JP2017039634A - Production method of silicon crystal - Google Patents

Production method of silicon crystal Download PDF

Info

Publication number
JP2017039634A
JP2017039634A JP2015173290A JP2015173290A JP2017039634A JP 2017039634 A JP2017039634 A JP 2017039634A JP 2015173290 A JP2015173290 A JP 2015173290A JP 2015173290 A JP2015173290 A JP 2015173290A JP 2017039634 A JP2017039634 A JP 2017039634A
Authority
JP
Japan
Prior art keywords
single crystal
seed
raw material
silicon
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015173290A
Other languages
Japanese (ja)
Inventor
山瀬 英夫
Hideo Yamase
英夫 山瀬
蒲池 豊
Yutaka Kamaike
豊 蒲池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015173290A priority Critical patent/JP2017039634A/en
Publication of JP2017039634A publication Critical patent/JP2017039634A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an FZ single crystal which extremely reduces heavy metals such as Fe and Cu, light metals represented by Al, C that is homologous to silicon, and O2 etc. in comparison with a conventional CZ single crystal for a solar system, and by which life time of at least 600 μ sec. or more is obtained.SOLUTION: A supply power of a high frequency apply working coil 1 with a coil of one to several winds of a doughnut shape and a bowl type being wide in an upper circumference, and narrow in a lower circumference is adjusted, while a product single crystal support ring 8 is contacted to a product single crystal 3, and stress applied to a thin single seed crystal 4 is transferred to the product single crystal support ring, when the single seed crystal 4 is pulled down to grow the product single crystal 3 at a speed of 2 to 6 mm/min. in desirably Ar + He gas atmosphere, and an axis of the single seed crystal 4 is arranged in eccentricity to an axis of a silicon polycrystal raw material rod 2, and a melting silicon raw material is supplied in eccentricity from the silicon polycrystal raw material rod 2, in the production method of the FZ single crystal for a solar cell.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池用シリコン結晶の製造方法に関し、さらに詳しくはシリコン結晶のなかでもFZ法単結晶を、太陽電池用として使用する目的に限定して行う太陽電池用FZ単結晶の製造方法に関する。  The present invention relates to a method for producing a silicon crystal for a solar cell, and more particularly relates to a method for producing an FZ single crystal for a solar cell, which is limited to the purpose of using the FZ method single crystal as a solar cell among silicon crystals. .

太陽電池用原料としては、現在世界で約80%強がシリコンを使用している。しかしながらこの原料シリコンの製造は、殆どのものが高コストのシーメンス法により行われている。しかもこのシーメンス法による多結晶シリコン製造プロセスは、基本的には半導体用として確立されたものである為、品質最優先の堅牢・複雑なプロセスとなり、その製品は約8〜10倍程度と格段に高価なものとなっている。  As a raw material for solar cells, over 80% of the world currently uses silicon. However, most of the raw material silicon is manufactured by the high-cost Siemens method. Moreover, since the polycrystalline silicon manufacturing process by the Siemens method is basically established for semiconductors, it is a robust and complex process with the highest priority on quality, and its product is about 8 to 10 times as much. It is expensive.

このように原料費用が高価となるため、少ない原料シリコンで多くの発電量を確保するために、太陽電池として、より安価で大量生産可能であり、高い光電変換効率が得られる太陽電池用シリコン結晶の開発が求められている。  Since the raw material cost becomes high in this way, in order to secure a large amount of power generation with a small amount of raw material silicon, a solar cell silicon crystal that can be mass-produced at a lower cost and can obtain a high photoelectric conversion efficiency. Development is required.

