JP2017040437A - High-temperature exhaust cylinder - Google Patents

High-temperature exhaust cylinder Download PDF

Info

Publication number
JP2017040437A
JP2017040437A JP2015162802A JP2015162802A JP2017040437A JP 2017040437 A JP2017040437 A JP 2017040437A JP 2015162802 A JP2015162802 A JP 2015162802A JP 2015162802 A JP2015162802 A JP 2015162802A JP 2017040437 A JP2017040437 A JP 2017040437A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
cylinder
exhaust pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015162802A
Other languages
Japanese (ja)
Inventor
主税 石川
Chikara Ishikawa
主税 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2015162802A priority Critical patent/JP2017040437A/en
Publication of JP2017040437A publication Critical patent/JP2017040437A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve strength and service life by suppressing contact of an exhaust gas of high temperature without using a heat insulating material.SOLUTION: A high-temperature exhaust cylinder unit 1 includes an exhaust cylinder 2 provided with a tapered portion 4 gradually reduced in a diameter at a tip side of a cylinder body 3 in which a high-temperature exhaust gas is circulated, and a skirt portion 5 at a rear end side, and a rectifier 7 disposed in the exhaust cylinder 2 for circulating the high-temperature exhaust gas and the outside air as laminar flow. The tapered portion 4 of the exhaust cylinder 2 at a lower side is opposed to the skirt portion 5 of the exhaust cylinder 2 at an upper side with a clearance 8, and, for example, three exhaust cylinders 2A, 2B, 2C are arranged in series. The high-temperature exhaust gas flowing into the exhaust cylinder 2A at a lower side is increased in speed by being passed through the tapered portion 4, and the outside air is introduced due to negative pressure of the clearance 8 by venturi effect, and flows along an inner face of the exhaust cylinder 2. In the exhaust cylinder 2, the outside air flow and the exhaust gas flow are rectified by the rectifier 7 and formed into two-layered laminar flow of the outside air flow at an outer peripheral side and the exhaust gas flow at a central side.SELECTED DRAWING: Figure 1

Description

本発明は、例えば発動発電機等の発電プラントで用いられるガスタービン等の燃焼による高温の排気ガスを排出するための高温排気筒に関する。   The present invention relates to a high-temperature exhaust pipe for discharging high-temperature exhaust gas by combustion of a gas turbine or the like used in a power plant such as an engine generator.

発動発電機を使用する施設では、発動発電機が運転された際に発生する高温の排気ガスを一般的に煙突等を含む排気筒を用いて外気に放出・希釈されるようになっている。排気ガスの放出は施設周辺への影響を少なくするため、可能な限り高所にて行われることが多く、そのため、排気筒には細長い管状のものが使用される。
また、排気ガスの温度や排気圧力は発動発電機の種類によって異なり、それぞれに対応する排気筒仕様とする必要がある。現在、主流となりつつある発動発電機では発動機としてガスタービンエンジンを使用するため、従来、主流であったディーゼルエンジンと比較して排気ガスの温度と流速が高く、一例では排気ガス温度が600℃、排気ガス風速が40m/sに達する。
In a facility using an engine generator, high-temperature exhaust gas generated when the engine generator is operated is generally released and diluted to the outside air using an exhaust pipe including a chimney or the like. In order to reduce the influence on the surroundings of the facility, the discharge of the exhaust gas is often performed at a height as much as possible. Therefore, a long and narrow exhaust pipe is used.
Further, the temperature and exhaust pressure of the exhaust gas vary depending on the type of the motor generator, and it is necessary to make the exhaust tube specifications corresponding to each. At present, the generators that are becoming mainstream use a gas turbine engine as the engine. Therefore, the exhaust gas temperature and flow velocity are higher than those of the conventional diesel engines, and in one example, the exhaust gas temperature is 600 ° C. The exhaust gas wind speed reaches 40 m / s.

ガスタービン等の燃焼排気ガスに用いる高温排気筒として、従来は例えば金属製の二重管の間に断熱材を装填した排気筒を縦方向に積層した排気筒ユニットが知られている。断熱材は例えば無機系材料による繊維状または発泡状材料からなっている。この高温排気筒では、断熱材を挟んだ金属製二重管をジョイント部で上下方向に複数連結して排気筒ユニットを形成していた。   As a high-temperature exhaust pipe used for combustion exhaust gas such as a gas turbine, conventionally, an exhaust pipe unit in which an exhaust pipe loaded with a heat insulating material between, for example, metal double pipes is vertically stacked is known. The heat insulating material is made of, for example, a fibrous or foamed material made of an inorganic material. In this high-temperature exhaust pipe, a plurality of metal double pipes sandwiching a heat insulating material are connected in the vertical direction at a joint portion to form an exhaust pipe unit.

また、他の高温排気ガス用煙突では、構造用炭素鋼によって外壁の煙突筒身を形成し、その内面に断熱材を形成していた。しかも、炭素鋼の煙突筒身の外面温度を60℃〜70℃以下に抑える必要から断熱材を厚くライニングせざるを得なかった。
これを改善した特許文献1に記載の高温排気ガス用煙突では、煙突筒身の内面の断熱材を第1層と第2層に分離してその間に空間空気流通路を形成し、煙突筒身の下部内面と第1層の断熱材の間に導入用空間を形成して空間空気流通路に連通させていた。そして、煙突筒身の導入用空間から導入された外気が空間空気流通路を流れて煙突の内外壁を冷却できるので、第1層と第2層による断熱材の厚みを薄くして煙突を軽量化できるとしている。
Further, in other high-temperature exhaust gas chimneys, the chimney cylinder of the outer wall is formed of structural carbon steel, and the heat insulating material is formed on the inner surface thereof. Moreover, since the outer surface temperature of the chimney cylinder of carbon steel needs to be suppressed to 60 ° C. to 70 ° C. or less, the heat insulating material has to be lined thickly.
In the chimney for high-temperature exhaust gas described in Patent Document 1 improved in this manner, the heat insulating material on the inner surface of the chimney cylinder is separated into the first layer and the second layer, and a space air flow passage is formed between them, and the chimney cylinder An introduction space is formed between the lower inner surface of the first layer and the heat insulating material of the first layer to communicate with the space air flow passage. And since the outside air introduced from the space for introducing the chimney cylinder flows through the space air flow passage and can cool the inner and outer walls of the chimney, the thickness of the heat insulating material by the first layer and the second layer is reduced to make the chimney lighter It can be made.

特許第3511216号公報Japanese Patent No. 3511216

ところで、上述した従来の高温排気筒や高温排気ガス用煙突では、ジョイント部や煙突の上端開口を通して雨水等が浸入し易く、これによって内部の断熱材が含水した状態になる可能性が高い。発動発電機が連続して常時稼働している場合には、断熱材に浸入した水が排気熱によって即座に蒸発するため二重管や煙突の内部や断熱材に滞留することはない。   By the way, in the above-described conventional high-temperature exhaust pipe and high-temperature exhaust gas chimney, rainwater or the like is likely to enter through the joint portion or the upper end opening of the chimney. When the motor generator is continuously operating continuously, the water that has entered the heat insulating material evaporates immediately due to the exhaust heat, so that it does not stay inside the double pipe or the chimney or in the heat insulating material.

