JP2017039967A - Electrode material and method of producing electrode material - Google Patents

Electrode material and method of producing electrode material Download PDF

Info

Publication number
JP2017039967A
JP2017039967A JP2015161482A JP2015161482A JP2017039967A JP 2017039967 A JP2017039967 A JP 2017039967A JP 2015161482 A JP2015161482 A JP 2015161482A JP 2015161482 A JP2015161482 A JP 2015161482A JP 2017039967 A JP2017039967 A JP 2017039967A
Authority
JP
Japan
Prior art keywords
powder
electrode material
electrode
mixed
resistant element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015161482A
Other languages
Japanese (ja)
Other versions
JP6657655B2 (en
Inventor
将大 林
Masahiro Hayashi
将大 林
啓太 石川
Keita Ishikawa
啓太 石川
健太 山村
Kenta Yamamura
健太 山村
光佑 長谷川
Kosuke Hasegawa
光佑 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2015161482A priority Critical patent/JP6657655B2/en
Priority to US15/570,433 priority patent/US10153098B2/en
Priority to EP16789524.2A priority patent/EP3290535B1/en
Priority to PCT/JP2016/063032 priority patent/WO2016178388A1/en
Priority to CN201680025925.9A priority patent/CN107532237B/en
Publication of JP2017039967A publication Critical patent/JP2017039967A/en
Application granted granted Critical
Publication of JP6657655B2 publication Critical patent/JP6657655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance welding resistance and brazability of an electrode material.SOLUTION: There is provided a method of producing an electrode material containing Cu, Cr, heat resistant element and low melting pint metal. A heat resistant element powder and a Cr powder are mixed together at a ratio of heat resistant element<Cr power. The mixed powder of the heat resistant element powder and the Cr powder obtained by mixing is burnt. A MoCr solid solution obtained by burning and containing a solid solution in which the heat resistant element and Cr form solid solution is pulverized and classified. The classified MoCr solid solution powder, a Cu powder, a low melting metal powder having median diameter of 5 μm to 40 μm are mixed together and sintered to obtain the electrode material.SELECTED DRAWING: Figure 1

Description

本発明は、真空インタラプタ等の電極に用いられる電極材料及び電極材料の製造方法に関する。   The present invention relates to an electrode material used for an electrode such as a vacuum interrupter and a method for manufacturing the electrode material.

真空インタラプタの接点材料は、(1)遮断容量が大きいこと、(2)耐電圧性能が高いこと、(3)接触抵抗が低いこと、(4)耐溶着性能が高いこと、(5)接点消耗量が低いこと、(6)裁断電流が低いこと、(7)加工性に優れること、(8)機械強度が高いこと、等の特性を満たす必要がある。   Contact materials for vacuum interrupters are (1) large breaking capacity, (2) high withstand voltage performance, (3) low contact resistance, (4) high resistance to welding, and (5) contact wear. It is necessary to satisfy characteristics such as low amount, (6) low cutting current, (7) excellent workability, and (8) high mechanical strength.

これらの特性のなかには相反するものがある関係上、上記の特性をすべて満足する接点材料はない。Cu−Cr電極材料は、遮断容量が大きく、耐電圧性能が高い、耐溶着性能が高い等の特長を有することから、真空インタラプタの接点材料として広く用いられている。また、Cu−Cr電極材料において、Cr粒子の粒径が細かい方が、遮断電流や接触抵抗の面において優れるとの報告がある(例えば、非特許文献1)。   Since some of these characteristics are contradictory, there is no contact material that satisfies all of the above characteristics. A Cu—Cr electrode material is widely used as a contact material for a vacuum interrupter because it has features such as a large breaking capacity, a high withstand voltage performance, and a high welding resistance. Moreover, in the Cu-Cr electrode material, there exists a report that the one where the particle size of Cr particle | grains is fine is excellent in the surface of interruption | blocking current or contact resistance (for example, nonpatent literature 1).

近年、真空遮断器の電流消弧を行う真空インタラプタの小型化、大容量化が進んでおり、真空インタラプタの小型化に必須となる、従来のCu−Cr電極より優れた耐電圧性能を有するCu−Cr系接点材料の需要が増加している。   In recent years, vacuum interrupters that perform current extinguishing of vacuum circuit breakers have been downsized and increased in capacity, and are required for miniaturization of vacuum interrupters, and have a higher withstand voltage performance than conventional Cu-Cr electrodes. -Demand for Cr-based contact materials is increasing.

例えば、特許文献1では、電流遮断性能や耐電圧性能等の電気的特性の良好なCu−Cr系電極材料として、基材として用いられるCuと電気的特性を向上させるCr及びCr粒子を微細にする耐熱元素(Mo、W、Nb、Ta、V、Zr)の各粉末を混合した後、混合粉末を型に挿入して加圧成形し、焼成体とした電極材料の製造方法が記載されている。具体的には、200〜300μmの粒子サイズを有するCrを原料としたCu−Cr系電極材料に、Mo、W、Nb、Ta、V、Zr等の耐熱元素を添加し、微細組織技術を通してCrを微細化し、Cr元素と耐熱元素の合金化を促進させ、Cu基材組織内部に微細なCr−X(耐熱元素を固溶しているCr)粒子の析出を増加させ、直径20〜60μmのCr粒子を、その内部に耐熱元素を有する形態でCu基材組織内に均一に分散させている。   For example, in Patent Document 1, as a Cu—Cr-based electrode material having good electrical characteristics such as current interruption performance and withstand voltage performance, Cu used as a base material and Cr and Cr particles that improve electrical characteristics are finely divided. A method for producing an electrode material is described in which powders of heat-resistant elements (Mo, W, Nb, Ta, V, Zr) are mixed, and then the mixed powder is inserted into a mold and pressure-molded to form a fired body. Yes. Specifically, a heat-resistant element such as Mo, W, Nb, Ta, V, Zr is added to a Cu—Cr-based electrode material made of Cr having a particle size of 200 to 300 μm as a raw material, and Cr is formed through a microstructure technique. And promotes alloying of Cr element and heat-resistant element, increases precipitation of fine Cr-X (Cr in which heat-resistant element is dissolved) inside the Cu substrate structure, and has a diameter of 20 to 60 μm. Cr particles are uniformly dispersed in the Cu substrate structure in a form having a heat-resistant element therein.

また、特許文献2では、微細組織技術を通さず、耐熱元素の反応生成物である単一の固溶体を粉砕した粉末を、Cu粉末と混合し、加圧成形し、焼結して、電極組織内にCr、耐熱元素を含有した電極材料を製造している。   Further, in Patent Document 2, a powder obtained by pulverizing a single solid solution that is a reaction product of a heat-resistant element without passing through a microstructure technique is mixed with Cu powder, pressure-molded, sintered, and electrode structure. It manufactures electrode materials containing Cr and heat-resistant elements.

特開2002−180150号公報JP 2002-180150 A 特開平4−334832号公報Japanese Patent Laid-Open No. 4-334832 特開2011−108380号公報JP 2011-108380 A

Rieder, F. u.a.、”The Influence of Composition and Cr Particle Size of Cu/Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters”、IEEE Transactions on Components, Hybrids, and Manufacturing Technology、Vol. 12、1989、273-283Rieder, F. ua, “The Influence of Composition and Cr Particle Size of Cu / Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, 1989, 273-283

しかしながら、特許文献2に記載されているような耐弧金属の微細分散組織を形成することで、耐電圧性能及び遮断性能が向上するが、耐溶着性能が悪くなり、閉極時に大電流通電した際、電極間で溶着することとなる。この耐溶着性能の低下が真空遮断器の大型化の要因となり、量産化への課題となっていた。   However, by forming a finely dispersed structure of arc-resistant metal as described in Patent Document 2, the withstand voltage performance and the breaking performance are improved, but the welding resistance is deteriorated, and a large current is applied during closing. At this time, welding occurs between the electrodes. This decrease in welding resistance has been a factor in increasing the size of vacuum circuit breakers, which has been a problem for mass production.

そこで、MoCr微細分散組織を有する電極材料に低融点金属(例えば、Te等)を添加することで、優れた耐電圧性能及び耐溶着性能を有する電極材料の製造を試みた。   Therefore, an attempt was made to produce an electrode material having excellent withstand voltage performance and welding resistance by adding a low melting point metal (for example, Te) to an electrode material having a MoCr finely dispersed structure.

しかしながら、低融点金属を添加したMoCr微細分散電極材料の焼結工程において、電極内部に空孔が発生し、電極材料の充填率が低下するおそれがあった。電極材料に空孔が発生し、電極材料の充填率が低下すると、ロウ付け工程において電極内部の空孔へロウ材(例えば、Ag)が吸われてしまい、電極材料のロウ付けが困難となるおそれがある。   However, in the sintering process of the MoCr finely dispersed electrode material to which the low melting point metal is added, there is a possibility that voids are generated inside the electrode and the filling rate of the electrode material is lowered. When holes are generated in the electrode material and the filling rate of the electrode material is reduced, brazing material (for example, Ag) is sucked into the holes in the electrode in the brazing process, and brazing of the electrode material becomes difficult. There is a fear.

上記事情に鑑み、本発明は、耐溶着性能及びロウ付け性に優れた電極材料を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an electrode material having excellent welding resistance and brazing properties.

上記目的を達成する本発明の電極材料の一態様は、1.99〜29.99重量%の耐熱元素と、4.99〜47.98重量%のCrと、39.88〜89.96重量%のCuと、を含有する混合粉末と、前記混合粉末に対して0.05〜0.3重量%の低融点金属粉末と、を混合し、当該低融点金属粉末が混合された混合粉末を焼結してなる電極材料であって、重量比で耐熱元素<Crの割合で耐熱元素とCrを含有する耐熱元素とCrの固溶体を粉砕して得られる、粒子径が90μm以下の粒子の体積相対粒子量が90%以上の固溶体粉末と、Cu粉末と、メディアン径が5μm以上40μm以下の低融点金属粉末と、が混合された混合粉末を焼結してなることを特徴としている。   One embodiment of the electrode material of the present invention that achieves the above object is 1.99 to 29.99 wt% refractory element, 4.99 to 47.98 wt% Cr, and 39.88 to 89.96 wt%. % Of Cu, and a low melting point metal powder of 0.05 to 0.3% by weight with respect to the mixed powder, and a mixed powder in which the low melting point metal powder is mixed. Volume of particles having a particle diameter of 90 μm or less, which is obtained by pulverizing a solid solution of a heat-resistant element containing Cr and a heat-resistant element containing Cr at a ratio of heat-resistant element <Cr by weight ratio. A mixed powder obtained by mixing a solid solution powder having a relative particle amount of 90% or more, a Cu powder, and a low melting point metal powder having a median diameter of 5 μm or more and 40 μm or less is sintered.