発明が解決しようとする課題Problems to be solved by the invention

太陽電池で高い光電変換効率を得るためには、アモルファス→多結晶→CZ単結晶と進展してきた太陽電池セル用シリコン結晶を、更にFZ単結晶を採用することにより、安価で高効率である太陽光発電システムを確立し、民生用としての最終的な目的を達成することが出来る。しかしながらFZ単結晶は製造方法の違いにより、CZ単結晶と比較して格段に高価なものとの認識が一般的である。その為に現在の太陽電池には殆ど使用されていない。本発明は、太陽電池用に特化してコストを削減したFZ単結晶を提供するものである。  In order to obtain a high photoelectric conversion efficiency in a solar cell, a solar cell that is inexpensive and highly efficient can be obtained by adopting an FZ single crystal instead of a silicon crystal for solar cells that has progressed from amorphous to polycrystalline to CZ single crystal. A photovoltaic system can be established to achieve the final purpose for consumer use. However, it is generally recognized that FZ single crystals are much more expensive than CZ single crystals due to differences in manufacturing methods. For this reason, it is hardly used in current solar cells. The present invention provides an FZ single crystal that is specialized for solar cells and has reduced costs.

半導体シリコン基盤として工業的に最も永いライフタイムが得られる材料であるFZ単結晶を、太陽電池用基盤材料に特化したライフタイムの長い太陽電池用FZ単結晶の製造技術を提供する。即ち、本法で製造されるFZ単結晶は、半導体に通常要求される結晶の完全性(リネージ、スワール、双晶、その他微小欠陥等一般的にはソーサーと称される諸欠陥極小化等は特に要求されず、ライフタイムが少なくとも600μ秒以上にキープされる事を主眼とする事を特徴とする単結晶製造法に関わるものである。  Provided is a technology for producing FZ single crystals for solar cells having a long lifetime, specializing in solar cell substrate materials, as FZ single crystals, which are the materials that provide the longest lifetime in the industry as a semiconductor silicon substrate. In other words, the FZ single crystal produced by this method has the required crystal perfection (lineage, swirl, twins, other micro defects such as miniature defects generally called a saucer, etc.) The present invention is not particularly required, and relates to a single crystal manufacturing method characterized in that the lifetime is kept at least 600 μsec or more.

本法により工業的に製造された太陽電池用FZ単結晶はこれまでのソーラー用CZ単結晶と異なりシリコン中に含まれる所謂俗称ライフタイムキラーと称されるFe、Cu、等重金属、Al、に代表される軽金属、シリコンと同族のC、並びにO2等を極端に減らすことを目的とする。  Unlike the conventional solar CZ single crystals, the FZ single crystals for solar cells produced industrially by this method include Fe, Cu, heavy metals such as so-called “lifetime killer” contained in silicon, Al, and so on. The purpose is to drastically reduce representative light metals, C of the same family as silicon, O2 and the like.