しかしながら、発動発電機が間欠運転される場合、例えば非常用発電機等のように非常時と点検時等に間欠的に運転される場合には二重管の高温排気筒や煙突内に浸入した水が断熱材に含浸され易かった。その状態で発動発電機の運転が間欠的に行われると、特にガスタービンエンジンのように高温排気ガスが二重管の高温排気筒や煙突内を通過した場合、急激な温度上昇によって水分が蒸発し、断熱材内部の急激な圧力上昇によって爆発的な破損をもたらす可能性があった。
これに対し、断熱材を排除して単純な金属製の排気筒や煙突を使用した場合には、排気筒や煙突の構造を支える部分が直接排気熱の影響を受けて例えば600℃前後に温度上昇することで、例えば鋼製等の金属を使用すれば強度が半分程度に落ちてしまい寿命が低下したり、或いは強度低下により破壊するという欠点が生じる。
However, when the generator is operated intermittently, for example, when it is operated intermittently during emergency and inspection, such as an emergency generator, it has entered a high-temperature exhaust pipe or chimney of a double pipe Water was easily impregnated in the heat insulating material. If the engine generator is operated intermittently in this state, moisture will evaporate due to a rapid rise in temperature, especially when high-temperature exhaust gas passes through a double-tube high-temperature exhaust stack or chimney, as in a gas turbine engine. However, there was a possibility of causing explosive damage due to a sudden increase in pressure inside the heat insulating material.
On the other hand, when a simple metal exhaust stack or chimney is used without the heat insulating material, the portion supporting the structure of the exhaust stack or chimney is directly affected by the exhaust heat and the temperature is about 600 ° C., for example. If the metal is made of, for example, steel, the strength is lowered to about half, and the life is shortened, or it is broken due to the strength reduction.

本発明は、このような事情に鑑みてなされたものであり、断熱材を用いることなく高温の排気ガスの接触を抑えて高強度で長寿命の高温排気筒を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-temperature exhaust pipe having high strength and a long life by suppressing contact with high-temperature exhaust gas without using a heat insulating material.

本発明による高温排気筒は、高温排気ガスを流通させる筒部の先端側に縮径部を形成し後端側に拡径部を形成した排気筒と、排気筒内に設置されていて高温排気ガスと外気を層流として流通させる整流器とを備え、一の排気筒の拡径部に他の排気筒の縮径部を隙間を開けて設置することで複数の排気筒を配列してなり、隙間を通して外気を導入して排気筒内で高温排気ガスとその外側の外気とが層流として流通するようにしたことを特徴とする。
本発明によれば、直列に配列した複数の排気筒内を、例えば発動発電機の発電機等で燃焼した高温の排気ガスが流通し、整流器を通って乱流や拡散流となることなく層流として上方に流れる。その際、下側の排気筒の縮径部を通って上側の排気筒の拡径部を排気ガスが流れると縮径部で絞られて高速になり、ベンチュリー効果によって負圧となった隙間から外気が流入することになる。そして、排気筒内の排気ガス流と外気流とが整流器によって層流として上方に流れるが、外気は排気筒の内面に沿って外周領域を、排気ガスは中央領域をそれぞれ層状として流れる。そのため、排気筒の内面が高温の排気ガスに接触せず低温の外気流に接触しているため、排気筒が高温になることを抑制して高強度を維持できる。
しかも、雨水等は排気筒に浸入したとしても排気筒の内面を伝わって拡径部から外部に排出できる。
The high-temperature exhaust pipe according to the present invention includes an exhaust pipe in which a reduced diameter portion is formed on the front end side of the cylindrical portion through which the high-temperature exhaust gas is circulated, and an enlarged diameter portion is formed on the rear end side. It comprises a rectifier that circulates gas and outside air as a laminar flow, and a plurality of exhaust pipes are arranged by installing a reduced diameter part of another exhaust pipe with a gap in the enlarged diameter part of one exhaust pipe, Outside air is introduced through the gap so that the high-temperature exhaust gas and the outside air outside the exhaust tube circulate as a laminar flow.
According to the present invention, high-temperature exhaust gas combusted by, for example, a generator of an engine generator circulates in a plurality of exhaust tubes arranged in series, and the layers are formed without being turbulent or diffused through the rectifier. It flows upward as a stream. At that time, when exhaust gas flows through the diameter-reduced portion of the upper exhaust stack through the diameter-reduced portion of the lower exhaust stack, the exhaust gas is throttled at the reduced diameter portion to increase the speed, and from the gap that has become negative pressure due to the venturi effect Outside air will flow in. Then, the exhaust gas flow and the external airflow in the exhaust pipe flow upward as a laminar flow by the rectifier, but the external air flows along the inner surface of the exhaust pipe and the exhaust gas flows in layers in the central region. Therefore, since the inner surface of the exhaust tube does not contact the high temperature exhaust gas but contacts the low temperature external airflow, the exhaust tube can be prevented from becoming high temperature and high strength can be maintained.
Moreover, even if rainwater or the like enters the exhaust tube, it can be discharged to the outside through the enlarged diameter portion along the inner surface of the exhaust tube.

また、縮径部は先端側に縮径するテーパ部であり、拡径部は後端側に拡径するスカート部であることが好ましい。
下側の排気筒のテーパ部と対向するスカート部との間に隙間があるため、テーパ部を流れる層流の流速が高速になるとベンチュリー効果によって隙間部分が負圧になって外気が隙間を通して流入し、外気流が排気筒の内面に沿って流れると共に排気ガス流が中央領域に寄せられるため、外周側の外気流と中央側の排気ガス流とが層流となって排気筒内を高速で流れる。そのため、排気筒の内面に高温の排気ガス流が接触して高温になることを防止できる。
The reduced diameter portion is preferably a tapered portion that is reduced in diameter toward the front end side, and the enlarged diameter portion is preferably a skirt portion that is increased in diameter toward the rear end side.
Since there is a gap between the taper part of the lower exhaust stack and the skirt part facing it, when the laminar flow velocity flowing through the taper part becomes high, the gap part becomes negative pressure due to the venturi effect, and the outside air flows through the gap. However, since the external airflow flows along the inner surface of the exhaust tube and the exhaust gas flow is brought to the central region, the outer airflow on the outer peripheral side and the exhaust gas flow on the central side become a laminar flow at a high speed in the exhaust tube. Flowing. Therefore, it is possible to prevent the hot exhaust gas flow from coming into contact with the inner surface of the exhaust tube and becoming hot.

また、整流器は排気筒の長手方向に沿って格子状または同心円状に板を配列してなることが好ましい。
整流器を排気筒の長手方向に沿って格子状または同心円状に形成したため、層流となる排気ガス流と外気流とがそれぞれ整流器の格子や同心円の開口に沿ってガイドされて、流れを乱すことなく層流として高速に流れる。
The rectifier is preferably formed by arranging plates in a lattice shape or concentric shape along the longitudinal direction of the exhaust pipe.
Since the rectifier is formed in a lattice or concentric shape along the longitudinal direction of the exhaust stack, the exhaust gas flow and the external air flow that are laminar flow are guided along the lattice of the rectifier and the concentric opening, respectively, and the flow is disturbed. It flows as a laminar flow at high speed.

本発明による高温排気筒によれば、直列に配列した複数の排気筒内を高温の排気ガスが流通することで縮径部でより高速になり、しかも一の排気筒の縮径部と他の排気筒の拡径部との隙間から外気を導入させて、整流器によって層流として流通させることができるので、高温の排気ガスが排気筒に接触せず、高温の排気ガスが接触することによる排気筒の強度低下を抑制して長寿命化できる。
そのため、従来の高温排気筒のように断熱材や二重管を使用しないので製造コストを低減できると共に、雨水が浸入しても排気筒の内面に沿って排出されるため、雨水による悪影響を生じないので屋外にも設置できる。
According to the high-temperature exhaust pipe according to the present invention, the high-temperature exhaust gas flows through the plurality of exhaust pipes arranged in series, so that the reduced-diameter portion has a higher speed. Since the outside air can be introduced from the gap with the enlarged diameter part of the exhaust pipe and circulated as a laminar flow by the rectifier, the hot exhaust gas does not come into contact with the exhaust pipe, and the exhaust due to the contact with the hot exhaust gas comes into contact with the exhaust pipe. It is possible to extend the service life by suppressing the strength reduction of the cylinder.
Therefore, unlike conventional high-temperature exhaust pipes, heat insulation and double pipes are not used, so manufacturing costs can be reduced, and even if rainwater enters, it is discharged along the inner surface of the exhaust pipe, causing adverse effects due to rainwater. Since it is not, it can be installed outdoors.

