波通過部3)と、を備え、上記第1の電磁波透過部の開口のうち、自装置の対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、上記近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、上記近位開口における上記特定線より、上記遠位開口における上記特定線が長い。
[Summary]
The electromagnetic wave response device (electromagnetic wave measurement device 10) according to aspect 1 of the present invention includes a first light shielding unit (first light shielding unit 4a) that does not transmit an electromagnetic wave having a wavelength of 0.01 mm or more and 10 mm or less, and the first. A first electromagnetic wave transmission part (detection electromagnetic wave transmission part 3) that transmits the electromagnetic wave through the light shielding part of the first electromagnetic wave transmission part, and is close to the object of the device itself among the openings of the first electromagnetic wave transmission part The outer edge shape of the proximal opening and the distal opening far from the object are both circular or convex polygons, and the proximal opening is the shortest side of the triangle having the circular diameter and the convex polygon. Or the length of the specific line that is one of the shortest straight lines connecting any one side and the other side not in contact with the one side in the convex polygon excluding the triangle is not more than 10 times the wavelength of the electromagnetic wave. Length, at the proximal opening Serial than a certain line, a long the particular line in the distal opening.

上記の構成によれば、第1の電磁波透過部の近位開口および遠位開口の外縁形状はいずれも円形または凸多角形であって、近位開口において、円形の直径、凸多角形である三角形の最短の一辺、または三角形を除く凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、かつ、第1の電磁波透過部の近位開口における特定線より第1の電磁波透過部の遠位開口における特定線が長い。   According to the above configuration, the outer edge shape of the proximal opening and the distal opening of the first electromagnetic wave transmitting portion is both a circular shape or a convex polygon, and the proximal opening has a circular diameter and a convex polygon. The length of the specific line which is one of the shortest straight line connecting any one side and the other side not in contact with the one side in the shortest side of the triangle or the convex polygon excluding the triangle is 10 of the wavelength of the electromagnetic wave. The specific line in the distal opening of the first electromagnetic wave transmitting part is longer than the specific line in the proximal opening of the first electromagnetic wave transmitting part.

これにより、第1の電磁波透過部によって電磁波のビーム径を絞った場合であっても、第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる。   Thereby, even if it is a case where the beam diameter of electromagnetic waves is restrict | squeezed by the 1st electromagnetic wave transmission part, generation | occurrence | production of the diffraction of the electromagnetic waves which passed the 1st electromagnetic wave transmission part can be suppressed.

本発明の態様2に係る電磁波対応装置は、上記態様1において、上記電磁波を検出する検出部(電磁波検出部2)をさらに備え、上記第1の電磁波透過部は、上記対象物と上記検出部との間に設けられてもよい。   The electromagnetic wave corresponding device according to aspect 2 of the present invention further includes a detection unit (electromagnetic wave detection unit 2) that detects the electromagnetic wave in the above aspect 1, and the first electromagnetic wave transmission unit includes the object and the detection unit. Between the two.

上記の構成によれば、検出部を備え、第1の電磁波透過部は、対象物と検出部との間に設けられるので、対象物側から第1の電磁波透過部に入射した電磁波は、第1の電磁波透過部を通過して検出部に入射する。よって、電磁波対応装置を、対象物側から出射された電磁波を検出する装置として構成することができる。当該装置は、検出した電磁波を用いた測定を行う測定装置などに適用することができる。また、第1の遮光部を備えることで、周囲にある物体からの電磁波の検出部への入射を抑えることができるので、バックグラウンドノイズを抑えることができる。これにより、バックグラウンドノイズを抑え、かつ第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる、高精度な測定装置とすることができる。なお、第1の電磁波透過部および検出部が、その間に隙間ができないように直接接続される、または遮光性を有する別の通過部を介して接続されるようにすれば、バックグラウンドノイズをさらに抑えることができる。   According to the above configuration, since the detection unit is provided and the first electromagnetic wave transmission unit is provided between the object and the detection unit, the electromagnetic wave incident on the first electromagnetic wave transmission unit from the object side is 1 passes through the electromagnetic wave transmission part 1 and enters the detection part. Therefore, the electromagnetic wave corresponding device can be configured as a device that detects the electromagnetic wave emitted from the object side. The apparatus can be applied to a measuring apparatus that performs measurement using detected electromagnetic waves. In addition, since the first light-shielding unit is provided, it is possible to suppress incidence of electromagnetic waves from surrounding objects to the detection unit, and thus background noise can be suppressed. Thereby, it can be set as the highly accurate measuring apparatus which can suppress generation | occurrence | production of the diffraction of the electromagnetic waves which suppressed background noise and passed the 1st electromagnetic wave transmission part. In addition, if the first electromagnetic wave transmission part and the detection part are directly connected so that there is no gap between them, or connected through another passage part having a light shielding property, the background noise is further increased. Can be suppressed.

本発明の態様3に係る電磁波対応装置(電磁波照射装置10e)は、上記態様1において、上記電磁波を出射する電磁波源(電磁波源1)をさらに備え、上記第1の電磁波透過部(照射電磁波通過部7e)は、上記電磁波源と上記対象物との間に設けられてもよい。   The electromagnetic wave corresponding apparatus (electromagnetic wave irradiation apparatus 10e) which concerns on aspect 3 of this invention is further equipped with the electromagnetic wave source (electromagnetic wave source 1) which radiate | emits the said electromagnetic wave in the said aspect 1, The said 1st electromagnetic wave transmission part (irradiation electromagnetic wave passage) The part 7e) may be provided between the electromagnetic wave source and the object.