課題を解決するための手段Means for solving the problem

上記課題を解決するため、本願で特許請求される発明は以下の通りである。
(1)高周波印加ワーキングコイルにより種用単結晶(シード)を溶かしつつ、あらかじめ原料加熱用プレヒーテイング・コイルにより、チャージ用原料シリコン多結晶原料ロッドを加熱し、引き続き高周波印加ワーキングコイルによって溶解温度までその底面を溶解させる。然る後、種用単結晶(シード)を高周波印加ワーキングコイルを貫通させて、チャージ用原料シリコン多結晶原料ロッドに接触させ、高周波印加ワーキングコイルの供給電力を調整しつつ、種用単結晶(シード)を下方向に引き下げる。この時、チャージ用原料シリコン多結晶原料ロッドの軸に対し、種用単結晶(シード)の軸が偏心的に配置設定され、チャージ用原料シリコン多結晶原料ロッドより溶解されたシリコン原料を、偏心的に供給することにより、製品FZ単結晶の生成を行うことを特徴とするFZ単結晶の製造方法。
(2)上記(1)に於いて、高周波印加ワーキングコイルはドーナツ型で、上部円周は広く下部円周は狭いお椀形の1〜数巻のコイルを使用する、
(3)チャージ用原料シリコン多結晶原料ロッドは、通常その直径をミクロン単位でグラインド制御される必要があるが、原料加熱用プレヒーテイング・コイルをレーザー直径検知装置の出力により制御することを特徴とするFZ単結晶の製造方法。
(4)製品FZ単結晶は種用単結晶(シード)より静かに2〜6mm/分程度の速度で引き下げて製品結晶を成長させつつ、下方より製品単結晶支えリングとして上端内縁を研削加工を施した石英製支えリングを静かに上げ接触させることにより、細い種結晶にかかる応力を製品単結晶支えリングに移すことを特徴とするFZ単結晶の製造方法。
(5)ソーラー用FZ炉は、通常Arガスを用いるが、本発明では、印加時の雑音等に起因するヒゲ状ピーク電圧の発生に備え、これに起因するアルゴン放電を防ぐ目的で、Ar+Heガスを併用することを特徴とするFZ単結晶の製造方法。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) While melting the seed single crystal (seed) with the high-frequency application working coil, the raw material silicon polycrystalline raw material rod is heated in advance with the preheating coil for raw material heating, and the melting temperature is subsequently continued with the high-frequency application working coil. Dissolve its bottom until. Thereafter, the seed single crystal (seed) is passed through the high-frequency application working coil and brought into contact with the charge raw material silicon polycrystalline raw material rod, and the seed single crystal ( Pull seed down. At this time, the axis of the seed single crystal (seed) is eccentrically set with respect to the axis of the charging raw material silicon polycrystalline raw material rod, and the silicon raw material dissolved from the charging raw material silicon polycrystalline raw material rod is eccentric. The production method of the FZ single crystal is characterized in that the product FZ single crystal is produced by supplying the product.
(2) In the above (1), the high-frequency application working coil is a donut shape, and uses a bowl-shaped coil having a bowl shape with a wide upper circumference and a narrow lower circumference.
(3) The raw material silicon polycrystal raw material rod for charging usually needs to be grind controlled for its diameter in microns, but the preheating coil for heating the raw material is controlled by the output of the laser diameter detector. A method for producing an FZ single crystal.
(4) The product FZ single crystal is gently pulled down from the seed single crystal (seed) at a speed of about 2 to 6 mm / min to grow the product crystal, while the upper edge of the product FZ single crystal is ground from below as a product single crystal support ring A method for producing an FZ single crystal, wherein a stress applied to a thin seed crystal is transferred to a product single crystal support ring by gently raising and contacting the applied quartz support ring.
(5) The solar FZ furnace normally uses Ar gas, but in the present invention, Ar + He gas is used for the purpose of preventing the occurrence of the mustache-like peak voltage caused by noise at the time of application, and the argon discharge caused by this. A method for producing an FZ single crystal, characterized in that

発明の効果Effect of the invention

従来品に対して、ライフタイムの長い安価な太陽電池用FZ単結晶が得られることになり、このことは従来品の中で最も光電変換効率が高いCZ単結晶に対して、はるかに光電変換効率が高いFZ単結晶を、ひいては、光電変換効率を近い将来、25%→30%→35%→45%と改善する事を現在技術の線上で工業的に可能とするタンデム型、シリコン量子ドット型等の工業化を容易とする太陽電池用原料として供給できることとなる。  Compared to conventional products, low-cost solar cell FZ single crystals with a long lifetime can be obtained. This is far more photoelectric conversion than CZ single crystals with the highest photoelectric conversion efficiency among conventional products. Tandem-type silicon quantum dots that enable industrially improving the efficiency of FZ single crystals and, in the near future, the photoelectric conversion efficiency from 25% → 30% → 35% → 45% on the current technology line It can be supplied as a raw material for solar cells that facilitates industrialization of molds and the like.

上記のことは、クリーンエネルギーとして将来性のある太陽電池事業が、その原料であるシリコン原料の不足の解消に大きく寄与し、太陽電池の利用拡大に大きく作用し、社会・環境の改善に貢献すること大である。  This means that the solar cell business, which has a future as clean energy, greatly contributes to the elimination of the shortage of silicon raw materials, and greatly contributes to the expansion of the use of solar cells, contributing to social and environmental improvements. That's big.