また、上記目的を達成する本発明の電極材料の他の態様は、上記電極材料において、前記電極材料の充填率は90%以上であり、前記電極材料のブリネル硬度は50以上であることを特徴としている。   In another aspect of the electrode material of the present invention that achieves the above object, the electrode material has a filling rate of 90% or more, and the Brinell hardness of the electrode material is 50 or more. It is said.

また、上記目的を達成する本発明の電極材料の製造方法の一態様は、1.99〜29.99重量%の耐熱元素と、4.99〜47.98重量%のCrと、39.88〜89.96重量%のCuと、を含有する混合粉末と、前記混合粉末に対して0.05〜0.3重量%の低融点金属粉末と、を混合し、当該低融点金属粉末が混合された混合粉末を焼結してなる電極材料の製造方法であって、重量比で耐熱元素<Crの割合で耐熱元素粉末とCr粉末とを混合し、混合して得られた耐熱元素粉末とCr粉末との混合粉末を焼結し、焼結して得られた耐熱元素とCrとを含有する固溶体を粉砕して、粒子径が90μm以下の粒子の体積相対粒子量が90%以上である固溶体粉末とし、前記固溶体粉末と、Cu粉末と、メディアン径が5μm以上40μm以下の低融点金属粉末と、を混合し、当該低融点金属粉末が混合された混合粉末を成形し、焼結することを特徴としている。   An embodiment of the method for producing the electrode material of the present invention that achieves the above object is as follows: 1.99 to 29.99% by weight of a heat-resistant element, 4.99 to 47.98% by weight of Cr, and 39.88. A mixed powder containing ˜89.96% by weight of Cu and 0.05 to 0.3% by weight of a low melting point metal powder are mixed with the mixed powder, and the low melting point metal powder is mixed. A method for producing an electrode material obtained by sintering the mixed powder, wherein the heat-resistant element powder obtained by mixing and mixing the heat-resistant element powder and the Cr powder in a weight ratio of heat-resistant element <Cr The mixed powder with Cr powder is sintered, the solid solution containing the heat-resistant element and Cr obtained by sintering is pulverized, and the volume relative particle amount of particles having a particle diameter of 90 μm or less is 90% or more. The solid solution powder, the solid solution powder, the Cu powder, and the median diameter of 5 μm or more and 40 A low melting point metal powder of μm or less is mixed, and a mixed powder in which the low melting point metal powder is mixed is formed and sintered.

また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記耐熱元素粉末のメディアン径は、10μm以下であることを特徴としている。   According to another aspect of the method for producing an electrode material of the present invention that achieves the above object, the median diameter of the heat-resistant element powder is 10 μm or less in the method for producing an electrode material.

また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記Cr粉末のメディアン径は、前記耐熱元素粉末のメディアン径より大きく、80μm以下であることを特徴としている。   In another aspect of the method for producing an electrode material of the present invention that achieves the above object, in the method for producing an electrode material, the median diameter of the Cr powder is larger than the median diameter of the heat-resistant element powder, and is 80 μm or less. It is characterized by being.

また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記Cu粉末のメディアン径は、100μm以下であることを特徴としている。   Another aspect of the method for producing an electrode material of the present invention that achieves the above object is characterized in that, in the method for producing an electrode material, the median diameter of the Cu powder is 100 μm or less.

また、上記目的を達成する本発明の真空インタラプタは、上記電極材料を電極接点として可動電極または固定電極に備えたことを特徴としている。   Moreover, the vacuum interrupter of the present invention that achieves the above object is characterized in that the electrode material is provided as an electrode contact on a movable electrode or a fixed electrode.

以上の発明によれば、電極材料の耐溶着性能及びロウ付け性を向上させることができる。   According to the above invention, the welding performance and brazing performance of the electrode material can be improved.

本発明の実施形態に係る電極材料の製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of the electrode material which concerns on embodiment of this invention. 本発明の実施形態に係る電極材料を有する真空インタラプタの概略断面図である。It is a schematic sectional drawing of the vacuum interrupter which has the electrode material which concerns on embodiment of this invention. 原料のTe粉末の粒度分布と実施例1の電極材料の製造に用いたTe粉末の粒度分布を示す図である。It is a figure which shows the particle size distribution of Te powder of raw material, and the particle size distribution of Te powder used for manufacture of the electrode material of Example 1. FIG. 実施例1に係る電極材料の断面顕微鏡写真である。2 is a cross-sectional micrograph of an electrode material according to Example 1. 比較例1に係る電極材料の製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of the electrode material which concerns on the comparative example 1. 参考例1に係る電極材料の断面顕微鏡写真である。2 is a cross-sectional micrograph of an electrode material according to Reference Example 1. 比較例2乃至比較例5に係る電極材料の製造方法のフローを示す図である。It is a figure which shows the flow of the manufacturing method of the electrode material which concerns on the comparative example 2 thru | or the comparative example 5. FIG.

本発明の実施形態に係る電極材料及び電極材料の製造方法並びに本発明の実施形態に係る電極材料を有する真空インタラプタについて、図面を参照して詳細に説明する。なお、実施形態の説明において、特に断りがない限り、メディアン径d50及び体積相対粒子量は、レーザー回折式粒度分布測定装置(シーラス社:シーラス1090L)により測定された値を示す。また、粉末の粒子径の上限(または、下限)が定められている場合は、粒子径の上限値(または、下限値)の目開きを有する篩により分級された粉末であることを示す。   An electrode material according to an embodiment of the present invention, a method for manufacturing the electrode material, and a vacuum interrupter including the electrode material according to the embodiment of the present invention will be described in detail with reference to the drawings. In the description of the embodiment, unless otherwise specified, the median diameter d50 and the volume relative particle amount are values measured by a laser diffraction type particle size distribution measuring apparatus (Cirrus Corporation: Cirrus 1090L). Further, when the upper limit (or lower limit) of the particle diameter of the powder is determined, it indicates that the powder is classified by a sieve having an opening of the upper limit value (or lower limit value) of the particle diameter.

発明者らは、本発明に先だって、重量比でCr>Moの割合でMoとCrを含有するMoCr固溶体粉末と、Cu粉末とを用いて焼結法により電極材料を作製した(例えば、特願2015−93765)。この電極材料は、Cu基材中にMoCr合金が微細分散した組織を有し、従来のCuCr電極材料と比べて優れた耐電圧性能、及び耐溶着性能を有する電極材料であった。また、重量比でCr>Moの割合でMoとCrを含有するMoCr固溶体粉末を用いると、重量比でCr<Moの割合でMoとCrを含有するMoCr固溶体粉末を用いた場合と比較して、耐溶着性能が高い電極材料となった。   Prior to the present invention, the inventors produced an electrode material by a sintering method using a MoCr solid solution powder containing Mo and Cr at a weight ratio of Cr> Mo and Cu powder (for example, a patent application). 2015-93765). This electrode material had a structure in which a MoCr alloy was finely dispersed in a Cu base material, and was an electrode material having superior withstand voltage performance and welding resistance compared to conventional CuCr electrode materials. Also, when using MoCr solid solution powder containing Mo and Cr at a ratio of Cr> Mo by weight ratio, compared to using MoCr solid solution powder containing Mo and Cr at a ratio of Cr <Mo by weight ratio. It became an electrode material with high welding resistance.

真空遮断器において電極の開閉動作を行う操作機構を小型化するためには、さらに耐溶着性能を向上させて電極材料が溶着した際の引き剥がし力を低減させることが望ましい。そのためには、Cu粉末とMoCr固溶体粉末の混合粉末に低融点金属を添加することが考えられる(例えば、特許文献3)。しかしながら、低融点金属を加えた場合、電極材料の充填率が下がるため、電極接点と電極棒のロウ付け性が不良となるおそれがある。   In order to reduce the size of the operation mechanism for opening and closing the electrode in the vacuum circuit breaker, it is desirable to further improve the welding resistance and reduce the peeling force when the electrode material is welded. For this purpose, it is conceivable to add a low melting point metal to the mixed powder of Cu powder and MoCr solid solution powder (for example, Patent Document 3). However, when a low melting point metal is added, the filling rate of the electrode material is lowered, and there is a possibility that the brazing property between the electrode contact and the electrode rod becomes poor.

上記事情に基づいて発明者らは鋭意検討を行い、本発明の完成に至ったものである。本発明は、Cu−Cr−耐熱元素(Mo,W,V等)−低融点金属(Te,Bi等)電極材料の組成制御技術に係る発明であって、低融点金属粉末のメディアン径を限定することにより、従来の低融点金属を含有する電極材料と比較して、電極材料の充填率を向上させ、電極材料のロウ付け性を向上させるものである。本発明の電極材料は、耐電圧性能及び耐溶着性能に優れ、ロウ付け性に優れた電極材料である。よって、本発明の電極材料を真空インタラプタの電極接点として用いることで、真空インタラプタ及び真空遮断器の小型化が可能となる。   Based on the above circumstances, the inventors have intensively studied and completed the present invention. The present invention relates to a composition control technique of Cu—Cr—heat-resistant element (Mo, W, V, etc.) — Low melting point metal (Te, Bi, etc.) electrode material, and limits the median diameter of the low melting point metal powder. By doing so, as compared with a conventional electrode material containing a low-melting-point metal, the filling rate of the electrode material is improved and the brazing property of the electrode material is improved. The electrode material of the present invention is an electrode material that is excellent in withstand voltage performance and welding resistance and excellent in brazing. Therefore, by using the electrode material of the present invention as the electrode contact of the vacuum interrupter, the vacuum interrupter and the vacuum circuit breaker can be miniaturized.