上記の構成によれば、電磁波源を備え、第1の電磁波透過部は、電磁波源と対象物との間に設けられるので、電磁波源から第1の電磁波透過部に入射した電磁波は、第1の電磁波透過部を通過して対象物に照射される。よって、電磁波対応装置を、対象物に電磁波を照射する装置として構成することができる。当該装置は、対象物に電磁波を照射して対象物を加工する加工装置などに適用することができる。また、第1の遮光部を備えることで、周囲にある物体からの電磁波が対象物に照射されることを抑えることができるので、不要な電磁波が対象物に照射されることを抑えることができる。これにより、必要となる電磁波のみ、対象物に照射することができ、かつ第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる、高精度な加工装置とすることができる。なお、電磁波源および第1の電磁波透過部が、その間に隙間ができないように直接接続される、または遮光性を有する別の通過部を介して接続されるようにすれば、不要な電磁波が対象物に照射されることを、さらに抑えることができる。   According to the above configuration, the electromagnetic wave source is provided, and the first electromagnetic wave transmission part is provided between the electromagnetic wave source and the object. Therefore, the electromagnetic wave incident on the first electromagnetic wave transmission part from the electromagnetic wave source is the first electromagnetic wave transmission part. The object is irradiated through the electromagnetic wave transmitting part. Therefore, an electromagnetic wave corresponding apparatus can be comprised as an apparatus which irradiates electromagnetic waves to a target object. The apparatus can be applied to a processing apparatus that processes an object by irradiating the object with electromagnetic waves. In addition, since the first light-shielding portion is provided, it is possible to prevent the object from being irradiated with electromagnetic waves from surrounding objects, and thus it is possible to suppress unnecessary electromagnetic waves from being irradiated to the object. . Thereby, it can be set as the highly accurate processing apparatus which can irradiate only a required electromagnetic wave to a target object and can suppress generation | occurrence | production of the diffraction of the electromagnetic wave which passed the 1st electromagnetic wave transmission part. If the electromagnetic wave source and the first electromagnetic wave transmitting portion are directly connected so that there is no gap between them, or connected through another passage portion having a light shielding property, unnecessary electromagnetic waves are targeted. Irradiation of an object can be further suppressed.

本発明の態様4に係る電磁波対応装置は、上記態様1から3のいずれかにおいて、上記第1の遮光部を含み、上記対象物が導入される空間を形成する壁面部(伝熱部4)と、上記対象物および上記壁面部の温度を昇降させる温度調整部(温度調整部6)と、をさらに備えてもよい。   The electromagnetic wave corresponding apparatus according to aspect 4 of the present invention is the wall surface part (heat transfer part 4) that includes the first light-shielding part and forms a space into which the object is introduced in any one of the aspects 1 to 3. And a temperature adjustment unit (temperature adjustment unit 6) that raises and lowers the temperature of the object and the wall surface part.

上記の構成によれば、対象物、および、第1の遮光部を含む壁面部の温度を昇降させる温度調整部を備えるので、対象物の温度を変化させながら、対象物から発せられる電磁波を検出することができる。   According to said structure, since the temperature adjustment part which raises / lowers the temperature of a target object and the wall surface part containing a 1st light-shielding part is provided, the electromagnetic waves emitted from a target object are detected, changing the temperature of a target object. can do.

また、第1の電磁波透過部の近位開口および遠位開口の外縁形状はいずれも円形または凸多角形であって、近位開口において、円形の直径、凸多角形である三角形の最短の一辺、または三角形を除く凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであるため、第1の電磁波透過部の近位開口が形成された面において、近位開口以外の領域の面積を広くすることができる。これにより、対象物の温度変化を迅速かつ均一にし易くすることができるともに、第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる。   In addition, the outer edge shape of the proximal opening and the distal opening of the first electromagnetic wave transmitting portion is both a circular shape or a convex polygon shape, and the proximal opening has a circular diameter and the shortest side of a triangle that is a convex polygon shape. Or the length of the specific line that is one of the shortest straight lines connecting any one side and the other side not in contact with the one side in the convex polygon excluding the triangle is not more than 10 times the wavelength of the electromagnetic wave. Therefore, the area of the region other than the proximal opening can be widened on the surface where the proximal opening of the first electromagnetic wave transmitting portion is formed. Thereby, the temperature change of the object can be easily and quickly made uniform, and the generation of diffraction of the electromagnetic wave that has passed through the first electromagnetic wave transmitting portion can be suppressed.

本発明の態様5に係る電磁波対応装置は、上記態様1において、上記電磁波を出射させる電磁波源(電磁波源1)と、上記電磁波を透過させない第2の遮光部(第2の遮光部4b)と、上記第2の遮光部を貫通して、上記電磁波を透過する第2の電磁波透過部(照射電磁波通過部7)と、上記電磁波を検出する検出部(電磁波検出部2)をさらに備え、上記第1の電磁波透過部および上記第2の電磁波透過部は、一方が上記電磁波源と上記対象物との間に設けられ、他方が上記対象物と上記検出部との間に設けられてもよい。   In the electromagnetic wave corresponding apparatus according to aspect 5 of the present invention, the electromagnetic wave source that emits the electromagnetic wave (electromagnetic wave source 1) and the second light-shielding part (second light-shielding part 4b) that does not transmit the electromagnetic wave are provided. And a second electromagnetic wave transmitting part (irradiated electromagnetic wave passing part 7) that penetrates the second light shielding part and transmits the electromagnetic wave, and a detecting part (electromagnetic wave detecting part 2) that detects the electromagnetic wave, One of the first electromagnetic wave transmission part and the second electromagnetic wave transmission part may be provided between the electromagnetic wave source and the object, and the other may be provided between the object and the detection part. .