上記[0006]項に、具体的に記したが、これにより本発明により製造されるFZ単結晶は、半導体に通常要求される結晶の完全性(リネージ、スワール、双晶、その他微小欠陥等諸欠陥フリー)は求めないが、ライフタイムは600μ秒程度以上がキープされる事を主眼とする事を特徴とする。又、本発明により製造されるFZ単結晶は、これまでの太陽電池用CZ単結晶と異なり、シリコン中に含まれる所謂ライフタイムキラーと称されるFe、Cu、等の重金属、Al、に代表される軽金属及びシリコンと同族のC等を極端に減らすことが出来る。勿論O2含有量は、CZに比べ極端に少ないことは周知の通りである。  Although specifically described in the above item [0006], the FZ single crystal produced according to the present invention thereby produces crystal integrity (lineage, swirl, twin, other micro defects, etc.) normally required for semiconductors. (Defect free) is not required, but the lifetime is mainly characterized by keeping about 600 μsec or more. Also, the FZ single crystal produced by the present invention is different from conventional CZ single crystals for solar cells, and is represented by heavy metals such as Fe, Cu, etc., which are so-called lifetime killers contained in silicon, Al. C and the like belonging to the same light metal and silicon can be extremely reduced. Of course, as is well known, the O2 content is extremely small compared to CZ.

図1は、本発明装置の実施例を示す説明図である。
高周波印加ワーキングコイル1により種用単結晶(シード)4を溶かしつつ、あらかじめ原料加熱用プレヒーテイング・コイル6によりチャージ用原料シリコン多結晶原料ロッド2を高周波印加ワーキングコイル1によって溶解温度までその底面を溶解させる。然る後種用単結晶(シード)4を高周波印加ワーキングコイル1を貫通させてチャージ用原料シリコン多結晶原料ロッド2に接触させ、高周波印加ワーキングコイル1の供給電力を調整しつつ種用単結晶(シード)4を下方向に引き下げる。この時チャージ用原料シリコン多結晶原料ロッド2の軸に対し、種用単結晶(シード)4の軸が偏心的に配置設定され、チャージ用原料シリコン多結晶原料ロッド2より溶解されたシリコン原料を偏心的に供給することにより、製品FZ単結晶の生成を行う。
FIG. 1 is an explanatory view showing an embodiment of the apparatus of the present invention.
While melting the seed single crystal (seed) 4 with the high-frequency application working coil 1, the raw material heating polycrystalline silicon rod 2 is charged to the melting temperature by the high-frequency application working coil 1 to the melting temperature. Dissolve. Then, the seed single crystal (seed) 4 is passed through the high-frequency application working coil 1 and brought into contact with the charge raw material silicon polycrystal raw material rod 2, and the seed single crystal is adjusted while adjusting the power supplied to the high-frequency application working coil 1. (Seed) 4 is pulled downward. At this time, the axis of the seed single crystal (seed) 4 is eccentrically set with respect to the axis of the charging raw material silicon polycrystalline raw material rod 2, and the silicon raw material dissolved from the charging raw material silicon polycrystalline raw material rod 2 is By supplying eccentrically, the product FZ single crystal is produced.

結晶成長の全体図Overall view of crystal growth

1・・・高周波印加ワーキングコイル
2・・・チャージ用原料シリコン多結晶原料ロッド
3・・・製品FZ単結晶
4・・・種用単結晶(シード)
5・・・アフターヒーテイング・コイル
6・・・原料加熱用プレヒーテイング・コイル
7・・・レーザー直径検知装置
8・・・製品単結晶支えリング
DESCRIPTION OF SYMBOLS 1 ... High frequency application working coil 2 ... Raw material silicon polycrystal raw material rod 3 for charge ... Product FZ single crystal 4 ... Single crystal for seed (seed)
5 ... After-heating coil 6 ... Preheating coil for raw material heating 7 ... Laser diameter detector 8 ... Product single crystal support ring

Claims (5)