本発明の第一実施形態による高温排気筒ユニットの一部破断斜視図である。It is a partially broken perspective view of the high temperature exhaust pipe unit by 1st embodiment of this invention. 図1に示す高温排気筒ユニットにおける単体の排気筒を示す一部破断斜視図である。It is a partially broken perspective view which shows the single exhaust pipe in the high temperature exhaust pipe unit shown in FIG. 図1における高温排気筒ユニットのA−A線断面図である。It is the sectional view on the AA line of the high temperature exhaust pipe unit in FIG. 図1における排気筒と整流器を示すB−B線断面図である。It is a BB sectional view showing an exhaust pipe and a rectifier in Drawing 1. 第二実施形態による高温排気筒ユニットを示すものであり、(a)は高温排気筒ユニットの一部破断斜視図、(b)は単体の排気筒の一部破断斜視図である。The high temperature exhaust pipe unit by 2nd embodiment is shown, (a) is a partially broken perspective view of a high temperature exhaust pipe unit, (b) is a partially broken perspective view of a single exhaust pipe unit. 第三実施形態による高温排気筒ユニットを示すものであり、(a)は高温排気筒ユニットの一部破断斜視図、(b)は単体の排気筒の一部破断斜視図である。The high temperature exhaust pipe unit by 3rd embodiment is shown, (a) is a partially broken perspective view of a high temperature exhaust pipe unit, (b) is a partially broken perspective view of a single exhaust pipe. 第四実施形態による高温排気筒ユニットを示すものであり、(a)は高温排気筒ユニットの一部破断斜視図、(b)は単体の排気筒の一部破断斜視図である。The high temperature exhaust pipe unit by 4th embodiment is shown, (a) is a partially broken perspective view of a high temperature exhaust pipe unit, (b) is a partially broken perspective view of a single exhaust pipe unit.

以下、本発明の実施形態による高温排気筒ユニットについて図1から図7に基づいて説明する。
まず、本発明の第一実施形態による高温排気筒ユニット1について図1から図4により説明する。図1に示す高温排気筒ユニット1は図2に示す排気筒2を複数個(図では3個)上下方向に直列に配置したものである。
この高温排気筒ユニット1は、例えば発動発電機として図示しないガスタービンで燃料を燃焼した後の排気ガスを放出するための煙突である。ガスタービンで燃焼した後の排気ガスは例えば650℃〜600℃程度の高温高圧となって、図示しない水平排気筒から高温排気筒ユニット1に連結されてなる略L字状の筒体を高速で流通して大気に放出される。
Hereinafter, a high-temperature exhaust pipe unit according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7.
First, a high-temperature exhaust stack unit 1 according to a first embodiment of the present invention will be described with reference to FIGS. A high-temperature exhaust pipe unit 1 shown in FIG. 1 has a plurality of (three in the figure) exhaust pipes 2 shown in FIG. 2 arranged in series in the vertical direction.
The high-temperature exhaust pipe unit 1 is a chimney for discharging exhaust gas after burning fuel with a gas turbine (not shown) as an engine generator, for example. The exhaust gas after burning in the gas turbine becomes a high temperature and high pressure of, for example, about 650 ° C. to 600 ° C., and an approximately L-shaped cylinder body connected to the high temperature exhaust cylinder unit 1 from a horizontal exhaust cylinder (not shown) is moved at high speed. It is distributed and released to the atmosphere.

図2に示す単体の排気筒2は、略円筒状の筒部本体3と、その上部に形成されていて先端側に向けて次第に縮径して小径の開口4aを備えた筒状の円錐台形状のテーパ部4と、筒部本体3の下部に形成されていて基端側(下方側)に向けて次第に拡径して大径の開口5aを備えた筒状の円錐台形状のスカート部5とが一体形成されている。
テーパ部4は先端側の開口に向けて内径寸法を次第に絞り込んで縮径しているため、排気筒2内を高温の排気ガスが流通するとテーパ部4での流速が高くなる。なお、スカート部5も後端側の開口から先端側に向けて次第に内径寸法を絞り込んでいるため、後端側に設けたスカート部5を流通する排気ガスも流速が向上する。
A single exhaust cylinder 2 shown in FIG. 2 is a cylindrical truncated cone having a substantially cylindrical cylindrical body 3 and a small-diameter opening 4a which is formed on the upper part and is gradually reduced in diameter toward the distal end side. A tapered portion 4 having a shape, and a cylindrical frustoconical skirt portion having a large-diameter opening 5a which is formed at a lower portion of the cylindrical portion main body 3 and gradually increases in diameter toward the base end side (lower side). 5 is integrally formed.
Since the taper portion 4 is gradually narrowed and reduced in diameter toward the opening on the distal end side, the flow velocity at the taper portion 4 increases when hot exhaust gas flows through the exhaust tube 2. Since the inner diameter dimension of the skirt portion 5 is gradually narrowed from the opening on the rear end side toward the front end side, the exhaust gas flowing through the skirt portion 5 provided on the rear end side also improves the flow velocity.

そして、排気筒2の筒部本体3の内部には内部を流通する排気ガス等の気体を整流させる整流器7が設置されている。この整流器7は、図2及び図3に示すように、長板状の板部7aが格子状に組み込まれており、上下面に略四角形状の開口部7b、7cが多数形成されている。そのため、下方から整流器7に流入する排気ガス等の気体は複数の角筒が並んだ整流器7で整流されて層状となって上方に流出する。整流器7の上下の開口部7b、7cは同一面積にするか、板厚を変化させて上側の開口部7bの面積を下側より小さくして圧力損失を小さくしている。
なお、排気筒2と整流器7は例えば鋼製等の金属製である。
A rectifier 7 that rectifies a gas such as exhaust gas that circulates inside the cylinder main body 3 of the exhaust cylinder 2 is installed. As shown in FIGS. 2 and 3, the rectifier 7 has long plate-like plate portions 7 a incorporated in a lattice shape, and a plurality of substantially rectangular openings 7 b and 7 c are formed on the upper and lower surfaces. Therefore, gas such as exhaust gas flowing into the rectifier 7 from below is rectified by the rectifier 7 in which a plurality of rectangular tubes are arranged, and flows out in a layered manner. The upper and lower openings 7b and 7c of the rectifier 7 have the same area or the plate thickness is changed so that the area of the upper opening 7b is smaller than the lower side to reduce the pressure loss.
The exhaust pipe 2 and the rectifier 7 are made of metal such as steel.

また、整流器7は筒部本体3の内面に溶接等で固定されている。或いは、下側に設置される排気筒2のテーパ部4の先端の開口4aに着座させて係止させてもよい。排気筒2内における整流器7の設置位置は任意の位置に設置できる。製造コストを考慮すると、整流器7の外側側面が円筒状の筒部本体3の内側面に当接するように形成することが好ましく、筒部本体3の内面の長手方向のいずれかの面に設置すればよい。本実施形態では、排気筒2内に流入した外気が整流され易いように筒部本体3の下部に設置して固定している。   The rectifier 7 is fixed to the inner surface of the cylindrical body 3 by welding or the like. Alternatively, it may be seated and locked in the opening 4a at the tip of the tapered portion 4 of the exhaust pipe 2 installed on the lower side. The installation position of the rectifier 7 in the exhaust pipe 2 can be installed at an arbitrary position. Considering the manufacturing cost, it is preferable that the outer side surface of the rectifier 7 is formed so as to contact the inner side surface of the cylindrical tube body 3, and the rectifier 7 is installed on any surface in the longitudinal direction of the inner surface of the tube body 3. That's fine. In this embodiment, it is installed and fixed to the lower part of the cylinder part main body 3 so that the external air which flowed in the exhaust cylinder 2 is easy to be rectified.