上記の構成によれば、電磁波源と、第2の遮光部と、第2の電磁波透過部と、検出部とを備え、また、第1の電磁波透過部および第2の電磁波透過部は、一方が電磁波源と対象物との間に設けられ、他方が対象物と検出部との間に設けられている。これにより、電磁波源と対象物との間、または対象物と検出部との間において、電磁波の回折の発生を抑えることができる。   According to said structure, it is equipped with an electromagnetic wave source, a 2nd light-shielding part, a 2nd electromagnetic wave transmission part, and a detection part, and the 1st electromagnetic wave transmission part and the 2nd electromagnetic wave transmission part are one side Is provided between the electromagnetic wave source and the object, and the other is provided between the object and the detection unit. Thereby, generation | occurrence | production of the diffraction of electromagnetic waves can be suppressed between an electromagnetic wave source and a target object or between a target object and a detection part.

また、電磁波源から第1の電磁波透過部または第2の電磁波透過部に入射した電磁波は、第1の電磁波透過部または第2の電磁波透過部を通過して対象物に照射される。そして、当該電磁波が対象物を通過して(または対象物から新たな電磁波が発生して)第1の電磁波透過部または第2の電磁波通過部に入射し、第1の電磁波透過部または第2の電磁波通過部を通過して検出部に入射する。よって、電磁波源から出射された電磁波を対象物に照射し、対象物を通過した(または対象物から新たに発せられた)電磁波を検出する装置を構成することができる。当該装置は、検出した電磁波を用いた測定を行う測定装置などに適用することができる。   Further, the electromagnetic wave incident on the first electromagnetic wave transmission part or the second electromagnetic wave transmission part from the electromagnetic wave source passes through the first electromagnetic wave transmission part or the second electromagnetic wave transmission part and is irradiated to the object. Then, the electromagnetic wave passes through the object (or a new electromagnetic wave is generated from the object) and enters the first electromagnetic wave transmission part or the second electromagnetic wave transmission part, and the first electromagnetic wave transmission part or the second electromagnetic wave transmission part. It passes through the electromagnetic wave passage part and enters the detection part. Therefore, it is possible to configure an apparatus that irradiates an object with an electromagnetic wave emitted from an electromagnetic wave source and detects an electromagnetic wave that has passed through the object (or newly emitted from the object). The apparatus can be applied to a measuring apparatus that performs measurement using detected electromagnetic waves.

本発明の態様6に係る電磁波対応装置は、上記態様5において、上記第1の遮光部および上記第2の遮光部を含み、上記対象物が導入される空間を形成する壁面部(伝熱部4)と、上記対象物および上記壁面部の温度を昇降させる温度調整部と、をさらに備えてもよい。   The electromagnetic wave response device according to aspect 6 of the present invention is the above-described aspect 5, wherein the wall surface part (heat transfer part) includes the first light shielding part and the second light shielding part, and forms a space into which the object is introduced. 4) and a temperature adjusting unit for raising and lowering the temperature of the object and the wall surface part may be further provided.

上記の構成によれば、対象物、並びに、第1の遮光部および第2の遮光部を含む壁面部の温度を昇降させる温度調整部を備えるので、対象物の温度を変化させながら、対象物から発せられる電磁波を検出することができる。   According to said structure, since the temperature adjustment part which raises / lowers the temperature of a target object and the wall surface part containing a 1st light-shielding part and a 2nd light-shielding part is provided, a target object is changed, changing the temperature of a target object. Electromagnetic waves emitted from can be detected.

また、第1の電磁波透過部の近位開口および遠位開口の外縁形状はいずれも円形または凸多角形であって、近位開口において、円形の直径、凸多角形である三角形の最短の一辺、または三角形を除く凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであるため、第1の電磁波透過部の近位開口が形成された面において、近位開口以外の領域の面積を広くすることができる。これにより、対象物の温度変化を迅速かつ均一にし易くすることができるともに、第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる、高精度の測定装置を実現することができる。   In addition, the outer edge shape of the proximal opening and the distal opening of the first electromagnetic wave transmitting portion is both a circular shape or a convex polygon shape, and the proximal opening has a circular diameter and the shortest side of a triangle that is a convex polygon shape. Or the length of the specific line that is one of the shortest straight lines connecting any one side and the other side not in contact with the one side in the convex polygon excluding the triangle is not more than 10 times the wavelength of the electromagnetic wave. Therefore, the area of the region other than the proximal opening can be widened on the surface where the proximal opening of the first electromagnetic wave transmitting portion is formed. Accordingly, it is possible to realize a highly accurate measuring apparatus that can easily and quickly make the temperature change of the object, and can suppress the generation of diffraction of the electromagnetic wave that has passed through the first electromagnetic wave transmitting portion. it can.