耐熱元素は、例えば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、ジルコニウム(Zr)、ベリリウム(Be)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、チタン(Ti)、ケイ素(Si)、ロジウム(Rh)及びルテニウム(Ru)等の元素から選択される元素を単独若しくは組み合わせて用いることができる。特に、Cr粒子を微細化する効果が顕著であるMo、W、Ta、Nb、V、Zrを用いることが好ましい。耐熱元素を粉末として用いる場合、耐熱元素粉末のメディアン径d50を、例えば、10μm以下とすることで、電極材料にCrを含有する粒子(耐熱元素とCrの固溶体を含む)を微細化して均一に分散させることができる。耐熱元素は、電極材料に対して1.99〜29.99重量%、より好ましくは1.99〜10.00重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。なお、電極材料に含まれる低融点金属量は、微量であるので、低融点金属粉末が混合される粉末に含有される耐熱元素の含有量を電極材料に含まれる耐熱元素の含有量とみなすことができる(Cr及びCuも同様である)。   Examples of the heat-resistant element include molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), vanadium (V), zirconium (Zr), beryllium (Be), hafnium (Hf), and iridium (Ir). In addition, elements selected from elements such as platinum (Pt), titanium (Ti), silicon (Si), rhodium (Rh), and ruthenium (Ru) can be used alone or in combination. In particular, it is preferable to use Mo, W, Ta, Nb, V, or Zr, which has a remarkable effect of refining Cr particles. When the heat-resistant element is used as a powder, the median diameter d50 of the heat-resistant element powder is, for example, 10 μm or less, so that the particles containing the Cr (including the heat-resistant element and a solid solution of Cr) are uniformly refined. Can be dispersed. The heat-resistant element is contained in the electrode material in an amount of 1.99 to 29.99% by weight, more preferably 1.99 to 10.00% by weight, so that the resistance of the electrode material is reduced without impairing mechanical strength and workability. The voltage performance and current interruption performance can be improved. In addition, since the amount of the low melting point metal contained in the electrode material is very small, the content of the heat resistant element contained in the powder mixed with the low melting point metal powder is regarded as the content of the heat resistant element contained in the electrode material. (Cr and Cu are the same).

低融点金属は、例えば、テルル(Te)、ビスマス(Bi)、セレン(Se)、アンチモン(Sb)等の元素から選択される元素を単独若しくは組み合わせて用いることができる。低融点金属は、電極材料(耐熱元素、Cr、Cuの合計重量)に対して0.05〜0.30重量%含有させることで、電極材料の耐溶着性能を向上させることができる。低融点金属を粉末として用いる場合、低融点金属粉末のメディアン径d50は、5μm以上40μm以下、より好ましくは5μm以上11μm以下とすることで、電極材料の充填率が向上する。   As the low melting point metal, for example, an element selected from elements such as tellurium (Te), bismuth (Bi), selenium (Se), and antimony (Sb) can be used alone or in combination. The low melting point metal can improve the welding performance of the electrode material by containing 0.05 to 0.30% by weight with respect to the electrode material (total weight of heat-resistant element, Cr and Cu). When a low melting point metal is used as a powder, the median diameter d50 of the low melting point metal powder is 5 μm or more and 40 μm or less, more preferably 5 μm or more and 11 μm or less, so that the filling rate of the electrode material is improved.

クロム(Cr)は、電極材料に対して4.99〜47.98重量%、より好ましくは4.99〜15.99重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。Cr粉末を用いる場合、Cr粉末のメディアン径d50は、耐熱元素の粉末のメディアン径よりも大きければ特に限定されない。例えば、メディアン径が80μm以下のCr粉末が用いられる。   Chromium (Cr) is contained in the electrode material in an amount of 4.99 to 47.98% by weight, more preferably 4.99 to 15.99% by weight, without impairing mechanical strength and workability. Withstand voltage performance and current interruption performance can be improved. When Cr powder is used, the median diameter d50 of the Cr powder is not particularly limited as long as it is larger than the median diameter of the heat-resistant element powder. For example, Cr powder having a median diameter of 80 μm or less is used.

銅(Cu)は、電極材料に対して39.88〜89.96重量%、より好ましくは79.76〜89.96重量%含有させることで、耐電圧性能や電流遮断性能を損なうことなく、電極材料の接触抵抗を低減することができる。Cu粉末のメディアン径d50は、例えば、100μm以下とすることで、耐熱元素とCrの固溶体粉末とCu粉末とを均一に混合することができる。なお、焼結法により作製される電極材料では、耐熱元素とCrの固溶体粉末に混合するCu粉末の量を調整することにより、Cuの重量比を任意に設定することができる。したがって、電極材料に対して添加される耐熱元素、低融点金属、Cr及びCuの合計は、100重量%を超えることはない。   Copper (Cu) is 39.88 to 89.96% by weight, more preferably 79.76 to 89.96% by weight with respect to the electrode material, so that the withstand voltage performance and the current interruption performance are not impaired. The contact resistance of the electrode material can be reduced. By setting the median diameter d50 of the Cu powder to, for example, 100 μm or less, the heat-resistant element, the solid solution powder of Cr, and the Cu powder can be mixed uniformly. In addition, in the electrode material produced by a sintering method, the weight ratio of Cu can be arbitrarily set by adjusting the quantity of Cu powder mixed with the solid solution powder of a heat-resistant element and Cr. Therefore, the total of the refractory elements, low melting point metals, Cr and Cu added to the electrode material does not exceed 100% by weight.

本発明の実施形態に係る電極材料の製造方法について、図1のフローを参照して詳細に説明する。なお、実施形態の説明では、耐熱元素としてMoを例示し、低融点金属としてTeを例示して説明するが、他の耐熱元素及び低融点金属の粉末を用いた場合も同様である。   A method for manufacturing an electrode material according to an embodiment of the present invention will be described in detail with reference to the flow of FIG. In the description of the embodiment, Mo is exemplified as the heat-resistant element and Te is exemplified as the low-melting point metal. However, the same applies to the case where other heat-resistant elements and low-melting-point metal powders are used.

Mo−Cr混合工程S1では、耐熱元素粉末(例えば、Mo粉末)とCr粉末を混合する。Mo粉末とCr粉末は、Cr粉末の重量がMo粉末の重量より多くなるように混合する。例えば、重量比率でMo/Cr=1/4〜1/1(Mo:Cr=1:1は含まず)の範囲で、Mo粉末とCr粉末とを混合する。   In the Mo-Cr mixing step S1, heat-resistant element powder (for example, Mo powder) and Cr powder are mixed. The Mo powder and the Cr powder are mixed so that the weight of the Cr powder is larger than the weight of the Mo powder. For example, Mo powder and Cr powder are mixed within a range of Mo / Cr = 1/4 to 1/1 (not including Mo: Cr = 1: 1) by weight ratio.

焼成工程S2では、Mo粉末とCr粉末の混合粉末の焼成を行う。焼成工程S2では、例えば、混合粉末の成形体を、真空雰囲気中で900〜1200℃の温度で1〜10時間保持してMoCr焼結体を得る。混合粉末におけるCr粉末の重量がMo粉末の重量より多い場合、焼成後にMoと固溶体を形成しないCrが残存することとなる。よって、焼成工程S2では、MoへCrが固相拡散したMoCr合金と残存したCr粒子とを含有する多孔体(MoCr焼結体)が得られる。   In the firing step S2, a mixed powder of Mo powder and Cr powder is fired. In the firing step S2, for example, the mixed powder compact is held in a vacuum atmosphere at a temperature of 900 to 1200 ° C. for 1 to 10 hours to obtain a MoCr sintered body. When the weight of the Cr powder in the mixed powder is larger than the weight of the Mo powder, Cr that does not form a solid solution with Mo remains after firing. Therefore, in the firing step S2, a porous body (MoCr sintered body) containing the MoCr alloy in which Cr is solid-phase diffused into Mo and the remaining Cr particles is obtained.

粉砕・分級工程S3では、焼成工程S2で得られたMoCr焼結体をボールミル等で粉砕する。MoCr焼結体を粉砕して得られるMoCr粉末は、例えば、目開き200μm、より好ましくは、目開き90μmの篩で分級し、粒子径の大きい粒を取り除く。特願2015−93763号明細書に詳述しているが、Cu粉末に混合するMoCr粉末を、200μm以下、より好ましくは、粒子径90μm以下の粒子の体積相対粒子量が90%以上となるように調整することで、鱗片状MoCr(Cr)粒子を除去し、耐電圧性能、耐溶着性能に優れた電極材料を製造することができる。なお、粉砕・分級工程S3における粉砕時間は、例えば、MoCr焼結体1kgあたり2時間で行う。粉砕後のMoCr粉末の平均粒子径は、Mo粉末とCr粉末の配合比によって異なることとなる。   In the pulverization / classification step S3, the MoCr sintered body obtained in the firing step S2 is pulverized with a ball mill or the like. The MoCr powder obtained by pulverizing the MoCr sintered body is classified, for example, with a sieve having an opening of 200 μm, more preferably an opening of 90 μm, and particles having a large particle diameter are removed. As detailed in Japanese Patent Application No. 2015-93763, the MoCr powder mixed with the Cu powder is 200 μm or less, more preferably, the volume relative particle amount of particles having a particle diameter of 90 μm or less is 90% or more. By adjusting to, scale-like MoCr (Cr) particles can be removed, and an electrode material excellent in voltage resistance performance and welding resistance performance can be produced. The pulverization time in the pulverization / classification step S3 is, for example, 2 hours per 1 kg of the MoCr sintered body. The average particle size of the pulverized MoCr powder varies depending on the blending ratio of the Mo powder and the Cr powder.

Cu混合工程S4では、粉砕・分級工程S3で得られたMoCr粉末と、低融点金属粉末(例えば、Te粉末)及びCu粉末との混合を行う。   In the Cu mixing step S4, the MoCr powder obtained in the pulverization / classification step S3 is mixed with the low melting point metal powder (for example, Te powder) and the Cu powder.