次に、上述した構成を備えた排気筒2を複数個上下方向に組み立てた高温排気筒ユニット1の組立構造について図1と図4により説明する。図1に示す例では3個の排気筒2を直列に連結しており、これらの排気筒2を便宜的に下側から上側に排気筒2A,2B,2Cというものとする。
高温排気筒ユニット1では、下側に設置した第一の排気筒2Aのテーパ部4の上に第二の排気筒2Bのスカート部5を設置する。しかも、第一の排気筒2Aと第二の排気筒2Bは図4に示すように非接触であり、テーパ部4とスカート部5が全周に亘って所定距離aの隙間8を開けて配置されている。そのため、図4の断面視でテーパ部4とスカート部5は略平行に設置されており、後述するように、テーパ部4とスカート部5の隙間8を通って外気が排気筒2内に流入する。
なお、隙間8を形成するテーパ部4とスカート部5は互いに略平行である必要はなく、例えばテーパ部4とスカート部5の距離aは上端側を下方側より小さくしてもよいし、或いは逆にしてもよい。
Next, an assembly structure of the high-temperature exhaust stack unit 1 in which a plurality of exhaust stacks 2 having the above-described configuration are assembled in the vertical direction will be described with reference to FIGS. 1 and 4. In the example shown in FIG. 1, three exhaust cylinders 2 are connected in series, and these exhaust cylinders 2 are referred to as exhaust cylinders 2A, 2B, and 2C from the lower side to the upper side for convenience.
In the high temperature exhaust pipe unit 1, the skirt part 5 of the second exhaust pipe 2B is installed on the taper part 4 of the first exhaust pipe 2A installed on the lower side. Moreover, the first exhaust cylinder 2A and the second exhaust cylinder 2B are not in contact with each other as shown in FIG. 4, and the tapered portion 4 and the skirt portion 5 are arranged with a gap 8 of a predetermined distance a over the entire circumference. Has been. For this reason, the tapered portion 4 and the skirt portion 5 are installed substantially in parallel in the cross-sectional view of FIG. To do.
The tapered portion 4 and the skirt portion 5 that form the gap 8 do not need to be substantially parallel to each other. For example, the distance a between the tapered portion 4 and the skirt portion 5 may be smaller on the upper end side than the lower side, or It may be reversed.

そして、第二の排気筒2Bの上部に第三の排気筒2Cを設置する。上記と同様に、上側の第三の排気筒2Cのスカート部5と第二の排気筒2Bのテーパ部4との間に全周に亘って距離aの隙間8が形成されている。
各排気筒2A,2B、2Cは互いに非接触であり、これらの各排気筒2A,2B、2Cは図示を省略した外部の躯体や壁面または支柱等に個々に連結されて支持してもよい。或いは、上側の排気筒2のスカート部5と下側の排気筒2のテーパ部4とを隙間8を介してアーム等で周方向に所定間隔に連結してもよい。
なお、第一の排気筒2Aのスカート部5の下方側には全周に隙間8を開けてガスタービンの水平排気筒の排気出口6が設置され、高温排気筒ユニット1への排気ガスの排出時に外気が流入するようになっている。
And the 3rd exhaust pipe 2C is installed in the upper part of the 2nd exhaust pipe 2B. Similarly to the above, a gap 8 having a distance a is formed over the entire circumference between the skirt portion 5 of the upper third exhaust cylinder 2C and the tapered portion 4 of the second exhaust cylinder 2B.
The exhaust pipes 2A, 2B, and 2C are not in contact with each other, and the exhaust pipes 2A, 2B, and 2C may be individually connected to and supported by an external housing, a wall surface, a support column, or the like that is not shown. Alternatively, the skirt portion 5 of the upper exhaust tube 2 and the taper portion 4 of the lower exhaust tube 2 may be connected to each other at a predetermined interval in the circumferential direction by an arm or the like through a gap 8.
In addition, an exhaust outlet 6 of a horizontal exhaust pipe of the gas turbine is provided on the lower side of the skirt portion 5 of the first exhaust pipe 2A with a gap 8 around the entire circumference, and exhaust gas is discharged to the high-temperature exhaust pipe unit 1 Sometimes outside air flows in.

本第一実施形態による高温排気筒ユニット1は上述した構成を備えており、次に高温の排気ガスの排出方法について説明する。
まず、発動発電機として図示しないガスタービンで燃料を燃焼した後の高温の排気ガスが図示しない水平排気筒の排気出口6から高温排気筒ユニット1の第一の排気筒2Aに流入する。すると、第一の排気筒2Aでは高温の排気ガスが上方に向けて縮径するスカート部5を流れるため流速を増して集合して筒部本体3内に流入する。
しかも、スカート部5で排気ガスの流速を増すことで排気出口6との隙間8から外気が第一の排気筒2A内に流入してその内面に沿って上方に流れる。筒部本体3内では整流器7が設置されているために、外気は筒部本体3の内面に沿って流れ、排気ガスは中央に集中した状態で整流化される。
The high-temperature exhaust pipe unit 1 according to the first embodiment has the above-described configuration. Next, a method for discharging high-temperature exhaust gas will be described.
First, high-temperature exhaust gas after burning fuel in a gas turbine (not shown) as an engine generator flows into the first exhaust cylinder 2A of the high-temperature exhaust cylinder unit 1 from an exhaust outlet 6 of a horizontal exhaust cylinder (not shown). Then, in the first exhaust cylinder 2 </ b> A, high-temperature exhaust gas flows through the skirt portion 5 whose diameter is reduced upward, so that the flow velocity is increased and collected and flows into the cylinder body 3.
In addition, by increasing the exhaust gas flow velocity at the skirt portion 5, the outside air flows into the first exhaust cylinder 2A from the gap 8 with the exhaust outlet 6 and flows upward along the inner surface thereof. Since the rectifier 7 is installed in the tube body 3, the outside air flows along the inner surface of the tube body 3, and the exhaust gas is rectified in a state of being concentrated in the center.

そして、筒部本体3から次第に縮径するテーパ部4を通過することで外気と排気ガスは流速を増して第二の排気筒2Bに流入する。このとき、外気と排気ガスがテーパ部4で高速となるためベンチュリー効果によって負圧になり、第一の排気筒2Aのテーパ部4と第二の排気筒2Bのスカート部5の隙間8の内側も負圧になるため、外気が全周に亘って隙間8を通って第二の排気筒2B内に流入する。
しかも、流入する外気は排気ガスと比較して低温であり、第二の排気筒2Bの内面に沿って流入するため、高温の排気ガスは中央に寄せられる。そして、これらの外気流と排気ガス流は第二の排気筒2Bの整流器7を通過することで更に整流化され、リング状の外気流と中央の排気ガス流とで二層の層流となってテーパ部4に流入する。
The outside air and the exhaust gas flow in the second exhaust cylinder 2B at an increased flow velocity by passing through the tapered part 4 that gradually decreases in diameter from the cylinder part main body 3. At this time, since the outside air and the exhaust gas become high speed at the taper portion 4, negative pressure is caused by the venturi effect, and the inside of the gap 8 between the taper portion 4 of the first exhaust cylinder 2A and the skirt portion 5 of the second exhaust cylinder 2B. Therefore, the outside air flows into the second exhaust pipe 2B through the gap 8 over the entire circumference.
Moreover, since the outside air that flows in is cooler than the exhaust gas and flows along the inner surface of the second exhaust cylinder 2B, the high-temperature exhaust gas is brought to the center. These external airflow and exhaust gas flow are further rectified by passing through the rectifier 7 of the second exhaust cylinder 2B, and a two-layer laminar flow is formed by the ring-shaped external airflow and the central exhaust gas flow. Into the taper portion 4.