本発明の態様7に係る電磁波対応装置は、上記態様5または6において、上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、上記第2の電磁波透過部の開口のうち、自装置の上記対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、上記第2の電磁波透過部の近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、上記第1の電磁波透過部の近位開口における上記特定線が、上記第2の電磁波透過部の近位開口における上記特定線より長くてもよい。   In the electromagnetic wave corresponding device according to aspect 7 of the present invention, in the above aspect 5 or 6, the first electromagnetic wave transmission part is provided between the object and the detection part, and the second electromagnetic wave transmission part is the above Of the opening of the second electromagnetic wave transmitting portion provided between the electromagnetic wave source and the object, the outer edge shape of the proximal opening close to the object of the own device and the distal opening far from the object are: Both of them are circular or convex polygons, and the proximal opening of the second electromagnetic wave transmitting part is the diameter of the circle, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle The length of the specific line that is one of the shortest straight lines connecting any one side and the other side that is not in contact with the one side is not more than 10 times the wavelength of the electromagnetic wave, and the first electromagnetic wave The specific line at the proximal opening of the transmission part is the first line. It may be longer than the specific line in the proximal opening of the electromagnetic wave transmitting portion.

上記の構成によれば、第1の電磁波透過部の近位開口のサイズが、第2の電磁波透過部の近位開口のサイズより大きいこととなる。つまり、第2の電磁波透過部の近位開口において、特定線の長さは、電磁波の波長の10倍以下となり、第2の電磁波透過部を通過した電磁波は回折する可能性が高い。しかしながら、第1の電磁波透過部の近位開口のサイズが、第2の電磁波透過部の近位開口のサイズより大きいので、回折した電磁波が第1の電磁波透過部に入射する可能性が高くなる。よって、より多くの電磁波を検出部まで導くことができる。   According to said structure, the size of the proximal opening of a 1st electromagnetic wave transmission part will be larger than the size of the proximal opening of a 2nd electromagnetic wave transmission part. That is, in the proximal opening of the second electromagnetic wave transmission part, the length of the specific line is 10 times or less the wavelength of the electromagnetic wave, and the electromagnetic wave that has passed through the second electromagnetic wave transmission part is likely to be diffracted. However, since the size of the proximal opening of the first electromagnetic wave transmitting portion is larger than the size of the proximal opening of the second electromagnetic wave transmitting portion, there is a high possibility that the diffracted electromagnetic wave is incident on the first electromagnetic wave transmitting portion. . Therefore, more electromagnetic waves can be guided to the detection unit.

また、第2の電磁波透過部の近位開口が形成された面において、近位開口以外の領域の面積をより広くすることができるので、温度調整部を備えている場合、対象物の温度変化をさらに迅速かつ均一にし易くすることができる。   Further, since the area of the region other than the proximal opening can be made wider on the surface of the second electromagnetic wave transmitting portion where the proximal opening is formed, the temperature change of the object is provided when the temperature adjusting portion is provided. Can be made more rapid and uniform.

本発明の態様8に係る電磁波対応装置は、上記態様5または6において、上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、上記第2の電磁波透過部の開口のうち、自装置の上記対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、上記第2の電磁波透過部の近位開口における上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍より長くてもよい。   In the electromagnetic wave corresponding device according to aspect 8 of the present invention, in the aspect 5 or 6, the first electromagnetic wave transmission part is provided between the object and the detection part, and the second electromagnetic wave transmission part is the above Of the opening of the second electromagnetic wave transmitting portion provided between the electromagnetic wave source and the object, the outer edge shape of the proximal opening close to the object of the own device and the distal opening far from the object are: Both are circular or convex polygons, and the diameter of the circle at the proximal opening of the second electromagnetic wave transmission part, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle The length of the specific line that is one of the shortest straight lines connecting any one side and the other side that is not in contact with the one side may be longer than 10 times the wavelength of the electromagnetic wave.

上記の構成によれば、第2の電磁波透過部の近位開口において、特定線の長さが、電磁波の波長の10倍より長いため、第2の電磁波透過部を通過した電磁波はほとんど回折しない。よって、電磁波の進行方向を変えることなく、第1の電磁波透過部に入射させることができる。   According to said structure, in the proximal opening of a 2nd electromagnetic wave transmission part, since the length of a specific line is longer than 10 times the wavelength of an electromagnetic wave, the electromagnetic wave which passed the 2nd electromagnetic wave transmission part hardly diffracts. . Therefore, it can enter into the 1st electromagnetic wave transmission part, without changing the advancing direction of electromagnetic waves.

本発明の態様9に係る電磁波対応装置は、上記態様5から8のいずれかにおいて、上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、電磁波が入射する入射面、入射した電磁波を反射する反射面、および反射した電磁波を出射する出射面を有するプリズム(電磁波方向変換部8)をさらに備え、上記入射面および上記出射面はそれぞれ、上記第2の電磁波透過部および上記第1の電磁波透過部と対向し、上記反射面は、上記対象物を保持する保持部の一側面となってもよい。   In the electromagnetic wave corresponding device according to aspect 9 of the present invention, in any of the above aspects 5 to 8, the first electromagnetic wave transmission part is provided between the object and the detection part, and the second electromagnetic wave transmission part is provided. The prism is provided between the electromagnetic wave source and the object, and includes a prism (electromagnetic wave direction changing unit 8) having an incident surface on which the electromagnetic wave is incident, a reflecting surface that reflects the incident electromagnetic wave, and an outgoing surface that emits the reflected electromagnetic wave. ), The incident surface and the exit surface are respectively opposed to the second electromagnetic wave transmitting portion and the first electromagnetic wave transmitting portion, and the reflecting surface is one side surface of the holding portion for holding the object. It may be.