プレス成形工程S5は、Cu混合工程S4で得られた混合粉末の成形を行う。プレス金型成形にて成形体を作製すると、成形体を焼結後加工が不要であり、そのまま電極(電極接点)とすることができる。   In the press forming step S5, the mixed powder obtained in the Cu mixing step S4 is formed. When a molded body is produced by press die molding, the molded body does not need to be processed after sintering, and can be used as an electrode (electrode contact) as it is.

本焼結工程S6は、プレス成形工程S5で得られた成形体を焼結し、電極材料を作製する。本焼結工程S6では、例えば、非酸化性雰囲気中(水素雰囲気や真空雰囲気等)で、Cuの融点(1083℃)以下の温度で成形体の焼結を行う。本焼結工程S6の焼結時間は、焼結温度に合わせて適宜設定される。例えば、焼結時間は、2時間以上に設定される。   In the main sintering step S6, the molded body obtained in the press molding step S5 is sintered to produce an electrode material. In the main sintering step S6, for example, the compact is sintered in a non-oxidizing atmosphere (such as a hydrogen atmosphere or a vacuum atmosphere) at a temperature equal to or lower than the melting point of Cu (1083 ° C.). The sintering time in the main sintering step S6 is appropriately set according to the sintering temperature. For example, the sintering time is set to 2 hours or more.

なお、本発明の実施形態に係る電極材料を用いて真空インタラプタを構成することができる。図2に示すように、本発明の実施形態に係る電極材料を有する真空インタラプタ1は、真空容器2と、固定電極3と、可動電極4と、主シールド10と、を有する。   In addition, a vacuum interrupter can be comprised using the electrode material which concerns on embodiment of this invention. As shown in FIG. 2, a vacuum interrupter 1 having an electrode material according to an embodiment of the present invention includes a vacuum vessel 2, a fixed electrode 3, a movable electrode 4, and a main shield 10.

真空容器2は、絶縁筒5の両開口端部が、固定側端板6及び可動側端板7でそれぞれ封止されることで構成される。   The vacuum vessel 2 is configured by sealing both open end portions of the insulating cylinder 5 with a fixed side end plate 6 and a movable side end plate 7, respectively.

固定電極3は、固定側端板6を貫通した状態で固定される。固定電極3の一端は、真空容器2内で、可動電極4の一端と対向するように固定されており、固定電極3の可動電極4と対向する端部には、本発明の実施形態に係る電極材料である電極接点8が設けられる。電極接点8は、固定電極3の端部にロウ材(例えば、Ag−Cu系ロウ材)により接合される。   The fixed electrode 3 is fixed in a state of passing through the fixed side end plate 6. One end of the fixed electrode 3 is fixed so as to face one end of the movable electrode 4 in the vacuum vessel 2, and the end of the fixed electrode 3 facing the movable electrode 4 is in accordance with the embodiment of the present invention. An electrode contact 8 that is an electrode material is provided. The electrode contact 8 is joined to the end of the fixed electrode 3 by a brazing material (for example, an Ag—Cu brazing material).

可動電極4は、可動側端板7に設けられる。可動電極4は、固定電極3と同軸上に設けられる。可動電極4は、図示省略の開閉手段により軸方向に移動させられ、固定電極3と可動電極4の開閉が行われる。可動電極4の固定電極3と対向する端部には、電極接点8が設けられる。電極接点8は、可動電極4の端部にロウ材により接合される。なお、可動電極4と可動側端板7との間には、ベローズ9が設けられ、真空容器2内を真空に保ったまま可動電極4を上下させ、固定電極3と可動電極4の開閉が行われる。   The movable electrode 4 is provided on the movable side end plate 7. The movable electrode 4 is provided coaxially with the fixed electrode 3. The movable electrode 4 is moved in the axial direction by an opening / closing means (not shown), and the fixed electrode 3 and the movable electrode 4 are opened and closed. An electrode contact 8 is provided at the end of the movable electrode 4 facing the fixed electrode 3. The electrode contact 8 is joined to the end of the movable electrode 4 with a brazing material. A bellows 9 is provided between the movable electrode 4 and the movable side end plate 7, and the movable electrode 4 is moved up and down while keeping the inside of the vacuum vessel 2 in a vacuum, so that the fixed electrode 3 and the movable electrode 4 can be opened and closed. Done.

主シールド10は、固定電極3の電極接点8と可動電極4の電極接点8との接触部を覆うように設けられ、固定電極3と可動電極4との間で発生するアークから絶縁筒5を保護する。   The main shield 10 is provided so as to cover the contact portion between the electrode contact 8 of the fixed electrode 3 and the electrode contact 8 of the movable electrode 4, and the insulating cylinder 5 is protected from an arc generated between the fixed electrode 3 and the movable electrode 4. Protect.

[実施例1]
実施例1の電極材料を図1のフローにしたがって作製した。実施例1の電極材料は、図3に示すように、原料粉末であるメディアン径48μmのTe粉末を分級して、メディアン径を9μmとしたTe粉末を用いて作製した電極材料である。なお、実施例1の電極材料に作製するにあたり、メディアン径が10μm以下のMo粉末、メディアン径が80μm以下のテルミットCr粉末、及びメディアン径が100μm以下のCu粉末を用いた(他の実施例、比較例及び参考例も同じ粉末を用いた)。
[Example 1]
The electrode material of Example 1 was produced according to the flow of FIG. As shown in FIG. 3, the electrode material of Example 1 is an electrode material produced by classifying Te powder having a median diameter of 48 μm, which is a raw material powder, and using Te powder having a median diameter of 9 μm. In producing the electrode material of Example 1, Mo powder having a median diameter of 10 μm or less, Thermite Cr powder having a median diameter of 80 μm or less, and Cu powder having a median diameter of 100 μm or less were used (other examples, The same powder was used in Comparative Examples and Reference Examples).

まず、MoとCrの混合比率を重量比率でMo:Cr=1:4となるようにMo粉末とCr粉末とを混合した。混合終了後、得られた混合粉末をアルミナ容器に移し、真空炉で1150℃−6時間焼結を行った。焼結して得られた反応生成物である多孔体を粉砕・分級して90μmアンダーの粉末を得た。   First, Mo powder and Cr powder were mixed so that the mixing ratio of Mo and Cr was Mo: Cr = 1: 4 by weight ratio. After mixing, the obtained mixed powder was transferred to an alumina container and sintered in a vacuum furnace at 1150 ° C. for 6 hours. The porous body, which is a reaction product obtained by sintering, was pulverized and classified to obtain a powder having an under 90 μm.

このMoCr粉砕粉末と、Te粉末と、Cu粉末を、重量比率で、Cu:MoCr:Te=80:20:0.1の割合で混合し、V型混合機を用いて均一になるまで十分に混合した。混合終了後、混合粉末を加圧成形し成形体とし、この成形体をCuの融点よりも低い温度で焼結して電極材料を作製した。   This MoCr pulverized powder, Te powder, and Cu powder are mixed in a weight ratio of Cu: MoCr: Te = 80: 20: 0.1, and sufficiently mixed until uniform using a V-type mixer. Mixed. After mixing, the mixed powder was pressure-molded to form a molded body, and this molded body was sintered at a temperature lower than the melting point of Cu to produce an electrode material.

図4に実施例1の電極材料の断面顕微鏡写真を示す。また、表1に実施例1の電極材料の諸特性を示す。表1における充填率は、焼結体の密度を実測し、(実測密度/理論密度)×100(%)で算出した。耐電圧性能の評価は、各電極材料を真空インタラプタの電極(電極接点)として、50%フラッシオーバ電圧を計測して行った。なお、参考例1の耐電圧性能は、比較例1の電極材料を基準(基準値1.0)とした相対値を示している。また、耐溶着性能は、短時間耐電流(STC)試験を行い、電極間が溶着するか否かで評価を行った(以下、耐溶着性能の試験という)。ロウ付け性は、Ag−Cu系ロウ材で電極材料とCu製リードとのロウ付けを行い、フィレットが形成されたか否か、及びロウ付けした電極材料をハンマーで叩いて電極材料がリードから脱落しないか否かの2点で評価を行った。   FIG. 4 shows a cross-sectional photomicrograph of the electrode material of Example 1. Table 1 shows various characteristics of the electrode material of Example 1. The filling rate in Table 1 was calculated by measuring the density of the sintered body and (measured density / theoretical density) × 100 (%). The withstand voltage performance was evaluated by measuring a 50% flashover voltage using each electrode material as an electrode (electrode contact) of a vacuum interrupter. The withstand voltage performance of Reference Example 1 shows a relative value with the electrode material of Comparative Example 1 as a reference (reference value 1.0). Further, the anti-welding performance was evaluated by performing a short-time electric current resistance (STC) test and determining whether or not the electrodes were welded (hereinafter referred to as an anti-welding performance test). Brazing is performed by brazing the electrode material and the Cu lead with an Ag-Cu brazing material, whether or not a fillet has been formed, and hitting the brazed electrode material with a hammer to cause the electrode material to fall off the lead. Evaluation was made based on two points whether or not.

表1に示すように、実施例1の電極材料では、ロウ材のフィレットが確認され、ロウ付け性は良好であった。ロウ材の体積は、120cm3であり、電極材料におけるロウ付け部面積は2.9cm2であった(実施例2,3、参考例1、比較例1も同様である)。 As shown in Table 1, in the electrode material of Example 1, the fillet of the brazing material was confirmed, and the brazing property was good. The volume of the brazing material was 120 cm 3 , and the brazed area of the electrode material was 2.9 cm 2 (the same applies to Examples 2 and 3, Reference Example 1, and Comparative Example 1).

[実施例2]
実施例2の電極材料は、原料となるTe粉末を分級して、メディアン径を11μmとしたTe粉末を使用したこと以外は、実施例1の電極材料と同様の方法で作製した電極材料である。つまり、実施例2の電極材料を図1のフローにしたがって作成した。表1に示すように、実施例2の電極材料のロウ付け性を確認した結果、ロウ材のフィレットが確認され、ロウ付け性は良好であった。
[Example 2]
The electrode material of Example 2 is an electrode material produced by the same method as that of Example 1 except that Te powder as a raw material is classified and Te powder having a median diameter of 11 μm is used. . That is, the electrode material of Example 2 was prepared according to the flow of FIG. As shown in Table 1, as a result of confirming the brazeability of the electrode material of Example 2, a fillet of the brazing material was confirmed, and the brazeability was good.