そして、第二の排気筒2Bの縮径されたテーパ部4で更に外気流と排気ガス流の層流が高速化するため、ベンチュリー効果によって負圧になり、第三の排気筒2Cのスカート部5との隙間8から外気が流入して整流器7を通過することで二層の層流が更に整流化されてテーパ部4を通って外気に排出される。   Then, since the laminar flow of the external air flow and the exhaust gas flow is further accelerated by the tapered portion 4 having a reduced diameter of the second exhaust cylinder 2B, negative pressure is caused by the Venturi effect, and the skirt part of the third exhaust cylinder 2C. As the outside air flows in from the gap 8 with the air 5 and passes through the rectifier 7, the two-layer laminar flow is further rectified and discharged to the outside air through the tapered portion 4.

このように、高温排気筒ユニット1内を下方から上方に流通する高温の排気ガス流はその外側に常温に近い比較的低温の外気流の層が流れるため、各排気筒2との接触が抑えられて各排気筒2が高温になることを抑制できる。
また、高温排気筒ユニット1内に雨水等が浸入したり結露したりしたとしても、雨水等の水滴は第一、第二、第三の排気筒2A,2B,2Cの内面を伝わってそれぞれ降下し、各スカート部5の内面から外部に排出される。また、各排気筒2に隙間8を覆うスカート部5を設けたため、雨水等が隙間8から内部に侵入することを防止できる。
In this way, the high-temperature exhaust gas flow flowing from the lower side to the upper side in the high-temperature exhaust pipe unit 1 has a layer of a relatively low-temperature external airflow close to normal temperature on the outside thereof, so that contact with each exhaust pipe 2 is suppressed. It can suppress that each exhaust pipe 2 becomes high temperature.
Even if rainwater or the like enters or condenses in the high-temperature exhaust pipe unit 1, water drops such as rainwater descend along the inner surfaces of the first, second, and third exhaust pipes 2A, 2B, and 2C. Then, it is discharged from the inner surface of each skirt portion 5 to the outside. Further, since the skirt portion 5 that covers the gap 8 is provided in each exhaust pipe 2, rainwater or the like can be prevented from entering the inside from the gap 8.

上述のように本実施形態による高温排気筒ユニット1によれば、第一、第二、第三の排気筒2A,2B,2C内を高温の排気ガスが各排気筒2のテーパ部4を通過することで高速化されると共に隙間8から外気を流入できるため、外気流と排気ガス流が層流になり、高温の排気ガス流が各排気筒2の内面に接触しないので、断熱材を用いなくても、各排気筒2の熱による悪影響を低減させて強度が低下することを抑制できる。
しかも、本実施形態による高温排気筒ユニット1は、断熱材や二重管等を使用しないでよいので製造コストを低減できる。
また、高温排気筒ユニット1内に雨水が浸入したり結露したりしたとしても、水分は各排気筒2の内面を伝わってスカート部5から外部環境に排出されるため、高温排気筒ユニット1が間欠使用される場合でも雨水等による悪影響を考慮しなくてもよい。
As described above, according to the high-temperature exhaust pipe unit 1 according to the present embodiment, the high-temperature exhaust gas passes through the tapered portion 4 of each exhaust pipe 2 through the first, second, and third exhaust pipes 2A, 2B, and 2C. In addition, since the outside air can flow in from the gap 8 because the speed is increased, the outside air flow and the exhaust gas flow become laminar, and the high temperature exhaust gas flow does not contact the inner surface of each exhaust tube 2, so a heat insulating material is used. Even if not, it is possible to reduce the adverse effect due to the heat of each exhaust pipe 2 and to suppress the strength from being lowered.
In addition, the high-temperature exhaust stack unit 1 according to the present embodiment does not require the use of a heat insulating material, a double pipe, or the like, so that manufacturing costs can be reduced.
Even if rainwater enters or condenses in the high temperature exhaust pipe unit 1, the water is transferred to the external environment from the skirt portion 5 through the inner surface of each exhaust pipe 2. Even in the case of intermittent use, it is not necessary to consider the adverse effects of rainwater.

なお、本発明は上述した第一実施形態による高温排気筒ユニット1に限定されることはなく、本発明の要旨を変更しない範囲で適宜の変更や置換等が可能であり、これらはいずれも本発明に含まれる。以下に、本発明の他の実施形態や変形例等について説明するが、上述した実施形態と同一または同様な部分や部材には同一の符号を用いて説明を省略する。   The present invention is not limited to the high-temperature exhaust stack unit 1 according to the first embodiment described above, and can be appropriately changed or replaced without departing from the gist of the present invention. Included in the invention. Hereinafter, other embodiments and modifications of the present invention will be described, but the same or similar parts and members as those of the above-described embodiment will be denoted by the same reference numerals, and description thereof will be omitted.

次に本発明の第二実施形態による高温排気筒ユニット1Aについて図5により説明する。
本第二実施形態による高温排気筒ユニット1Aは各排気筒2の構成と組み合わせは第一実施形態と共通にする。本実施形態では、各排気筒2内に設置固定する整流器10が第一実施形態の整流器7と相違する。
図5(a)、(b)において、本実施形態による整流器10は各排気筒2における筒部本体3の円筒状の内面に沿って円筒形状の整流筒部11を同心円状に複数枚(図に示す例では4枚)径方向に略等間隔または不等間隔に設置している。なお、中央の整流筒部11は排気ガス流だけが流れるため比較的内径寸法を大きくしてもよい。
しかも、複数の同心円状の整流筒部11に対して径方向に延びる連結板9を所定間隔、例えば略90度間隔で設置して交差させ、連結板9と筒部本体3の内面との当接部と各整流筒部11との交差部を溶接等で固定している。
Next, a high-temperature exhaust pipe unit 1A according to a second embodiment of the present invention will be described with reference to FIG.
In the high-temperature exhaust pipe unit 1A according to the second embodiment, the configuration and combination of each exhaust pipe 2 are the same as those in the first embodiment. In this embodiment, the rectifier 10 installed and fixed in each exhaust pipe 2 is different from the rectifier 7 of the first embodiment.
5 (a) and 5 (b), the rectifier 10 according to the present embodiment includes a plurality of concentric circular rectifying tube portions 11 along the cylindrical inner surface of the tube portion main body 3 in each exhaust tube 2 (see FIG. 5). 4 in the example shown in FIG. 4) are arranged at substantially equal or unequal intervals in the radial direction. In addition, since only the exhaust gas flow flows through the central rectifying cylinder portion 11, the inner diameter may be relatively large.
In addition, the connecting plates 9 extending in the radial direction are installed at a predetermined interval, for example, approximately 90 degrees, and intersected with the plurality of concentric rectifying tube portions 11, so that the connecting plate 9 and the inner surface of the tube portion main body 3 meet each other. The intersecting portion between the contact portion and each rectifying cylinder portion 11 is fixed by welding or the like.

本第二実施形態による高温排気筒ユニット1Aは上述の構成を備えており、ガスタービンが燃焼した後の排気ガスの排出方法について説明する。
図5(a)において、ガスタービンで燃料を燃焼した後の高温の排気ガスが高温排気筒ユニット1Aの第一の排気筒2Aに流入すると、高温の排気ガスが上方に向けて縮径するスカート部5を流れるため流速を増し、排気出口6との隙間8からは外気が流入し、排気ガスは中央よりに集合して外気はスカート部5の内面に沿って筒部本体3内に流入する。筒部本体3内では整流器10によって外気と排気ガスが同心円状の層流となって整流化されて上方に流れ、更にテーパ部4によって排気ガス流速が向上する。
The high-temperature exhaust pipe unit 1A according to the second embodiment has the above-described configuration, and a method for discharging the exhaust gas after the gas turbine burns will be described.
In FIG. 5A, when the high-temperature exhaust gas after burning the fuel in the gas turbine flows into the first exhaust cylinder 2A of the high-temperature exhaust cylinder unit 1A, the high-temperature exhaust gas is reduced in diameter upward. The flow rate is increased because it flows through the portion 5, and outside air flows from the gap 8 with the exhaust outlet 6, exhaust gas collects from the center, and the outside air flows into the cylinder body 3 along the inner surface of the skirt portion 5. . In the cylindrical body 3, the outside air and the exhaust gas are rectified as a concentric laminar flow by the rectifier 10 and flow upward, and the exhaust gas flow velocity is improved by the taper portion 4.