上記の構成によれば、電磁波が入射する入射面、入射した電磁波を反射する反射面、および反射した電磁波を出射する出射面を有するプリズムを備え、プリズムの入射面および出射面がそれぞれ、第2の電磁波透過部および第1の電磁波透過部と対向し、プリズムの反射面が保持部の一側面となっているため、電磁波源から出射された電磁波をプリズムに入射させ、プリズムでの反射時に対象物に影響を与えた電磁波を検出する装置を構成することができる。当該装置は、検出した電磁波を用いた測定を行う測定装置などに適用することができる。   According to the above configuration, the prism includes the incident surface on which the electromagnetic wave is incident, the reflecting surface that reflects the incident electromagnetic wave, and the emitting surface that emits the reflected electromagnetic wave, and each of the incident surface and the emitting surface of the prism has the second surface. Since the reflecting surface of the prism is one side surface of the holding unit, the electromagnetic wave emitted from the electromagnetic wave source is incident on the prism and is reflected when reflected by the prism. An apparatus for detecting an electromagnetic wave that affects an object can be configured. The apparatus can be applied to a measuring apparatus that performs measurement using detected electromagnetic waves.

また、第2の電磁波透過部の近位開口において、特定線の長さを、電磁波の波長の10倍より長くした場合、第2の電磁波透過部を通過した電磁波はほとんど回折しないこととなるので、保持部に照射される電磁波は、ビーム径が電磁波源から出射されたときからほぼ変わらないこととなる。よって、対象物における電磁波が照射された範囲が分かりやすくなる。   In addition, when the length of the specific line is made longer than 10 times the wavelength of the electromagnetic wave at the proximal opening of the second electromagnetic wave transmitting part, the electromagnetic wave that has passed through the second electromagnetic wave transmitting part is hardly diffracted. The electromagnetic wave applied to the holding part is substantially unchanged from the time when the beam diameter is emitted from the electromagnetic wave source. Therefore, it becomes easy to understand the range of the object irradiated with the electromagnetic wave.

本発明の態様10に係る電磁波対応装置は、上記態様1から9のいずれかにおいて、上記第1の電磁波透過部の遠位開口における上記特定線の長さは、上記第1の電磁波透過部の近位開口における上記特定線の長さと、上記第1の電磁波透過部の近位開口から上記第1の電磁波透過部の遠位開口までの距離と、に基づいて算出される、上記電磁波のビームの中心から上記電磁波の強度が1/eとなる位置までの距離の2倍の値より長くてもよい。   In the electromagnetic wave corresponding device according to aspect 10 of the present invention, in any one of the aspects 1 to 9, the length of the specific line in the distal opening of the first electromagnetic wave transmitting portion is the length of the first electromagnetic wave transmitting portion. The electromagnetic wave beam calculated based on the length of the specific line in the proximal opening and the distance from the proximal opening of the first electromagnetic wave transmitting portion to the distal opening of the first electromagnetic wave transmitting portion. May be longer than twice the distance from the center to the position where the intensity of the electromagnetic wave is 1 / e.

上記の構成によれば、電磁波のビームの中心から電磁波の強度が1/eとなる位置までの距離の2倍の値、すなわち、ビームの直径より、第1の電磁波透過部の遠位開口の特定線の長さが長いので、広がったビームはほぼ遠位開口を通ることとなる。これにより、電磁波の回折がほぼ発生しない第1の電磁波透過部とすることができる。   According to the above configuration, the value of the distance from the center of the electromagnetic wave beam to the position where the intensity of the electromagnetic wave becomes 1 / e is twice the value, that is, the diameter of the beam, the distal opening of the first electromagnetic wave transmitting portion. Because the length of the specific line is long, the spread beam will almost pass through the distal opening. Thereby, it can be set as the 1st electromagnetic wave transmission part which diffraction of electromagnetic waves hardly generate | occur | produces.

本発明の態様11に係る電磁波対応装置は、0.01mm以上10mm以下の波長を有する電磁波を透過させない第1の遮光部と、上記第1の遮光部を貫通して、上記電磁波を透過させる第1の電磁波透過部と、を備え、上記第1の電磁波透過部の開口のうち、自装置の対象物に近い近位開口は、上記電磁波の回折が発生する開口サイズおよび開口形状の少なくとも一方を有しており、上記近位開口の外縁形状の面積より、上記開口のうち上記対象物から遠い遠位開口の外縁形状の面積が大きい。   According to an eleventh aspect of the present invention, there is provided an electromagnetic wave-compatible device that includes a first light-shielding portion that does not transmit an electromagnetic wave having a wavelength of 0.01 mm or more and 10 mm or less, and a first light-shielding portion that passes through the first light-shielding portion and transmits the electromagnetic wave. Of the first electromagnetic wave transmitting portion, the proximal opening close to the object of the device itself has at least one of an opening size and an opening shape in which diffraction of the electromagnetic wave occurs. And the area of the outer edge shape of the distal opening far from the object is larger than the area of the outer edge shape of the proximal opening.