[実施例3]
実施例3の電極材料は、原料となるTe粉末を分級して、メディアン径を37μmとしたTe粉末を使用したこと以外は、実施例1の電極材料と同様の方法で作製した電極材料である。つまり、実施例3の電極材料を図1のフローにしたがって作成した。表1に示すように、実施例3の電極材料のロウ付け性を確認した結果、ロウ材のフィレットは確認できなかったものの、電極がリードから剥がれることなくロウ付けできた。
[Example 3]
The electrode material of Example 3 is an electrode material produced by the same method as the electrode material of Example 1 except that Te powder as a raw material is classified and Te powder having a median diameter of 37 μm is used. . That is, the electrode material of Example 3 was prepared according to the flow of FIG. As shown in Table 1, the brazing property of the electrode material of Example 3 was confirmed. As a result, although the fillet of the brazing material could not be confirmed, the electrode could be brazed without peeling off from the lead.

[比較例1]
比較例1の電極材料は、耐熱元素を含有しない電極材料である。比較例1の電極材料を作製するにあたり、図3に示すようなメディアン径が48μmのTe粉末を用いた。
[Comparative Example 1]
The electrode material of Comparative Example 1 is an electrode material that does not contain a heat-resistant element. In producing the electrode material of Comparative Example 1, Te powder having a median diameter of 48 μm as shown in FIG. 3 was used.

比較例1の電極材料を図5に示すフローにしたがって作製した。   The electrode material of Comparative Example 1 was produced according to the flow shown in FIG.

まず、Cu粉末とCr粉末及びTe粉末を、重量比率でCu:Cr:Te=80:20:0.05としてV型混合機を用いて均一になるまで十分に混合した。混合終了後、混合粉末を加圧成型して成形体とし、この成形体を、Cuの融点よりも低い温度で焼結して比較例1の電極材料を作製した。表1に示すように、ロウ材のフィレットが確認され、ロウ付け性は良好であった。   First, Cu powder, Cr powder, and Te powder were sufficiently mixed using a V-type mixer at a weight ratio of Cu: Cr: Te = 80: 20: 0.05 until uniform. After mixing, the mixed powder was pressure-molded to form a molded body, and this molded body was sintered at a temperature lower than the melting point of Cu to produce the electrode material of Comparative Example 1. As shown in Table 1, fillets of the brazing material were confirmed, and the brazing property was good.

[参考例1]
参考例1の電極材料は、Cu混合工程S4で混合するTe粉末のメディアン径が異なること以外は、実施例1と同様の方法で作成した電極材料である。つまり、参考例1の電極材料は、メディアン径が48μmのTe粉末を用い、図1に示すフローにしたがって作製した電極材料である。
[Reference Example 1]
The electrode material of Reference Example 1 is an electrode material produced by the same method as in Example 1 except that the median diameter of Te powder mixed in the Cu mixing step S4 is different. That is, the electrode material of Reference Example 1 is an electrode material manufactured using Te powder having a median diameter of 48 μm according to the flow shown in FIG.

図6に参考例1の電極材料の断面写真を示す。また、表1に示すように、参考例1の電極材料のロウ付け性を確認した結果、ロウ材のフィレットが形成されず、ロウ付け性は悪く、リードから電極が剥がれた。   FIG. 6 shows a cross-sectional photograph of the electrode material of Reference Example 1. Further, as shown in Table 1, as a result of confirming the brazing property of the electrode material of Reference Example 1, no braze fillet was formed, the brazing property was poor, and the electrode was peeled off from the lead.

参考例1の電極材料は、比較例1の電極材料(すなわち、現状のCuCrTe電極材料)よりも優れた耐電圧性能と耐溶着性能を有するものの、充填率とブリネル硬度が低下した。これは、参考例1の電極材料では、焼結工程におけるMoとCrの拡散反応、及びTeの揮発によって内部空孔がCuCrTe電極に比べて多くなることによるものと考えられる。このように電極材料の内部空孔が増加すると、Ag−Cu系ロウ材成分であるAgが電極の内部空孔に吸われてしまうためロウ付けができなくなるものと考えられる。   Although the electrode material of Reference Example 1 has a higher withstand voltage performance and welding resistance performance than the electrode material of Comparative Example 1 (that is, the current CuCrTe electrode material), the filling rate and Brinell hardness decreased. This is considered to be due to the fact that in the electrode material of Reference Example 1, the internal vacancies increase compared to the CuCrTe electrode due to the diffusion reaction of Mo and Cr in the sintering process and the volatilization of Te. If the internal vacancies of the electrode material increase in this way, it is considered that Ag, which is an Ag—Cu brazing material component, is sucked into the internal vacancies of the electrode and brazing cannot be performed.

これに対して、実施例1−3の電極材料は、図4の顕微鏡写真から明らかなように、Teが揮発した後に発生する空孔が小さくなっている。このように、内部空孔が小さくなったことで充填率とブリネル硬度が比較例1の電極材料と同程度まで向上した。その結果、Ag−Cu系ロウ材によるロウ付けが可能となった。実施例1−3の電極材料は、耐電圧試験及び耐溶着試験を実施していないが、参考例1の電極材料と比較して充填率とブリネル硬度が上昇していることから、参考例1の電極材料を上回る耐電圧性能及び耐溶着性能を有しているものと考えられる。   On the other hand, as is apparent from the micrograph of FIG. 4, the electrode material of Example 1-3 has small holes generated after Te is volatilized. Thus, the filling rate and Brinell hardness improved to the same level as the electrode material of the comparative example 1 because the internal void | hole became small. As a result, brazing with an Ag—Cu brazing material has become possible. The electrode material of Example 1-3 was not subjected to a withstand voltage test and a welding resistance test, but the filling rate and Brinell hardness increased compared to the electrode material of Reference Example 1, and thus Reference Example 1 It is considered that it has a withstand voltage performance and a welding resistance performance exceeding those of the above electrode materials.

[低融点金属の添加量の検討]
次に、低融点金属の添加量を変えた電極材料を作成し、電極材料の特性評価を行った。なお、参考例2乃至参考例16の電極材料及び比較例2乃至比較例5の電極材料の作製において、メディアン径48μmのTe粉末を用いた。したがって、各電極材料のロウ付け性は良好でないものと考えられる。そこで、各電極材料を真空インタラプタに搭載するにあたり、ロウ付け温度の高いCu−Mn−Niロウ材とCu−Agロウ材を合わせてロウ付けを行った。このように充填密度の低い電極材料であってもロウ材を工夫することで、ロウ付けを行うことができる。しかしながら、複数のロウ材を用いるとロウ材配置の順番ミスやロウ材の入れ間違い等が発生するおそれがあり、量産化には適用することが困難となるおそれがある。
[Examination of amount of low melting point metal added]
Next, electrode materials with different amounts of the low melting point metal were prepared, and the characteristics of the electrode materials were evaluated. Note that Te powder having a median diameter of 48 μm was used in the production of the electrode materials of Reference Examples 2 to 16 and the electrode materials of Comparative Examples 2 to 5. Therefore, it is considered that the brazing property of each electrode material is not good. Therefore, when mounting each electrode material on a vacuum interrupter, a Cu—Mn—Ni brazing material and a Cu—Ag brazing material having a high brazing temperature were brazed together. Thus, even an electrode material with a low packing density can be brazed by devising a brazing material. However, when a plurality of brazing materials are used, there is a risk that a brazing material arrangement order error or a brazing material misplacement may occur, which may make it difficult to apply to mass production.

[参考例2乃至参考例5]
参考例2乃至参考例5の電極材料は、メディアン径48μmのTe粉末を用いたこと、及び電極材料に含有させるTeの重量が異なること以外は、実施例1と同じ方法により作製した電極材料である。よって、実施例1の電極材料の製造方法と同じ製造工程については説明を省略する。参考例2乃至参考例5の電極材料は、同じ組成を有し、同じ方法により作製された電極材料であり、耐溶着性能の試験における圧接力が異なる試料である。なお、圧接力は、最も圧接力の小さい試料(すなわち、後述の参考例6)の圧接力(αN)を基準値とした相対値で示す。
[Reference Examples 2 to 5]
The electrode materials of Reference Example 2 to Reference Example 5 are electrode materials produced by the same method as in Example 1 except that Te powder having a median diameter of 48 μm was used and the weight of Te contained in the electrode material was different. is there. Therefore, the description of the same manufacturing process as that of the electrode material manufacturing method of Example 1 is omitted. The electrode materials of Reference Example 2 to Reference Example 5 are electrode materials having the same composition and manufactured by the same method, and are samples having different pressure contact forces in the welding resistance test. The pressure contact force is expressed as a relative value with the pressure contact force (αN) of the sample with the smallest pressure contact force (ie Reference Example 6 described later) as a reference value.

図1のフローにしたがって、参考例2乃至参考例5の電極材料を作製した。Cu混合工程S4では、Cu粉末と、MoCr粉砕粉末と、Te粉末と、を重量比率で、Cu:MoCr:Te=80:20:0.05の割合で混合し、V型混合機を用いて均一になるまで十分に混合した。混合終了後、成形体を作製し、Cuの融点よりも低い温度で焼結して参考例2乃至参考例5の電極材料を得た。   The electrode materials of Reference Example 2 to Reference Example 5 were produced according to the flow of FIG. In the Cu mixing step S4, Cu powder, MoCr pulverized powder, and Te powder are mixed at a weight ratio of Cu: MoCr: Te = 80: 20: 0.05, using a V-type mixer. Mix well until uniform. After the completion of mixing, a molded body was prepared and sintered at a temperature lower than the melting point of Cu to obtain electrode materials of Reference Examples 2 to 5.