第一の排気筒2Aのテーパ部4から第二の排気筒2Bのスカート部5を通過する際、縮径化したテーパ部4を通過することで外気と排気ガスは流速を増すため、テーパ部4とスカート部5の隙間8の領域は負圧になり、外気が隙間8を通って第二の排気筒2Bの筒部本体3内に流入し、その内面に沿って走行する。   When passing the skirt portion 5 of the second exhaust cylinder 2B from the taper portion 4 of the first exhaust cylinder 2A, the outside air and the exhaust gas increase in flow speed by passing through the tapered section 4 having a reduced diameter. The area of the gap 8 between the skirt portion 4 and the skirt portion 5 becomes negative pressure, and outside air flows into the cylinder body 3 of the second exhaust cylinder 2B through the gap 8 and travels along the inner surface thereof.

しかも、筒部本体3の内面に設置された整流器10は同心円状の複数の整流筒部11で形成されているために、外気は筒部本体3の内面と最も外側、またはその内側の整流筒部11に沿ってリング状の層流として流れる。そのため、排気ガス流は筒部本体3内の中央側に寄せられて複数の中央側の整流筒部11内を上方に流れる。
こうして二層の層流となった外気と排気ガスの流れは第二の排気筒2Bのテーパ部4で流速が高速化され、第三の排気筒2Cのスカート部5との隙間8から外気が流入して整流器10を通過することで二層の層流が更に整流化されてテーパ部4を通って外気に排出される。
Moreover, since the rectifier 10 installed on the inner surface of the tube portion main body 3 is formed by a plurality of concentric flow rectifying tube portions 11, the outside air flows from the inner surface of the tube portion main body 3 to the outermost side or the rectifier tube inside thereof. It flows along the part 11 as a ring-shaped laminar flow. Therefore, the exhaust gas flow is drawn to the center side in the tube body 3 and flows upward in the plurality of rectifying tube portions 11 on the center side.
The flow of the outside air and the exhaust gas thus formed into a two-layer laminar flow is increased in flow velocity by the taper portion 4 of the second exhaust cylinder 2B, and the outside air flows from the gap 8 with the skirt portion 5 of the third exhaust cylinder 2C. By flowing in and passing through the rectifier 10, the two-layer laminar flow is further rectified and discharged to the outside air through the tapered portion 4.

このように、本第二実施形態による高温排気筒ユニット1Aでは、各排気筒2の連結部の隙間8と整流器10によって、下方から上方に流通する高温の排気ガス流とその外側を流れる比較的低温の外気流との二層の層流として流れるため、高温の排気ガス流と各排気筒2の内面との接触が抑えられて各排気筒2が高温になることを抑制できる。   As described above, in the high-temperature exhaust pipe unit 1A according to the second embodiment, the high-temperature exhaust gas flow that flows from the lower side to the upper side and the outside flows relatively by the gap 8 and the rectifier 10 of the connecting portion of each exhaust pipe 2. Since it flows as a two-layer laminar flow with a low-temperature external airflow, the contact between the high-temperature exhaust gas flow and the inner surface of each exhaust tube 2 can be suppressed, and the exhaust tubes 2 can be prevented from becoming hot.

次に本発明の第三実施形態による高温排気筒ユニット1Bについて図6により説明する。
本第三実施形態による高温排気筒ユニット1Bでは、各排気筒12は水平断面視で略四角形の筒状とされている。そして、本実施形態による各排気筒12は、それぞれ略四角形筒状の筒部本体14とその上部に形成したテーパ部15と下部に取り付けたスカート部16とを備えている。また、各排気筒12の内面に設置する整流器13も略四角形筒状に形成され、長板状の板部13aが格子状に組み込まれている。
Next, a high-temperature exhaust pipe unit 1B according to a third embodiment of the present invention will be described with reference to FIG.
In the high-temperature exhaust pipe unit 1B according to the third embodiment, each exhaust pipe 12 has a substantially rectangular cylindrical shape in a horizontal sectional view. Each exhaust cylinder 12 according to the present embodiment includes a substantially rectangular tubular body 14, a tapered portion 15 formed on the upper portion thereof, and a skirt portion 16 attached to the lower portion thereof. Moreover, the rectifier 13 installed on the inner surface of each exhaust cylinder 12 is also formed in a substantially rectangular cylinder shape, and a long plate-like plate portion 13a is incorporated in a lattice shape.

本実施形態においても、上下間に隙間8を開けて複数の排気筒12が連結されており、排気出口6を通して、下方の第一の排気筒12Aのスカート部16から流入する排気ガス流と排気出口6との隙間8から流入する外気流とは整流器13で整流化され、テーパ部15と第二の排気筒12Bのスカート部16との隙間8からベンチュリー効果によって外気を流入させると共に整流器13で二層の層流とし、第三の排気筒12Cでも同様な二層の層流を高速流として制御し、上部の開口4aから外気に排出させる。
そのため、本実施形態による高温排気筒ユニット1Bにおいても、各排気筒12の内面に高温の排気ガスが接触するのを抑えて、外気の層流によって各排気筒12を保護できる。
Also in the present embodiment, a plurality of exhaust cylinders 12 are connected with a gap 8 between the upper and lower sides, and the exhaust gas flow and the exhaust gas flowing from the skirt portion 16 of the lower first exhaust cylinder 12A through the exhaust outlet 6 are exhausted. The outside airflow flowing in from the gap 8 with the outlet 6 is rectified by the rectifier 13, and the outside air flows in by the venturi effect from the gap 8 between the taper portion 15 and the skirt portion 16 of the second exhaust cylinder 12 </ b> B. The two-layer laminar flow is also controlled in the third exhaust cylinder 12C so that the same two-layer laminar flow is controlled as a high-speed flow, and is discharged from the upper opening 4a to the outside air.
Therefore, also in the high temperature exhaust pipe unit 1B according to the present embodiment, the exhaust pipe 12 can be protected by the laminar flow of the outside air while suppressing the high temperature exhaust gas from contacting the inner surface of each exhaust pipe 12.

次に本発明の第四実施形態による高温排気筒ユニット1Cについて図7により説明する。
本第四実施形態による高温排気筒ユニット1Cでは、図7(a)に示すように、各排気筒18は第三実施形態と同様に略四角形の筒状とされているが、段付き形状であってテーパ部15とスカート部16を有していない点で相違する。
即ち、本第四実施形態による各排気筒18は、図7(b)に示すように、それぞれ略四角形筒状の拡径部をなす筒状拡径部19と、段差部20と、筒状拡径部19より縮径された略四角形筒状の筒状縮径部21とを備えている。筒状拡径部19は下部開口を備え、筒状縮径部21は上部開口を備えている。そして筒状縮径部21内には、第三実施形態のものと同様な整流器13が溶接等で設置されている。
Next, a high-temperature exhaust pipe unit 1C according to a fourth embodiment of the present invention will be described with reference to FIG.
In the high-temperature exhaust pipe unit 1C according to the fourth embodiment, as shown in FIG. 7A, each exhaust pipe 18 has a substantially square cylindrical shape as in the third embodiment. The difference is that the tapered portion 15 and the skirt portion 16 are not provided.
That is, as shown in FIG. 7B, each exhaust cylinder 18 according to the fourth embodiment has a cylindrical enlarged diameter portion 19 that forms a substantially rectangular cylindrical enlarged diameter portion, a stepped portion 20, and a cylindrical shape. And a cylindrical reduced-diameter portion 21 having a substantially quadrangular cylindrical shape that is reduced in diameter from the enlarged-diameter portion 19. The cylindrical enlarged diameter portion 19 has a lower opening, and the cylindrical reduced diameter portion 21 has an upper opening. A rectifier 13 similar to that of the third embodiment is installed in the cylindrical reduced diameter portion 21 by welding or the like.