上記の構成によれば、電磁波の回折が発生する開口サイズおよび開口形状の少なくとも一方を有する近位開口の外縁形状の面積より、遠位開口の外縁形状の面積が大きくなっているので、第1の電磁波透過部によって電磁波のビーム径を絞った場合であっても、第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる。   According to the above configuration, the area of the outer edge shape of the distal opening is larger than the area of the outer edge shape of the proximal opening having at least one of the opening size and the opening shape in which electromagnetic wave diffraction occurs. Even when the beam diameter of the electromagnetic wave is reduced by the electromagnetic wave transmission part, the generation of diffraction of the electromagnetic wave that has passed through the first electromagnetic wave transmission part can be suppressed.

本発明の態様12に係る電磁波対応装置は、上記態様6において、上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、上記第2の電磁波透過部の開口のうち、自装置の上記対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状はいずれも円形または凸多角形であって、上記第2の電磁波透過部の近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線が、上記第2の電磁波透過部の遠位開口における上記特定線より短くてもよい。   In the electromagnetic wave corresponding device according to aspect 12 of the present invention, in the aspect 6, the first electromagnetic wave transmitting part is provided between the object and the detecting part, and the second electromagnetic wave transmitting part is the electromagnetic wave source. The outer edge shape of the proximal opening close to the object and the distal opening far from the object among the openings of the second electromagnetic wave transmitting portion provided between the object and the object is circular. Or a convex polygon, wherein the proximal opening of the second electromagnetic wave transmitting portion is an arbitrary diameter in the circular diameter, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle A specific line that is one of the shortest straight lines connecting one side to the other side that is not in contact with the one side may be shorter than the specific line in the distal opening of the second electromagnetic wave transmitting unit.

上記の構成によれば、第2の電磁波透過部の近位開口のサイズが、第2の電磁波透過部の遠位開口のサイズより小さいこととなるので、第2の電磁波透過部の近位開口が形成された面において、近位開口以外の領域の面積をより広くすることができる。これにより、対象物の温度変化をさらに迅速かつ均一にし易くすることができるともに、第1の電磁波透過部を通過した電磁波の回折の発生を抑えることができる、高精度の測定装置を実現することができる。   According to said structure, since the size of the proximal opening of the 2nd electromagnetic wave transmission part will be smaller than the size of the distal opening of the 2nd electromagnetic wave transmission part, the proximal opening of the 2nd electromagnetic wave transmission part In the surface on which is formed, the area of the region other than the proximal opening can be made larger. As a result, it is possible to realize a highly accurate measuring apparatus that can make the temperature change of the object more rapid and uniform and can suppress the diffraction of the electromagnetic wave that has passed through the first electromagnetic wave transmitting part. Can do.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

1 電磁波源
2 電磁波検出部(検出部)
3 検出電磁波通過部(第1の電磁波透過部)
3a 検出電磁波通過部(第3の電磁波透過部)
4 伝熱部(壁面部)
4a 第1の遮光部
4b 第2の遮光部
4c 第3の遮光部(第1の遮光部)
4d 第4の遮光部(第3の遮光部)
4e 第5の遮光部(第1の遮光部)
6 温度調整部
5 サンプル保持部(保持部)
7 照射電磁波通過部(第2の電磁波透過部)
7a 照射電磁波通過部(第1の電磁波透過部)
7e 照射電磁波通過部(第1の電磁波透過部)
8 電磁波方向変換部(プリズム)
10 電磁波測定装置(電磁波対応装置)
10e 電磁波照射装置(電磁波対応装置)
1 Electromagnetic wave source 2 Electromagnetic wave detection part (detection part)
3 Detection electromagnetic wave passage part (first electromagnetic wave transmission part)
3a Detection electromagnetic wave passage part (third electromagnetic wave transmission part)
4 Heat transfer part (wall surface part)
4a 1st light shielding part 4b 2nd light shielding part 4c 3rd light shielding part (1st light shielding part)
4d 4th light shielding part (3rd light shielding part)
4e 5th light-shielding part (1st light-shielding part)
6 Temperature adjustment part 5 Sample holding part (holding part)
7 Irradiation electromagnetic wave passage part (second electromagnetic wave transmission part)
7a Irradiation electromagnetic wave passage part (first electromagnetic wave transmission part)
7e Irradiation electromagnetic wave passage part (first electromagnetic wave transmission part)
8 Electromagnetic wave direction converter (prism)
10 Electromagnetic wave measuring device (electromagnetic wave compatible device)
10e Electromagnetic wave irradiation device (electromagnetic wave compatible device)

Claims (10)