参考例2の電極材料を固定電極及び可動電極として搭載した真空インタラプタを真空遮断器に取り付けた。そして、真空インタラプタの電極間に作用させる圧接力をα+20Nとして耐溶着性能の試験を行った。同様に、参考例3乃至参考例5の電極材料を真空インタラプタの固定電極及び可動電極にそれぞれ搭載した。そして、真空インタラプタの電極間に作用させる圧接力をα+64N(参考例3)、α+87N(参考例4)、α+131N(参考例5)に変化させ真空遮断器に対して耐溶着性能の試験を行った。表2に、参考例2乃至5の耐電圧性能及び耐溶着性能の試験結果を示す。なお、参考例2乃至16及び比較例2乃至6の耐電圧性能は、比較例1の電極材料を基準(基準値1.0)とした相対値を示している。   A vacuum interrupter in which the electrode material of Reference Example 2 was mounted as a fixed electrode and a movable electrode was attached to the vacuum circuit breaker. Then, the welding performance test was performed with the pressure force acting between the electrodes of the vacuum interrupter being α + 20N. Similarly, the electrode materials of Reference Example 3 to Reference Example 5 were mounted on the fixed electrode and the movable electrode of the vacuum interrupter, respectively. The pressure contact force applied between the electrodes of the vacuum interrupter was changed to α + 64N (Reference Example 3), α + 87N (Reference Example 4), and α + 131N (Reference Example 5), and the resistance to welding performance was tested on the vacuum circuit breaker. . Table 2 shows the test results of the withstand voltage performance and the welding resistance performance of Reference Examples 2 to 5. The withstand voltage performances of Reference Examples 2 to 16 and Comparative Examples 2 to 6 show relative values with the electrode material of Comparative Example 1 as a reference (reference value 1.0).

表2に示すように、参考例2乃至参考例5のいずれの電極材料においても溶着せず、参考例2乃至参考例5は、耐溶着性能に優れた電極材料であることがわかる。   As shown in Table 2, the electrode materials of Reference Examples 2 to 5 were not welded, and it was found that Reference Examples 2 to 5 were electrode materials having excellent welding resistance.

[参考例6乃至参考例11]
参考例6乃至参考例11の電極材料は、Cu混合工程S4におけるCu粉末とMoCr粉砕粉末とTe粉末の混合比率が異なること以外は、参考例2の電極材料と同様の方法で作製した電極材料である。よって、異なる部分について詳細に説明する。参考例6乃至参考例11の電極材料は、同じ組成を有し、同じ方法により作製された電極材料であり、耐溶着性能の試験における圧接力が異なる試料である。
[Reference Examples 6 to 11]
The electrode materials of Reference Example 6 to Reference Example 11 were prepared by the same method as the electrode material of Reference Example 2 except that the mixing ratio of Cu powder, MoCr pulverized powder, and Te powder in Cu mixing step S4 was different. It is. Therefore, different parts will be described in detail. The electrode materials of Reference Example 6 to Reference Example 11 are electrode materials having the same composition and manufactured by the same method, and are samples having different pressure contact forces in the welding resistance test.

図1のフローにしたがって参考例6乃至参考例11の電極材料を作製した。Cu混合工程S4では、Cu粉末と、MoCr粉砕粉末と、Te粉末を、重量比率で、Cu:MoCr:Te=80:20:0.1の割合で混合した。   The electrode materials of Reference Example 6 to Reference Example 11 were produced according to the flow of FIG. In the Cu mixing step S4, Cu powder, MoCr pulverized powder, and Te powder were mixed at a weight ratio of Cu: MoCr: Te = 80: 20: 0.1.

参考例2の電極材料と同様に、参考例6乃至参考例11の電極材料を真空インタラプタの固定電極及び可動電極にそれぞれ搭載した。そして、真空インタラプタを真空遮断器に取り付け、真空インタラプタの電極間に作用させる圧接力を、αN(参考例6)、α+20N(参考例7)、α+44N(参考例8)、α+64N(参考例9)、α+87N(参考例10)、α+131N(参考例11)と変え、耐溶着性能の試験を行った。表2に示すようにすべての圧接力において電極は溶着しなかった。   Similar to the electrode material of Reference Example 2, the electrode materials of Reference Example 6 to Reference Example 11 were mounted on the fixed electrode and the movable electrode of the vacuum interrupter, respectively. Then, the vacuum interrupter is attached to the vacuum circuit breaker, and the pressure contact force applied between the electrodes of the vacuum interrupter is αN (Reference Example 6), α + 20N (Reference Example 7), α + 44N (Reference Example 8), α + 64N (Reference Example 9). , Α + 87N (Reference Example 10) and α + 131N (Reference Example 11) were used, and the welding resistance test was performed. As shown in Table 2, the electrode was not welded at all pressures.

[参考例12乃至参考例16]
参考例12乃至参考例16の電極材料は、Cu混合工程S4におけるCu粉末とMoCr粉砕粉末とTe粉末の混合比率が異なること以外は、参考例2の電極材料と同様の方法で作製した電極材料である。よって、異なる部分について詳細に説明する。参考例12乃至参考例16の電極材料は、同じ組成を有し、同じ方法により作製された電極材料であり、耐溶着性能の試験における圧接力が異なる試料である。
[Reference Examples 12 to 16]
The electrode materials of Reference Example 12 to Reference Example 16 were prepared by the same method as the electrode material of Reference Example 2 except that the mixing ratio of Cu powder, MoCr pulverized powder, and Te powder in Cu mixing step S4 was different. It is. Therefore, different parts will be described in detail. The electrode materials of Reference Examples 12 to 16 are electrode materials having the same composition and manufactured by the same method, and are samples having different pressure contact forces in the welding resistance test.

図1のフローにしたがって参考例12乃至参考例16の電極材料を作製した。Cu混合工程S4では、Cu粉末と、MoCr粉砕粉末と、Te粉末を、重量比率で、Cu:MoCr:Te=80:20:0.3の割合で混合した。   Electrode materials of Reference Examples 12 to 16 were produced according to the flow of FIG. In the Cu mixing step S4, Cu powder, MoCr pulverized powder, and Te powder were mixed at a weight ratio of Cu: MoCr: Te = 80: 20: 0.3.

参考例2の電極材料と同様に、参考例12乃至参考例16の電極材料を真空インタラプタの固定電極及び可動電極にそれぞれ搭載した。そして、真空インタラプタを真空遮断器に取り付け、真空インタラプタの電極間に作用させる圧接力を、α+20N(参考例12)、α+44N(参考例13)、α+64N(参考例14)、α+87N(参考例15)、α+131N(参考例16)と変え、耐溶着性能の試験を行った。   Similar to the electrode material of Reference Example 2, the electrode materials of Reference Example 12 to Reference Example 16 were respectively mounted on the fixed electrode and the movable electrode of the vacuum interrupter. Then, the vacuum interrupter is attached to the vacuum circuit breaker, and the pressure contact force acting between the electrodes of the vacuum interrupter is α + 20N (Reference Example 12), α + 44N (Reference Example 13), α + 64N (Reference Example 14), α + 87N (Reference Example 15). In addition to α + 131N (Reference Example 16), a test for welding resistance was performed.

表2に示すように、圧接力がα+20N、α+44N、α+87Nのとき、電極間で溶着した。一方、圧接力がα+64N、α+131Nのとき、電極間は溶着しなかった。なお、圧接力がα+44Nのとき、溶着した電極を引き剥がす力は2450N必要であった。   As shown in Table 2, when the pressure contact force was α + 20N, α + 44N, α + 87N, welding was performed between the electrodes. On the other hand, when the pressure contact force was α + 64N and α + 131N, the electrodes were not welded. When the pressure contact force was α + 44N, 2450N was required to peel off the welded electrode.

[比較例2乃至比較例5]
比較例2乃至比較例5に係る電極材料は、耐熱元素(Mo)を含有しない電極材料である。比較例2乃至比較例5の電極材料は、比較例1の電極材料と同じ組成を有し、同じ方法により作製された電極材料であり、耐溶着性能の試験における圧接力が異なる試料である。
[Comparative Examples 2 to 5]
The electrode material which concerns on the comparative example 2 thru | or the comparative example 5 is an electrode material which does not contain a heat-resistant element (Mo). The electrode materials of Comparative Examples 2 to 5 are electrode materials having the same composition as the electrode material of Comparative Example 1 and manufactured by the same method, and are samples having different pressure contact forces in the welding performance test.

図5のフローにしたがって比較例2乃至比較例5の電極材料を作製した。   The electrode materials of Comparative Examples 2 to 5 were produced according to the flow of FIG.

Cu:Cr:Te=80:20:0.05の重量比で、Cr粉末と、Te粉末と、Cu粉末と、を混合し、V型混合機を用いて均一になるまで十分に混合した。混合終了後、成形体を作製し、Cuの融点よりも低い温度で焼結して比較例2乃至比較例5の電極材料を得た。   Cr powder, Te powder, and Cu powder were mixed at a weight ratio of Cu: Cr: Te = 80: 20: 0.05, and mixed well using a V-type mixer until uniform. After the completion of mixing, a molded body was prepared and sintered at a temperature lower than the melting point of Cu to obtain electrode materials of Comparative Examples 2 to 5.

参考例2の電極材料と同様に、比較例2乃至比較例5の電極材料を真空インタラプタの固定電極及び可動電極にそれぞれ搭載した。そして、真空インタラプタを真空遮断器に取り付け、真空インタラプタの電極間に作用させる圧接力を、α+44N(比較例2)、α+64N(比較例3)、α+87N(比較例4)、α+131N(比較例5)と変え、耐溶着性能の試験を行った。   Similar to the electrode material of Reference Example 2, the electrode materials of Comparative Examples 2 to 5 were respectively mounted on the fixed electrode and the movable electrode of the vacuum interrupter. Then, the vacuum interrupter is attached to the vacuum circuit breaker, and the pressure contact force acting between the electrodes of the vacuum interrupter is α + 44N (Comparative Example 2), α + 64N (Comparative Example 3), α + 87N (Comparative Example 4), α + 131N (Comparative Example 5). In other words, the welding resistance test was conducted.