本第四実施形態による高温排気筒ユニット1Cは、第一の排気筒18Aにおける上部の筒状縮径部21の上に第二の排気筒18Bの筒状拡径部を設置し、第一の排気筒18Aの段差部20と筒状縮径部21の上側に所定距離aの隙間8を開けて第二の排気筒18Bの筒状拡径部19を設置している。第二の排気筒18Bの段差部20と筒状縮径部21の上側にも所定距離aの隙間8を開けて第三の排気筒18Cの筒状拡径部19を設置している。   The high-temperature exhaust pipe unit 1C according to the fourth embodiment has a cylindrical enlarged diameter portion of the second exhaust cylinder 18B installed on the upper cylindrical reduced diameter portion 21 of the first exhaust cylinder 18A. The cylindrical enlarged diameter portion 19 of the second exhaust cylinder 18B is installed with a gap 8 of a predetermined distance a above the stepped portion 20 and the cylindrical reduced diameter portion 21 of the exhaust cylinder 18A. A cylindrical diameter-enlarged portion 19 of the third exhaust cylinder 18C is also provided with a gap 8 of a predetermined distance a above the stepped portion 20 and the cylindrical reduced diameter portion 21 of the second exhaust cylinder 18B.

本実施形態においても、高温排気筒ユニット1Cは、上下間に隙間8を開けて複数(図に示す例では3つ)の排気筒18が連結されている。下方の排気出口6から第一の排気筒18Aの筒状拡径部19を通って高速で流入する排気ガス流と排気出口6との隙間8から流入する外気流は整流器13で整流化される。第一の排気筒18Aの段差部20付近で流速を上げなくても、当初の排気ガスの流速が高ければ縮径しなくても気圧が下がり、第一の排気筒18Aの筒状縮径部21と第二の排気筒18Bの筒状縮径部21及び段差部20との隙間8から外気を吸引できる。
隙間8を通して流入する外気は第二の排気筒18Bの筒状縮径部21の内面に沿って流れ、高温の排気ガス流は中央側に寄せられて、整流器13を通過することで外側の外気流と中央側の排気ガス流との二層の層流として整流化される。
Also in this embodiment, the high-temperature exhaust pipe unit 1C has a plurality of (three in the example shown in the figure) exhaust pipes 18 connected to each other with a gap 8 between the upper and lower sides. The exhaust gas flow flowing at high speed from the lower exhaust outlet 6 through the cylindrical enlarged portion 19 of the first exhaust cylinder 18 </ b> A and the external airflow flowing from the gap 8 between the exhaust outlet 6 are rectified by the rectifier 13. . Even if the flow velocity is not increased in the vicinity of the stepped portion 20 of the first exhaust cylinder 18A, even if the initial exhaust gas flow velocity is high, the air pressure decreases without reducing the diameter, and the cylindrical reduced diameter portion of the first exhaust cylinder 18A. The outside air can be sucked from the gap 8 between the reduced diameter portion 21 and the stepped portion 20 of the second exhaust cylinder 18B.
The outside air that flows in through the gap 8 flows along the inner surface of the cylindrical reduced diameter portion 21 of the second exhaust cylinder 18B, and the high-temperature exhaust gas flow is drawn to the center side and passes through the rectifier 13 so that the outside air flows outside. It is rectified as a two-layer laminar flow of an air flow and a central exhaust gas flow.

そして、第二の排気筒18Bの筒状縮径部21を高速で流れる二層の層流に対して排気ガス流が高速であるため、第二の排気筒18Bの筒状縮径部21と第三の排気筒18Cの筒状拡径部19及び段差部20との隙間8の領域からも外気が流入する。
隙間8を通して流入する外気は第三の排気筒18Cの筒状縮径部21の内面に沿って流れ、高温の排気ガス流は中央側に寄せられて、整流器13を通過することで外側の外気流と中央側の排気ガス流との二層の層流として整流化され、第三の排気筒18Cから上部開口を通して外気に放出される。
Since the exhaust gas flow is faster than the two-layer laminar flow flowing through the cylindrical reduced diameter portion 21 of the second exhaust cylinder 18B at a high speed, the cylindrical reduced diameter portion 21 of the second exhaust cylinder 18B and Outside air also flows from the region of the gap 8 between the cylindrical enlarged diameter portion 19 and the stepped portion 20 of the third exhaust cylinder 18C.
The outside air that flows in through the gap 8 flows along the inner surface of the cylindrical reduced diameter portion 21 of the third exhaust cylinder 18C, and the high-temperature exhaust gas flow is drawn to the center side and passes through the rectifier 13 so that the outside air flows outside. Rectified as a two-layer laminar flow of the air flow and the central exhaust gas flow, and is discharged from the third exhaust cylinder 18C to the outside air through the upper opening.

従って、本第四実施形態による高温排気筒ユニット1Cにおいても、各排気筒18の内面に高温の排気ガスが接触するのを抑えて、外気の層流によって各排気筒18が排気ガスの高温にさらされるのを阻止して保護できる。
しかも、本第四実施形態による高温排気筒ユニット1Cでは、各排気筒18が段差部20を介して筒状拡径部19と筒状縮径部21を連結した簡略化した形状で構成したため、排気ガス流や外気流の絞り込み構成をより簡略化できて製造コストを低廉にできる。
Therefore, also in the high temperature exhaust pipe unit 1C according to the fourth embodiment, the exhaust gas 18 is prevented from coming into contact with the inner surface of each exhaust pipe 18 and the exhaust pipe 18 is heated to the high temperature of the exhaust gas by the laminar flow of the outside air. It can protect against exposure.
Moreover, in the high-temperature exhaust pipe unit 1C according to the fourth embodiment, each exhaust pipe 18 is configured in a simplified shape in which the cylindrical diameter-expanded portion 19 and the cylindrical diameter-reduced portion 21 are connected via the stepped portion 20. The configuration for narrowing down the exhaust gas flow and the external air flow can be further simplified, and the manufacturing cost can be reduced.

また、第一及び第二の排気筒18A,18Bでは、隙間8を形成する筒状縮径部21の内面は層流の外気流によって冷却すると共に外面は隙間8を通って吸い込まれる外気流によって冷却できるので、筒状縮径部21の内外両面を冷却できる。しかも、筒状拡径部19は隙間8を挟んで筒状縮径部21の外側に位置するために、排気ガス流による伝熱を確実に防止できる。
そのため、本第四実施形態による高温排気筒ユニット1Cでは、一層各排気筒18の冷却効果を発揮できるため、高温の排気ガス流による強度低下を更に抑制できる。
Further, in the first and second exhaust cylinders 18A and 18B, the inner surface of the cylindrical reduced diameter portion 21 forming the gap 8 is cooled by a laminar external air flow and the outer surface is absorbed by an external air current sucked through the gap 8. Since it can cool, both the inner and outer surfaces of the cylindrical reduced diameter portion 21 can be cooled. Moreover, since the cylindrical enlarged diameter portion 19 is positioned outside the cylindrical reduced diameter portion 21 with the gap 8 interposed therebetween, heat transfer due to the exhaust gas flow can be reliably prevented.
Therefore, in the high-temperature exhaust pipe unit 1C according to the fourth embodiment, since the cooling effect of each exhaust pipe 18 can be further exhibited, the strength reduction due to the high-temperature exhaust gas flow can be further suppressed.