0.01mm以上10mm以下の波長を有する電磁波を透過させない第1の遮光部と、
上記第1の遮光部を貫通して、上記電磁波を透過させる第1の電磁波透過部と、を備え、
上記第1の電磁波透過部の開口のうち、自装置の対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、
上記近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、
上記近位開口における上記特定線より、上記遠位開口における上記特定線が長いことを特徴とする電磁波対応装置。
A first light-shielding portion that does not transmit electromagnetic waves having a wavelength of 0.01 mm or more and 10 mm or less;
A first electromagnetic wave transmission part that penetrates the first light shielding part and transmits the electromagnetic wave,
Out of the openings of the first electromagnetic wave transmitting portion, the outer edge shape of the proximal opening close to the object of the device itself and the distal opening far from the object are both circular or convex polygons,
The proximal opening is the shortest side connecting the one side of the circular diameter, the shortest one side of the triangle that is the convex polygon, or the other side that is not in contact with the one side in the convex polygon excluding the triangle. The length of the specific line that is one of the straight lines is 10 times or less the wavelength of the electromagnetic wave,
The electromagnetic wave response device, wherein the specific line in the distal opening is longer than the specific line in the proximal opening.
上記電磁波を検出する検出部をさらに備え、
上記第1の電磁波透過部は、上記対象物と上記検出部との間に設けられることを特徴とする請求項1に記載の電磁波対応装置。
A detector for detecting the electromagnetic wave;
The electromagnetic wave response device according to claim 1, wherein the first electromagnetic wave transmission unit is provided between the object and the detection unit.
上記電磁波を出射する電磁波源をさらに備え、
上記第1の電磁波透過部は、上記電磁波源と上記対象物との間に設けられることを特徴とする請求項1に記載の電磁波対応装置。
Further comprising an electromagnetic wave source that emits the electromagnetic wave,
The electromagnetic wave response device according to claim 1, wherein the first electromagnetic wave transmitting portion is provided between the electromagnetic wave source and the object.
上記第1の遮光部を含み、上記対象物が導入される空間を形成する壁面部と、
上記対象物および上記壁面部の温度を昇降させる温度調整部と、をさらに備えることを特徴とする請求項1から3のいずれか1項に記載の電磁波対応装置。
A wall surface portion including the first light shielding portion and forming a space into which the object is introduced;
The electromagnetic wave response device according to any one of claims 1 to 3, further comprising a temperature adjustment unit that raises and lowers the temperature of the object and the wall surface part.
上記電磁波を出射する電磁波源と、
上記電磁波を透過させない第2の遮光部と、
上記第2の遮光部を貫通して、上記電磁波を透過させる第2の電磁波透過部と、
上記電磁波を検出する検出部をさらに備え、
上記第1の電磁波透過部および上記第2の電磁波透過部は、一方が上記電磁波源と上記対象物との間に設けられ、他方が上記対象物と上記検出部との間に設けられることを特徴とする請求項1に記載の電磁波対応装置。
An electromagnetic wave source that emits the electromagnetic wave;
A second light-shielding portion that does not transmit the electromagnetic wave;
A second electromagnetic wave transmission part that penetrates the second light shielding part and transmits the electromagnetic wave;
A detector for detecting the electromagnetic wave;
One of the first electromagnetic wave transmission part and the second electromagnetic wave transmission part is provided between the electromagnetic wave source and the object, and the other is provided between the object and the detection part. The electromagnetic wave response device according to claim 1, wherein the device is an electromagnetic wave response device.
上記第1の遮光部および上記第2の遮光部を含み、上記対象物が導入される空間を形成する壁面部と、
上記対象物および上記壁面部の温度を昇降させる温度調整部と、をさらに備えることを特徴とする請求項5に記載の電磁波対応装置。
A wall surface portion including the first light shielding portion and the second light shielding portion and forming a space into which the object is introduced;
The electromagnetic wave response device according to claim 5, further comprising a temperature adjustment unit that raises and lowers the temperature of the object and the wall surface part.
上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、
上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、
上記第2の電磁波透過部の開口のうち、自装置の上記対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、
上記第2の電磁波透過部の近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍以下の長さであり、
上記第1の電磁波透過部の近位開口における上記特定線が、上記第2の電磁波透過部の近位開口における上記特定線より長いことを特徴とする請求項5または6に記載の電磁波対応装置。
The first electromagnetic wave transmission part is provided between the object and the detection part,
The second electromagnetic wave transmitting portion is provided between the electromagnetic wave source and the object;
Out of the openings of the second electromagnetic wave transmitting portion, the outer edge shape of the proximal opening close to the object of the own device and the distal opening far from the object are both circular or convex polygons,
The proximal opening of the second electromagnetic wave transmitting portion does not contact the one side with any one side of the circular diameter, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle The length of the specific line that is one of the shortest straight lines connecting the other side is 10 times or less the wavelength of the electromagnetic wave,
The electromagnetic wave response device according to claim 5 or 6, wherein the specific line in the proximal opening of the first electromagnetic wave transmitting portion is longer than the specific line in the proximal opening of the second electromagnetic wave transmitting portion. .
上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、
上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、
上記第2の電磁波透過部の開口のうち、自装置の上記対象物に近い近位開口および当該対象物から遠い遠位開口の外縁形状は、いずれも円形または凸多角形であって、
上記第2の電磁波透過部の近位開口は、上記円形の直径、上記凸多角形である三角形の最短の一辺、または上記三角形を除く上記凸多角形における、任意の一辺と当該一辺に接しない他辺とを結ぶ最短の直線のいずれかである特定線の長さが、上記電磁波の波長の10倍より長いことを特徴とする請求項5または6に記載の電磁波対応装置。
The first electromagnetic wave transmission part is provided between the object and the detection part,
The second electromagnetic wave transmitting portion is provided between the electromagnetic wave source and the object;
Out of the openings of the second electromagnetic wave transmitting portion, the outer edge shape of the proximal opening close to the object of the own device and the distal opening far from the object are both circular or convex polygons,
The proximal opening of the second electromagnetic wave transmitting portion does not contact the one side with any one side of the circular diameter, the shortest side of the triangle that is the convex polygon, or the convex polygon excluding the triangle The electromagnetic wave response device according to claim 5 or 6, wherein the length of the specific line which is one of the shortest straight lines connecting the other side is longer than 10 times the wavelength of the electromagnetic wave.
上記第1の電磁波透過部は上記対象物と上記検出部との間に設けられ、
上記第2の電磁波透過部は上記電磁波源と上記対象物との間に設けられ、
電磁波が入射する入射面、入射した電磁波を反射する反射面、および反射した電磁波を出射する出射面を有するプリズムをさらに備え、
上記入射面および上記出射面はそれぞれ、上記第2の電磁波透過部および上記第1の電磁波透過部と対向し、
上記反射面は、上記対象物を保持する保持部の一側面となることを特徴とする請求項5から8のいずれか1項に記載の電磁波対応装置。
The first electromagnetic wave transmission part is provided between the object and the detection part,
The second electromagnetic wave transmitting portion is provided between the electromagnetic wave source and the object;
Further comprising a prism having an incident surface on which an electromagnetic wave is incident, a reflecting surface that reflects the incident electromagnetic wave, and an exit surface that emits the reflected electromagnetic wave;
The entrance surface and the exit surface are respectively opposite to the second electromagnetic wave transmission part and the first electromagnetic wave transmission part,
The electromagnetic wave response device according to claim 5, wherein the reflection surface is one side surface of a holding unit that holds the object.
上記第1の電磁波透過部の遠位開口における上記特定線の長さは、上記第1の電磁波透過部の近位開口における上記特定線の長さと、上記第1の電磁波透過部の近位開口から上記第1の電磁波透過部の遠位開口までの距離と、に基づいて算出される、上記電磁波のビームの中心から上記電磁波の強度が1/eとなる位置までの距離の2倍の値より長いことを特徴とする請求項1から9のいずれか1項に記載の電磁波対応装置。   The length of the specific line at the distal opening of the first electromagnetic wave transmitting portion is the length of the specific line at the proximal opening of the first electromagnetic wave transmitting portion and the proximal opening of the first electromagnetic wave transmitting portion. Is a value twice the distance from the center of the electromagnetic wave beam to the position where the intensity of the electromagnetic wave is 1 / e, calculated based on the distance from the first electromagnetic wave transmitting part to the distal opening of the electromagnetic wave transmitting part The electromagnetic wave response device according to claim 1, wherein the electromagnetic wave response device is longer.
JP2015160654A 2015-08-17 2015-08-17 Electromagnetic device Pending JP2017040484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160654A JP2017040484A (en) 2015-08-17 2015-08-17 Electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160654A JP2017040484A (en) 2015-08-17 2015-08-17 Electromagnetic device