表2に示すように、比較例2乃至比較例4の電極材料において、電極間が溶着し、比較例5の電極材料では電極間は溶着しなかった。なお、圧接力が一番小さいα+44Nのとき、溶着した電極を引き剥がす力は2016N必要であった。   As shown in Table 2, in the electrode materials of Comparative Examples 2 to 4, the electrodes were welded, and in the electrode material of Comparative Example 5, the electrodes were not welded. When the pressure contact force is α + 44N, the force to peel off the welded electrode is required to be 2016N.

[比較例6]
比較例6に係る電極材料は、低融点金属(例えば、Te)を含有しない以外、参考例2と同様の方法により作成した電極材料である。したがって、図1に示した参考例2の電極材料の製造工程と同様の製造工程については同じ符号を付し、詳細な説明を省略する。
[Comparative Example 6]
The electrode material according to Comparative Example 6 is an electrode material prepared by the same method as in Reference Example 2 except that it does not contain a low melting point metal (for example, Te). Accordingly, the same manufacturing steps as those of the electrode material of Reference Example 2 shown in FIG.

図7のフローにしたがって比較例6の電極材料を作製した。   The electrode material of Comparative Example 6 was produced according to the flow of FIG.

Cu混合工程S7では、粉砕・分級工程S3で得られたMoCr固溶体粉末とCu粉末とを、重量比率で、Cu:MoCr=4:1の割合で混合し、V型混合機を用いて均一になるまで十分に混合した。混合終了後、成形体を作製し、Cuの融点よりも低い温度で焼結して比較例6の電極材料を得た。   In the Cu mixing step S7, the MoCr solid solution powder obtained in the pulverization / classification step S3 and the Cu powder are mixed at a weight ratio of Cu: MoCr = 4: 1 and uniformly using a V-type mixer. Mix thoroughly until complete. After the completion of mixing, a compact was prepared and sintered at a temperature lower than the melting point of Cu to obtain the electrode material of Comparative Example 6.

参考例2の電極材料と同様に、比較例6の電極材料を真空インタラプタの固定電極及び可動電極にそれぞれ搭載した。そして、真空インタラプタを真空遮断器に取り付け、真空インタラプタの電極間に作用させる圧接力をα+194Nとし、耐溶着性能の試験を行った。表2に示すように、電極間で溶着し、溶着した電極を引き剥がす力は4080Nであった。   Similar to the electrode material of Reference Example 2, the electrode material of Comparative Example 6 was mounted on the fixed electrode and the movable electrode of the vacuum interrupter, respectively. Then, a vacuum interrupter was attached to the vacuum circuit breaker, and the pressure contact force applied between the electrodes of the vacuum interrupter was set to α + 194N, and the welding resistance test was performed. As shown in Table 2, the welding force between the electrodes and the peeled-off electrode was 4080N.

表2から明らかなように、参考例2乃至参考例16及び比較例6の電極材料は、MoCr合金の微細分散組織をCu相中に形成することにより、現状の電極材料である比較例2乃至比較例5の電極材料と比べて耐電圧性能が向上した。   As can be seen from Table 2, the electrode materials of Reference Examples 2 to 16 and Comparative Example 6 are the current electrode materials of Comparative Examples 2 to 2 by forming a finely dispersed structure of MoCr alloy in the Cu phase. The withstand voltage performance was improved as compared with the electrode material of Comparative Example 5.

しかしながら、比較例6の電極材料は、優れた耐電圧性能を有しているが、耐溶着性能が低く、高い圧接力にも拘らず電極間で溶着した。つまり、比較例6の電極材料は、溶着した電極を引き剥がす力が高いため真空インタラプタを組み込む真空遮断器の大型化が必要となり、製造コストが増加するおそれがある。   However, although the electrode material of Comparative Example 6 has an excellent withstand voltage performance, the anti-welding performance was low, and the electrodes were welded between the electrodes despite a high pressure contact force. That is, since the electrode material of Comparative Example 6 has a high force for peeling the welded electrode, it is necessary to increase the size of the vacuum circuit breaker incorporating the vacuum interrupter, which may increase the manufacturing cost.

そこで、参考例2から参考例11の電極材料のように、電極材料に低融点金属であるTeを添加すると、耐電圧性能を損なうことなく比較例6の電極材料と比較して耐溶着性能を向上させることができる。これは、電極材料に低融点金属を添加すると、Cu−Cr粒界及びCu−MoCr粒界に空孔が発生することで粒界の結合強度が低下し、電極材料の耐溶着性能が向上しているものと考えられる。ただし、参考例12から参考例16の電極材料のように、電極材料におけるTeの添加量が増加すると、電極材料の耐電圧性能が低下するおそれがある。これは、低融点金属の添加量の増加にしたがって電極材料中の空孔の発生が多くなり、著しい電極材料の密度低下を引き起こすことに起因するものと考えられる。電極材料の密度が低下することで、電極材料の耐電圧性能が低下し、接触抵抗が増大することとなる。ゆえに、電極材料に添加する低融点金属は、電極材料に対して0.3重量%以下とすることで、耐電圧性能や電流遮断性能を低下させることなく、耐溶着性能に優れた電極材料を得ることができるものと考えられる。   Therefore, as in the electrode materials of Reference Example 2 to Reference Example 11, when Te, which is a low melting point metal, is added to the electrode material, the welding performance is improved as compared with the electrode material of Comparative Example 6 without impairing the withstand voltage performance. Can be improved. This is because, when a low melting point metal is added to the electrode material, voids are generated at the Cu-Cr grain boundary and the Cu-MoCr grain boundary, thereby reducing the bond strength of the grain boundary and improving the welding resistance of the electrode material. It is thought that. However, when the amount of Te added to the electrode material increases as in the electrode materials of Reference Example 12 to Reference Example 16, the withstand voltage performance of the electrode material may decrease. This is considered to be due to the fact that the number of vacancies in the electrode material increases as the amount of the low melting point metal added increases, causing a significant decrease in the density of the electrode material. When the density of the electrode material is lowered, the withstand voltage performance of the electrode material is lowered and the contact resistance is increased. Therefore, the low melting point metal added to the electrode material should be 0.3% by weight or less with respect to the electrode material, so that an electrode material having excellent welding resistance can be obtained without degrading the withstand voltage performance and the current interruption performance. It is thought that it can be obtained.

このように、CuCrMo電極材料に微量の低融点金属(例えば、Cu、Cr、Moの合計重量に対して0.05〜0.3重量%のTe)を添加することで、電極材料の耐溶着性能を向上させることができる。   Thus, by adding a small amount of a low melting point metal (for example, 0.05 to 0.3% by weight of Te to the total weight of Cu, Cr, and Mo) to the CuCrMo electrode material, the electrode material is resistant to welding. Performance can be improved.

しかしながら、粒界に空孔が発生することで粒界の結合強度が低下するものの、電極材料の充填率の低下を招くおそれある。例えば、表1の参考例1の電極材料では、充填率が89.2%である。このように、電極材料の充填率が低下すると、電極材料のロウ付け性が低下するおそれがある。   However, although the bonding strength of the grain boundary is lowered by the generation of vacancies at the grain boundary, the filling rate of the electrode material may be lowered. For example, in the electrode material of Reference Example 1 in Table 1, the filling rate is 89.2%. Thus, when the filling rate of an electrode material falls, there exists a possibility that the brazing property of an electrode material may fall.

これに対して、実施例1乃至実施例3の電極材料のように、メディアン径を5μm以上40μm以下に調整したTe粉末を用いることで、CrMo合金の微細分散組織を形成したCuCrMoTe電極の焼成工程で発生する気孔を小さくすることができ、電極材料の硬度及び充填率を向上させることができる。   On the other hand, a firing process of a CuCrMoTe electrode in which a finely dispersed structure of a CrMo alloy is formed by using a Te powder having a median diameter adjusted to 5 μm or more and 40 μm or less as in the electrode materials of Examples 1 to 3. Can reduce the pores generated and the hardness and filling rate of the electrode material can be improved.

すなわち、本発明の実施形態に係る電極材料及び電極材料の製造方法によれば、メディアン径を5μm以上40μm以下とした低融点金属粉末を用いることで、電極材料の耐電圧性能及び電流遮断性能を低下させることなく、耐溶着性能及びロウ付け性に優れた電極材料を得ることができる。その結果、従来の低融点金属粉末を使用した電極材料では実現できなかったAg−Cu系ロウ材でロウ付けができるようになった。また、ロウ付け性が優れることで、量産における製造コストの削減と歩留りが向上する。   That is, according to the electrode material and the electrode material manufacturing method according to the embodiment of the present invention, by using the low melting point metal powder having a median diameter of 5 μm or more and 40 μm or less, the withstand voltage performance and current interruption performance of the electrode material are improved. An electrode material excellent in welding resistance and brazing can be obtained without lowering. As a result, it became possible to braze with an Ag—Cu brazing material that could not be realized with an electrode material using a conventional low melting point metal powder. In addition, the excellent brazing property reduces the manufacturing cost and the yield in mass production.

さらに、本発明の実施形態に係る電極材料の製造方法によれば、充填率が90%以上、ブリネル硬度が50以上の電極材料を得ることができる。このような密度及び硬度が高い電極材料は、耐電圧性能に優れ、電極損耗量が少ない電極材料となる。   Furthermore, according to the method for manufacturing an electrode material according to the embodiment of the present invention, an electrode material having a filling rate of 90% or more and a Brinell hardness of 50 or more can be obtained. Such an electrode material having a high density and hardness is an electrode material having excellent withstand voltage performance and low electrode wear.