高周波印加ワーキングコイルにより種用単結晶(シード)を溶かしつつ、あらかじめ原料加熱用プレヒーテイング・コイルにより、チャージ用原料シリコン多結晶原料ロッドを高周波印加ワーキングコイルによって溶解温度までその底面を溶解させる。然る後、種用単結晶(シード)を高周波印加ワーキングコイルを貫通させて、チャージ用原料シリコン多結晶原料ロッドに接触させ、高周波印加ワーキングコイルの供給電力を調整しつつ、種用単結晶(シード)を下方向に引き下げる。この時、チャージ用原料シリコン多結晶原料ロッドの軸に対し、種用単結晶(シード)の軸が偏芯微細調節化可能なように配置設定され、チャージ用原料シリコン多結晶原料ロッドより溶解されたシリコン原料を、偏心的に供給することにより、製品FZ単結晶の生成を行うことを特徴とする太陽電池用FZ単結晶の製造方法。  While melting the seed single crystal (seed) with the high-frequency applying working coil, the bottom surface of the charging raw material silicon polycrystalline raw material rod is melted to the melting temperature with the high-frequency applying working coil by the preheating coil for raw material heating. Thereafter, the seed single crystal (seed) is passed through the high-frequency application working coil and brought into contact with the charge raw material silicon polycrystalline raw material rod, and the seed single crystal ( Pull seed down. At this time, the axis of the seed silicon single crystal (rod) is arranged and set so that the fine axis of the seed single crystal (seed) can be finely adjusted, and is dissolved from the polycrystalline silicon rod for charge silicon. A method for producing an FZ single crystal for a solar cell, wherein a product FZ single crystal is produced by supplying an eccentric silicon raw material eccentrically. 請求項1に於いて、高周波印加ワーキングコイルはドーナツ型で、上部円周は広く下部円周は狭いお椀形の1〜数巻のコイルを使用する太陽電池用FZ単結晶の製造方法。  2. The method for producing an FZ single crystal for a solar cell according to claim 1, wherein the high-frequency application working coil is a donut shape, and uses a bowl-shaped coil having one or several turns having a wide upper circumference and a narrow lower circumference. チャージ用原料シリコン多結晶原料ロッドは、通常その直径をミクロン単位でグラインド制御される必要があるが、原料加熱用プレヒーテイング・コイルをレーザー直径検知装置の出力により制御することを特徴とするFZ単結晶の製造方法。  The raw material silicon polycrystal raw material rod for charging usually needs to be grind controlled for its diameter in micron units, but the FZ is characterized in that the preheating coil for material heating is controlled by the output of the laser diameter detector. A method for producing a single crystal. 製品FZ単結晶は種用単結晶(シード)より静かに2〜6mm/分程度の速度で引き下げて製品結晶を成長させつつ、下方より製品単結晶支えリングとして上端内縁を研削加工を施した石英製支えリングを静かに上げ接触させることにより、細い種結晶にかかる応力を製品単結晶支えリングに移すことを特徴とするFZ単結晶の製造方法。  The product FZ single crystal is gently pulled down from the seed single crystal (seed) at a speed of about 2 to 6 mm / min to grow the product crystal, and the upper edge is ground as a product single crystal support ring from below. A method for producing an FZ single crystal, wherein a stress applied to a thin seed crystal is transferred to a product single crystal support ring by gently raising and making contact with the support ring. ソーラー用FZ炉は、通常Arガスを用いるが、本発明では、雰囲気の外乱要因に依るコロナ放電等の防止に関する一層の安定化を計り、Ar+Heガスを併用することを特徴とするFZ単結晶の製造方法。  FZ furnaces for solar use normally use Ar gas. However, in the present invention, the FZ single crystal is characterized in that Ar + He gas is used in combination for further stabilization regarding prevention of corona discharge and the like due to atmospheric disturbance factors. Production method.
JP2015173290A 2015-08-18 2015-08-18 Production method of silicon crystal Pending JP2017039634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173290A JP2017039634A (en) 2015-08-18 2015-08-18 Production method of silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173290A JP2017039634A (en) 2015-08-18 2015-08-18 Production method of silicon crystal

Publications (1)

Publication Number Publication Date
JP2017039634A true JP2017039634A (en) 2017-02-23

Family

ID=58203279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173290A Pending JP2017039634A (en) 2015-08-18 2015-08-18 Production method of silicon crystal

Country Status (1)