なお、本発明における上述した各実施形態において、テーパ部4、筒状縮径部21は縮径部に含まれ、スカート部5、筒状拡径部19は拡径部に含まれるものとする。また、筒部本体3、14、段差部20等は筒部に含まれる。
また、上述した各実施形態では、テーパ部4、15とスカート部5、16との間の隙間8、筒状縮径部21と筒状拡径部19との間の隙間8はそれぞれ全周に亘って形成されていて外気を流入可能であるが、全周から外気を流入させなくてもよい。例えば、テーパ部4、15とスカート部5、16の間や筒状縮径部21と筒状拡径部19との間の隙間8にアーム部を設けて連結したりして、部分的に隙間8を遮蔽していてもよい。
また、上述した各実施形態による高温排気筒ユニット1、1A、1B,1Cは本発明による高温排気筒に含まれるものとする。しかも、本発明による高温排気筒は高温の排気ガスを排出するための煙突も含むものとする。
In each of the above-described embodiments of the present invention, the tapered portion 4 and the cylindrical reduced diameter portion 21 are included in the reduced diameter portion, and the skirt portion 5 and the cylindrical expanded diameter portion 19 are included in the expanded diameter portion. . Moreover, the cylinder main bodies 3 and 14 and the step part 20 are included in the cylinder.
Moreover, in each embodiment mentioned above, the clearance gap 8 between the taper parts 4 and 15 and the skirt parts 5 and 16 and the clearance gap 8 between the cylindrical reduced diameter part 21 and the cylindrical enlarged diameter part 19 are respectively the perimeter. However, it is not necessary to allow the outside air to flow from the entire circumference. For example, an arm portion may be provided in the gap 8 between the tapered portions 4 and 15 and the skirt portions 5 and 16 or between the cylindrical reduced diameter portion 21 and the cylindrical enlarged diameter portion 19 to be connected. The gap 8 may be shielded.
Moreover, the high temperature exhaust pipe units 1, 1A, 1B, and 1C according to the above-described embodiments are included in the high temperature exhaust pipe according to the present invention. Moreover, the high-temperature stack according to the present invention includes a chimney for discharging high-temperature exhaust gas.

1、1A、1B,1C 高温排気筒ユニット
2、12、18 排気筒
2A、12A,18A 第一の排気筒
2B、12B,18B 第二の排気筒
2C、12C,18C 第三の排気筒
3 筒部本体
4 テーパ部
5 スカート部
7、10、13 整流器
7b、7c 開口部
8 隙間
19 筒状拡径部
20 段差部
21 筒状縮径部
1, 1A, 1B, 1C High temperature exhaust cylinder unit 2, 12, 18 Exhaust cylinder 2A, 12A, 18A First exhaust cylinder 2B, 12B, 18B Second exhaust cylinder 2C, 12C, 18C Third exhaust cylinder 3 cylinder Main part 4 Taper part 5 Skirt part 7, 10, 13 Rectifier 7b, 7c Opening part 8 Clearance 19 Cylindrical diameter-increasing part 20 Step part 21 Cylindrical diameter-reducing part

Claims (3)

高温排気ガスを流通させる筒部の先端側に縮径部を形成し後端側に拡径部を形成した排気筒と、
前記排気筒内に設置されていて前記高温排気ガスと外気を層流として流通させる整流器とを備え、
一の前記排気筒の拡径部に他の前記排気筒の縮径部を隙間を開けて設置することで複数の前記排気筒を配列してなり、
前記隙間を通して前記外気を導入して前記排気筒内で高温排気ガスとその外側の前記外気とが層流として流通するようにしたことを特徴とする高温排気筒。
An exhaust cylinder in which a reduced diameter portion is formed on the front end side of the cylindrical portion through which the high-temperature exhaust gas is circulated and an enlarged diameter portion is formed on the rear end side;
A rectifier that is installed in the exhaust pipe and circulates the high-temperature exhaust gas and outside air as a laminar flow;
A plurality of the exhaust pipes are arranged by installing a reduced diameter part of the other exhaust pipe with a gap in the enlarged diameter part of the one exhaust pipe,
The high-temperature exhaust pipe, wherein the outside air is introduced through the gap so that the high-temperature exhaust gas and the outside air outside the exhaust pipe circulate as a laminar flow.
前記縮径部は先端側に縮径するテーパ部であり、前記拡径部は後端側に拡径するスカート部である請求項1に記載された高温排気筒。   2. The high-temperature exhaust pipe according to claim 1, wherein the reduced diameter portion is a tapered portion that is reduced in diameter toward a front end side, and the enlarged diameter portion is a skirt portion that is increased in diameter toward a rear end side. 前記整流器は前記排気筒の長手方向に沿って格子状または同心円状に板を配列してなる請求項1または2に記載された高温排気筒。   The high-temperature exhaust pipe according to claim 1 or 2, wherein the rectifier is configured by arranging plates in a lattice shape or a concentric shape along a longitudinal direction of the exhaust pipe.
JP2015162802A 2015-08-20 2015-08-20 High-temperature exhaust cylinder Pending JP2017040437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162802A JP2017040437A (en) 2015-08-20 2015-08-20 High-temperature exhaust cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162802A JP2017040437A (en) 2015-08-20 2015-08-20 High-temperature exhaust cylinder

Publications (1)

Publication Number Publication Date
JP2017040437A true JP2017040437A (en) 2017-02-23

Family

ID=58206567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162802A Pending JP2017040437A (en) 2015-08-20 2015-08-20 High-temperature exhaust cylinder

Country Status (1)

Country Link
JP (1) JP2017040437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109120A (en) * 2021-11-13 2022-03-01 重庆顺泰铁塔制造有限公司 Anti-breaking composite high-strength concrete electric pole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109120A (en) * 2021-11-13 2022-03-01 重庆顺泰铁塔制造有限公司 Anti-breaking composite high-strength concrete electric pole
CN114109120B (en) * 2021-11-13 2023-03-24 重庆顺泰铁塔制造有限公司 Anti-breaking composite high-strength concrete electric pole

Similar Documents

Publication Publication Date Title
US9404391B2 (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
US8127553B2 (en) Zero-cross-flow impingement via an array of differing length, extended ports
RU2011136856A (en) THERMOELECTRIC GAS TURBINE GENERATOR
CN110296536A (en) A kind of combustion heat-exchange device with Multi-stage cooling structure
CN111092385A (en) Main transformer room ventilation system based on Bernoulli effect
JP2017040437A (en) High-temperature exhaust cylinder
CN102818291B (en) Flame tube
KR20160110264A (en) Combustion chamber with double wall
JP2017040438A (en) Exhaust tube and high-temperature exhaust tube unit
JP2015102051A (en) EGR cooler
JP3180377U (en) Heat exchanger
JP2017040116A (en) High temperature exhaust cylinder
JP2017040440A (en) High-temperature exhaust cylinder
JP6921585B2 (en) Cooling structure for high temperature piping
JP2013501203A (en) Gas turbine combustion chamber
JP2017040441A (en) High-temperature exhaust cylinder
JP2018040311A (en) Exhaust structure of internal combustion engine
JP2015098863A (en) Diesel generation system oil mist pipe arrangement structure and oil mist discharge method
JP2017040439A (en) High-temperature exhaust tube
JP6361196B2 (en) Piping support
JP2017040442A (en) High-temperature exhaust cylinder
JP2018006268A (en) Exhaust pipe structure for fuel cell system and fuel cell system
JP4679612B2 (en) Combustion gas discharge chimney
JP3136408U (en) Structure of hot water equipment
JP5746850B2 (en) Heat exchanger