また、本発明の実施形態に係る電極材料の製造方法によれば、充填率が高い電極材料を製造することができる。この電極材料は、MoCr微細分散組織を有することによる優れた耐電圧性能と、現状のCu−Cr電極よりも高い耐溶着性能を有することで、真空インタラプタの小型化が可能となる。つまり、本発明の電極材料を、例えば、真空インタラプタ(VI)の固定電極及び可動電極の少なくとも一方に設けることで、真空インタラプタの電極接点の耐電圧性能が向上する。電極接点の耐電圧性能が向上すると、従来の真空インタラプタよりも開閉時の可動側電極と固定側電極のギャップが短くでき、さらに、電極と絶縁筒とのギャップも短くすることが可能であることから、真空インタラプタの構造を小さくすることが可能となる。また、電極材料の耐溶着性能が向上することで、真空遮断器の開閉動作を行う操作機構を小型化することができ、真空遮断器の小型化に貢献する。   Moreover, according to the manufacturing method of the electrode material which concerns on embodiment of this invention, an electrode material with a high filling rate can be manufactured. Since this electrode material has an excellent withstand voltage performance due to having a MoCr finely dispersed structure and a welding resistance higher than that of the current Cu—Cr electrode, it is possible to reduce the size of the vacuum interrupter. That is, the withstand voltage performance of the electrode contact of the vacuum interrupter is improved by providing the electrode material of the present invention on at least one of the fixed electrode and the movable electrode of the vacuum interrupter (VI), for example. When the withstand voltage performance of electrode contacts is improved, the gap between the movable and fixed electrodes can be shortened and the gap between the electrode and the insulating cylinder can be shortened compared to the conventional vacuum interrupter. Therefore, the structure of the vacuum interrupter can be reduced. In addition, by improving the welding resistance of the electrode material, the operating mechanism for opening and closing the vacuum circuit breaker can be miniaturized, contributing to the miniaturization of the vacuum circuit breaker.

以上、実施形態の説明では、本発明の好ましい態様を示して説明したが、本発明の電極材料の製造方法や電極材料は、実施形態に限定されるものではなく、発明の特徴を損なわない範囲において適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。   In the above description of the embodiment, the preferred embodiment of the present invention has been shown and described. However, the electrode material manufacturing method and electrode material of the present invention are not limited to the embodiment, and do not impair the characteristics of the invention. The design can be changed as appropriate, and the changed design also belongs to the technical scope of the present invention.

例えば、MoCr固溶体粉末は、Mo粉末とCr粉末を仮焼結したものを粉砕・分級して製造されたものに限定されず、重量比でCr>Moの割合でMoとCrを含有するMoCr固溶体粉末を用いることができる。また、MoCr固溶体粉末は、例えば、累積50%で80μm以下の粉末を用いることで、耐電圧性能に優れた電極材料を製造することができる。   For example, the MoCr solid solution powder is not limited to a powder produced by pulverizing and classifying Mo powder and Cr powder, and a MoCr solid solution containing Mo and Cr at a weight ratio of Cr> Mo. Powder can be used. Moreover, as the MoCr solid solution powder, for example, an electrode material having an excellent withstand voltage performance can be produced by using a powder having a cumulative 50% and 80 μm or less.

1…真空インタラプタ
2…真空容器
3…固定電極
4…可動電極
5…絶縁筒
6…固定側端板
7…可動側端板
8…電極接点(電極材料)
9…ベローズ
10…主シールド
DESCRIPTION OF SYMBOLS 1 ... Vacuum interrupter 2 ... Vacuum container 3 ... Fixed electrode 4 ... Movable electrode 5 ... Insulating cylinder 6 ... Fixed side end plate 7 ... Movable side end plate 8 ... Electrode contact (electrode material)
9 ... Bellows 10 ... Main shield

Claims (7)

1.99〜29.99重量%の耐熱元素と、
4.99〜47.98重量%のCrと、
39.88〜89.96重量%のCuと、を含有する混合粉末と、
前記混合粉末に対して0.05〜0.3重量%の低融点金属粉末と、を混合し、当該低融点金属粉末が混合された混合粉末を焼結してなる電極材料であって、
重量比で耐熱元素<Crの割合で耐熱元素とCrを含有する耐熱元素とCrの固溶体を粉砕して得られる、粒子径が90μm以下の粒子の体積相対粒子量が90%以上の固溶体粉末と、Cu粉末と、メディアン径が5μm以上40μm以下の低融点金属粉末と、が混合された混合粉末を焼結してなる
ことを特徴とする電極材料。
1.99 to 29.99% by weight of a heat-resistant element;
4.99 to 47.98 wt% Cr;
Mixed powder containing 39.88-89.96 wt% Cu;
An electrode material obtained by mixing 0.05 to 0.3% by weight of a low melting point metal powder with respect to the mixed powder and sintering the mixed powder in which the low melting point metal powder is mixed,
A solid solution powder having a volume relative particle amount of 90% or more of particles having a particle diameter of 90 μm or less, obtained by pulverizing a solid solution of a heat resistant element containing Cr and a heat resistant element containing Cr at a ratio by weight of <Cr An electrode material obtained by sintering a mixed powder obtained by mixing Cu powder and a low melting point metal powder having a median diameter of 5 μm or more and 40 μm or less.
前記電極材料の充填率は90%以上であり、
前記電極材料のブリネル硬度は50以上である
ことを特徴とする請求項1に記載の電極材料。
The filling rate of the electrode material is 90% or more,
The electrode material according to claim 1, wherein the electrode material has a Brinell hardness of 50 or more.
1.99〜29.99重量%の耐熱元素と、
4.99〜47.98重量%のCrと、
39.88〜89.96重量%のCuと、を含有する混合粉末と、
前記混合粉末に対して0.05〜0.3重量%の低融点金属粉末と、を混合し、当該低融点金属粉末が混合された混合粉末を焼結してなる電極材料の製造方法であって、
重量比で耐熱元素<Crの割合で耐熱元素粉末とCr粉末とを混合し、
混合して得られた耐熱元素粉末とCr粉末との混合粉末を焼結し、
焼結して得られた耐熱元素とCrとを含有する固溶体を粉砕して、粒子径が90μm以下の粒子の体積相対粒子量が90%以上である固溶体粉末とし、
前記固溶体粉末と、Cu粉末と、メディアン径が5μm以上40μm以下の低融点金属粉末と、を混合し、
当該低融点金属粉末が混合された混合粉末を成形し、焼結する
ことを特徴とする電極材料の製造方法。
1.99 to 29.99% by weight of a heat-resistant element;
4.99 to 47.98 wt% Cr;
Mixed powder containing 39.88-89.96 wt% Cu;
This is a method for producing an electrode material obtained by mixing 0.05 to 0.3% by weight of a low melting point metal powder with respect to the mixed powder and sintering the mixed powder in which the low melting point metal powder is mixed. And
Heat-resistant element powder and Cr powder are mixed at a weight ratio of heat-resistant element <Cr.
Sintering mixed powder of heat-resistant element powder and Cr powder obtained by mixing,
The solid solution containing the heat-resistant element and Cr obtained by sintering is pulverized to obtain a solid solution powder having a particle diameter of 90 μm or less and a volume relative particle amount of 90% or more,
Mixing the solid solution powder, Cu powder, and low melting point metal powder having a median diameter of 5 μm to 40 μm,
A method for producing an electrode material, comprising molding and sintering a mixed powder in which the low melting point metal powder is mixed.
前記耐熱元素粉末のメディアン径は、10μm以下である
ことを特徴とする請求項3に記載の電極材料の製造方法。
The method for producing an electrode material according to claim 3, wherein the median diameter of the heat-resistant element powder is 10 μm or less.
前記Cr粉末のメディアン径は、前記耐熱元素粉末のメディアン径より大きく、80μm以下である
ことを特徴とする請求項3または請求項4に記載の電極材料の製造方法。
The method for producing an electrode material according to claim 3 or 4, wherein a median diameter of the Cr powder is larger than a median diameter of the heat-resistant element powder and is 80 µm or less.
前記Cu粉末のメディアン径は、100μm以下である
ことを特徴とする請求項3から請求項5のいずれか1項に記載の電極材料の製造方法。
The method for producing an electrode material according to claim 3, wherein a median diameter of the Cu powder is 100 μm or less.
請求項1または請求項2に記載の電極材料を電極接点として可動電極または固定電極に備えた
ことを特徴とする真空インタラプタ。
A vacuum interrupter characterized in that the electrode material according to claim 1 or 2 is provided as an electrode contact on a movable electrode or a fixed electrode.
JP2015161482A 2015-05-01 2015-08-19 Manufacturing method of electrode material Active JP6657655B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015161482A JP6657655B2 (en) 2015-08-19 2015-08-19 Manufacturing method of electrode material
US15/570,433 US10153098B2 (en) 2015-05-01 2016-04-26 Method for producing electrode material and electrode material
EP16789524.2A EP3290535B1 (en) 2015-05-01 2016-04-26 Method for producing electrode material, and electrode material
PCT/JP2016/063032 WO2016178388A1 (en) 2015-05-01 2016-04-26 Method for producing electrode material, and electrode material
CN201680025925.9A CN107532237B (en) 2015-05-01 2016-04-26 For manufacturing the method and electrode material of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015161482A JP6657655B2 (en) 2015-08-19 2015-08-19 Manufacturing method of electrode material

Publications (2)

Publication Number Publication Date
JP2017039967A true JP2017039967A (en) 2017-02-23
JP6657655B2 JP6657655B2 (en) 2020-03-04

Family

ID=58206404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161482A Active JP6657655B2 (en) 2015-05-01 2015-08-19 Manufacturing method of electrode material

Country Status (1)

Country Link
JP (1) JP6657655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766069B2 (en) 2016-06-08 2020-09-08 Meidensha Corporation Method for manufacturing electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766069B2 (en) 2016-06-08 2020-09-08 Meidensha Corporation Method for manufacturing electrode material

Also Published As

Publication number Publication date
JP6657655B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5904308B2 (en) Method for producing electrode material
JP5862695B2 (en) Method for producing electrode material
JP5880789B1 (en) A composite metal in which Cu is infiltrated into a compact formed from solid solution particles
JP5861807B1 (en) Method for producing electrode material
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP6311325B2 (en) Electrode material and method for producing electrode material
JP6070777B2 (en) Method for producing electrode material
WO2016178388A1 (en) Method for producing electrode material, and electrode material
JP6657655B2 (en) Manufacturing method of electrode material
JP6398415B2 (en) Method for producing electrode material
JP6507830B2 (en) Method of manufacturing electrode material and electrode material
JP6015725B2 (en) Method for producing electrode material
JP5920408B2 (en) Method for producing electrode material
JP6398530B2 (en) Method for producing electrode material
JP6197917B1 (en) Method for producing electrode material
JP6090388B2 (en) Electrode material and method for producing electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6657655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150