Country Link
JP (1) JP2017039634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110453275A (en) * 2019-08-14 2019-11-15 天津中环领先材料技术有限公司 A kind of zone melting single-crystal furnace feeding device
CN112723357A (en) * 2021-02-18 2021-04-30 上海韵申新能源科技有限公司 Preparation device and method of zone-melting-level polycrystalline silicon material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100500A (en) * 1985-10-25 1987-05-09 Natl Inst For Res In Inorg Mater Production of single crystal titanium carbonitride
JPH076972A (en) * 1993-06-18 1995-01-10 Shin Etsu Handotai Co Ltd Growth method and device of silicon single crystal
JPH07315980A (en) * 1994-05-24 1995-12-05 Shin Etsu Handotai Co Ltd Method for growing semiconductor single crystal
JP2006111519A (en) * 2004-09-16 2006-04-27 Sanritsuku:Kk Polycrystalline silicon raw material for photovoltaic power generation and silicon wafer for photovoltaic power generation
JP2008266102A (en) * 2007-04-25 2008-11-06 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal by fz (floating zone) method
JP2013103874A (en) * 2011-11-11 2013-05-30 Yutaka Kamaike Silicon and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100500A (en) * 1985-10-25 1987-05-09 Natl Inst For Res In Inorg Mater Production of single crystal titanium carbonitride
JPH076972A (en) * 1993-06-18 1995-01-10 Shin Etsu Handotai Co Ltd Growth method and device of silicon single crystal
JPH07315980A (en) * 1994-05-24 1995-12-05 Shin Etsu Handotai Co Ltd Method for growing semiconductor single crystal
JP2006111519A (en) * 2004-09-16 2006-04-27 Sanritsuku:Kk Polycrystalline silicon raw material for photovoltaic power generation and silicon wafer for photovoltaic power generation
JP2008266102A (en) * 2007-04-25 2008-11-06 Sumco Techxiv株式会社 Method for manufacturing silicon single crystal by fz (floating zone) method
JP2013103874A (en) * 2011-11-11 2013-05-30 Yutaka Kamaike Silicon and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110453275A (en) * 2019-08-14 2019-11-15 天津中环领先材料技术有限公司 A kind of zone melting single-crystal furnace feeding device
CN110453275B (en) * 2019-08-14 2024-01-05 天津中环领先材料技术有限公司 Feeding device of zone-melting single crystal furnace
CN112723357A (en) * 2021-02-18 2021-04-30 上海韵申新能源科技有限公司 Preparation device and method of zone-melting-level polycrystalline silicon material

Similar Documents

Publication Publication Date Title
CN104372408B (en) Large size gallium oxide single crystal Czochralski growing method under normal pressure
CN102644108B (en) A kind of loading method of growing silicon crystals in casting process and the technique of growing silicon crystal
CN102936747B (en) Method for casting ingot of pseudo-single crystal through large-sized crucible
WO2016082525A1 (en) Device for moving small heat insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
CN104047048A (en) Novel ingot casting crucible and manufacturing method thereof
CN104328495A (en) Production method of solar grade czochralski monocrystalline silicon
CN104451872A (en) Production method of solar-grade czochralski silicon
CN102041550A (en) Method for prolonging service life of single crystal furnace thermal field crucible, and Czochralski crystal growing furnace
CN104328494A (en) Production method of solar grade czochralski monocrystalline silicon
JP2017039634A (en) Production method of silicon crystal
CN104372406A (en) Method for producing solar grade Czochralski silicon
CN105239152A (en) Production method of solar-grade czochralski silicon
Takahashi et al. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer
CN101812727B (en) Method for directionally solidifying and purifying polycrystalline silicon under DC electric field
Nose et al. Floating cast method to realize high-quality Si bulk multicrystals for solar cells
JP2016183071A (en) Manufacturing method of silicon single crystal
CN101812726A (en) Method for preparing gallium-doped p-type crystalline silicon
JP2008297132A (en) Method for producing silicon single crystal
CN201634792U (en) Straight-pull single crystal furnace
CN103397378A (en) Preparation method of polycrystalline silicon ingot
JPWO2013145558A1 (en) Polycrystalline silicon and casting method thereof
CN102758253A (en) Czochralski polycrystalline silicon or monocrystal silicon preparation technology
JP2018108912A (en) Production method of silicon crystal
CN102817071A (en) Preparation technology of heat radiation resistant Czochralski polysilicon or monocrystalline silicon
CN113355737B (en) Preparation method of square silicon core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180112