Publications (1)

Publication Number Publication Date
JP2017040484A true JP2017040484A (en) 2017-02-23

Family

ID=58206034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160654A Pending JP2017040484A (en) 2015-08-17 2015-08-17 Electromagnetic device

Country Status (1)

Country Link
JP (1) JP2017040484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535219A (en) * 2018-04-08 2018-09-14 北京环境特性研究所 The method for measuring the fitting device of reflectivity and making the sample for measuring reflectivity
JP2019045355A (en) * 2017-09-04 2019-03-22 日本信号株式会社 Detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045355A (en) * 2017-09-04 2019-03-22 日本信号株式会社 Detector
JP7140319B2 (en) 2017-09-04 2022-09-21 日本信号株式会社 detector
CN108535219A (en) * 2018-04-08 2018-09-14 北京环境特性研究所 The method for measuring the fitting device of reflectivity and making the sample for measuring reflectivity

Similar Documents

Publication Publication Date Title
US9038474B2 (en) Photoacoustic measuring apparatus
US7531803B2 (en) Method and system for transmitting terahertz pulses
JP5419411B2 (en) Terahertz wave generator
US7291838B2 (en) Apparatus and method for detecting scattered material by terahertz wave
Durand et al. Blueshifted continuum peaks from filamentation in the anomalous dispersion regime
WO2013128922A1 (en) Acoustic wave detection probe and photoacoustic measurement device
JP6286863B2 (en) Optical system and terahertz emission microscope
EP3156762A1 (en) High-speed 3d imaging system using continuous-wave thz beam scan
US9874474B2 (en) Biometric sensor and biometric analysis system including the same
JP2010521662A (en) Irradiation of scattering reflective media
KR20160149429A (en) High-speed 3D imaging system using THz beam scan
WO2016056522A1 (en) Optical response measuring device and optical response measuring method
KR101691544B1 (en) High-speed 3D imaging system having non-axially symmetric lens using THz beam scan
WO2016095719A1 (en) Optically controlled adjustable terahertz wave attenuator and use method therefor
JP2014066701A (en) Specimen information acquisition apparatus
US8342028B2 (en) Photoacoustic measurement apparatus
JP2016170077A (en) Optical element, transmission probe, sample container, optical device, and method used for liquid immersion transmission measurement
JP6061571B2 (en) Subject information acquisition device
JP2017040484A (en) Electromagnetic device
JP2017009296A (en) Electromagnetic wave propagation device and information acquisition device
JP2017211293A (en) Image acquisition device and film thickness measurement method
JP2018068673A (en) Heating treatment tool
Deibel et al. The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides
JP2014081345A (en) Sensor
WO2015156777A1 (en) Optical measurement system having an integrated internal reflection element and array detector